5ο Μάθημα ΜΕΤΡΗΣΗ ΕΠΙΦΑΝΕΙΑΣ ΚΑΙ ΟΓΚΟΥ
|
|
- Ἀβιούδ Αντωνόπουλος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 5ο Μάθημα ΜΕΤΡΗΣΗ ΕΠΙΦΑΝΕΙΑΣ ΚΑΙ ΟΓΚΟΥ Μετρούμε αλλά και υπολογίζουμε Στο προηγούμενο μάθημα χρησιμοποιήσαμε το μέτρο, αλλά και άλλα όργανα με τα οποία μετρούμε το μήκος. Το σχήμα που μετρούμε με το μέτρο ή με μια κλωστή είναι μια γραμμή, ευθεία, τεθλασμένη ή και καμπύλη. Το αποτέλεσμα εκφράζεται με έναν αριθμό που συνοδεύεται με τη μονάδα μετρήσεως, π.χ. 5 m. Ξέρουμε όμως ότι υπάρχουν και άλλα γεωμετρικά σχήματα, π.χ. ένα ορθογώνιο, που δεν μπορούμε να τα περιγράψουμε με έναν αριθμό σε μέτρα, αλλά πρέπει είτε να χρησιμοποιήσουμε μια άλλη μονάδα μετρήσεως είτε να τα περιγράψουμε με περισσότερους αριθμούς σε μέτρα, π.χ. το ορθογώνιο με μέτρηση του μήκους και του πλάτους του. Στο μάθημα αυτό θα ασχοληθούμε με τη μέτρηση και τον υπολογισμό της επιφάνειας και του όγκου διαφόρων σχημάτων ή αντικειμένων. Σωστός τρόπος (ο Β) παρατήρησης για τη μέτρηση του όγκου υγρού με ογκομετρικό κύλινδρο. Μέτρηση επιφανείας Είναι δύσκολο να ορίσουμε την επιφάνεια ενός αντικειμένου. Θα μπορούσαμε όμως να αισθανθούμε την επιφάνεια ως εκείνο που ακουμπάμε με την παλάμη μας ή στο πρόσωπό μας π.χ. σε ένα φύλλο χαρτί ή σε ένα μήλο. Διακρίνουμε βέβαια τις επιφάνειες σε επίπεδες επιφάνειες (η επιφάνεια του χαρτιού) και σε καμπύλες επιφάνειες (η επιφάνεια του μήλου). Για να μετρήσουμε την επιφάνεια ενός αντικειμένου, χρειαζόμαστε προφανώς μια μονάδα μετρήσεως. Γι' αυτό διαλέγουμε ένα απλό επίπεδο γεωμετρικό σχήμα, ένα τετράγωνο με πλευρά 1 m, που το ονομάζουμε τετραγωνικό μέτρο και το συμβολίζουμε με 1 m 2. Άλλες μονάδες επιφανείας που χρησιμοποιούμε για μικρές επιφάνειες είναι το τετραγωνικό εκατοστό (1 cm 2 ), και το τετραγωνικό χιλιοστό (1 mm 2 ), ενώ για μεγάλες επιφάνειες χρησιμοποιούμε το τετραγωνικό μέτρο και για πολύ μεγάλες επιφάνειες το στρέμμα (1 στρέμμα = 1000 m 2 ) και το τετραγωνικό χιλιόμετρο (1 km 2 ). 35
2 Άσκηση 1 Χρησιμοποιώντας τις παραπάνω μονάδες, είναι απλή μεν, αλλά συνήθως επίπονη εργασία να μετρήσουμε μια επιφάνεια. Έτσι, με τη βοήθεια τετραγωνισμένου χαρτιού, που είναι υποδιαιρεμένο σε τετραγωνικά χιλιοστά και σε τετραγωνικά εκατοστά, μπορούμε να μετρήσουμε την επιφάνεια του διπλανού σχήματος. Να υπολογίσεις χονδρικά με τον τρόπο αυτό το εμβαδό του σχήματος σε τετραγωγικά χιλιοστά και σε τετραγωνικά εκατοστά... mm 2 Τη μετρημένη επιφάνεια ενός σχήματος την ονομάζουμε και εμβαδό του σχήματος. Υπολογισμός του εμβαδού κανονικών γεωμετρικών σχημάτων Στην περίπτωση κανονικών γεωμετρικών σχημάτων, π.χ. τετραγώνου, ορθογωνίου, τριγώνου, κύκλου, τραπεζίου, μπορούμε να χρησιμοποιούμε ορισμένα μεγέθη μήκους των σχημάτων αυτών και να υπολογίζουμε το εμβαδό με τη βοήθεια κατάλληλων μαθηματικών τύπων που έχουμε μάθει στα μαθηματικά. Ξέρουμε ότι μπορούμε να υπολογίσουμε το εμβαδό ενός παραλληλογράμμου (ορθογώνιου ή μη), πολλαπλασιάζοντας το μήκος της βάσης του επί το ύψος του. Tετράγωνο Oρθογώνιο Παραλληλόγραμμο Εμβαδό παραλληλογράμμου = βάση x ύψος Για να βρούμε το εμβαδό ενός τριγώνου, πολλαπλασιάζουμε τη βάση επί το ύψος και το αποτέλεσμα το διαιρούμε διά δύο. Eμβαδό τριγώνου = (βάση x ύψος) / 2 36 Άσκηση 2 Σε καθένα από τα παραπάνω γεωμετρικά σχήματα, να σημειώσεις μια βάση και το αντίστοιχο ύψος.
3 Άσκηση 3 Να χωρίσεις το ακανόνιστο σχήμα της Άσκησης 1 σε κανονικά σχήματα (τετράγωνα, ορθογώνια παραλληλόγραμμο, τρίγωνα*) και να υπολογίσεις τα εμβαδά όλων αυτών με τους μαθηματικούς τύπους και από αυτά το εμβαδό του συνολικού σχήματος. Να συγκρίνεις το αποτέλεσμα με αυτό που βρήκες μετρώντας την επιφάνεια με τετραγωνισμένο χαρτί * Μερικά τρίγωνα δεν θα είναι ακριβώς τρίγωνα, αλλά κατά προσέγγιση. Για να υπολογίσουμε το εμβαδό ενός κύκλου (ενός κυκλικού δίσκου), πολλαπλασιάζουμε την ακτίνα επί τον εαυτό της και το αποτέλεσμα το πολλαπλασιάζουμε επί τον αριθμό π = 3,14 (ο αριθμός αυτός λέγεται αριθμός του Αρχιμήδη). εμβαδό κύκλου = 3,14 x ακτίνα x ακτίνα Μέτρηση του όγκου υγρών Σε τι μονάδες μετρούν στα πρατήρια βενζίνης, τη βενζίνη που βάζουν στα αυτοκίνητα;... Θα έχεις ίσως δει στο σπίτι σου να μετρούν μια ορισμένη ποσότητα νερού ή γάλακτος ή λαδιού που πρέπει να προστεθεί σύμφωνα με κάποια συνταγή ενός φαγητού ή γλυκού. Πώς λοιπόν μπορούμε να μετρήσουμε τον όγκο των υγρών; Για να μετρήσουμε τον όγκο υγρών σωμάτων, τα ρίχνουμε μέσα σε δοχεία που έχουν γνωστό όγκο (π.χ σε μπουκάλια νερού ή αναψυκτικού) ή σε δοχεία που φέρουν υποδιαιρέσεις κατάλληλες για τη μέτρηση του όγκου. Τέτοια ογκομετρικά δοχεία είναι ο ογκομετρικός κύλινδρος που υπάρχει στο σχολικό εργαστήριο, το μπιμπερό κ.ά. Ως μονάδα όγκου των υγρών χρησιμοποιείται συνήθως το λίτρο (litre) που συμβολίζεται με 1 l (μικρό ελ λατινικό) ή με 1 L, και είναι ίσο με 1000 cm 3. Συνήθως χρησιμοποιείται και η υποδιαίρεση ένα χιλιοστό του ενός λίτρου, που ονομάζεται χιλιοστόλιτρο (ή μιλιλίτρ) και συμβολίζεται με 1 ml ή 1 ml. Να συμπληρώσεις τις παρακάτω σχέσεις: 37
