ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 2 Ο «ΣΤΑΤΙΣΤΙΚΗ»

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 2 Ο «ΣΤΑΤΙΣΤΙΚΗ»"

Transcript

1 ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ Ο «ΣΤΑΤΙΣΤΙΚΗ» Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός

2 ΚΕΦΑΛΑΙΟ. ΣΤΑΤΙΣΤΙΚΗ. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Στατιστική είναι ο κλάδος των εφαρμοσμένων μαθηματικών ο οποίος αποτελείται από ένα σύνολο αρχών και μεθοδολογιών με τις οποίες : Σχεδιάζεται η διαδικασία συλλογής δεδομένων. Παρουσιάζονται τα δεδομένα αυτά συνοπτικά με σαφή και ακριβή τρόπο. Αναλύονται και εξάγονται αντίστοιχα συμπεράσματα από τα δεδομένα αυτά. Επιπλέον ασχολείται με τη δειγματοληπτική έρευνα που επιτρέπει από τα δεδομένα μιας μικρής ομάδας με τρόπο επαγωγικό να προσδιοριστούν με κάποια προσέγγιση τα χαρακτηριστικά της ευρύτερης ομάδας η οποία περιέχει το σύνολο των ομοειδών περιπτώσεων. Η Στατιστική διαιρείται σε κλάδους Περιγραφική Στατιστική ασχολείται με τη σύμπτυξη παρουσίαση ποσοτικών πληροφοριών μιας ή περισσοτέρων συγκεκριμένων ομάδων. Επαγωγική Στατιστική ασχολείται με την εξαγωγή συμπερασμάτων για ολόκληρο σύνολο δεδομένων με βάση τα χαρακτηριστικά μιας ομάδας δεδομένων. ΠΛΗΘΥΣΜΟΣ ΜΕΤΑΒΛΗΤΕΣ Στη Στατιστική μας ενδιαφέρει να εξετάσουμε στοιχεία ενός συνόλου ως προς ένα ή περισσότερα χαρακτηριστικά τους. Πληθυσμός λέγεται το σύνολο των ομοειδών στοιχείων για τα οποία γίνεται μια έρευνα στη Στατιστική. Τα στοιχεία του πληθυσμού ονομάζονται μονάδες ή άτομα του πληθυσμού. Τα χαρακτηριστικά ως προς τα οποία εξετάζουμε έναν πληθυσμό ονομάζονται μεταβλητές και συμβολίζονται συνήθως με κεφαλαία γράμματα Χ, Φ, Ζ Οι δυνατές τιμές που μπορεί να πάρει μια μεταβλητή ονομάζονται τιμές τις μεταβλητής. ΕΙΔΗ ΜΕΤΑΒΛΗΤΩΝ Τις μεταβλητές τις διακρίνουμε σε ΠΟΙΟΤΙΚΕΣ ή ΚΑΤΗΓΟΡΙΚΕΣ και ΠΟΣΟΤΙΚΕΣ ΠΟΙΟΤΙΚΕΣ είναι οι μεταβλητές των οποίων οι τιμές δεν μπορούν να μετρηθούν. Οι τιμές των ποιοτικών μεταβλητών είναι χαρακτηρισμοί και όχι αριθμοί. ΠΟΣΟΤΙΚΕΣ είναι οι μεταβλητές των οπίων οι τιμές είναι αριθμοί. Διακρίνονται σε ΔΙΑΚΡΙΤΕΣ οι οποίες παίρνουν μεμονωμένες τιμές και τις ΣΥΝΕΧΕΙΣ οι οποίες παίρνουν οποιαδήποτε τιμή ενός διαστήματος πραγματικών αριθμών. ΑΠΟΓΡΑΦΗ Απογραφή καλείται η μέθοδος συλλογής των δεδομένων με τον εξής τρόπο : παίρνουμε τις απαραίτητες πληροφορίες που χρειαζόμαστε για κάποιο πληθυσμό αφού εξετάσουμε όλα τα άτομα του πληθυσμού ως προς το χαρακτηριστικό που μας ενδιαφέρει. ΔΕΙΓΜΑ καλείται κάθε υποσύνολο του πληθυσμού. Για να θεωρείται αντιπροσωπευτικό ένα δείγμα ενός πληθυσμού, θα πρέπει να έχει επιλεγεί κατά κάποιο τρόπο, ώστε κάθε μονάδα του πληθυσμού να έχει την ίδια δυνατότητα να επιλέγει. ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ

