εύτερη διάλεξη. Η Γεωµετρία στα αναλυτικά προγράµµατα.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "εύτερη διάλεξη. Η Γεωµετρία στα αναλυτικά προγράµµατα."

Transcript

1 εύτερη διάλεξη. Η στα αναλυτικά προγράµµατα. Η Ευκλείδεια αποτελούσε για χιλιάδες χρόνια µέρος της πνευµατικής καλλιέργειας των µορφωµένων ατόµων στο δυτικό κόσµο. Από τις αρχές του 20 ου αιώνα, καθώς η εκπαίδευση θεσµικοποιήθηκε και συνδέθηκε µε τις παραγωγικές ανάγκες των αντίστοιχων κοινωνιών, η Ευκλείδεια σταδιακά εκτοπίστηκε ή αντικαταστάθηκε από άλλους κλάδους των µαθηµατικών, όπως η Αναλυτική και ο ιανυσµατικός Λογισµός. Αυτή η τάση παγιώθηκε στις βιοµηχανικές χώρες της δύσης την περίοδο της µεγάλης µεταρρύθµισης στη διδασκαλία των Μαθηµατικών, µετά το Στην Ελλάδα αυτή η τάση ήρθε µε καθυστέρηση, τελικά όµως επικράτησε. Το µάθηµα της Ευκλείδειας ς διδάσκεται πολύ λιγότερο απ ότι πριν από 30 χρόνια. Επι πλέον έχει υποβαθµιστεί θεσµικά, αφού δεν περιέχεται στην εξεταστέα ύλη των πανελλαδικών εξετάσεων. Τα τελευταία 20 χρόνια σε αρκετές χώρες έχει αρχίσει µία επανεκτίµηση της σηµασίας της ς για την αφοµοίωση του εποπτικού χώρου και την ανάπτυξη της ικανότητας συλλογισµού και λογικής επιχειρηµατολογίας. Οι στόχοι της διδασκαλίας της ς στην πρωτοβάθµια εκπαίδευση είναι οι ακόλουθοι: 1. Ανάπτυξη ψυχικών ικανοτήτων σχετικών µε το χώρο. 2. Γνωριµία βασικών γεωµετρικών εννοιών. 3. Αφοµοίωση του εποπτικού χώρου. 4. Γνωριµία και αξιοποίηση ενός οπλοστασίου ενεργηµάτων. 5. Ανάπτυξη ικανοτήτων επίλυσης προβληµάτων. Ειδικός στόχος του µαθήµατος της ς στην πρωτοβάθµια εκπαίδευση είναι να καταστήσει τους µαθητές ικανούς να αντιλαµβάνονται, να αναπαριστάνουν και να αφοµοιώνουν εννοιολογικά το χώρο. Οι έννοιες και οι γνώσεις που αποκτούν τα απιδιά οφείλουν να τα βοηθούν να αντιλαµβάνονται συνειδητά τον οικείο χώρο και να λύνουν προβλήµατα που σχετίζονται µε αυτόν. Αυτές οι ικανότητες δεν µπορούν να αποκτηθούν χωρίς ειδική εξάσκηση ή µέσα από άλλα µαθήµατα. Στην υποβάθµιση της ς στα αναλυτικά προγράµµατα οφείλονται πολλές δυσκολίες που αντιµετωπίζουν οι µαθητές σε επόµενα στάδια των σπουδών τους ή στη µελλοντική τους απασχόληση. Ας δούµε τη θέση της ς στα αναλυτικά προγράµµατα του Π.Ι. του 2003 στην Ελλάδα, σε σύγκριση µε τα Principles and Standards for School Mathematics, 2000, του NCTM.

2 Τάξη Άξονες 1 η 2 α 3 η Γενικοί στόχοι Να εξασκούνται στον προσανατολισµό στο χώρο, στη σχεδίαση, αναπαραγωγή, αναγνώριση, ονοµασία και ταξινόµηση σχηµάτων. Να διακρίνουν τα στερεά: τον κύβο, το ορθογώνιο παραλληλεπίπεδο, τον κύλινδρο και τη σφαίρα. Να παρατηρούν εικόνες και σχήµατα συµµετρικά ως προς άξονα. Να έχουν µια πρώτη επαφή µε τις έννοιες: µήκος, χρόνος, χρήµα, µάζα. Να αναγνωρίζουν, να περιγράφουν και να επεκτείνουν αριθµητικά και γεωµετρικά µοτίβα. Να εξασκούνται στη σχεδίαση, αναπαραγωγή σχηµάτων και να αναγνωρίζουν τα χαρακτηριστικά των σχηµάτων αυτών. Να καθορίζουν σηµεία και να σχεδιάζουν ευθύγραµµα τµήµατα και ευθείες. Να αναγνωρίζουν εµπειρικά τις παράλληλες και κάθετες ευθείες. Να διακρίνουν τα στερεά: τον κύβο, το ορθογώνιο παραλληλεπίπεδο, τον κύλινδρο και τη σφαίρα. Να παρατηρούν αν ένα σχήµα έχει άξονα συµµετρίας και να συµπληρώνουν το συµµετρικό ενός σχήµατος. Να εφαρµόζουν τη διαδικασία µέτρησης µήκους και επιφανειών µε συµβατικές και αυθαίρετες µονάδες µέτρησης. Να εξασκούνται στη µέτρηση χρόνου, χρήµατος και µάζας. Να αναγνωρίζουν, να περιγράφουν και να επεκτείνουν αριθµητικά και γεωµετρικά µοτίβα. Να εξασκούνται στην περιγραφή, αναπαραγωγή και σχεδιασµό γεωµετρικών σχηµάτων και στερεών σωµάτων καθώς και στην εφαρµογή τεχνικών σχεδίασης κάθετων ευθειών µε τη βοήθεια των γεωµετρικών οργάνων. Να γνωρίσουν τις έννοιες, κορυφή, ακµή, ορθή γωνία και έδρα. Να εξασκηθούν στην κατασκευή συµµετρικών σχηµάτων ως προς άξονα. Να γνωρίζουν και να χρησιµοποιούν τις µονάδες µέτρησης µήκους, χρόνου και µάζας. Να αναγνωρίζουν ένα µοτίβο και να διαπιστώνουν ότι η διαδικασία επανάληψης συνεχίζεται επ. άπειρον. Ώρες % χρόνου 8 6,5% 22 18% 12 10% 21 17,5% 9 7,5% 13 10% 2

3 Τάξη Άξονες 4 η 5 η 6 η Γενικοί στόχοι Να εξασκούνται µε τη βοήθεια οργάνων στην χάραξη παράλληλων και κάθετων ευθειών και στο σχεδιασµό γεωµετρικών σχηµάτων. Επίσης στον υπολογισµό περιµέτρου απλών σχηµάτων. Να κατανοήσουν διαισθητικά την έννοια του εµβαδού. Να εξασκηθούν στην κατασκευή συµµετρικών σχηµάτων ως προς άξονα σε τετραγωνισµένο χαρτί. Να εξασκούνται στη µέτρηση µήκους, επιφάνειας, χρόνου, χρήµατος, µάζας και διαισθητικά της χωρητικότητας. Να εξασκηθούν σε απλές µετατροπές µονάδων µέτρησης και να µπορούν να εκτελούν προσθέσεις και αφαιρέσεις µε συµµιγείς αριθµούς. Να διαπιστώνουν την ύπαρξη απλών αριθµητικών και γεωµετρικών µοτίβων. Να χαράζουν γεωµετρικά σχήµατα µε τη βοήθεια οργάνων. Να υπολογίζουν τις περιµέτρους και τα εµβαδά βασικών γεωµετρικών σχηµάτων, καθώς και το µήκος ενός κύκλου. Να γνωρίζουν την ονοµασία γωνιών και τριγώνων, να τα ταξινοµούν και να τα κατασκευάζουν. Να εξασκούνται στη κατασκευή αναπτυγµάτων απλών στερεών. Να σταθεροποιήσουν τις γνώσεις τους σχετικά µε τις συµβατικές µονάδες µήκους, µάζας, χρόνου, επιφάνειας και χωρητικότητας και να εξοικειωθούν µε τη χρήση των µετρήσεων στην καθηµερινή ζωή. Να διαπιστώνουν την ύπαρξη, να περιγράφουν και να επεκτείνουν απλά αριθµητικά και γεωµετρικά µοτίβα. Να εξασκούνται στον σχεδιασµό ευθύγραµµων σχηµάτων και κύκλων µε κανόνα (χάρακα) και διαβήτη. Να υπολογίζουν το µήκος κύκλου και εµβαδόν κυκλικού δίσκου, τα εµβαδά και τους όγκους βασικών στερεών σχηµάτων. Να αναπαράγουν, να κατασκευάζουν και να συγκρίνουν γωνίες. Να σχεδιάζουν το συµµετρικό ενός σχήµατος ως προς άξονα και να διενεργούν µεταφορές, µεγεθύνσεις και σµικρύνσεις. Να σταθεροποιούν τις γνώσεις τους σχετικά µε τις συµβατικές µονάδες µήκους, µάζας, χρόνου, επιφάνειας και χωρητικότητας και να εξοικειώνονται µε τις χρήσης των µετρήσεων στην καθηµερινή ζωή. Να διατυπώνουν έναν κανόνα για κάποιο απλό αριθµητικό ή το γεωµετρικό µοτίβο. Ώρες % χρόνου 10 8,5% 16 13,5% 8 6,5% 8 6,5% 16 13% 12 10% 3