4 Άσκηση 4 Χρησιμοποιώντας ένα κουτάκι που περιέχει αναψυκτικό, να επιβεβαιώσετε αν ο όγκος του αναψυκτικού που αναγράφεται στη συσκευασία του είναι σωστός. Tα ογκομετρικά δοχεία μπορούν να χρησιμοποιηθούν επίσης και για τη μέτρηση του όγκου στερεών σωμάτων, όταν αυτά έχουν ακανόνιστο σχήμα και επομένως δεν είναι δυνατός ο υπολογισμός του όγκου τους με μετρήσεις ακμών. Αυτό γίνεται στην άσκηση 5. Άσκηση 5 Στο σχήμα, δεξιά δείχνεται ένας ογκομετρικός κύλινδρος με ορισμένη ποσότητα νερού. Δεξιά, έχουμε βυθίσει μέσα στο υγρό ένα στερεό σώμα με ακανόνιστο σχήμα, π.χ. μια πέτρα. Μπορείς να βρεις ποιος είναι ο όγκος της πέτρας; [Οι υποδιαιρέσεις (οι γραμμές) στον κύλινδρο δείχνουν κυβικά εκατοστά.]... Μέτρηση του όγκου στερεών σωμάτων Άσκηση 6 Μέσα στον κύλινδρο με το νερό, προσθέτουμε 50 όμοια μικρά σφαιρίδια από μόλυβδο, οπότε παρατηρούμε ότι η στάθμη του νερού ανεβαίνει στα 42 ml. Μπορείς να βρεις τον όγκο του καθενός σφαιριδίου; Από το παραπάνω είναι φανερό ότι: Μπορούμε να μετρήσουμε τον όγκο ενός στερεού σχήματος, μετρώντας τον όγκο ενός υγρού που
5 Αν το στερεό έχει όμως κανονικό γεωμετρικό σχήμα, π.χ. κύβου, ορθογωνίου στερεού, παραλληλεπιπέδου, πυραμίδας, κυλίνδρου, σφαίρας, μπορούμε να χρησιμοποιούμε ορισμένα μεγέθη μήκους των σχημάτων αυτών και να υπολογίζουμε τον όγκο τους με τη βοήθεια κατάλληλων μαθηματικών τύπων που μαθαίνουμε στα Μαθηματικά. Υπολογισμός του όγκου κανονικών γεωμετρικών στερεών Τα πιο απλά σχήματα στον υπολογισμό του όγκου είναι τα παραλληλεπίπεδα και οι κύλινδροι. Ο όγκος τους υπολογίζεται, αν πολλαπλασιάσουμε το εμβαδό της βάσης τους επί το ύψος τους. Πιο πολύπλοκος αλλά όχι δύσκολος είναι και ο υπολογισμός του όγκου μιας σφαίρας. Όγκος παραλληλεπιπέδου = εμβαδό βάσης x ύψος Όγκος κυλίνδρου = εμβαδό βάσης x ύψος Όγκος σφαίρας = (4/3) x 3,14 x ακτίνα x ακτίνα x ακτίνα Μονάδα όγκου είναι το κυβικό μέτρο (1 m 3 ) και οι υποδιαιρέσεις του: το κυβικό δεκατόμετρο (1 dm 3 ), το κυβικό εκατοστόμετρο (1 cm 3 ) και το κυβικό χιλιοστό (1 mm 3 ) Άσκηση 7 Να υπολογίσεις τον όγκο του βιβλίου σου: Να βρεις τον όγκο ενός μικρού κυλινδρικού σώματος με δύο τρόπους, α) με πειραματικό προσδιορισμό, β) με υπολογισμό. Να συγκρίνεις τις δύο τιμές. Άσκηση 8 Σχέσεις ανάμεσα στις μονάδες μήκους, επιφανείας και όγκου Να συμπληρώσεις τα κενά: 1 m =... cm =... mm 1 m 2 = (100 cm) (100 cm) =... cm 2 1cm 2 = (10 mm) (10 mm) =... mm 2 1m 3 = (100 cm) (100 cm) (100 cm) =... cm 3 =... L 1 L =... cm 3 =... ml (1 ml : 1 χιλιοστόλιτρο). 1 ml = 1cm 3 =... mm 39
6 Ερώτηση Να σκεφθείς πώς θα μπορούσες να υπολογίσεις πόσοι περίπου κόκκοι καλαμποκιού περιέχονται μέσα σ' ένα κυλινδρικό βαρέλι, μετρώντας τον αριθμό των κόκκων καλαμποκιού που χωράνε μέσα σ' ένα κυλινδρικό ποτηράκι. ΤΟ ΜΑΘΗΜΑ ΣΕ ΕΡΩΤΗΣΕΙΣ 1. Μπορείς να αναφέρεις ένα παράδειγμα μιας επίπεδης και ένα παράδειγμα μιας καμπύλης επιφάνειας; 2. Ποια είναι η μονάδα μετρήσεως της επιφάνειας; 3. Ποιες άλλες μονάδες επιφανείας γνωρίζεις; 4. Πώς μπορούμε να υπολογίσουμε το εμβαδό μιας μη κανονικής επιφάνειας; 5. Πώς υπολογίζουμε το εμβαδό ενός παραλληλογράμμου, ενός τριγώνου και ενός κύκλου; 6. Ποια η μονάδα μετρήσεως του όγκου; 7. Ποιες άλλες μονάδες όγκου γνωρίζεις; 8.Πώς μετρούμε τον όγκο των υγρών; 9.Πώς μπορούμε να μετρήσουμε έμμεσα τον όγκο ενός στερεού σώματος με ακανόνιστο σχήμα; 10. Πώς υπολογίζουμε τον όγκο ενός παραλληλεπιπέδου και ενός κυλίνδρου; Θέμα για προαιρετική μελέτη: ΣΦΑΛΜΑΤΑ ΣΕ ΑΠΟΤΕΛΕΣΜΑ ΑΠΟ ΥΠΟΛΟΓΙΣΜΟ Πόσα ψηφία να κρατούμε όταν κάνουμε αριθμητικές πράξεις; Μέτρησε με τον κανόνα σου τα μήκη των πλευρών του παρακάτω ορθογωνίου με όσο μεγαλύτερη ακρίβεια μπορείς. Στη συνέχεια, να υπολογίσεις από τα μήκη αυτά το εμβαδό του ορθογωνίου και να το σημειώσεις: Εμβαδό =... cm 2 Να σημειώσεις και τις τιμές για το ίδιο εμβαδό αρκετών άλλων συμμαθητών σου. α)... cm 2 β)... cm 2 γ)... cm 2 δ)... cm 2 ε)... cm 2 στ)... cm 2 ζ)... cm 2 η)... cm 2 Παρατηρούμε ότι οι τιμές του εμβαδού κυμαίνονται από... cm 2 μέχρι... cm 2. 40
7 Έχει σημασία να γράφουμε όλα τα ψηφία που μας έδωσε ο αριθμητικός υπολογισμός; π.χ.... cm 2 ; Είναι φανερό από το παραπάνω παράδειγμα ότι είναι περιττό να γράψουμε όλα τα δεκαδικά ψηφία που δίνει ένας μεμονωμένος υπολογισμός. Αρκεί να δώσουμε το αποτέλεσμα όχι ως... cm 2 αλλά ως... cm 2. Έτσι δείχνουμε όλα τα ψηφία για τα οποία είμαστε σίγουροι συν το πρώτο ψηφίο για το οποίο δεν είμαστε σίγουροι, μόνο δηλαδή τα σημαντικά ψηφία. Θα βρούμε τώρα μερικούς απλούς κανόνες που θα μας βοηθούν να προσδιορίζουμε τον αριθμό των σημαντικών ψηφίων σε αποτέλεσμα από υπολογισμό. α. Πολλαπλασιασμός 167,8 0, ,3696 5,4 Τα αβέβαια ψηφία δείχνονται έντονα. Είναι φανερό ότι ισχύουν οι εξής κανόνες: βέβαιο βέβαιο = βέβαιο, αβέβαιο βέβαιο = αβέβαιο, αβέβαιο αβέβαιο = αβέβαιο, και όμοια για τις άλλες αριθμητικές πράξεις. Να έχεις υπόψη σου Μηδενικά που υπάρχουν στην αρχή ενός αριθμού, δεν είναι σημαντικά ψηφία. Έτσι, ο αριθμός 0, έχει δύο μόνο σημαντικά ψηφία. Τα μηδενικά όμως στη μέση ή στο τέλος είναι σημαντικά: Ο αριθμός 30,005 έχει πέντε σημαντικά ψηφία. Ο αριθμός 28,30 έχει τέσσερα σημαντικά ψηφία. β. Διαίρεση Από τον προηγούμενο πολλαπλασιασμό έχουμε 5,4 : 167,8 = 0, ,032. Γενικά, επειδή η διαίρεση είναι αντίστροφος πολλαπλασιασμός, ισχύει ο ίδιος κανόνας, ήτοι το πηλίκο έχει τόσα σημαντικά ψηφία όσα είναι τα σημαντικά ψηφία όποιου από τον διαιρετέο ή τον διαιρέτη έχει τα λιγότερα σημαντικά ψηφία. γ. Πρόσθεση και αφαίρεση 124,25 124,25 + 0,4678 0, , ,72 123, ,78 Εδώ ο κανόνας είναι ότι το αποτέλεσμα έχει τόσα δεκαδικά σημαντικά ψηφία, όσα είναι τα σημαντικά δεκαδικά ψηφία του όρου με τα λιγότερα σημαντικά δεκαδικά ψηφία: Πόσα σημαντικά ψηφία έχει ο πολλαπλασιαστέος και πόσα ο πολλαπλασιαστής; Πόσα σημαντικά ψηφία έχει το αποτέλεσμα (το γινόμενο;) 41