3 ΚΕΦΑΛΑΙΟ. ΣΤΑΤΙΣΤΙΚΗ ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ :. Μελετάμε τους κάτοικους μιας πόλης ως προς τις ιδιότητες : Α. ηλικία Β. επάγγελμα Γ. ύψος Δ. βάρος Ε. μορφωτικό επίπεδο Σ.Τ. εισόδημα Ποιες από τις παραπάνω μεταβλητές είναι ποιοτικές και ποιες ποσοτικές:. Τα αποτελέσματα των εξετάσεων των φοιτητών του Μαθηματικού τμήματος στο μάθημα της Στατιστικής ήταν τα ακόλουθα:, 3, 3,,, 5, 5, 5, 9. Να βρείτε : α) Ποιος είναι ο Πληθυσμός; β) Ποια είναι τα άτομα; γ) Ποιες είναι οι παρατηρήσεις; δ) Ποια είναι η μεταβλητή και σε ποια κατηγορία ανήκει; ε) Ποιες είναι οι τιμές της μεταβλητής; 3. Τι έχετε να παρατηρήσετε σχετικά με την ποιότητα των παρακάτω επιλεγμένων δειγμάτων; α) Για να βρούμε τις πολιτικές προτιμήσεις, παίρνουμε δείγμα από τους κάτοικους πολλών μεγάλων πόλεων; β) Για να βρούμε πως διασκεδάζουν οι νέοι της χώρας μας, επιλέγουμε μαθητές κάποιων λυκείων. γ) Για να εκτιμήσουμε την οικονομική κατάσταση της χώρας, παίρνουμε το κατά κεφαλήν εισόδημα.. Για να βρούμε το μέγεθος των καπνιστών στην Ελλάδα αποφασίσαμε να πάρουμε ένα δείγμα 500 ατόμων. Ποιος από τους παρακάτω τρόπους είναι ο καλύτερος για να πάρουμε δείγμα; α) Να πάρουμε 500 αθλητές; β) Να πάρουμε 500 άνδρες υπάλληλους μιας επιχείρησης; γ) Να πάρουμε 500 περαστικούς από ένα δρόμο; 5. Από ένα σύνολο 00 μαθητών (60 αγόρια 0 κορίτσια) επιλέγουμε ένα δείγμα 5 μαθητών (9 αγόρια και 6 κορίτσια). Είναι το δείγμα αντιπροσωπευτικό; ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ 3

4 ΚΕΦΑΛΑΙΟ. ΣΤΑΤΙΣΤΙΚΗ. ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ Τα στατιστικά δεδομένα, αφού συλλεχτούν, πρέπει να ταξινομηθούν σε πίνακες. Πρέπει δηλαδή τα δεδομένα να τοποθετηθούν σε γραμμές και στήλες έτσι ώστε να είναι εύκολη η κατανόηση τους, η σύγκριση τους και η εξαγωγή συμπερασμάτων. ΜΕΘΟΔΟΛΟΓΙΑ : Απόλυτη Συχνότητα της τιμής είναι ο φυσικός αριθμός που δείχνει πόσες φορές εμφανίζεται η τιμή της εξεταζόμενης μεταβλητής Χ στο σύνολο των παρατηρήσεων. Το άθροισμα όλων των συχνοτήτων, προφανώς, είναι ισο με το μέγεθος ν του δείγματος. Δηλαδή :.... Επίσης : 0 Σχετική Συχνότητα της τιμής είναι :,,,...,. Ισχύουν ότι :... και 0. Τις σχετικές συχνότητες μπορούμε να τις εκφράσουμε και επί τις εκατό, οπότε συμβολίζεται % και είναι : % %... % 00 και 0 % 00. Το σύνολο των ζευγών, ) λέγεται ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ :. Ρωτήσαμε ένα δείγμα 50 μαθητών της Θεσσαλονίκης ως προς την ομάδα που υποστηρίζουν. Η απαντήσεις που πήραμε ήταν οι εξής : ΠΑΟΚ, 7 ΑΡΗΣ, 3 ΠΑΝΑΘΗΝΑΙΚΟΣ, ΑΕΚ, ΟΛΥΜΠΙΑΚΟΣ και κάποιοι από αυτούς ΗΡΑΚΛΗΣ.. Να βρείτε πόσοι υποστηρίζουν τον ΗΡΑΚΛΗ.. Να κατασκευάσετε τον πίνακα κατανομής συχνοτήτων, σχετικών συχνοτήτων και σχετικών % συχνοτήτων. Λύση :. Έστω η ποιοτική μεταβλητή : «Ομάδα» άρα :, :, :, :, : και :. Τότε οι 3 5 αντίστοιχες συχνότητες θα είναι,,..., 6 και θα ισχύει : , άρα % 0, ,3 άρα % 0, ,06 άρα 3% 0, ,0 άρα % 0, ,0 άρα 5% 0, ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ 6 ( κατανομή συχνοτήτων ενώ το σύνολο των ζευγών, ) ή, %) λέγεται κατανομή ( σχετικών συχνοτήτων. Ένα πίνακας που έχει τις τιμές, παρατηρήσεων, ονομάζεται πινάκας κατανομής συχνοτήτων. (, για ένα δείγμα