4 Στα Principles and Standards του NCTM περιγράφεται ο ρόλος της ς σε ένα σύγχρονο αναλυτικό πρόγραµµα ως εξής: Η για πολλά χρόνια θεωρείτο το µάθηµα της δευτεροβάθµιας εκπαίδευσης όπου οι µαθητές µαθαίνουν να αποδεικνύουν γεωµετρικά θεωρήµατα. Τα Κριτήρια για τη εκφράζουν µία ευρύτερη άποψη των δυνατοτήτων της ς, καλώντας τους µαθητές και τις µαθήτριες να αναλύουν τα χαρακτηριστικά γεωµετρικών σχηµάτων και να αναπτύσσουν µαθηµατικά επιχειρήµατα για τις γεωµετρικές σχέσεις, καθώς και να χρησιµοποιούν τη νοερή αναπαράσταση, τη συλλογιστική του χώρου και τη γεωµετρική µοντελοποίηση για την επίλυση προβληµάτων. Η είναι η φυσιολογική περιοχή των µαθηµατικών για την ανάπτυξη της ικανότητας των µαθητών και των µαθητριών να συλλογίζονται και να επιχειρηµατολογούν. Εντύπωση προκαλεί η διαφορά στο χρόνο που αφιερώνεται στη στο ελληνικό αναλυτικό πρόγραµµα, σε σχέση µε τα P&S του NCTM. Σε αυτά η καταλαµβάνει το 23 28% του χρόνου στη διάρκεια της πρωτοβάθµιας εκπάιδευσης, ενώ άλλο 18% καταλαµβάνουν οι Μετρήσεις. Τα Κριτήρια περιεχοµένου και Προσδοκίες ανά τάξη (Math Standards and Expectations) είναι τα ακόλουθα: 4

5 ΚΡΙΤΗΡΙΟ Να αναλύουν τα χαρακτηριστικά και τις ιδιότητες δισδιάστατων και τρισδιάστατων γεωµετρικών σχηµάτων και να αναπτύσσουν µαθηµατικά επιχειρήµατα για τις γεωµετρικές σχέσεις Να προσδιορίζουν σηµεία µε ακρίβεια και να περιγ ραφουν σχέσεις στο χώρο µε τη γεωµετρία συτντεταγµένων και άλλα συστήµατα αναπαράστασης Να εφαρµόζουν µετασχηµατισµούς και να χρησιµοποιούν τη συµµετρία για να αναλύουν τις µαθηµατικές καταστάσεις Να χρησιµοπούν τη νοερή αναπαράσταση, τη συλλογιστική του χώρου και τη γεωµετρική µοντελοποίηση για την επίλυση προβληµάτων Προνήπια έως Β ηµοτικού Να αναγνωρίζουν, να ονοµάζουν, να κατασκευάζουν, να σχεδιάζουν και να κατηγοριοποιούν δισδιάστατα και τρισδιάστατα σχήµατα. Να περιγράφουν χαρακτηριστικά και µέρη δισδιάστατων και τρισδιάστατων σχηµάτων Να διερευνούν και να προβλέπουν τα αποτελέσµατα της συναρµολόγησης και της αποσυναρµολόγησης δισδιάστατων και τρισδιάστατων σχηµάτων Να περιγράφουν, να ονοµάζουν και να ερµηνεύουν τις σχετικές θέσεις στο χώρο και να εφαρµόζουν ιδέες αναφορικά µε τη σχετική θέση Να περιγράφουν, να ονοµάζουν και να ερµηνεύουν την κατεύθυνση και την απόσταση κατά την κίνησή τους στο χώρο και να εφαρµόζουν τις ιδέες αναφορικά µε την κατεύθυνση και την απόσταση Να βρίσκουν και να ονοµάζουν τις ακριβείς θέσεις µε απλές σχέσεις όπως το «κοντά σε» και σε συστήµατα συντεταγµένων όπως τους χάρτες Να αναγνωρίζουν και να εφαρµόζουν µεταφορές, ανακλάσεις και περιστροφές Να αναγνωρίζουν και να δηµιουργούν σχήµατα τα οποία έχουν συµµετρία Να δηµιουργούν νοερές εικόνες γεωµετρικών σχηµάτων χρησιµοποιώντας τη µνήµη του χώρου και τη νοερή αναπαράσταση του χώρου Να αναγνωρίζουν και να αναπαριστούν τα σχήµατα από διαφορετικές προοπτικές Να συνδέουν τις ιδέες στη γεωµετρία µε ιδέες για τους αριθµούς και τις µετρήσεις Να αναγνωρίζουν γεωµετρικά σχήµατα και δοµές στο περιβάλλον και να προσδιορίζουν την ακριβή τους θέση ΚΡΙΤΗΡΙΟ Να αναλύουν τα χαρακτηριστικά και τις ιδιότητες δισδιάστατων και τρισδιάστατων γεωµετρικών σχηµάτων και να αναπτύσσουν µαθηµατικά επιχειρήµατα για τις γεωµετρικές σχέσεις Γ Ε ηµοτικού Να αναγνωρίζουν, να συγκρίνουν και να αναλύουν τα χαρακτηριστικά δισδιάστατων και τρισδιάστατων σχηµάτων και να αναπτύξουν το κατάλληλο λεξιλόγιο για να περιγράψουν αυτά τα χαρακτηριστικά Να ταξινοµούν τα δισδιάστατα και τρισδιάστατα σχηµάτα σύµφωνα µε τις ιδιότητές τους και να αναπτύξουν τους ορισµούς κλάσεων σχηµάτων όπως τα τρίγωνα και οι πυραµίδες Να διερευνούν να περιγράφουν και να συζητούν µε λογικά επιχειρήµατα για τα αποτελέσµατα της 5

6 Να προσδιορίζουν σηµεία µε ακρίβεια και να περιγ ραφουν σχέσεις στο χώρο µε τη γεωµετρία συτντεταγµένων και άλλα συστήµατα αναπαράστασης Να εφαρµόζουν µετασχηµατισµούς και να χρησιµοποιούν τη συµµετρία για να αναλύουν τις µαθηµατικές καταστάσεις Να χρησιµοπούν τη νοερή αναπαράσταση, τη συλλογιστική του χώρου και τη γεωµετρική µοντελοποίηση για την επίλυση προβληµάτων υποδιαίρεσης, του συνδυασµού και του µετασχηµατισµού σχηµάτων Να διερευνούν την ισότητα και την οµοιότητα Να διατυπώνουν και να δοκιµάζουν υποθέσεις για τις γεωµετρικές ιδιότητες και σχέσεις και να αναπτύξουν λογικά επιχειρήµατα για την αιτιολόγηση των συµπερασµάτων τους Να περιγράφουν την ακριβή θέση και κίνηση χρησιµοποιώντας κοινή γλωσσα και τολεξιλόγιο της γεωµετρίας Να κατασκευάζουν και να χρησιµοποιούν συστήµατα συντεταγµένων για να προδιορίζουν την ακριβή θέση και να περιγράφουν διαδροµές Να βρίσκουν την απόσταση µεταξύ σηµείων κατά µήκος οριζόντιων και κάθετων γραµµών σε ένα σύστηµα συντεταγµένων Να προβλέπουν και περιγράφουν τα αποτελέσµατα της µεταφοράς, ανάκλασης και περιστροφής δισδιάστατων σχηµάτων Να περιγράφουν µία κίνηση ή µία σειρά κινήσεων που θα δείχνουν οτι δύο σχήµατα είναι ίσα Να αναγνωρίζουν και να περιγράφουν τη συµµετρία ως προς άξονα και ως προς κέντρο σε δισδιάστατα και τρισδιάστατα σχήµατα και σχέδια Να κατασκευάζουν και να σχεδιάζουν γεωµετρικά αντικείµενα Να δηµιουργούν και να περιγράφουν νοερές εικόνες αντικειµένων, προτύπων και διαδροµών Να αναγνωρίζουν και να κατασκευάζουν ένα τρισδιάστατο αντικείµενο από δισδιάστατες αναπαραστάσεις του συγκεκριµένου αντικειµένου Να αναγνωρίζουν και να κατασκευάζουν µία δισδιάστατη αναπαράσταση ενός τρισδιάστατου αντικειµένου Να χρησιµοποιούν γεωµετρικά µοντέλα για την επίλυση προβληµάτων σε άλλους τοµείς των µαθηµατικών, όπως οι αριθµοί και οι µετρήσεις Να αναγνωρίζουν τις γεωµετρικές ιδέες και σχέσεις και να τις εφαρµόζουν σε άλλους επιστηµονικούς τοµείς και προβλήµατα που παρουσιάζονται στην τάξη ή την καθηµερινή ζωή. Στη συνέχεια θα δούµε πως συγκρίνονται αυτά τα δύο αναλυτικά προγράµµατα µε τη θεωρία των επιπέδων γεωµετρικής σκέψης των Pierre van Hiele και Dina van Hiele- Geldof. 6

Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης

Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης Ενότητα 2: Απόδειξη Δέσποινα Πόταρη, Γιώργος Ψυχάρης Σχολή Θετικών επιστημών Τμήμα Μαθηματικό Η ΔΙΑΧΥΣΗ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΕΜΒΑΔΟΥ ΣΤΗΝ ΠΡΩΤΟΒΑΘΜΙΑ

Διαβάστε περισσότερα

Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Α+Β Δημοτικού

Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Α+Β Δημοτικού Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων 2016-2017 Τάξεις Α+Β Δημοτικού Περιεχόμενα Στόχοι Πηγή Υλικού 1.1 Αριθμοί 1-1000 Γραφή, Ανάγνωση, Απαγγελία, Απαρίθμηση, Σύγκριση, Συμπλήρωση (κατά αύξουσα

Διαβάστε περισσότερα

Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Ε+ΣΤ Δημοτικού

Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Ε+ΣΤ Δημοτικού Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων 2016-2017 Τάξεις Ε+ΣΤ Δημοτικού Περιεχόμενα Στόχοι Πηγή Υλικού 3.1 Αριθμοί Οι μαθητές πρέπει: Σχολικά βιβλία Ε και ΣΤ Φυσικοί, Δεκαδικοί, μετρήσεις Να μπορούν

Διαβάστε περισσότερα

ραστηριότητες στο Επίπεδο 0.