8 Παρατηρούμε ότι: Το αποτέλεσμα έχει τόσα σημαντικά ψηφία όσα είναι τα σημαντικά ψηφία του παράγοντα με τα... σημαντικά ψηφία. Αυτό είναι ένας γενικός κανόνας που ισχύει τις περισσότερες φορές (συναντάμε όμως και εξαιρέσεις). Πώς στρογγυλεύουμε τους αριθμούς - Ο αριθμός 38,13 αν στρογγυλευθεί σε τρία ψηφία, θα γίνει 38,1. - Ο αριθμός 189,28 αν στρογγυλευθεί σε τέσσερα ψηφία, θα γίνει 189,3. - Ο αριθμός 189,284 αν στρογγυλευθεί σε πέντε ψηφία, θα γίνει 189,28. - Ο αριθμός 189,284 αν στρογγυλευθεί σε τρία ψηφία, θα γίνει Ο αριθμός 189,684 αν στρογγυλευθεί σε τρία ψηφία, θα γίνει 190. Τέλος, όταν πρέπει να διώξουμε το 5 (ή το 50, ή το 500 κ.λπ.), τότε συμφωνούμε να μεγαλώνουμε κατά μία μονάδα το τελευταίο ψηφίο που θα κρατήσουμε αν αυτό είναι μονό ψηφίο, ενώ αν αυτό είναι ζυγό ψηφίο, δεν το αλλάζουμε. Έτσι, ο αριθμός 189,15 στρογγυλεύεται σε 189,2, αλλά και ο αριθμός 189,25 γίνεται επίσης 189,2. Να έχεις υπόψη σου Σημασία έχει να παρουσιάζουμε το τελικό αποτέλεσμα με τον σωστό αριθμό σημαντικών ψηφίων. Όταν όμως κάνουμε όχι μία αλλά πολλές πράξεις, τότε στις ενδιάμεσες πράξεις δεν πειράζει, και μάλιστα είναι καλύτερο, να κρατάμε περισσότερα ψηφία και όχι μόνον τα σημαντικά. Το τελευταίο οφείλεται στο ότι μπορεί κατά τύχη οι στρογγυλεύσεις που θα κάναμε στις ενδιάμεσες πράξεις να είναι περισσότερες προς μια πλευρά κι έτσι να συσσωρεύεται σφάλμα στρογγυλεύσεως. 42
1. Μέτρηση μήκους 2. Μέτρηση επιφάνειας και όγκου 3. Μάζα των σωμάτων 4. Η πυκνότητα ενός υλικού 5. Ατμοσφαιρική πίεση 6. Μεταβολές των αερίων
1. Μέτρηση μήκους 2. Μέτρηση επιφάνειας και όγκου 3. Μάζα των σωμάτων 4. Η πυκνότητα ενός υλικού 5. Ατμοσφαιρική πίεση 6. Μεταβολές των αερίων 187 Βοηθητικό Θέμα 1 ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ Μετρούμε με το μέτρο και
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 ΜΕΤΡΗΣΗ ΕΜΒΑΔΟΥ
Ονομ/μο:.... Τμήμα: ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 ΜΕΤΡΗΣΗ ΕΜΒΑΔΟΥ Πώς θα μετρήσουμε την επιφάνεια ενός θρανίου, ενός φύλλου, ή του πουκάμισου που φοράμε; Την έννοια της «επιφάνειας» τη συναντάμε στα αντικείμενα
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Πίνακας περιεχομένων Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ... 2 Κεφάλαιο 2 ο - ΤΑ ΚΛΑΣΜΑΤΑ... 6 Κεφάλαιο 3 ο - ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ... 10 ΣΩΤΗΡΟΠΟΥΛΟΣ ΝΙΚΟΣ 1 Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ
Διαβάστε περισσότεραΟ όγκος ενός σώματος εκφράζει το μέρος του χώρου που καταλαμβάνει αυτό το σώμα.
ΜΕΤΡΗΣΗ ΟΓΚΟΥ Τι εκφράζει ο όγκος ενός σώματος; Ο όγκος ενός σώματος εκφράζει το μέρος του χώρου που καταλαμβάνει αυτό το σώμα. Όπως το μήκος και η επιφάνεια, έτσι και ο όγκος είναι ένα φυσικό μέγεθος
Διαβάστε περισσότεραΜΕΤΡΗΣΗ ΕΜΒΑΔΟΥ. Σχεδιασμός - Περιγραφή
ΕΚΦΕ Α Αν. Αττικής - Υπεύθυνος Κ. Παπαμιχάλης Εργαστηριακές ασκήσεις Φυσικής Β ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 ΜΕΤΡΗΣΗ ΕΜΒΑΔΟΥ Η εικόνα έχει ληφθεί από τον ιστότοπο: http://www.vbhelper.co/vbgptoc.ht Πώς θα μετρήσουμε
Διαβάστε περισσότεραΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΕΜΒΑΔΟΥ ΟΓΚΟΥ ΕΠΙΣΗΜΑΝΣΕΙΣ ΠΡΟΣ ΤΟΝ ΚΑΘΗΓΗΤΗ
ΕΚΦΕ Αν. Αττικής Υπεύθυνος: Κ. Παπαμιχάλης ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΕΜΒΑΔΟΥ ΟΓΚΟΥ ΕΠΙΣΗΜΑΝΣΕΙΣ ΠΡΟΣ ΤΟΝ ΚΑΘΗΓΗΤΗ Κεντρική επιδίωξη των εργαστηριακών ασκήσεων φυσικής στην Α Γυμνασίου, είναι οι μαθητές να οικοδομήσουν
Διαβάστε περισσότεραΒασικές έννοιες: Όγκος σώματος - Ογκομετρικός κύλινδρος
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 Ονομ/μο:.. Τμήμα: Βασικές έννοιες: Όγκος σώματος - Ογκομετρικός κύλινδρος Παρατηρώ - Πληροφορούμαι - Γνωρίζω Σε αυτή την άσκηση θα ασχοληθούμε με τη μέτρηση του όγκου υγρών και στερεών
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 1 ΚΕΦΑΛΑΙΟ 2. Υπενθύμιση Β μέρος ΟΛΑ ΟΣΑ ΠΡΕΠΕΙ ΝΑ ΞΕΡΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ. Παράλληλες: Τι θα πρέπει να. Ποιες είναι οι παράλληλες ευθείες;
ΕΝΟΤΗΤΑ 1 ΚΕΦΑΛΑΙΟ 2 Υπενθύμιση Β μέρος ΟΛΑ ΟΣΑ ΠΡΕΠΕΙ ΝΑ ΞΕΡΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Παράλληλες: Τι θα πρέπει να θυμόμαστε από την γεωμετρία; Ποιες είναι οι παράλληλες ευθείες; Ποιες είναι οι κάθετες ευθείες;
Διαβάστε περισσότεραΜΕΡΟΣ Β ΕΓΧΕΙΡΙΔΙΟ ΚΑΘΗΓΗΤΗ
941205 ΜΕΡΟΣ Β ΕΓΧΕΙΡΙΔΙΟ ΚΑΘΗΓΗΤΗ 2 Εισαγωγή Ευχαριστούμε που χρησιμοποιείτε την ενότητα για την έρευνα της μέτρησης. Ελπίζουμε πως το πακέτο και τα βιβλία εργασίας θα σας ικανοποιήσουν. Αν έχετε οποιεσδήποτε
Διαβάστε περισσότεραΜΕΤΡΗΣΗ ΕΜΒΑΔΟΥ. Σχεδιασμός - Περιγραφή
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 ΜΕΤΡΗΣΗ ΕΜΒΑΔΟΥ Πώς θα μετρήσουμε την επιφάνεια ενός θρανίου, ενός φύλλου, ή του πουκάμισου που φοράμε; Την έννοια της «επιφάνειας» τη συναντάμε στα αντικείμενα της καθημερινότητάς
Διαβάστε περισσότεραΟδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗ Συμπεράσματα Ενοτήτων
Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗ Συμπεράσματα Ενοτήτων Πηγή πληροφόρησης: e-selides ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗΣ 1η ΕΝΟΤΗΤΑ (ΣΥΜΠΕΡΑΣΜΑΤΑ) Δεν μπορώ να βρω το ζητούμενο ενός προβλήματος
Διαβάστε περισσότερα4ο Μάθημα ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ
4ο Μάθημα ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ Μετρούμε με το μέτρο και με άλλα όργανα «ÔÏÏ ÊÔÚ Ï ˆ fiùè fiù Ó ÌappleÔÚÂ Ó ÌÂÙÚ ÛÂÈ ÂΠÓÔ ÁÈ ÙÔ ÔappleÔ Ô ÌÈÏ Î È Ó ÙÔ ÂÎÊÚ ÛÂÈ Ì ÚÈıÌÔ, Í ÚÂÈ Î ÙÈ ÁÈ' Ùfi. ŸÙ Ó fiìˆ ÂÓ ÌappleÔÚÂ
Διαβάστε περισσότεραΜετρήσεις. Απόστασης ( μήκος, πλάτος, ύψος )
Μετρήσεις Απόστασης ( μήκος, πλάτος, ύψος ) Την απόσταση την μετράμε με το μέτρο και μπορούμε να την εκφράζουμε και σε δέκατα, εκατοστά, χιλιοστά και για μεγάλες αποστάσεις χρησιμοποιούμε το χιλιόμετρο.