5 ΚΕΦΑΛΑΙΟ. ΣΤΑΤΙΣΤΙΚΗ ,0 άρα 6% 0, Ομάδα Συχνότητα Σχετ. συχνότητα Σχετ. συχνοτ. % ΠΑΟΚ 0, ΑΡΗΣ 7 0,3 3 ΠΑΝΑΘΗΝΑΙΚΟΣ 3 0,06 6 ΑΕΚ 0,0 ΟΛΥΜΠΙΑΚΟΣ 0,0 ΗΡΑΚΛΗΣ 5 0,0 0 Σύνολο 50,00 00 ΜΕΘΟΔΟΛΟΓΙΑ : ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ (ΣΤΑΤΙΣΤΙΚΟΙ ΠΙΝΑΚΕΣ) Έστω ένα δείγμα μεγέθους και έστω οι οποίες είναι σε αύξουσα σειρά.,...,, οι τιμές μιας ποσοτικής μεταβλητής Χ, Αθροιστική Συχνότητα εκφράζουμε το πλήθος των παρατηρήσεων που είναι μικρότερες ή ίσες της τιμής. Η Αθροιστική Σχετική Συχνότητα είναι μικρότερες ή ίσες της τιμής. F εκφράζει το ποσοστό των παρατηρήσεων που Για τις αθροιστικές συχνότητες ισχύουν οι σχέσεις :... F... F F F F ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ :. Ρωτήσαμε 00 μαθητές πόσα βιβλία διάβασαν το περασμένο καλοκαίρι. Τα αποτελέσματα φαίνονται στον παρακάτω πινάκα. Αριθ. βιβλίων Συχνότητα Σύνολο 00 ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ 5

6 ΚΕΦΑΛΑΙΟ. ΣΤΑΤΙΣΤΙΚΗ. Να κατασκευάσετε πινάκα κατανομής,, %,, F, F % Με τη βοήθεια του παραπάνω πινάκα, να βρείτε. Πόσοι μαθητές διάβασαν το πολύ βιβλία. Το ποσοστό των μαθητών που διάβασε το πολύ βιβλίο. Πόσοι μαθητές διάβασαν τουλάχιστον βιβλία. Το ποσοστό των μαθητών που διάβασε τουλάχιστον 3 βιβλία. Το ποσοστό των μαθητών που διάβασε τουλάχιστον αλλά το πολύ 3 βιβλία Λύση :. Για τις σχετικές συχνότητες σύμφωνα με τους τύπους και % 00 έχω : 90 0,5 άρα % 0, ,30 άρα % 0, ,3 άρα 3% 0, ,08 άρα % 0, ,0 άρα 5% 0, Για τις αθροιστικές συχνότητες σύμφωνα με τους τύπους : και έχω : Για τις αθροιστικές σχετικές συχνότητες σύμφωνα με τους τύπους : F και F F F F αλλά και F % 00F έχω : F F 0, 5 άρα F % 0,500 5 F F F 0,5 0, 30 F 0, 75 άρα F % 0, F3 F 3 F3 0,75 0, 3 F 3 0, 88 άρα F 3% 0, F F3 F 0,88 0, 08 F 0, 96 άρα F % 0, F5 F 5 F 0,96 0, 0 F, 5 00 άρα F %, Αριθμό. βιβλίων 5 Έτσι συμπληρώνεται ο παρακάτω πίνακας : Συχνότητα Σχετ.συχν. Σχετ.συχν. ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ 6 % Αθρ.συχν. Αθρ.σχετ. συχν. F Αθρ.σχετ. συχν. F % , , , , , , , , ,0 00,00 00 Σύνολο 00,00 00