ραστηριότητες στο Επίπεδο 0. ραστηριότητες στο Επίπεδο 0. Σε αυτό το επίπεδο περιλαµβάνονται δραστηριότητες ταξινόµησης, αναγνώρισης και περιγραφής διαφόρων σχηµάτων. Είναι σηµαντικό να χρησιµοποιούνται πολλά διαφορετικά και ποικίλα

Διαβάστε περισσότερα

GEOGEBRA και Γεωμετρία, Μέτρηση και Αριθμοί. Ανδρέας Σάββα Σύμβουλος Πληροφορικής ΤΠΕ, Δημοτικής Εκπαίδευσης

GEOGEBRA και Γεωμετρία, Μέτρηση και Αριθμοί. Ανδρέας Σάββα Σύμβουλος Πληροφορικής ΤΠΕ, Δημοτικής Εκπαίδευσης GEOGEBRA και Γεωμετρία, Μέτρηση και Αριθμοί Ανδρέας Σάββα Σύμβουλος Πληροφορικής ΤΠΕ, Δημοτικής Εκπαίδευσης Ενημερωτική Συνάντηση Ομάδων Εργασίας Ν.Α.Π. Παιδαγωγικό Ινστιτούτο, Λευκωσία, 8 Μαΐου 2012 Ιδιότητες

Διαβάστε περισσότερα

Στόχοι ΑΠΣ για τα μαθηματικά της Ε τάξης

Στόχοι ΑΠΣ για τα μαθηματικά της Ε τάξης Στόχοι ΑΠΣ για τα μαθηματικά της Ε τάξης ΘΕΜΑΤΙΚΕΣ ΕΝΟΤΗΤΕΣ ΚΕΦΑΛΑΙΑ ΣΤΟΧΟΙ ΧΡΟΝΟΣ Αριθμοί και πράξειςακέραιοι 2, 3, 4, 5 2. να μπορούν να εκφράζουν αριθμούς μέχρι και το 1.000.000 με διάφορους τρόπους

Διαβάστε περισσότερα

ΠΑΙΖΩ ΚΑΙ ΚΑΤΑΛΑΒΑΙΝΩ ΜΑΘΗΜΑΤΙΚΑ

ΠΑΙΖΩ ΚΑΙ ΚΑΤΑΛΑΒΑΙΝΩ ΜΑΘΗΜΑΤΙΚΑ 1oς ΚΥΚΛΟΣ - ΠΑΙΖΟΥΜΕ ΚΑΙ ΜΑΘΑΙΝΟΥΜΕ ΤΟΥΣ ΑΡΙΘΜΟΥΣ Α Ενότητα Ανακαλύπτουμε τις ιδιότητες των υλικών μας, τα τοποθετούμε σε ομάδες και διατυπώνουμε κριτήρια ομαδοποίησης Οι μαθητές μαθαίνουν να αναπτύσσουν

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 4 ΕΙΔΗ ΓΡΑΜΜΩΝ, ΕΙΔΗ ΤΡΙΓΩΝΩΝ, ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΑ, ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ

ΕΝΟΤΗΤΑ 4 ΕΙΔΗ ΓΡΑΜΜΩΝ, ΕΙΔΗ ΤΡΙΓΩΝΩΝ, ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΑ, ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΕΝΟΤΗΤΑ 4 ΕΙΔΗ ΓΡΑΜΜΩΝ, ΕΙΔΗ ΤΡΙΓΩΝΩΝ, ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΑ, ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Εκτίμηση και μέτρηση Μ3.6 Εκτιμούν, μετρούν, ταξινομούν και κατασκευάζουν γωνίες (με ή χωρίς τη χρήση της

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 5 ΓΕΩΜΕΤΡΙΑ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ

ΕΝΟΤΗΤΑ 5 ΓΕΩΜΕΤΡΙΑ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΓΕΩΜΕΤΡΙΑ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΓΕΩΜΕΤΡΙΑ Διερεύνηση σχημάτων και χώρου Γ2.1 Ονομάζουν και κατασκευάζουν σημεία, ευθύγραμμα τμήματα, ημιευθείες, ευθείες και διάφορα είδη γραμμών (καμπύλες, ευθείες, τεθλασμένες)

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 7. Σημείωση: Για τη διδασκαλία της ενότητας είναι πολύ σημαντική η χρήση των εποπτικών μέσων (στερεών και αναπτυγμάτων των στερεών).

ΕΝΟΤΗΤΑ 7. Σημείωση: Για τη διδασκαλία της ενότητας είναι πολύ σημαντική η χρήση των εποπτικών μέσων (στερεών και αναπτυγμάτων των στερεών). ΣΤΕΡΕΟΜΕΤΡΙΑ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΓΕΩΜΕΤΡΙΑ Διερεύνηση σχημάτων και χώρου Γ2.6 Ονομάζουν, περιγράφουν και ταξινομούν τρισδιάστατα σχήματα (κύβο, ορθογώνιο παραλληλεπίπεδο, πυραμίδα, σφαίρα, κύλινδρο, κώνο),

Διαβάστε περισσότερα

Μετασχηματισμοί-Τάξη Δ Δημοτικού (3 ώρες) Προαπαιτούμενα:

Μετασχηματισμοί-Τάξη Δ Δημοτικού (3 ώρες) Προαπαιτούμενα: Μετασχηματισμοί-Τάξη Δ Δημοτικού (3 ώρες) Προαπαιτούμενα: Α τάξη Β τάξη Γ τάξη Παρατηρούν μετατοπίσεις και στροφές (90 ο, 180 ο, 360 ο ) και μπορούν αν προβλέψουν το αποτέλεσμα. Αναγνωρίζουν συμμετρικά

Διαβάστε περισσότερα

ραστηριότητες στο Επίπεδο 1.

ραστηριότητες στο Επίπεδο 1. ραστηριότητες στο Επίπεδο 1. Στο επίπεδο 0, στις πρώτες τάξεις του δηµοτικού σχολείου, όπου στόχος είναι η οµαδοποίηση των γεωµετρικών σχηµάτων σε οµάδες µε κοινά χαρακτηριστικά στη µορφή τους, είδαµε

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 8 ΔΙΣΔΙΑΣΤΑΤΗ ΓΕΩΜΕΤΡΙΑ

ΕΝΟΤΗΤΑ 8 ΔΙΣΔΙΑΣΤΑΤΗ ΓΕΩΜΕΤΡΙΑ ΕΝΟΤΗΤΑ 8 ΔΙΣΔΙΑΣΤΑΤΗ ΓΕΩΜΕΤΡΙΑ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΓΕΩΜΕΤΡΙΑ Διερεύνηση σχημάτων και χώρου Γ1.1 Περιγράφουν και κατασκευάζουν διάφορα είδη γραμμών (ανοιχτές, κλειστές, ευθείες, καμπύλες) και δισδιάστατα

Διαβάστε περισσότερα

Παρουσίαση, ανάλυση και σύγκριση του ισχύοντος και δύο σύγχρονων Προγραμμάτων Σπουδών της Γεωμετρίας

Παρουσίαση, ανάλυση και σύγκριση του ισχύοντος και δύο σύγχρονων Προγραμμάτων Σπουδών της Γεωμετρίας Λεμονίδης, Χ. (2015). Παρουσίαση, ανάλυση και σύγκριση του ισχύοντος και δύο σύγχρονων Προγραμμάτων Σπουδών της Γεωμετρίας. Προσκεκλημένη ομιλία στο 13 ο Διήμερο Διαλόγου για τη Διδασκαλία των Μαθηματικών.

Διαβάστε περισσότερα

α) Κύκλος από δύο δοσµένα σηµεία Α, Β. Το ένα από τα δύο σηµεία ορίζεται ως κέντρο αν το επιλέξουµε πρώτο. β) Κύκλος από δοσµένο σηµείο και δοσµένο ευ

α) Κύκλος από δύο δοσµένα σηµεία Α, Β. Το ένα από τα δύο σηµεία ορίζεται ως κέντρο αν το επιλέξουµε πρώτο. β) Κύκλος από δοσµένο σηµείο και δοσµένο ευ ΕΙΣΑΓΩΓΗ ΣΤΟ ΛΟΓΙΣΜΙΚΟ SKETCHPAD ΜΕΡΟΣ Α Μιλώντας για ένα λογισµικό δυναµικής γεωµετρίας καλό θα ήταν να διακρίνουµε αρχικά 3 οµάδες εργαλείων µε τα οποία µπορούµε να εργαστούµε µέσα στο συγκεκριµένο περιβάλλον.