Διαβάστε περισσότερα0,00620 = 6, ΣΗΜΑΝΤΙΚΑ ΨΗΦΙΑ. Γενικοί Κανόνες για τα Σημαντικά Ψηφία
ΣΗΜΑΝΤΙΚΑ ΨΗΦΙΑ Είναι απαραίτητο να πούμε μερικά πράγματα για μια επαναλαμβανόμενη πηγή προβλημάτων και δυσκολιών: τα σημαντικά ψηφία. Τα μαθηματικά είναι μια επιστήμη όπου οι αριθμοί και οι σχέσεις μπορούν
Διαβάστε περισσότεραΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ
ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών
Διαβάστε περισσότεραΜαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα.
Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα. (2) Ποιοι είναι οι άρτιοι και ποιοι οι περιττοί αριθμοί; Γράψε από τρία παραδείγματα.
Διαβάστε περισσότερα1.3 Τα φυσικά μεγέθη και οι μονάδες τους
ΚΕΦΑΛΑΙΟ ο ΕΙΣΑΓΩΓΗ. Τα φυσικά μεγέθη και οι μονάδες τους. Τι είναι μέγεθος; Μέγεθος είναι κάθε ποσότητα που μπορεί να μετρηθεί.. Τι είναι μέτρηση; Είναι η διαδικασία σύγκρισης ίδιων μεγεθών.. Τι είναι
Διαβάστε περισσότεραΕκπαιδευτικός Οργανισµός Ν. Ξυδάς 1
Εκπαιδευτικός Οργανισµός Ν. Ξυδάς 1 ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 1: ΟΓΚΟΣ Εισαγωγή Παρατήρησε τις δύο εικόνες. Σε τι διαφέρουν; Παρατηρείς ότι το δεύτερο αυτοκίνητο έχει περισσότερο χώρο για τις αποσκευές. Μια χαρακτηριστική
Διαβάστε περισσότεραΓΙΑΝΝΗΣ ΠΑΠΑΘΑΝΑΣΙΟΥ ΔΗΜΗΤΡΗΣ ΠΑΠΑΘΑΝΑΣΙΟΥ. Γράφω καλά. στο τεστ των. Μαθηματικών
ΓΙΑΝΝΗΣ ΠΑΠΑΘΑΝΑΣΙΟΥ ΔΗΜΗΤΡΗΣ ΠΑΠΑΘΑΝΑΣΙΟΥ Γράφω καλά στο τεστ των Μαθηματικών E, ΔΗΜΟΤΙΚΟΥ Ανακεφαλαίωση της θεωρίας με πίνακες και παραδείγματα Διαγωνίσματα Αναλυτικές απαντήσεις με έμφαση στα δύσκολα
Διαβάστε περισσότεραΜαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία
Μαθηματικά Β Γυμνασίου Επανάληψη στη Θεωρία Α.1.1: Η έννοια της μεταβλητής - Αλγεβρικές παραστάσεις Α.1.2: Εξισώσεις α βαθμού Α.1.4: Επίλυση προβλημάτων με τη χρήση εξισώσεων Α.1.5: Ανισώσεις α βαθμού
Διαβάστε περισσότερα7ο Μάθημα Η ΠΥΚΝΟΤΗΤΑ ΕΝΟΣ ΥΛΙΚΟΥ
7ο Μάθημα Η ΠΥΚΝΟΤΗΤΑ ΕΝΟΣ ΥΛΙΚΟΥ Συμβαίνει κι αυτό: ο όγκος ενός σώματος να 'ναι μεγάλος, αλλά η μάζα του να 'ναι μικρή Από την καθημερινή μας ζωή, ξέρουμε τι σημαίνει πυκνό και αραιό: πυκνό δάσος, αραιά
Διαβάστε περισσότεραΕκπαιδευτικός Οργανισµός Ν. Ξυδάς 1
Εκπαιδευτικός Οργανισµός Ν. Ξυδάς 1 ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 1: ΟΓΚΟΣ Εισαγωγή Παρατήρησε τις δύο εικόνες. Σε τι διαφέρουν; Παρατηρείς ότι το δεύτερο αυτοκίνητο έχει περισσότερο χώρο για τις αποσκευές. Μια χαρακτηριστική
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ
ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ Α.1. 1) Ποιοι φυσικοί αριθμοί λέγονται άρτιοι και ποιοι περιττοί; ( σ. 11 ) 2) Από τι καθορίζεται η αξία ενός ψηφίου σ έναν φυσικό αριθμό; ( σ. 11 ) 3) Τι
Διαβάστε περισσότερα11. Ποιες είναι οι άμεσες συνέπειες της διαίρεσης;
10. Τι ονομάζουμε Ευκλείδεια διαίρεση και τέλεια διαίρεση; Όταν δοθούν δύο φυσικοί αριθμοί Δ και δ, τότε υπάρχουν δύο άλλοι φυσικοί αριθμοί π και υ, έτσι ώστε να ισχύει: Δ = δ π + υ. Ο αριθμός Δ λέγεται
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ
ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1 ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΜΕΡΟΣ 1ο : ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1ο ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ 1. Ποιοι αριθμοί ονομάζονται φυσικοί, ποια ιδιότητα έχουν και πως χωρίζονται; Οι αριθμοί
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Μέρος Β Κεφάλαιο 4ο Γεωμετρικά Στερεά Χρύσα Παπαγεωργίου Μαθηματικός - Πληροφορικός Το ορθό πρίσμα και τα στοιχεία του Κάθε ορθό πρίσμα έχει: Δύο έδρες παράλληλες, που είναι ίσα
Διαβάστε περισσότεραΑ Γυμνασίου, Μέρο Α : Αριθμητική Άλγεβρα, Κεφάλαιο 1 - Οι φυσικοί αριθμοί
Α Γυμνασίου, Μέρο Α : Αριθμητική Άλγεβρα, Κεφάλαιο 1 - Οι φυσικοί αριθμοί Μαθηματικά Α Γυμνασίου Μέρο Α - Κεφάλαιο 1 Α. 1.2. Οι αριθμοί 0, 1, 2, 3, 4, 5, 6... 98, 99, 100... 1999, 2000, 2001,... ονομάζονται
Διαβάστε περισσότεραΠΑΡΑΓΡΑΦΟΣ 1. 2 ΠΡΟΣΘΕΣΗ ΑΦΑΙΡΕΣΗ ΚΑΙ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ
ΠΑΡΑΓΡΑΦΟΣ 1. 2 ΠΡΟΣΘΕΣΗ ΑΦΑΙΡΕΣΗ ΚΑΙ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΑΣΚΗΣΕΙΣ ΜΕ ΑΘΡΟΙΣΜΑΤΑ ΚΑΙ ΑΦΑΙΡΕΣΕΙΣ ( 1 ) Να υπολογίσετε τις παραστάσεις Α = 3 + 23 + 19 Β = 8 +13 +45-7 Γ = 3 + 0 Α = 3+23 +19 =
Διαβάστε περισσότεραΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8
ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ - Γ ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ - Γ ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ Α': ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ ο: Αλγεβρικές παραστάσεις Παράγραφος A..: Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) Β: Πράξεις με μονώνυμα Τα σημαντικότερα σημεία
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Α' ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ σε word! ΕΠΙΜΕΛΕΙΑ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΤΣΟΛΚΑΣ
ΜΑΘΗΜΑΤΙΚΑ Α' ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ σε word! ΕΠΙΜΕΛΕΙΑ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΤΣΟΛΚΑΣ Ένα «ανοικτό» αρχείο, δηλαδή επεξεργάσιμο που όλοι μπορούν να συμμετέχουν είτε προσθέτοντας είτε διορθώνοντας υλικό. Μετά
Διαβάστε περισσότεραΜαθηματικά Γ Γυμνασίου
Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται
Διαβάστε περισσότεραΟι φυσικοί αριθμοί. Παράδειγμα
Οι φυσικοί αριθμοί Φυσικοί Αριθμοί Είναι οι αριθμοί με τους οποίους δηλώνουμε πλήθος ή σειρά. Για παράδειγμα, φυσικοί αριθμοί είναι οι: 0, 1,, 3,..., 99, 100,...,999, 1000, 0... Χωρίζουμε τους Φυσικούς
Διαβάστε περισσότεραΎλη εξετάσεων Κλάσματα Δεκαδικοί Δυνάμεις Ρητοί Αριθμοί Διαιρετότητα ΕΚΠ ΜΚΔ...