7 ΚΕΦΑΛΑΙΟ. ΣΤΑΤΙΣΤΙΚΗ. Το πλήθος των μαθητών που διάβασαν το πολύ βιβλία (δηλ. 0 ή ή ) είναι : Το ποσοστό των μαθητών που διάβασε το πολύ βιβλίο (δηλ. 0 ή ) είναι : % % F % 75%. Το πλήθος των μαθητών που διάβασαν τουλάχιστον βιβλία (δηλ. ή 3 ή ) είναι : Το ποσοστό των μαθητών που διάβασε τουλάχιστον 3 βιβλία (δηλ. 3 ή ) είναι : % 5 % 8% % %. Το ποσοστό των μαθητών που διάβασε τουλάχιστον αλλά το πολύ 3 βιβλία (δηλ. ή ή 3) είναι : % % 30% 3% 8% 5% % 3 3. Να συμπληρώσετε τον παρακάτω πινάκα : % F % 0, Σύνολο 00 Πανελλήνιες 000 Λύση : Ισχύουν τα εξής : 0, 0, 0, 0 0 % 00 % 000, % 0 F % % F % , % 00 % 000, 3 % 30 F % % % F% 0 30 F % , % 00 3 % 3 000, 3% F % % % F F % 80 3% 3 3 % , % 00 % 000, % F % % % 3% % F% F % 00 ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ 7

8 ΚΕΦΑΛΑΙΟ. ΣΤΑΤΙΣΤΙΚΗ % F % 0, , , , Σύνολο 0 00 ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ :. Να συμπληρώσετε τους παρακάτω πίνακες : Συν. % % ,05 Συν Αθρ. N F % F % 5. Να συμπληρώσετε τους παρακάτω πίνακες : % -5 0, , Συν. N ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ 8 F % F % 8 0, 0 3 0, Σύνολο

9 ΚΕΦΑΛΑΙΟ. ΣΤΑΤΙΣΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ 3 : ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ (ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ) Ραβδόγραμμα Το ραβδόγραμμα χρησιμοποιείται, όταν η μεταβλητή Χ είναι ποιοτική. Αποτελείται από ορθογώνιες στήλες που οι βάσεις τους είναι ισομήκης (με αυθαίρετη επιλογή μήκους και μεταξύ τους απόστασης) και βρίσκονται στον οριζόντιο ή στον κατακόρυφο άξονα. Το ύψος κάθε ορθογώνιας στήλης είναι ισο με τη συχνότητα ή τη σχετική συχνότητα της αντίστοιχης τιμής της μεταβλητής. Όταν θέλουμε να κάνουμε σύγκριση των αντίστοιχων τιμών της ίδιας μεταβλητής Χ για δυο διαφορετικά δείγματα (π.χ. άντρες - γυναίκες), τότε κατασκευάζουμε διπλά ορθογώνια για την ίδια τιμή της μεταβλητής Χ ένα για το κάθε δείγμα. Διάγραμμα Το διάγραμμα χρησιμοποιείται, όταν η μεταβλητή Χ είναι ποσοτική. Η διαφορά με το ραβδόγραμμα είναι ότι στο διάγραμμα αντί για ορθογώνιες στήλες σε κάθε τιμή υψώνουμε μια κάθετη γραμμή με ύψος ισο με τη συχνότητα ή τη σχετική συχνότητα της αντίστοιχης τιμής της μεταβλητής. Στον κατακόρυφο άξονα αντί για τη συχνότητα, μπορούμε να βάλουμε τις σχετικές συχνότητες, %, τις αθροιστικές συχνότητες N ή τις αθροιστικές σχετικές συχνότητες F, F % και να κατασκευάσουμε τα αντίστοιχα διαγράμματα. Αν στο διάγραμμα ενώσουμε τα σημεία (, ) δηλαδή τα πάνω άκρα κάθε κάθετης γραμμής, τότε προκύπτει το πολύγωνο συχνοτήτων. Κυκλικό Διάγραμμα Το κυκλικό διάγραμμα χρησιμοποιείται, για τη γραφική παράσταση ποιοτικών ή ποσοτικών μεταβλητών, όταν όμως οι τιμές της μεταβλητής Χ είναι σχετικά λίγες. Το κυκλικό διάγραμμα είναι ένας κυκλικός δίσκος χωρισμένος σε κ κυκλικούς τομείς (όσες και οι τιμές ). Τα τόξα κάθε κυκλικού τομέα είναι ανάλογα με τις αντίστοιχες συχνότητες ή τις σχετικές συχνότητες της μεταβλητής. Αν με συμβολίζουμε το τόξο του κυκλικού τομέα που αντιστοιχεί στην τιμή, τότε ισχύει ότι : για,,...,. Προφανώς Σημειόγραμμα Το σημειόγραμμα χρησιμοποιείται, για τη γραφική παράσταση ποιοτικών ή ποσοτικών μεταβλητών, όταν όμως οι τιμές της μεταβλητής Χ είναι λίγες. Για να το κατασκευάσουμε τοποθετούμε τις τιμές της μεταβλητής σε ένα οριζόντιο άξονα και πάνω από κάθε τιμή βάζουμε κατακόρυφα τόσες τελείες όση είναι και η αντίστοιχη συχνότητα. Χρονόγραμμα Το χρονόγραμμα ή χρονολογικό διάγραμμα χρησιμοποιείται για τη γραφική απεικόνιση της διαχρονικής εξέλιξης ενός οικονομικού, δημογραφικού ή άλλου μεγέθους. Ο οριζόντιος άξονας χρησιμοποιείται ως άξονας μέτρησης της εξεταζόμενης μεταβλητής. ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ 9