Διαβάστε περισσότερα

ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ

ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Μαθηματικά (Άλγεβρα - Γεωμετρία) Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α, Β ΤΑΞΕΙΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α ΤΑΞΗ ΕΣΠΕΡΙΝΟΥ ΕΠΑΛ ΚΕΝΤΡΙΚΗ

Διαβάστε περισσότερα

Γεωμετρία, Αριθμοί και Μέτρηση

Γεωμετρία, Αριθμοί και Μέτρηση 1. Εισαγωγή Γεωμετρία, Αριθμοί και Μέτρηση Μαθαίνω Γεωμετρία και Μετρώ Παίζω με τους αριθμούς Βρίσκω τα πολλαπλάσια Το εκπαιδευτικό λογισμικό «Γεωμετρία, Αριθμοί και Μέτρηση» δίνει τη δυνατότητα στα παιδιά

Διαβάστε περισσότερα

Η ΓΕΩΜΕΤΡΙΑ ΣΤΗΝ ΠΡΩΤΟΒΑΘΜΙΑ ΚΑΙ ΣΤΗΝ ΔΕΥΤΕΡΟΒΑΘΜΙΑ ΕΚΠΑΙΔΕΥΣΗ ΥΠΑΡΧΕΙ ΣΥΝΕΧΕΙΑ; Εμμ. Νικολουδάκης Σχ. Σύμβουλος Μαθηματικών

Η ΓΕΩΜΕΤΡΙΑ ΣΤΗΝ ΠΡΩΤΟΒΑΘΜΙΑ ΚΑΙ ΣΤΗΝ ΔΕΥΤΕΡΟΒΑΘΜΙΑ ΕΚΠΑΙΔΕΥΣΗ ΥΠΑΡΧΕΙ ΣΥΝΕΧΕΙΑ; Εμμ. Νικολουδάκης Σχ. Σύμβουλος Μαθηματικών Η ΓΕΩΜΕΤΡΙΑ ΣΤΗΝ ΠΡΩΤΟΒΑΘΜΙΑ ΚΑΙ ΣΤΗΝ ΔΕΥΤΕΡΟΒΑΘΜΙΑ ΕΚΠΑΙΔΕΥΣΗ ΥΠΑΡΧΕΙ ΣΥΝΕΧΕΙΑ; Εμμ. Νικολουδάκης Σχ. Σύμβουλος Μαθηματικών Η Ευκλείδεια Γεωμετρία σε σχέση με Θεωρία van Hiele Οι τρεις κόσμοι του Tall

Διαβάστε περισσότερα

Β Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Β Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη Β Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α Ι. Διδακτέα ύλη Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου, έκδοση 2012. ΜΕΡΟΣ Α Κεφ. 7

Διαβάστε περισσότερα

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη Α Τάξη Γυμνασίου Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου, έκδοση 01. Κεφ. 1 ο : Οι φυσικοί αριθμοί 1. Πρόσθεση, αφαίρεση και

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΥΛΗ ΚΑΙ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΣΧΟΛ. ΕΤΟΣ 2014-15 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η., Βλάμου

Διαβάστε περισσότερα

Ι ΑΚΤΙΚΟ ΣΕΝΑΡΙΟ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ

Ι ΑΚΤΙΚΟ ΣΕΝΑΡΙΟ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 1. Τίτλος Ι ΑΚΤΙΚΟ ΣΕΝΑΡΙΟ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ «Φτιάχνω γεωµετρικά σχήµατα», (Μαθηµατικά Β ηµοτικού) 2. Εµπλεκόµενες γνωστικές περιοχές Κατά την υλοποίηση του διδακτικού σεναρίου θα αξιοποιηθούν κατά κύριο

Διαβάστε περισσότερα

ΕΠΠΣ & ΑΠΣ ΜΑΘΗΜΑΤΙΚΩΝ (ΦΕΚ 303/2003 σσ )

ΕΠΠΣ & ΑΠΣ ΜΑΘΗΜΑΤΙΚΩΝ (ΦΕΚ 303/2003 σσ ) ΗΛΙΑΣ. ΑΝΑΓΝΩΣΤΟΥ, Σχολικός Σύµβουλος 41 ης ΕΠ Αττικής ΣΤΕΛΙΟΣ Κ. ΚΡΑΣΣΑΣ, Σχολικός Σύµβουλος 31 ης ΕΠ Αττικής ΕΠΠΣ & ΑΠΣ ΜΑΘΗΜΑΤΙΚΩΝ (ΦΕΚ 303/2003 σσ. 3983-4008) ΣΚΟΠΟΣ ΣΤΟ ΕΠΠΣ 1. Σκοπός της ιδασκαλίας

Διαβάστε περισσότερα

A ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ

A ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ 1 A ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ 2 ΕΝΟΤΗΤΑ 1 ΚΑΝΩ ΟΜΑΔΕΣ, ΜΟΤΙΒΑ, ΑΝΤΙΣΤΟΙΧΙΣΗ ΠΕΡΙΕΧΟΜΕΝΟ ΕΝΟΤΗΤΑΣ -Ομαδοποίηση αντικειμένων με διαφορετικούς τρόπους. -Εντοπισμός ομοιοτήτων και

Διαβάστε περισσότερα

ΙΑΘΕΜΑΤΙΚΟ ΕΝΙΑΙΟ ΠΛΑΙΣΙΟ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑΤΙΚΩΝ

ΙΑΘΕΜΑΤΙΚΟ ΕΝΙΑΙΟ ΠΛΑΙΣΙΟ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΙΑΘΕΜΑΤΙΚΟ ΕΝΙΑΙΟ ΠΛΑΙΣΙΟ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑΤΙΚΩΝ 1. Σκοπός της διδασκαλίας του µαθήµατος Ο σκοπός της διδασκαλίας των Μαθηµατικών εντάσσεται στους γενικότερους σκοπούς της Εκπαίδευσης και αφορά

Διαβάστε περισσότερα

Γεωμετρική σκέψη και γεωμετρικές έννοιες. Γεωμετρικά σχήματα και σώματα

Γεωμετρική σκέψη και γεωμετρικές έννοιες. Γεωμετρικά σχήματα και σώματα Γεωμετρική σκέψη και γεωμετρικές έννοιες Γεωμετρικά σχήματα και σώματα Αφόρμιση Σχεδιάστε 5 τρίγωνα, κάθε ένα από τα οποία διαφέρει από τα άλλα Εξηγείστε ως προς τι διαφέρουν τα τρίγωνά σας Σε τι διαφέρουν;

Διαβάστε περισσότερα

ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηµατικών Γ/σίου και Γεν. Λυκείου.

ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηµατικών Γ/σίου και Γεν. Λυκείου. Να διατηρηθεί µέχρι... ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ENIAIOΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α' Αν. Παπανδρέου 37, 15180 Μαρούσι Πληροφορίες : Αν. Πασχαλίδου Τηλέφωνο

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 3 ΓΕΩΜΕΤΡΙΑ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ

ΕΝΟΤΗΤΑ 3 ΓΕΩΜΕΤΡΙΑ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΓΕΩΜΕΤΡΙΑ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΓΕΩΜΕΤΡΙΑ Διερεύνηση αριθμών Γ2.1 Oνομάζουν και κατασκευάζουν σημεία, ευθύγραμμα τμήματα, ημιευθείες, ευθείες και διάφορα είδη γραμμών (καμπύλες, ευθείες, τεθλασμένες) με διάφορα

Διαβάστε περισσότερα

ΜΕΤΡΗΣΕΙΣ ΓΩΝΙΩΝ ΤΡΙΓΩΝΟΥ ΚΑΙ ΤΕΤΡΑΠΛΕΥΡΟΥ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ CABRI

ΜΕΤΡΗΣΕΙΣ ΓΩΝΙΩΝ ΤΡΙΓΩΝΟΥ ΚΑΙ ΤΕΤΡΑΠΛΕΥΡΟΥ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ CABRI ΜΕΤΡΗΣΕΙΣ ΓΩΝΙΩΝ ΤΡΙΓΩΝΟΥ ΚΑΙ ΤΕΤΡΑΠΛΕΥΡΟΥ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ CABRI Πέτρος Κλιάπης Τάξη Στ Βοηθητικό υλικό: Σχολικό βιβλίο μάθημα 58 Δραστηριότητα 1, ασκήσεις 2, 3 και δραστηριότητα με προεκτάσεις Προσδοκώμενα

Διαβάστε περισσότερα

Λάμπρος Στεφάνου. (Σύμβουλος Μαθηματικών) Συνέδριο ΚΕΣΕΑ-ΤΠΕ 8 Φεβρουαρίου 2014

Λάμπρος Στεφάνου. (Σύμβουλος Μαθηματικών) Συνέδριο ΚΕΣΕΑ-ΤΠΕ 8 Φεβρουαρίου 2014 Λάμπρος Στεφάνου (Σύμβουλος Μαθηματικών) Συνέδριο ΚΕΣΕΑ-ΤΠΕ 8 Φεβρουαρίου 2014 Καίριο ερώτημα: Γιατί να μη χρησιμοποιούμε μόνο τα χειριστικά υλικά; Η τεχνολογία μεγεθύνει το εύρος του περιεχομένου που

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ Α ΤΑΞΗΣ

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ Α ΤΑΞΗΣ ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ Α ΤΑΞΗΣ Το αναλυτικό πρόγραμμα που παρουσιάζουμε εδώ είναι μια πρόταση από περιεχόμενα που θα μπορούσαν να διδαχτούν στο σχολείο δεύτερης ευκαιρίας. Αυτό δεν σημαίνει ότι το πρόγραμμα

Διαβάστε περισσότερα

Επιμόρφωση Εκπαιδευτικών Αναλυτικό Πρόγραμμα Μαθηματικών Δ Τάξης

Επιμόρφωση Εκπαιδευτικών Αναλυτικό Πρόγραμμα Μαθηματικών Δ Τάξης Επιμόρφωση Εκπαιδευτικών Αναλυτικό Πρόγραμμα Μαθηματικών Δ Τάξης Κωνσταντίνος Χρίστου Ρίτα Παναούρα Δήμητρα Πίττα-Πανταζή Μάριος Πιττάλης Φεβρουάριος 2015 Συγγραφική ομάδα: Συντονιστές: Επιστημονικός Συνεργάτης:

Διαβάστε περισσότερα

Επιμόρφωση Εκπαιδευτικών Αναλυτικό Πρόγραμμα Μαθηματικών Ε Τάξη. Κωνσταντίνος Χρίστου Ρίτα Παναούρα Δήμητρα Πίττα-Πανταζή Μάριος Πιττάλης

Επιμόρφωση Εκπαιδευτικών Αναλυτικό Πρόγραμμα Μαθηματικών Ε Τάξη. Κωνσταντίνος Χρίστου Ρίτα Παναούρα Δήμητρα Πίττα-Πανταζή Μάριος Πιττάλης Επιμόρφωση Εκπαιδευτικών Αναλυτικό Πρόγραμμα Μαθηματικών Ε Τάξη Κωνσταντίνος Χρίστου Ρίτα Παναούρα Δήμητρα Πίττα-Πανταζή Μάριος Πιττάλης Νοέμβριος & Δεκέμβριος 2015 ΠΕΡΙΕΧΟΜΕΝΟ Αριθμοί Άλγεβρα Γεωμετρία