ΠΕΡΙΕΧΟΜΕΝΑ Ύλη εξετάσεων...2 1. Κλάσματα...3 2. Δεκαδικοί...8 3. Δυνάμεις...11 4. Ρητοί Αριθμοί...13. Διαιρετότητα...16 6. ΕΚΠ ΜΚΔ...17 7. Εξισώσεις- υστήματα...19 8. Αναλογίες - Απλή μέθοδος των τριών...2
Διαβάστε περισσότεραΤμήμα Τεχνολόγων Γεωπόνων - Φλώρινα
Τμήμα Τεχνολόγων Γεωπόνων - Φλώρινα Μάθημα: Μαθηματικά Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών (1 ο, 2 ο, 3 ο Κεφάλαιο) 11-10-2017, 18-10-2017 Διδάσκουσα: Αριστούλα Κοντογιάννη ΩΡΕΣ ΔΙΔΑΣΚΑΛΙΑΣ
Διαβάστε περισσότεραΝα αναγνωρίζουμε τις σχετικές θέσεις ευθειών και επιπέδων στον χώρο. Να υπολογίζουμε το εμβαδόν και τον όγκο ορθού πρίσματος.
Ενότητα 5 Στερεομετρία Στην ενότητα αυτή θα μάθουμε: Να αναγνωρίζουμε τις σχετικές θέσεις ευθειών και επιπέδων στον χώρο. Να υπολογίζουμε το εμβαδόν και τον όγκο ορθού πρίσματος. Να υπολογίζουμε το εμβαδόν
Διαβάστε περισσότερα1.5 Γνωριμία με το εργαστήριο Μετρήσεις
1.5 Γνωριμία με το εργαστήριο Μετρήσεις 1. Το μήκος, ο χρόνος, η μάζα, η θερμοκρασία κτλ. είναι ποσότητες που τις χρησιμοποιούμε για να περιγράφουμε τα φαινόμενα. Οι ποσότητες αυτές ονομάζονται φυσικά
Διαβάστε περισσότεραΚεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί
ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΙΚΩΝ ΕΝΝΟΙΙΩΝ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Α ΤΑΞΗΣ Κεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί Α. 7. 1 1. Τι είναι τα πρόσημα και πως χαρακτηρίζονται οι αριθμοί από αυτά; Τα σύμβολα
Διαβάστε περισσότεραΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά Γ Δημοτικού Γ 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ
ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Γρήγορα τεστ Μαθηματικά Γ Δημοτικού Γ 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΡΗΓΟΡΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ - Γ Δημοτικού No 1 Γιάννης Ζαχαρόπουλος Διόρθωση: Αντωνία Κιλεσσοπούλου 01, Εκδόσεις Κυριάκος
Διαβάστε περισσότεραΛέγονται οι αριθμοί που βρίσκονται καθημερινά στη φύση, γύρω μας. π.χ. 1 μήλο, 2 παιδιά, 5 αυτοκίνητα, 100 πρόβατα, δέντρα κ.λ.π.
Λέγονται οι αριθμοί που βρίσκονται καθημερινά στη φύση, γύρω μας. π.χ. 1 μήλο, 2 παιδιά, 5 αυτοκίνητα, 100 πρόβατα, 1.000 δέντρα κ.λ.π. Εκτός από πλήθος οι αριθμοί αυτοί μπορούν να δηλώσουν και τη θέση
Διαβάστε περισσότεραΌταν οι αριθμοί είναι ομόσημοι Βάζουμε το κοινό πρόσημο και προσθέτουμε
Κανόνες των προσήμων Στην πρόσθεση Όταν οι αριθμοί είναι ομόσημοι Βάζουμε το κοινό πρόσημο και προσθέτουμε (+) και (+) κάνει (+) + + 3 = +5 (-) και (-) κάνει (-) - - 3 = -5 Όταν οι αριθμοί είναι ετερόσημοι
Διαβάστε περισσότεραΆρης Ασλανίδης Πρότυπα Πειραματικά Γυμνάσια Οδηγός προετοιμασίας για τα Φυσικά
Άρης Ασλανίδης Πρότυπα Πειραματικά Γυμνάσια Οδηγός προετοιμασίας για τα Φυσικά Ε Δημοτικού 5 Υλικά σώματα Μαθαίνω χρήσιμες πληροφορίες του Βιβλίου Μαθητή Παντού γύρω μας υπάρχει ύλη. Η ύλη μπορεί να είναι
Διαβάστε περισσότεραΤι είναι η Πυκνότητα;
ΦΥΣΙΚΗ Α ΓΥΜΝΑΣΙΟΥ Φύλλο Εργασίας Μέτρηση Πυκνότητας Τι είναι η Πυκνότητα; Ένας κόκκος πλαστελίνης έχει την ίδια πυκνότητα με ένα μεγάλο κομμάτι από το ίδιο υλικό. Ένα ρίνισμα σιδήρου έχει την ίδια πυκνότητα
Διαβάστε περισσότεραΥπενθύμιση Δ τάξης. Παιχνίδια στην κατασκήνωση
ΚΕΦΑΛΑΙΟ 1ο Υπενθύμιση Δ τάξης Παιχνίδια στην κατασκήνωση Συγκρίνω δυο αριθμούς για να βρω αν είναι ίσοι ή άνισοι. Στην περίπτωση που είναι άνισοι μπορώ να βρω ποιος είναι μεγαλύτερος (ή μικρότερος). Ανάμεσα
Διαβάστε περισσότεραΑ Γυμνασίου, Μέρο Α, Άλγεβρα, Κεφάλαιο 7, Θετικοί και Αρνητικοί Αριθμοί, Α.7.8. Δυνάμει ρητών αριθμών με εκθέτη φυσικό, Α.7.9. Δυνάμει ρητών αριθμών
Α Γυμνασίου, Μέρο Α, Άλγεβρα, Κεφάλαιο, Θετικοί και Αρνητικοί Αριθμοί, Α..8. Δυνάμει ρητών αριθμών με εκθέτη φυσικό, Α..9. Δυνάμει ρητών αριθμών με εκθέτη ακέραιο Περιοδική Έκδοση για τα Μαθηματικά Γυμνασίου
Διαβάστε περισσότερα1 ΘΕΩΡΙΑΣ...με απάντηση
1 ΘΕΩΡΙΑΣ.....με απάντηση ΑΛΓΕΒΡΑ Κεφάλαιο 1 0 Εξισώσεις Ανισώσεις 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών.
Διαβάστε περισσότεραΑγαπητοί γονείς, Αντιγόνη Λυκοτραφίτη
Αγαπητοί γονείς, Το βιβλίο αυτό είναι γραμμένο σύμφωνα με την ύλη του σχολικού βιβλίου «Μαθηματικά Γ Δημοτικού». Είναι δομημένο σε αντίστοιχα κεφάλαια και λειτουργεί παράλληλα αλλά και συμπληρωματικά με
Διαβάστε περισσότερα1. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ
ΑΔΑΜΑΝΤΙΟΣ ΣΧΟΛΗ ΤΑΞΗ Δ ΟΝΟΜΑ α. Αντιμεταθετική ιδιότητα 1. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Π Ρ Ο Σ Θ Ε Σ Η Α. ΙΔΙΟΤΗΤΕΣ ΤΗΣ ΠΡΟΣΘΕΣΗΣ 8 + 7 = 15 ή 7 + 8 = 15 346 ή 517 ή 82 + 517 + 82 + 346 82 346 517 945 945
Διαβάστε περισσότεραΜαθηματικά A Γυμνασίου
Μαθηματικά A Γυμνασίου ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ Μέρος Α - Άλγεβρα 1. Ποιες είναι οι ιδιότητες της πρόσθεσης των φυσικών; (σελ. 15) 2. Πως ορίζεται η πράξη της αφαίρεσης στους φυσικούς και πότε αυτή μπορεί να
Διαβάστε περισσότεραΜαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 4 ο, Τμήμα Α
Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 4 ο, Τμήμα Α Τι συμβαίνει όταν η περίοδος δεν ξεκινάει αμέσως μετά το κόμμα όπως συμβαίνει με τον αριθμό 3,4555 και θέλουμε να γραφεί σαν κλάσμα; 345 Υπήρχαν πολλές
Διαβάστε περισσότεραΥπενθύμιση Δ τάξης. Παιχνίδια στην κατασκήνωση
ΚΕΦΑΛΑΙΟ 1ο Υπενθύμιση Δ τάξης Παιχνίδια στην κατασκήνωση Συγκρίνω δυο αριθμούς για να βρω αν είναι ίσοι ή άνισοι. Στην περίπτωση που είναι άνισοι μπορώ να βρω ποιος είναι μεγαλύτερος (ή μικρότερος). Ανάμεσα
Διαβάστε περισσότεραΦΥΛΛΑΔΙΟ 3 ο ΜΕΤΡΗΣΕΙΣ
1. ΕΡΩΤΗΣΕΙΣ ΣΥΜΠΛΗΡΩΣΗΣ ΚΕΝΟΥ. ΦΥΛΛΑΔΙΟ 3 ο ΜΕΤΡΗΣΕΙΣ Στις παρακάτω προτάσεις συμπληρώστε τις λέξεις που λείπουν. 1. Η μονάδα μέτρησης του μήκους είναι το. από την Ελληνική λέξη μετρώ το οποίο παριστάνεται
Διαβάστε περισσότεραΕνδεικτική Οργάνωση Ενοτήτων. E Τάξη. Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1
Ενδεικτική Οργάνωση Ενοτήτων E Τάξη Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1 Αρ3.1 Απαγγέλουν, διαβάζουν, γράφουν και αναγνωρίζουν ποσότητες αριθμών μέχρι το 1 000 000 000 8 Επανάληψη
Διαβάστε περισσότεραΕνδεικτικά θέματα Μαθηματικών για την εισαγωγή στα Πρότυπα Πειραματικά Γυμνάσια
ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΔΟΚΙΜΑΣΙΑ 1 (ΜΟΝΑΔΕΣ 40) α) Ο αριθμός 1.047 έχει διαιρέτη το 3; Να δικαιολογήσετε την απάντησή σας. β) Να βάλετε
Διαβάστε περισσότεραΤΑΞΗ Α - ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ (ΓΙΑ ΤΗΝ ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ)
ΤΑΞΗ Α - ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ (ΓΙΑ ΤΗΝ ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ) Α ΜΕΡΟΣ- ΑΛΓΕΒΡΑ ΕΡΩΤΗΣΗ 1 Ποιοι αριθμοί ονομάζονται πρώτοι και ποιοι σύνθετοι; Να δώσετε παραδείγματα. ΑΠΑΝΤΗΣΗ 1 Όταν ένας αριθμός διαιρείται
Διαβάστε περισσότεραΜαθηματικά Α Γυμνασίου. Επαναληπτικές ερωτήσεις θεωρίας
Μαθηματικά Α Γυμνασίου Επαναληπτικές ερωτήσεις θεωρίας Επαναληπτικές Ερωτήσεις Θεωρίας 1. Τι ονομάζεται Ελάχιστο Κοινό Πολλαπλάσιο (ΕΚΠ) δύο ή περισσότερων αριθμών; Ελάχιστο Κοινό Πολλαπλάσιο (ΕΚΠ) δύο
Διαβάστε περισσότεραΑ ΓΥΜΝΑΣΙΟΥ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ
Α ΓΥΜΝΑΣΙΟΥ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΘΕΩΡΙΑ. Να γραφεί ο τύπος της Ευκλείδειας διαίρεσης. Πότε ένας αριθμός διαιρείται με το, πότε με το, το, και πότε με το 9. ( Δώστε παράδειγμα) Ποιοι αριθμοί καλούνται πρώτοι
Διαβάστε περισσότεραΙωάννης Σ. Μιχέλης Μαθηματικός
1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Τι ονομάζεται αριθμητική και τι αλγεβρική παράσταση; Μία παράσταση, που περιέχει πράξεις με αριθμούς ονομάζεται αριθμητική παράσταση. Μία παράσταση, που περιέχει πράξεις
Διαβάστε περισσότεραΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.
ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε
Διαβάστε περισσότεραΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ
ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ 7 Ο ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ 1. Όταν μπροστα" (αριστερα") απο" ε"ναν αριθμο" γραφει" το συ"μβολο + το"τε ο αριθμο"ς
Διαβάστε περισσότερα1.2 Α. ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ
1 1. Α. ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ MΟΝΩΝΥΜΑ ΘΕΩΡΙΑ 1. Αριθµητική παράσταση : Είναι η παράσταση που περιέχει πράξεις µεταξύ αριθµών. Αλγεβρική παράσταση : Είναι η παράσταση που περιέχει πράξεις µεταξύ αριθµών
Διαβάστε περισσότεραΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. 1. Να γράψετε τον τύπο της Ευκλείδειας διαίρεσης. Πώς ονομάζεται κάθε σύμβολο του τύπου;
ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Να γράψετε τον τύπο της Ευκλείδειας διαίρεσης. Πώς ονομάζεται κάθε σύμβολο του τύπου; 2. Τι ξέρετε για το υπόλοιπο που προκύπτει από μια Ευκλείδεια διαίρεση; 3. Τι ονομάζουμε τέλεια
Διαβάστε περισσότεραΚεφάλαιο 1 Εισαγωγή. Φυσική Β Γυμνασίου
Κεφάλαιο 1 Εισαγωγή Φυσική Β Γυμνασίου Απαντήσεις ερωτήσεων σχολικού βιβλίου σχ. βιβλίο (σ.σ. 18-19) Γυμνάσιο: 9.000 μαθήματα με βίντεο-διδασκαλία για όλο το σχολικό έτος μόνο με 150 ευρώ! Μελέτη όπου,
Διαβάστε περισσότεραΚανόνας, για να λύσεις αυτό το μαθηματικό σταυρόλεξο. Μια πρακτική συμβουλή για τη λύση του σταυρόλεξου:
ΟΝΟΜΑΤΕΠΩΝΥΜΟ: Κανόνας, για να λύσεις αυτό το μαθηματικό σταυρόλεξο. Όλα τα κενά τετράγωνα με ροζ χρώμα πρέπει συμπληρωθούν είτε με μονοψήφιους αριθμούς είτε με ένα από τα μαθηματικά σύμβολα: +, -, >,
Διαβάστε περισσότεραΣυνοπτική Θεωρία Μαθηματικών Α Γυμνασίου
Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Αριθμητική - Άλγεβρα Γεωμετρία Άρτιος λέγεται
Διαβάστε περισσότεραΚαθηγήτρια : Ιωάννα Ερωτοκρίτου τηλ:
ΠΕΡΙΕΧΟΜΕΝΑ Ύλη εξετάσεων...2 1. Κλάσματα...3 2. Δεκαδικοί...8 3. Δυνάμεις...11 4. Ρητοί Αριθμοί...13 5. Διαιρετότητα...16 6. ΕΚΠ ΜΚΔ...17 7. Εξισώσεις- υστήματα...19 8. Αναλογίες - Απλή μέθοδος των τριών...25
Διαβάστε περισσότεραΑρβανιτίδης Θεόδωρος, - Μαθηματικά Ε
Πρόσθεση Φυσικών Αριθμών Μάθημα 5 ο Για να προσθέσω φυσικούς αριθμούς πρέπει να προσθέσω τις μονάδες των αριθμών αυτών, μετά τις δεκάδες των αριθμών, μετά τις εκατοντάδες κλπ. Η πρόσθεση φυσικών αριθμών
Διαβάστε περισσότεραΠοιος είναι ο 66ος όρος στην ακολουθία γραμμάτων ΑΒΒΓΓΓΔΔΔΔΕΕΕΕΕ, όπου Α, Β, Γ, Δ, Ε είναι γράμματα του ελληνικού αλφαβήτου;
Πρόβλημα 214 Τα θρανία στην τάξη του Γιάννη είναι τοποθετημένα σε γραμμές και στήλες. Το θρανίο του Γιάννη είναι στην τρίτη γραμμή από την αρχή και στην τέταρτη από το τέλος. Είναι επίσης στην τρίτη στήλη
Διαβάστε περισσότερα1. 4 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΠΟΛΥΩΝΥΜΩΝ
ΜΕΡΟΣ Α 1.4 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΠΟΛΥΩΝΥΜΩΝ 59 1. 4 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΠΟΛΥΩΝΥΜΩΝ Πολλαπλασιασμός μονωνύμου με πολυώνυμο Ο πολλαπλασιασμός μονώνυμου με πολυώνυμο γίνεται ως εξής: Πολλαπλασιάζουμε το μονώνυμο με
Διαβάστε περισσότεραΑ) 4 Β) 5 Γ) 7 Δ) 6 Ε) Κανένα από τα πιο πάνω.