Διαβάστε περισσότερα

Math. Mathematics Μαθηματικά. Φυσικές Επιστήμες. Εφαρμοσμένη Μηχανική

Math. Mathematics Μαθηματικά. Φυσικές Επιστήμες. Εφαρμοσμένη Μηχανική Math Science, Technology, Engineering Φυσικές Επιστήμες Τεχνολογία Εφαρμοσμένη Μηχανική Mathematics Μαθηματικά STEM EDUCATION Κατεχάκη 52, 115 25 Αθήνα Τηλ. 210 6777285 e-mail: info@stem.edu.gr www.stem.edu.gr

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 6 ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ, ΚΛΑΣΜΑΤΑ ΕΜΒΑΔΟΝ ΚΑΙ ΠΕΡΙΜΕΤΡΟΣ ΟΡΘΟΓΩΝΙΟΥ

ΕΝΟΤΗΤΑ 6 ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ, ΚΛΑΣΜΑΤΑ ΕΜΒΑΔΟΝ ΚΑΙ ΠΕΡΙΜΕΤΡΟΣ ΟΡΘΟΓΩΝΙΟΥ ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ, ΚΛΑΣΜΑΤΑ ΕΜΒΑΔΟΝ ΚΑΙ ΠΕΡΙΜΕΤΡΟΣ ΟΡΘΟΓΩΝΙΟΥ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ2.5 Αναπαριστούν, συγκρίνουν και σειροθετούν ομώνυμα κλάσματα και δεκαδικούς αριθμούς,

Διαβάστε περισσότερα

Βασικές Γεωμετρικές έννοιες

Βασικές Γεωμετρικές έννοιες Βασικές Γεωμετρικές έννοιες Σημείο Με την άκρη του μολυβιού μου ακουμπώντας την σε ένα κομμάτι χαρτί αφήνω ένα σημάδι το οποίο το λέω σημείο. Το σημείο το δίνω όνομα γράφοντας πάνω απ αυτό ένα κεφαλαίο

Διαβάστε περισσότερα

Β ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ

Β ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ 1 Β ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ ΕΝΟΤΗΤΑ 1 ΑΡΙΘΜΟΙ ΚΑΙ ΠΡΑΞΕΙΣ ΜΕΧΡΙ ΤΟ 20 2 ΠΕΡΙΕΧΟΜΕΝΟ ΕΝΟΤΗΤΑΣ -Αριθμοί μέχρι το 20. -Αξία θέσης ψηφίου - Έννοια δεκάδας και μονάδας. -Πρόσθεση

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 4 ΓΕΩΜΕΤΡΙΑ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ

ΕΝΟΤΗΤΑ 4 ΓΕΩΜΕΤΡΙΑ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΓΕΩΜΕΤΡΙΑ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΓΕΩΜΕΤΡΙΑ Διερεύνηση σχημάτων και χώρου Γ2.1 Ονομάζουν και κατασκευάζουν σημεία, ευθύγραμμα τμήματα, ημιευθείες, ευθείες και διάφορα είδη γραμμών (καμπύλες, ευθείες, τεθλασμένες)

Διαβάστε περισσότερα

Γ Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Γ Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη Γ Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α Ι. Διδακτέα ύλη Από το βιβλίο «Μαθηματικά Γ Γυμνασίου» των Δημητρίου Αργυράκη, Παναγιώτη Βουργάνα, Κωνσταντίνου Μεντή, Σταματούλας Τσικοπούλου, Μιχαήλ Χρυσοβέργη, έκδοση

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 10 ΠΡΟΣΘΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΜΟΤΙΒΟ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ 6

ΕΝΟΤΗΤΑ 10 ΠΡΟΣΘΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΜΟΤΙΒΟ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ 6 ΠΡΟΣΘΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΜΟΤΙΒΟ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ 6 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ1.7 Αναπαριστούν εναδικά κλάσματα ( 1, 1, 1, 1, 1 ) ενός συνόλου ή μιας επιφάνειας, 2 3 4 6 8 χρησιμοποιώντας

Διαβάστε περισσότερα

Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΛ I.

Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΛ I. Γεωμετρία Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΛ I. Εισαγωγή Η διδασκαλία της Γεωμετρίας στην Α Λυκείου εστιάζει στο πέρασμα από τον εμπειρικό στο θεωρητικό τρόπο σκέψης, με ιδιαίτερη έμφαση στη μαθηματική απόδειξη. Οι

Διαβάστε περισσότερα

ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΑΡΙΘΜΩΝ ΜΕΧΡΙ ΤΟ

ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΑΡΙΘΜΩΝ ΜΕΧΡΙ ΤΟ ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΑΡΙΘΜΩΝ ΜΕΧΡΙ ΤΟ 10 Η ενότητα 7 περιλαμβάνει την ανάλυση και τη σύνθεση των αριθμών μέχρι το 10, στρατηγικές πρόσθεσης/αφαίρεσης και επίλυση προβλημάτων πρόσθεσης και αφαίρεσης. ΔΕΙΚΤΕΣ

Διαβάστε περισσότερα

Καθορισµός και διαχείριση διδακτέας ύλης των θετικών µαθηµάτων της Α Ηµερησίου Γενικού Λυκείου για το σχολικό έτος

Καθορισµός και διαχείριση διδακτέας ύλης των θετικών µαθηµάτων της Α Ηµερησίου Γενικού Λυκείου για το σχολικό έτος Καθορισµός και διαχείριση διδακτέας ύλης των θετικών µαθηµάτων της Α Ηµερησίου Γενικού Λυκείου για το σχολικό έτος 2013-14 Μετά από σχετική εισήγηση του Ινστιτούτου Εκπαιδευτικής Πολιτικής (πράξη 32/2013

Διαβάστε περισσότερα

Νοέμβρης Επιμόρφωση Εκπαιδευτικών Β Τάξης Δημοτικού 1/11/2012. Φιλοσοφία διδασκαλίας. What you learn reflects how you learned it.

Νοέμβρης Επιμόρφωση Εκπαιδευτικών Β Τάξης Δημοτικού 1/11/2012. Φιλοσοφία διδασκαλίας. What you learn reflects how you learned it. Επιμόρφωση Εκπαιδευτικών Β Τάξης Δημοτικού Νοέμβρης 2012 Χρύσω Αθανασίου (Σύμβουλος Μαθηματικών ) Ελένη Δεληγιάννη (Συγγραφική Ομάδα) Άντρη Μάρκου (Σύμβουλος Μαθηματικών) Ελένη Μιχαηλίδου (Σύμβουλος Μαθηματικών)

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Α ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Α ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Α ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ Δείκτες Επιτυχίας ΑΡΙΘΜΟΙ ΚΑΙ ΠΡΑΞΕΙΣ Δείκτες Επάρκειας ΑΡΙΘΜΟΙ & ΠΡΑΞΕΙΣ Επίπεδο Δραστηριοτήτων Μαθηματικές Πρακτικές Αρ1.1 Απαγγέλλουν, διαβάζουν, γράφουν

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α. Β ΦΑΣΗ ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α. Β ΦΑΣΗ ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α. Β ΦΑΣΗ ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΜΑ ΔΙΔΑΣΚΑΛΙΑΣ: «Χαράξεις με χάρακα και διαβήτη. Ορθές γωνίες» (Κεφάλαιο : 16 ο ) Σχολείο:

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας:

Διαβάστε περισσότερα

Β Τάξη Γυμνασίου. Ι. Διδακτέα ύλη

Β Τάξη Γυμνασίου. Ι. Διδακτέα ύλη ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ.

Διαβάστε περισσότερα

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α Ι. Διδακτέα ύλη Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου, έκδοση 2012. ΜΕΡΟΣ Α Κεφ. 1

Διαβάστε περισσότερα

ΜΕΤΡΗΣΕΙΣ ΓΩΝΙΩΝ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ CABRI

ΜΕΤΡΗΣΕΙΣ ΓΩΝΙΩΝ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ CABRI ΜΕΤΡΗΣΕΙΣ ΓΩΝΙΩΝ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ CABRI Όλγα Κασσώτη Εργασία που κατατίθεται ως παραδοτέο της παρακολούθησης εκπαιδευτικού προγράμματος στο πλαίσιο υλοποίησης της Πράξης με τίτλο: «Επιμόρφωση των Εκπαιδευτικών

Διαβάστε περισσότερα

Τετράδιο Πρώτης Αρίθµησης Α ηµοτικού

Τετράδιο Πρώτης Αρίθµησης Α ηµοτικού Çëßáò Ã. ÊáñêáíéÜò - Έφη Ι. Σουλιώτου Τετράδιο Πρώτης Αρίθµησης Α ηµοτικού Α Τεύχος 1 Απαγορεύεται η αναπαραγωγή µέρους ή του συνόλου του παρόντος έργου µε οποιοδήποτε τρόπο ή µορφή, στο πρωτότυπο ή σε

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 13 ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΜΕ ΣΥΜΒΑΤΙΚΕΣ ΜΟΝΑΔΕΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΕΡΙΜΕΤΡΟ ΚΑΙ ΕΜΒΑΔΟΝ

ΕΝΟΤΗΤΑ 13 ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΜΕ ΣΥΜΒΑΤΙΚΕΣ ΜΟΝΑΔΕΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΕΡΙΜΕΤΡΟ ΚΑΙ ΕΜΒΑΔΟΝ ΕΝΟΤΗΤΑ 13 ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΜΕ ΣΥΜΒΑΤΙΚΕΣ ΜΟΝΑΔΕΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΕΡΙΜΕΤΡΟ ΚΑΙ ΕΜΒΑΔΟΝ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΜΕΤΡΗΣΗ Εκτίμηση και μέτρηση Μ1.1 Συγκρίνουν και σειροθετούν αντικείμενα με βάση το ύψος, το μήκος,

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ

ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ 2015-16 ΕΞΕΤΑΣΤΕΑ ΥΛΗ Α ΤΑΞΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΕΥΧΟΣ Α ΕΝΟΤΗΤΑ 1: ΣΥΝΟΛΑ (Σελ. 25 42) Η Έννοια του Συνόλου Σχέσεις Συνόλων Πράξεις Συνόλων ΕΝΟΤΗΤΑ 2: ΑΡΙΘΜΟΙ (Σελ. 46 83)

Διαβάστε περισσότερα

. Ερωτήσεις διάταξης. να διαταχθούν από τη µικρότερη προς τη µεγαλύτερη οι τιµές: f (3), f (0), f (-1), f (5), f (-2), f ( ), f (1).