η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 200 Χρόνος: 60 λεπτά ΣΤ ΔΗΜΟΤΙΚΟΥ ΑΣΚΗΣΗ Ο πενταψήφιος αριθμός 45Β7Α, στον οποίο τα ψηφία των μονάδων και των εκατοντάδων είναι σημειωμένα με Α και Β, διαιρείται
Διαβάστε περισσότεραΜ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ
Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ 1 Συνοπτική θεωρία Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα 2 ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ-ΑΠΑΝΤΗΣΕΙΣ 1. Πότε ένας φυσικός αριθμός λέγεται άρτιος; Άρτιος
Διαβάστε περισσότεραΜαθηματικά. Ενότητα 1: Οι Αριθμοί. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής
Μαθηματικά Ενότητα 1: Οι Αριθμοί Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
Διαβάστε περισσότερα5. Τα μήκη των βάσεων ενός τραπεζίου είναι 8 cm και 12 cm και το ύψος του είναι 7. Να βρείτε το εμβαδό του.
1 ΑΣΚΗΣΕΙΣ 1. Ένα παραλληλόγραμμο ΑΒΓΔ έχει μια πλευρά ίση με 48 και το αντίστοιχο σε αυτή την πλευρά ύψος είναι 4,5 dm. Να βρείτε το εμβαδό του παραλληλογράμμου 2. Ένα παραλληλόγραμμο έχει εμβαδό 72 2
Διαβάστε περισσότεραΤοπικός διαγωνισμός EUSO2017
ΕΚΦΕ Νέας Ιωνίας ΕΚΦΕ Χαλανδρίου Τοπικός διαγωνισμός EUSO2017 Πειραματική δοκιμασία Φυσικής Στα «αχνάρια» του Αρχιμήδη! 10 Δεκεμβρίου 2016 ΣΧΟΛΙΚΗ ΜΟΝΑΔΑ: ΟΜΑΔΑ ΜΑΘΗΤΩΝ: 1) 2). 3).. ΛΙΓΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ
ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό σας. ΚΕΦΑΛΑΙΟ 1 1. Να συμπληρώσετε
Διαβάστε περισσότεραΥΛΙΚΑ ΣΩΜΑΤΑ 10-0133.indb 19 25/2/2013 3:33:36 μμ
ΥΛΙΚΑ ΣΩΜΑΤΑ 10-0133.indb 19 25/2/2013 3:33:36 μμ 20 ΦΕ1: ΟΓΚΟΣ Ποιο από τα δύο αυτοκίνητα χωρά περισσότερες αποσκευές; Μια χαρακτηριστική ιδιότητα των σωμάτων είναι ο όγκος τους. Η δασκάλα ή ο δάσκαλός
Διαβάστε περισσότεραΠρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών
2 Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Προσθετέοι 18+17=35 α Προσθετέοι + β = γ Άθοι ρ σμα Άθοι ρ σμα 13 + 17 = 17 + 13 Πρόσθεση φυσικών αριθμών Πρόσθεση είναι η πράξη με την οποία από
Διαβάστε περισσότεραΓιώργος Νάνος Φυσικός MSc ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΑΣΚΗΣΕΙΣ & ΠΡΟΒΛΗΜΑΤΑ. Μαθηματικά. Γυμνασίου
Φυσικός MSc ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΑΣΚΗΣΕΙΣ & ΠΡΟΒΛΗΜΑΤΑ Μαθηματικά A Γυμνασίου Περιεχόμενα ΚΕΦΑΛΑΙΟ : Φυσικοί & Δεκαδικοί Αριθμοί Η θεωρία με Ερωτήσεις Ασκήσεις & Προβλήματα ΚΕΦΑΛΑΙΟ : Μετρήσεις Μεγεθών Η
Διαβάστε περισσότεραΙωάννης Σ. Μιχέλης Μαθηματικός
1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Ποιες είναι οι ιδιότητες της πρόσθεσης των φυσικών; Το άθροισμα ενός φυσικού αριθμού με το 0 ισούται με τον ίδιο αριθμό. α+0=α Αντιμεταθετική ιδιότητα. Με βάση την οποία
Διαβάστε περισσότεραΔοκιμασίες πολλαπλών επιλογών
Δοκιμασίες πολλαπλών επιλογών ) Η απόλυτη τιμή θετικού αριθμού είναι: Α. Ο αντίθετός του Β. Ο ίδιος ο αριθμός Γ. Ο αντίστροφός του 2) Αν x =3, τότε Α. x=3 Β. x 0 Γ. x=-3 Δ. x=3 ή x=-3 3) Με το -x συμβολίζουμε
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΟΤΗΤΑ Α.1.2. ΠΡΑΞΕΙΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΙΔΙΟΤΗΤΕΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΟΤΗΤΑ Α.1.2. ΠΡΑΞΕΙΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΙΔΙΟΤΗΤΕΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΗΜΕΡΟΜΗΝΙΑ / / ΠΡΟΣΘΕΣΗ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 12+ 7 = 19 Οι αριθμοί 12 και 7 ονομάζονται ενώ το 19 ονομάζεται.. 3+5 =, 5+3 =...
Διαβάστε περισσότεραΕυρωπαϊκή Ολυµπιάδα Φυσικών Επιστηµών 2009 Πανελλήνιος προκαταρκτικός διαγωνισµός στη Φυσική. Σχολείο: Ονόµατα των µαθητών της οµάδας: 1) 2) 3)
ΠΑΝΕΚΦΕ Ευρωπαϊκή Ολυµπιάδα Φυσικών Επιστηµών 2009 Πανελλήνιος προκαταρκτικός διαγωνισµός στη Φυσική 17-01-2009 Σχολείο: Ονόµατα των µαθητών της οµάδας: 1) 2) 3) Επισηµάνσεις από τη θεωρία Πάνω στον πάγκο
Διαβάστε περισσότεραΈλεγξε τις γνώσεις σου
Έλεγξε τις γνώσεις σου ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ. (α) Να μετατρέψεις το χρόνο των 45 min που σου δόθηκε για να απαντήσεις σε αυτό το διαγώνισμα σε s. (β) Να αναφέρεις όλα τα θεμελιώδη μεγέθη του S.I. και τις
Διαβάστε περισσότεραΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ Α ΤΑΞΗΣ
ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ Α ΤΑΞΗΣ Το αναλυτικό πρόγραμμα που παρουσιάζουμε εδώ είναι μια πρόταση από περιεχόμενα που θα μπορούσαν να διδαχτούν στο σχολείο δεύτερης ευκαιρίας. Αυτό δεν σημαίνει ότι το πρόγραμμα
Διαβάστε περισσότερα1 η Δραστηριότητα Υπολογισμός της πυκνότητας στερεού σώματος
7η ΗΜΕΡΙΔΑ ΠΕΙΡΑΜΑΤΙΚΩΝ ΔΡΑΣΤΗΡΙΟΤΗΤΩΝ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΒΙΟΛΟΓΙΑΣ ΟΜΑΔΑ... ΟΝΟΜΑΤΕΠΩΝΥΜΑ ΜΑΘΗΤΩΝ/ΤΡΙΩΝ: 1. 2. 3. 1 η Δραστηριότητα Υπολογισμός της πυκνότητας στερεού σώματος Ο Σκοπός της άσκησης Ο σκοπός
Διαβάστε περισσότεραΒασικές Γεωμετρικές έννοιες
Βασικές Γεωμετρικές έννοιες Σημείο Με την άκρη του μολυβιού μου ακουμπώντας την σε ένα κομμάτι χαρτί αφήνω ένα σημάδι το οποίο το λέω σημείο. Το σημείο το δίνω όνομα γράφοντας πάνω απ αυτό ένα κεφαλαίο
Διαβάστε περισσότεραΣτόχοι ΑΠΣ για τα μαθηματικά της Ε τάξης
Στόχοι ΑΠΣ για τα μαθηματικά της Ε τάξης ΘΕΜΑΤΙΚΕΣ ΕΝΟΤΗΤΕΣ ΚΕΦΑΛΑΙΑ ΣΤΟΧΟΙ ΧΡΟΝΟΣ Αριθμοί και πράξειςακέραιοι 2, 3, 4, 5 2. να μπορούν να εκφράζουν αριθμούς μέχρι και το 1.000.000 με διάφορους τρόπους
Διαβάστε περισσότερατα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
Διαβάστε περισσότεραMAΘΗΜΑΤΙΚΑ. κριτήρια αξιολόγησης. Κωνσταντίνος Ηλιόπουλος A ΓΥΜΝΑΣΙΟΥ
A ΓΥΜΝΑΣΙΟΥ Κωνσταντίνος Ηλιόπουλος κριτήρια αξιολόγησης MAΘΗΜΑΤΙΚΑ Διαγωνίσματα σε κάθε μάθημα και επαναληπτικά σε κάθε κεφάλαιο Διαγωνίσματα σε όλη την ύλη για τις τελικές εξετάσεις Αναλυτικές απαντήσεις
Διαβάστε περισσότεραΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ. Βαγγέλης. Βαγγέλης Νικολακάκης Μαθηματικός.
01 ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ Βαγγέλης ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός ΣΗΜΕΙΩΜΑ Το παρον φυλλάδιο φτιάχτηκε για να προσφέρει λίγη βοήθεια
Διαβάστε περισσότεραΑλγεβρικές Παραστάσεις-Μονώνυμα
ΜΕΡΟΣ Α. ΜΟΝΩΝΥΜΑ-ΠΡΑΞΕΙΣ ΜΕ ΜΟΝΩΝΥΜΑ. ΜΟΝΩΝΥΜΑ-ΠΡΑΞΕΙΣ ΜΕ ΜΟΝΩΝΥΜΑ Β Αλγεβρικές Παραστάσεις-Μονώνυμα Πολλές φορές στην προσπάθειά μας να λύσουμε ένα πρόβλημα, καταλήγουμε σε εκφράσεις που περιέχουν μόνο
Διαβάστε περισσότεραΣΤΕΡΕΟΜΕΤΡΙΑ Β ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ
ΣΤΕΡΕΟΜΕΤΡΙΑ Β ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ Α. ΠΟΛΥΕ ΡΑ 1. ΟΡΙΣΜΟΙ 2. ΟΡΘΟΓΩΝΙΟ ΠΑΡΑΛΛΗΛΕΠΙΠΕ Ο α = µήκος β = πλάτος γ = ύψος δ = διαγώνιος = α. β. γ = Ε β. υ Ε ολ = 2. (αβ + αγ + βγ) 3. ΚΥΒΟΣ = α 3 Ε ολ = 6α 2
Διαβάστε περισσότεραΓνωριμία με το Σχολικό Εργαστήριο Φυσικών Επιστημών
Φυσική Α Γενικού Λυκείου Γνωριμία με το Σχολικό Εργαστήριο Φυσικών Επιστημών (Μετρήσεις, αβεβαιότητα, επεξεργασία δεδομένων) Υποστηρικτικό υλικό 20 Οκτωβρίου 2016 Μαρίνα Στέλλα, Υπεύθυνη ΕΚΦΕ Σχολικό Εργαστήριο
Διαβάστε περισσότεραΚεφάλαιο 2. Συστήματα Αρίθμησης και Αναπαράσταση Πληροφορίας. Περιεχόμενα. 2.1 Αριθμητικά Συστήματα. Εισαγωγή
Κεφάλαιο. Συστήματα Αρίθμησης και Αναπαράσταση Πληροφορίας Περιεχόμενα. Αριθμητικά συστήματα. Μετατροπή αριθμών από ένα σύστημα σε άλλο.3 Πράξεις στο δυαδικό σύστημα.4 Πράξεις στο δεκαεξαδικό σύστημα.5
Διαβάστε περισσότεραΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ. Μονάδες μέτρησης του όγκου και της χωρητικότητας. Ενότητα 8. β τεύχος
ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ 50 Μονάδες μέτρησης του όγκου και της χωρητικότητας Ενότητα 8 β τεύχος 50 Μονάδες μέτρησης του όγκου και της χωρητικότητας 1η Άσκηση Να συμπληρώσεις τον πίνακα:
Διαβάστε περισσότερα13ο Μάθημα ΠΙΕΣΗ ΠΟΥ ΑΣΚΟΥΝ ΤΑ ΣΤΕΡΕΑ
13ο Μάθημα ΠΙΕΣΗ ΠΟΥ ΑΣΚΟΥΝ ΤΑ ΣΤΕΡΕΑ Η δύναμη μπορεί να είναι μεγάλη, αλλά η πίεση μικρή Με το μάθημα αυτό, αρχίζουμε τη μελέτη μιας σημαντικής έννοιας, της πίεσης, που υπεισέρχεται σε πάρα πολλές περιπτώσεις
Διαβάστε περισσότεραΧΑΡΑΚΤΗΡΙΣΜΟΣ ΥΛΙΚΩΝ. Μετρήσεις με Διαστημόμετρο και Μικρόμετρο
ΧΑΡΑΚΤΗΡΙΣΜΟΣ ΥΛΙΚΩΝ Σκοπός της άσκησης Σε αυτή την άσκηση θα μετρήσουμε διαστάσεις στερεών σωμάτων χρησιμοποιώντας όργανα ακριβείας και θα υπολογίσουμε την πυκνότητα τους. Θα κάνουμε εφαρμογή της θεωρίας
Διαβάστε περισσότεραΤι ονομάζουμε εμβαδόν μιας επίπεδης επιφάνειας; Αναφέρετε ονομαστικά τις μονάδες μέτρησης επιφανειών.
1 Ονοματεπώνυμο μαθητή : Ημερομηνία :.../.../20... Μαθηματικές έννοιες: Εμβαδόν, Τετραγωνικό Μέτρο, Τετραγωνικό Δεκάμετρο, Τετραγωνικό Εκατοστόμετρο, Τετραγωνικό Χιλιοστόμετρο, Στρέμμα. Θυμόμαστε- Μαθαίνουμε:
Διαβάστε περισσότεραΦυσική για Επιστήμονες και Μηχανικούς. Εισαγωγή Φυσική και μετρήσεις
Φυσική για Επιστήμονες και Μηχανικούς Εισαγωγή Φυσική και μετρήσεις Φυσική Χωρίζεται σε έξι βασικούς κλάδους: Κλασική μηχανική Θερμοδυναμική Ηλεκτρομαγνητισμός Οπτική Σχετικότητα Κβαντική μηχανική είναι
Διαβάστε περισσότερα