. Ερωτήσεις διάταξης. να διαταχθούν από τη µικρότερη προς τη µεγαλύτερη οι τιµές: f (3), f (0), f (-1), f (5), f (-2), f ( ), f (1). . Ερωτήσεις διάταξης. Οι συναρτήσεις f (x) = x, g (x) = x, h (x) = x, φ (x) = 3x, ρ (x) = 5x, t (x) = 7x έχουν κοινό πεδίο ορισµού το Α = [- 3, 3]. Να γράψετε τις συναρτήσεις σε µια σειρά έτσι ώστε η γραφική

Διαβάστε περισσότερα

ΕΝΙΑΙΟ ΠΛΑΙΣΙΟ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥΔΩΝ

ΕΝΙΑΙΟ ΠΛΑΙΣΙΟ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥΔΩΝ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΕΝΙΑΙΟ ΠΛΑΙΣΙΟ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΙΣΧΥΕΙ ΚΑΤΑ ΤΟ ΜΕΡΟΣ ΠΟΥ ΑΦΟΡΑ ΤΟ ΛΥΚΕΙΟ ΓΙΑ ΤΗΝ ΥΠΟΧΡΕΩΤΙΚΗ ΕΚΠΑΙΔΕΥΣΗ ΙΣΧΥΟΥΝ ΤΟ ΔΕΠΠΣ

Διαβάστε περισσότερα

ισδιάστατοι μετασχηματισμοί ΚΕΦΑΛΑΙΟ 4: ισδιάστατοι γεωμετρικοί μετασχηματισμοί

ισδιάστατοι μετασχηματισμοί ΚΕΦΑΛΑΙΟ 4: ισδιάστατοι γεωμετρικοί μετασχηματισμοί ΚΕΦΑΛΑΙΟ 4: ισδιάστατοι γεωμετρικοί μετασχηματισμοί Πολλά προβλήματα λύνονται μέσω δισδιάστατων απεικονίσεων ενός μοντέλου. Μεταξύ αυτών και τα προβλήματα κίνησης, όπως η κίνηση ενός συρόμενου μηχανισμού.

Διαβάστε περισσότερα

Χαριτωμένη Καβουρτζικλή (ΑΕΜ: 2738)

Χαριτωμένη Καβουρτζικλή (ΑΕΜ: 2738) ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ Το μαθηματικό λογισμικό GeoGebra ως αρωγός για τη λύση προβλημάτων γεωμετρικών κατασκευών Χαριτωμένη Καβουρτζικλή (ΑΕΜ: 2738) Επιβλέπων Καθηγητής

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ Π ΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ Π ΕΡΙΒΑΛΛΟΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ Π ΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ Π ΕΡΙΒΑΛΛΟΝ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ Π ΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ Π ΕΡΙΒΑΛΛΟΝ Κ Υ Κ Λ Ο Υ Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ Κ Α Ι Υ Π Η Ρ Ε Σ Ι Ω Ν Τ Ε Χ Ν Ο Λ Ο Γ Ι Κ Η

Διαβάστε περισσότερα

ΚΑΤΑΣΚΕΥΗ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΩΝ ΜΕ ΧΡΗΣΗ LOGO

ΚΑΤΑΣΚΕΥΗ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΩΝ ΜΕ ΧΡΗΣΗ LOGO 1 ΚΑΤΑΣΚΕΥΗ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΩΝ ΜΕ ΧΡΗΣΗ LOGO ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ ΜΑΘΗΤΗ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 1 1. Τοποθέτησε μια χελώνα στην επιφάνεια εργασίας. 2. Με ποια εντολή γράφει η χελώνα μας;.. 3. Γράψε την εντολή για να πάει

Διαβάστε περισσότερα

Στοιχεία και εµβαδόν πρίσµατος και κυλίνδρου. ρ. Σ.Πατσιοµίτου

Στοιχεία και εµβαδόν πρίσµατος και κυλίνδρου. ρ. Σ.Πατσιοµίτου Στοιχεία και εµβαδόν πρίσµατος και κυλίνδρου ρ. Σ.Πατσιοµίτου Το ορθό πρίσµα και τα στοιχεία του Στη Στερεοµετρία τα παρακάτω στερεά σώµατα ονοµάζονται ορθά πρίσµατα. Οι δύο παράλληλες έδρες του λέγονταιβάσεις

Διαβάστε περισσότερα

ΤΑΞΗ: ΣΤ. Προτείνεται να μην αξιοποιηθούν διδακτικά από το Βιβλίο Μαθητή τα παρακάτω: 1 ο σελ. 7, 4 η άσκηση, σελ. 8, 2 ο πρόβλημα

ΤΑΞΗ: ΣΤ. Προτείνεται να μην αξιοποιηθούν διδακτικά από το Βιβλίο Μαθητή τα παρακάτω: 1 ο σελ. 7, 4 η άσκηση, σελ. 8, 2 ο πρόβλημα ΕΚΠΑΙΔΕΥΤΙΚΟ ΥΛΙΚΟ: Βιβλίο μαθητή, Μαθηματικά ΣΤ Δημοτικού, 2015, ένα τεύχος Τετράδιο εργασιών, Μαθηματικά ΣΤ Δημοτικού, 2015, α τεύχος Τετράδιο εργασιών, Μαθηματικά ΣΤ Δημοτικού, 2015, β τεύχος Τετράδιο

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 5. Μονοψήφιος πολλαπλασιασμός Προβλήματα αναλογίας

ΕΝΟΤΗΤΑ 5. Μονοψήφιος πολλαπλασιασμός Προβλήματα αναλογίας Μονοψήφιος πολλαπλασιασμός Προβλήματα αναλογίας ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Υπολογισμοί και εκτίμηση Αρ2.13 Αναπτύσσουν και εφαρμόζουν αλγόριθμους της πρόσθεσης, της αφαίρεσης, του πολλαπλασιασμού με τριψήφιους

Διαβάστε περισσότερα

ΕΠΑ 331 Διδακτική των Μαθηματικών. Παρουσίαση «Γεωμετρία» ΤΑ ΕΠΙΠΕΔΑ Van Hiele Επίπεδο 0. Επίπεδο Σφαιρικής ή ολικής αντίληψης

ΕΠΑ 331 Διδακτική των Μαθηματικών. Παρουσίαση «Γεωμετρία» ΤΑ ΕΠΙΠΕΔΑ Van Hiele Επίπεδο 0. Επίπεδο Σφαιρικής ή ολικής αντίληψης ΕΠΑ 331 Διδακτική των Μαθηματικών Παρουσίαση «Γεωμετρία» ΤΑ ΕΠΙΠΕΔΑ Van Hiele Επίπεδο 0. Επίπεδο Σφαιρικής ή ολικής αντίληψης 1 ΤΑ ΕΠΙΠΕΔΑ Van Hiele Επίπεδο 0. Επίπεδο Σφαιρικής ή ολικής αντίληψης 1. Αναγνωρίζουν

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ. Θέματα: - Έννοιες χώρου και καρτεσιανές συντεταγμένες - ισδιάστατη γεωμετρία - Γωνίες - Στερεομετρία - Συμμετρία/ μετασχηματισμοί

ΓΕΩΜΕΤΡΙΑ. Θέματα: - Έννοιες χώρου και καρτεσιανές συντεταγμένες - ισδιάστατη γεωμετρία - Γωνίες - Στερεομετρία - Συμμετρία/ μετασχηματισμοί ΓΕΩΜΕΤΡΙΑ Θέματα: - Έννοιες χώρου και καρτεσιανές συντεταγμένες - ισδιάστατη γεωμετρία - Γωνίες - Στερεομετρία - Συμμετρία/ μετασχηματισμοί 1 Έννοιες χώρου και καρτεσιανές συντεταγμένες 1. Ο χάρτης δείχνει

Διαβάστε περισσότερα

ΤΑΞΗ: Γ. Προτείνεται να αξιοποιηθούν διδακτικά τα παρακάτω «ψηφιακά δομήματα» από τα εμπλουτισμένα σχ. εγχειρίδια. Προτείνεται να μην

ΤΑΞΗ: Γ. Προτείνεται να αξιοποιηθούν διδακτικά τα παρακάτω «ψηφιακά δομήματα» από τα εμπλουτισμένα σχ. εγχειρίδια. Προτείνεται να μην ΤΑΞΗ: Γ ΕΚΠΑΙΔΕΥΤΙΚΟ ΥΛΙΚΟ: Βιβλίο μαθητή, Μαθηματικά Γ Δημοτικού, 2015, ένα τεύχος Τετράδιο εργασιών, Μαθηματικά Γ Δημοτικού, 2015, α τεύχος Τετράδιο εργασιών, Μαθηματικά Γ Δημοτικού, 2015, β τεύχος Τετράδιο

Διαβάστε περισσότερα

Συνθέτουν και αναλύουν αριθμούς μέχρι το 100 με βάση την αξία θέσης ψηφίου, χρησιμοποιώντας αντικείμενα, εικόνες, και σύμβολα.

Συνθέτουν και αναλύουν αριθμούς μέχρι το 100 με βάση την αξία θέσης ψηφίου, χρησιμοποιώντας αντικείμενα, εικόνες, και σύμβολα. ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΑΡΙΘΜΩΝ ΜΕΧΡΙ ΤΟ 10 Η ενότητα 7 περιλαμβάνει τους διαμερισμούς και τη σύνθεση των αριθμών μέχρι το 10, στρατηγικές πρόσθεσης/αφαίρεσης και επίλυση προβλημάτων πρόσθεσης και αφαίρεσης.

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Δ ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Δ ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Δ ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ Δείκτες Επιτυχίας ΑΡΙΘΜΟΙ ΚΑΙ ΠΡΑΞΕΙΣ Δείκτες Επάρκειας ΑΡΙΘΜΟΙ & ΠΡΑΞΕΙΣ Επίπεδο Δραστηριοτήτων Μαθηματικές Πρακτικές Αρ3.1 Απαγγέλουν, διαβάζουν, γράφουν

Διαβάστε περισσότερα

1. Εισαγωγή ΜΑΘΗΜΑΤΙΚΑ

1. Εισαγωγή ΜΑΘΗΜΑΤΙΚΑ . Εισαγωγή Κύριος στόχος του Προγράμματος Σπουδών των Μαθηματικών είναι να προετοιμάσει τους μαθητές με τον καλύτερο δυνατό τρόπο ώστε να αγαπήσουν τα Μαθηματικά και να κεντρίσει το ενδιαφέρον και την

Διαβάστε περισσότερα

Δραστηριότητες & Υλικό για τα Μαθηματικά του Δημοτικού

Δραστηριότητες & Υλικό για τα Μαθηματικά του Δημοτικού Δραστηριότητες & Υλικό για τα Μαθηματικά του Δημοτικού Πέτρος Κλιάπης kliapis@sch.gr 1 Ο Ρόλος του εκπαιδευτικού Αξιολογεί την αρχική μαθηματική κατάσταση κάθε παιδιού, ομαδοποιεί τα παιδιά σύμφωνα με

Διαβάστε περισσότερα

Σύστηµα αν/σης Φυσική γλώσσα Συµβολική γλώσσα Γεωµετρικό σχήµα Αναπ/ση Στο ισόπλευρο τρίγωνο ΑΒΓ η πλευρά ΑΒ ισούται µε την πλευρά ΑΓ και µε την πλευρ

Σύστηµα αν/σης Φυσική γλώσσα Συµβολική γλώσσα Γεωµετρικό σχήµα Αναπ/ση Στο ισόπλευρο τρίγωνο ΑΒΓ η πλευρά ΑΒ ισούται µε την πλευρά ΑΓ και µε την πλευρ Μορφές Εικονικής Αναπαράστασης της Έννοιας του Τριγώνου στα Μαθηµατικά του ηµοτικού Σχολείου Χρυσάνθη Σκουµπουρδή Περίληψη Σκοπός της εργασίας αυτής είναι να µελετήσει το ρόλο των παραστάσεων του τριγώνου

Διαβάστε περισσότερα

Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα. συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη τιµή.

Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα. συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη τιµή. Σενάριο 6. Συµµεταβολές στο ισοσκελές τρίγωνο Γνωστική περιοχή: Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη

Διαβάστε περισσότερα

Διδακτική των Μαθηματικών

Διδακτική των Μαθηματικών Διδακτική των Μαθηματικών Ονοματεπώνυμο : Μαμτζέλλη Χρυσούλα Τάξη : Γ Δημοτικού Κεφάλαιο 43 : Η συμμετρία Πρόκειται για ένα εισαγωγικό μάθημα στην αξονική συμμετρία. Οι μαθητές θα μάθουν πότε δύο σχήματα

Διαβάστε περισσότερα

Επιμόρφωση Εκπαιδευτικών Α Τάξης Δημοτικού. Νοέμβρης 2012 1/11/2012. Φιλοσοφία διδασκαλίας. What you learn reflects how you learned it.

Επιμόρφωση Εκπαιδευτικών Α Τάξης Δημοτικού. Νοέμβρης 2012 1/11/2012. Φιλοσοφία διδασκαλίας. What you learn reflects how you learned it. Επιμόρφωση Εκπαιδευτικών Α Τάξης Δημοτικού Νοέμβρης 2012 Χρύσω Αθανασίου (Σύμβουλος Μαθηματικών ) Ελένη Δεληγιάννη (Συγγραφική Ομάδα) Άντρη Μάρκου (Σύμβουλος Μαθηματικών) Ελένη Μιχαηλίδου (Σύμβουλος Μαθηματικών)

Διαβάστε περισσότερα

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ ΕΙΣΑΓΩΓΗ Η Γενικευμένη Γεωμετρία, που θα αναπτύξουμε στα παρακάτω κεφάλαια, είναι μία «Νέα Γεωμετρία», η οποία προέκυψε από την ανάγκη να γενικεύσει ορισμένα σημεία της Ευκλείδειας

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 1: ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΓΕΩΜΕΤΡΙΚΟΥΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥΣ

ΜΑΘΗΜΑ 1: ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΓΕΩΜΕΤΡΙΚΟΥΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥΣ ΜΑΘΗΜΑ 1: ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΓΕΩΜΕΤΡΙΚΟΥΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥΣ Δραστηριότητα 1 Εξερευνώντας το σχηματισμό των ψηφιδωτών. Ένα Ολλανδός ζωγράφος, ο M.C. Escher ( 1898-1972 ), έφτιαχνε ζωγραφικούς πίνακες χρησιμοποιώντας

Διαβάστε περισσότερα

Λογισμικό για Μαθηματικά

Λογισμικό για Μαθηματικά Λογισμικό για Μαθηματικά Γεώργιος Χρ. Μακρής http://users.sch.gr/gmakris 6 Αυγούστου 2012 Λογισμικό 2 Λογισμικό Με τον όρο λογισμικό υπολογιστών, ή λογισμικό (software), ορίζεται η συλλογή από προγράμματα

Διαβάστε περισσότερα

Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση

Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση Ενότητα 5: Η ανάπτυξη της γεωμετρικής σκέψης. Η θεωρία των van Hiele. Δημήτρης Χασάπης Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία

Διαβάστε περισσότερα

ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2

ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2 ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2. ΜΑΘΗΜΑΤΙΚΩΝ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 2013 2014

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 2013 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 3 4 ΜΕΡΟΣ Α : Άλγεβρα Κεφάλαιο ο (Προτείνεται να διατεθούν διδακτικές ώρες) Ειδικότερα:.

Διαβάστε περισσότερα

ΙΑΘΕΜΑΤΙΚΟ ΕΝΙΑΙΟ ΠΛΑΙΣΙΟ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Ι. ΗΜΟΤΙΚΟ

ΙΑΘΕΜΑΤΙΚΟ ΕΝΙΑΙΟ ΠΛΑΙΣΙΟ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Ι. ΗΜΟΤΙΚΟ ΙΑΘΕΜΑΤΙΚΟ ΕΝΙΑΙΟ ΠΛΑΙΣΙΟ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑΤΙΚΩΝ 1. Σκοπός της διδασκαλίας του µαθήµατος Ο σκοπός της διδασκαλίας των Μαθηµατικών εντάσσεται στους γενικότερους σκοπούς της Εκπαίδευσης και αφορά

Διαβάστε περισσότερα

είναι ένα δύσκολο στην κατανόηση θέμα, διότι έχει κατασκευαστεί σε αφηρημένες δομές. Δεδομένου ότι αυτές οι αφηρημένες δομές δεν καλύπτουν τις ζωές

είναι ένα δύσκολο στην κατανόηση θέμα, διότι έχει κατασκευαστεί σε αφηρημένες δομές. Δεδομένου ότι αυτές οι αφηρημένες δομές δεν καλύπτουν τις ζωές 1.1 Η Γεωμετρία Η Γεωμετρία αποτελεί ένα σημαντικό κεφάλαιο των Μαθηματικών και κατέχει ένα βασικό ρόλο στα προγράμματα σπουδών. Η σημασία της διδασκαλίας της συνδέεται τόσο με τη χρησιμότητά της στην

Διαβάστε περισσότερα

2 Β Βάσεις παραλληλογράµµου Βαρύκεντρο Γ Γεωµετρική κατασκευή Γεωµετρικός τόπος (ς) Γωνία Οι απέναντι πλευρές του. Κέντρο βάρους τριγώνου, δηλ. το σηµ

2 Β Βάσεις παραλληλογράµµου Βαρύκεντρο Γ Γεωµετρική κατασκευή Γεωµετρικός τόπος (ς) Γωνία Οι απέναντι πλευρές του. Κέντρο βάρους τριγώνου, δηλ. το σηµ 1 ΛΕΞΙΚΟ ΓΕΩΜΕΤΡΙΚΩΝ ΟΡΩΝ Α Ακτίνιο Ακτίνα κύκλου Ακτίνα σφαίρας Άκρα ευθύγραµµου τµήµατος Αµβλεία γωνία Αµβλυγώνιο Ανάλογα ευθύγραµµα τµήµατα Αντιδιαµετρικό σηµείο Αντικείµενες ηµιευθείες Άξονας συµµετρίας

Διαβάστε περισσότερα

ΣΧΗΜΑΤΑ-ΓΡΑΜΜΕΣ-ΜΕΤΡΗΣΗ Μιχάλης Χριστοφορίδης Ανδρέας Σάββα Σύμβουλοι Μαθηματικών

ΣΧΗΜΑΤΑ-ΓΡΑΜΜΕΣ-ΜΕΤΡΗΣΗ Μιχάλης Χριστοφορίδης Ανδρέας Σάββα Σύμβουλοι Μαθηματικών ΕΦΑΡΜΟΓΙΔΙΟ: Σχήματα-Γραμμές-Μέτρηση Είναι ένα εργαλείο που μας βοηθά στην κατασκευή και μέτρηση σχημάτων, γωνιών και γραμμών. Μας παρέχει ένα χάρακα, μοιρογνωμόνιο και υπολογιστική μηχανή για να μας βοηθάει

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί.

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί. ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ ΑΛΓΕΒΡΑ (50 Δ. ώρες) Περιεχόμενα Στόχοι Οδηγίες - ενδεικτικές δραστηριότητες Οι μαθητές να είναι ικανοί: Μπορούμε να ΟΙ ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ χρησιμοποιήσουμε καθημερινά φαινόμενα

Διαβάστε περισσότερα

ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ ΠΡΟΣΔΙΟΡΙΣΜΟΙ ΕΜΒΑΔΩΝ ΚΑΙ ΟΓΚΩΝ

ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ ΠΡΟΣΔΙΟΡΙΣΜΟΙ ΕΜΒΑΔΩΝ ΚΑΙ ΟΓΚΩΝ ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ ΠΡΟΣΔΙΟΡΙΣΜΟΙ ΕΜΒΑΔΩΝ ΚΑΙ ΟΓΚΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ 3ο εξάμηνο http://eclass.teiath.gr Αποτυπώσεις - Χαράξεις Παρουσιάσεις, Ασκήσεις,

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 12 ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 1000

ΕΝΟΤΗΤΑ 12 ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 1000 ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 1000 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ2.1 Απαγγέλουν, διαβάζουν, γράφουν και αναγνωρίζουν ποσότητες αριθμών μέχρι το 1000. Αρ2.2 Συγκρίνουν και διατάσσουν τους φυσικούς αριθμούς

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ ΚΑΙ ΓΡΑΦΙΚΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ ΚΑΙ ΓΡΑΦΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ ΚΑΙ ΓΡΑΦΙΚΩΝ Εισαγωγή /4 Το σχήμα και το μέγεθος των δισδιάστατων αντικειμένων περιγράφονται με τις καρτεσιανές συντεταγμένες x, y. Με εφαρμογή γεωμετρικών μετασχηματισμών στο μοντέλο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΕΥΤΕΡΗΣ ΤΑΞΗΣ ΓΕΝΙΚΗ ΕΙΚΟΝΑ ΠΕΡΙΕΧΟΜΕΝΩΝ ΤΟΥ Ι ΑΚΤΙΚΟΥ ΥΛΙΚΟΥ ΩΣ ΑΠΟΤΥΠΩΣΗ ΤΟΥ ΕΠΠΣ & ΑΠΣ

ΜΑΘΗΜΑΤΙΚΑ ΕΥΤΕΡΗΣ ΤΑΞΗΣ ΓΕΝΙΚΗ ΕΙΚΟΝΑ ΠΕΡΙΕΧΟΜΕΝΩΝ ΤΟΥ Ι ΑΚΤΙΚΟΥ ΥΛΙΚΟΥ ΩΣ ΑΠΟΤΥΠΩΣΗ ΤΟΥ ΕΠΠΣ & ΑΠΣ ΗΛΙΑΣ. ΑΝΑΓΝΩΣΤΟΥ, Σχολικός Σύµβουλος 4 ης ΕΠ Αττικής ΣΤΕΛΙΟΣ Κ. ΚΡΑΣΣΑΣ, Σχολικός Σύµβουλος 3 ης ΕΠ Αττικής ΜΑΘΗΜΑΤΙΚΑ ΕΥΤΕΡΗΣ ΤΑΞΗΣ ΓΕΝΙΚΗ ΕΙΚΟΝΑ ΠΕΡΙΕΧΟΜΕΝΩΝ ΤΟΥ Ι ΑΚΤΙΚΟΥ ΥΛΙΚΟΥ ΩΣ ΑΠΟΤΥΠΩΣΗ ΤΟΥ ΕΠΠΣ

Διαβάστε περισσότερα

Το νέο Πρόγραμμα Σπουδών για τα Μαθηματικά της υποχρεωτικής εκπαίδευσης

Το νέο Πρόγραμμα Σπουδών για τα Μαθηματικά της υποχρεωτικής εκπαίδευσης ΕΣΠΑ 2007-13\Ε.Π. Ε&ΔΒΜ\Α.Π. 1-2-3 «ΝΕΟ ΣΧΟΛΕΙΟ (Σχολείο 21 ου αιώνα) Νέο Πρόγραμμα Σπουδών, Οριζόντια Πράξη» MIS: 295450 Με συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης (Ε. Κ. Τ.) Το νέο Πρόγραμμα

Διαβάστε περισσότερα

Περιεχόμενο διδασκαλίας Στόχοι Παρατηρήσεις. υπολογίζουν το λόγο δύο λόγο δύο τμημάτων

Περιεχόμενο διδασκαλίας Στόχοι Παρατηρήσεις. υπολογίζουν το λόγο δύο λόγο δύο τμημάτων Νίκος Γ. Τόμπρος ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΩΝ Ενότητα : ΟΜΟΙΟΤΗΤΑ (ΛΟΓΟΣ ΑΝΑΛΟΓΙΑ) Σκοποί: Η ανάπτυξη ενδιαφέροντος για το θέμα, η εξοικείωση με τη χρήση τεχνολογίας, η παρότρυνση για αναζήτηση πληροφοριών (εδώ σε

Διαβάστε περισσότερα

Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ Γ ΓΥΜΝΑΣΙΟΥ

Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ Γ ΓΥΜΝΑΣΙΟΥ Επιμέλεια Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ Γ ΓΥΜΝΑΣΙΟΥ Σχολικό Έτος: 2014-2015 Μαθηματικός Περιηγητής 1 Διδακτέα ύλη και οδηγίες διδασκαλίας

Διαβάστε περισσότερα

Φεβρουάριος 2013. Επιμόρφωση Εκπαιδευτικών Β Τάξης Δημοτικού 21/2/2013 Β ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ

Φεβρουάριος 2013. Επιμόρφωση Εκπαιδευτικών Β Τάξης Δημοτικού 21/2/2013 Β ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ Επιμόρφωση Εκπαιδευτικών Β Τάξης Δημοτικού Φεβρουάριος 2013 2 Β ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ ΕΝΟΤΗΤΑ 7 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ 3 ΠΕΡΙΕΧΟΜΕΝΟ ΕΝΟΤΗΤΑΣ

Διαβάστε περισσότερα

Κεφάλαιο 8. Οπτικοποίηση Απαλοιφή

Κεφάλαιο 8. Οπτικοποίηση Απαλοιφή Κεφάλαιο 8. Οπτικοποίηση Απαλοιφή Oι οπτικές επιδράσεις, που μπορεί να προκαλέσει μια εικόνα στους χρήστες, αποτελούν ένα από τα σπουδαιότερα αποτελέσματα των λειτουργιών γραφικών με Η/Υ. Τον όρο της οπτικοποίησης

Διαβάστε περισσότερα

Μεθοδολογία Έλλειψης

Μεθοδολογία Έλλειψης Μεθοδολογία Έλλειψης Έλλειψη ονομάζεται ο γεωμετρικός τόπος των σημείων, των οποίων το άθροισμα των αποστάσεων από δύο σταθερά σημεία Ε και Ε είναι σταθερό και μεγαλύτερο από την απόσταση (ΕΕ ). Στη Φύση

Διαβάστε περισσότερα

Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή. Γεωμετρικός Πυρήνας Παραμετρική Σχεδίαση

Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή. Γεωμετρικός Πυρήνας Παραμετρική Σχεδίαση Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή Γεωμετρικός Πυρήνας Παραμετρική Σχεδίαση Παραμετρική σχεδίαση Παραμετρικό αντικείμενο (2D σχήμα/3d στερεό) ονομάζουμε το αντικείμενο του οποίου η (γεωμετρική)

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΚΑ ΣΤΕΡΕΑ. Κεφάλαιο 13: Ερωτήσεις του τύπου «Σωστό-Λάθος»

ΓΕΩΜΕΤΡΙΚΑ ΣΤΕΡΕΑ. Κεφάλαιο 13: Ερωτήσεις του τύπου «Σωστό-Λάθος» Κεφάλαιο 13: ΓΕΩΜΕΤΡΙΚΑ ΣΤΕΡΕΑ Ερωτήσεις του τύπου «Σωστό-Λάθος» 1. * Θεωρούµε ένα επίπεδο p, µια κλειστή πολυγωνική γραµµή του p και µια ευθεία ε που έχει µε το p ένα µόνο κοινό σηµείο. Από κάθε σηµείο

Διαβάστε περισσότερα

Α Φάση ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ

Α Φάση ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ Μέτρηση µήκους Γ Δημοτικού Δ Δημοτικού Ε Δημοτικού Μ2. Μετρούν και Μ2. Υπολογίζουν την συγκρίνουν την περίμετρο περίμετρο σχημάτων πολυγωνικών σχημάτων χρησιμοποιώντας και επιλύουν

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ.

Διαβάστε περισσότερα

Γεωµετρία Α Γυµνασίου. Ορισµοί Ιδιότητες Εξηγήσεις

Γεωµετρία Α Γυµνασίου. Ορισµοί Ιδιότητες Εξηγήσεις Γεωµετρία Α Γυµνασίου Ορισµοί Ιδιότητες Εξηγήσεις Ευθεία γραµµή Ορισµός δεν υπάρχει. Η απλούστερη από όλες τις γραµµές. Κατασκευάζεται µε τον χάρακα (κανόνα) πάνω σε επίπεδο. 1. ύο σηµεία ορίζουν την θέση

Διαβάστε περισσότερα

Μαθηματικά της Φύσης και της Ζωής

Μαθηματικά της Φύσης και της Ζωής Μαθηματικά της Φύσης και της Ζωής Τάξη: Ε Η ομάδα χορού 1. Σε μια ομάδα παραδοσιακών χορών συμμετέχουν 39 αγόρια και 23 κορίτσια. Κάθε εβδομάδα προστίθενται στην ομάδα 6 νέα αγόρια και 8 νέα κορίτσια.

Διαβάστε περισσότερα