10 ΚΕΦΑΛΑΙΟ. ΣΤΑΤΙΣΤΙΚΗ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ : 6. Ρωτήσαμε ένα δείγμα 50 μαθητών της Θεσσαλονίκης ως προς την ομάδα που υποστηρίζουν. Η απαντήσεις που πήραμε ήταν οι εξής : ΠΑΟΚ, 7 ΑΡΗΣ, 3 ΠΑΝΑΘΗΝΑΙΚΟΣ, ΑΕΚ, ΟΛΥΜΠΙΑΚΟΣ και κάποιοι από αυτούς ΗΡΑΚΛΗΣ. Να κατασκευάσετε ραβδόγραμμα συχνοτήτων, ραβδόγραμμα σχετικών επί τοις εκατό συχνοτήτων και κυκλικό διάγραμμα για τα παραπάνω δεδομένα. Λύση : Τα δεδομένα προέρχονται από την άσκηση (βλέπε παραπάνω) οπότε έχω τον παρακάτω πινάκα. Ομάδα Συχνότητα Σχετ. συχνότητα Σχετ. συχνοτ. % ΠΑΟΚ 0, ΑΡΗΣ 7 0,3 3 ΠΑΝΑΘΗΝΑΙΚΟΣ 3 0,06 6 ΑΕΚ 0,0 ΟΛΥΜΠΙΑΚΟΣ 0,0 ΗΡΑΚΛΗΣ 5 0,0 0 Σύνολο 50,00 00 ΡΑΒΔΟΓΡΑΜΜΑ ΣΥΧΝΟΤΗΤΩΝ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ 0

11 ΚΕΦΑΛΑΙΟ. ΣΤΑΤΙΣΤΙΚΗ ΡΑΒΔΟΓΡΑΜΜΑ ΣΧΕΤΙΚΩΝ ΣΥΧΝΟΤΗΤΩΝ ΚΥΚΛΙΚΟ ΔΙΑΓΡΑΜΜΑ , , ,3 360, ,06 360, ,0 360, , , , ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ

12 ΚΕΦΑΛΑΙΟ. ΣΤΑΤΙΣΤΙΚΗ ΗΡΑΚΛΗΣ 0% ΟΛΥΜΠΙΑΚΟΣ % ΑΕΚ % ΠΑΝΑΘΗΝΑΙΚΟΣ 6% ΠΑΟΚ % ΠΑΟΚ ΑΡΗΣ ΠΑΝΑΘΗΝΑΙΚΟΣ ΑΕΚ ΟΛΥΜΠΙΑΚΟΣ ΗΡΑΚΛΗΣ ΑΡΗΣ 3% 7. Εξετάσαμε ένα δείγμα οικογενειών ως προς τον αριθμό των παιδιών που έχουν. Τα αποτελέσματα που πήραμε φαίνονται στον παρακάτω πινάκα. Να κατασκευάσετε το διάγραμμα και το αντίστοιχο πολύγωνο :. συχνοτήτων,. αθροιστικών σχετικών συχνοτήτων επί τοις εκατό. Λύση : Αριθμό. παιδιών Συχνότητα Σύνολο 0. Χρησιμοποιώντας τους τύπους, F, F F και F % 00F, συμπληρώνουμε τον πινάκα ως εξής : % F % 0 8 0, , , , 0 00 Σύνολο 0 00 Το διάγραμμα και το πολύγωνο συχνοτήτων φαίνονται στο σχήμα ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ

13 ΚΕΦΑΛΑΙΟ. ΣΤΑΤΙΣΤΙΚΗ. Το διάγραμμα και το πολύγωνο αθροιστικών σχετικών συχνοτήτων επί τοις εκατό φαίνονται στο σχήμα. ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ 3

14 ΚΕΦΑΛΑΙΟ. ΣΤΑΤΙΣΤΙΚΗ ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ : 8. Σ ένα τμήμα 5 μαθητών της γ λυκείου δόθηκε ένα τεστ μαθηματικών από όπου προέκυψαν τα παρακάτω αποτελέσματα :, 7, 9, 6, 5, 9, 3, 5, 6, 5, 9, 7, 0, 0, 6, 9, 3, 9, 5, 9, 9, 5, 7, 6, 0 α) Να κατασκευάσετε πίνακα συχνοτήτων και αθροιστικών συχνοτήτων β) Α. Πόσοι μαθητές είχαν βαθμό τουλάχιστον 5 Β. Μεγαλύτερο από 3 Γ. Τι ποσοστό % μαθητών είναι κάτω από τη βάση (0) Δ. Τι ποσοστό είναι πάνω από 6 Ε. Μεταξύ 5 και 9 γ) Να κατασκευάσετε ραβδόγραμμα συχνοτήτων. 9. Τα αποτελέσματα των εκλογών, σε ένα εκλογικό τμήμα, δίνονται από το επόμενο (ελλιπή) πινάκα : Κόμμα Συχνότητα Σχετική συχνότητα Α 0,5 Β 50 0,30 Γ 0,35 Δ Σύνολο. Να βρείτε πόσοι εκλογείς ψήφισαν στο τμήμα αυτό. Να βρείτε πόσες ψήφους πήρε κάθε κόμμα σε αυτό το εκλογικό τμήμα. Να σχεδιάσετε το ραβδόγραμμα των σχετικών συχνοτήτων. (Πανελλήνιες 00 ) 0. Σε ένα κυκλικό διάγραμμα παριστάνεται το μορφωτικό επίπεδο των 00 εργαζομένων μιας επιχείρησης σε τέσσερις κατηγορίες : Α κατηγορία : Απόφοιτοι Γυμνάσιου Β κατηγορία : Απόφοιτοι Λυκείου Γ κατηγορία : Πτυχιούχοι Ανώτατης Εκπαίδευσης Δ κατηγορία : Κάτοχοι Μεταπτυχιακού Τίτλου Κάθε εργαζόμενος ανήκει σε μια μόνο από τις κατηγορίες αυτές. Στην Α κατηγορία ανήκει το 5% των εργαζομένων της επιχείρησης. Η γωνία του κυκλικού τομέα που αντιστοιχεί στους εργαζομένους της Δ κατηγορίας είναι 8. Οι εργαζόμενοι της επιχείρησης της Β κατηγορίας είναι εξαπλάσιοι των εργαζομένων της Γ κατηγορίας.. Να υπολογίσετε τον αριθμό των εργαζομένων κάθε κατηγορίας.. Να μετατρέψετε το κυκλικό διάγραμμα σε ραβδόγραμμα συχνοτήτων. (Πανελλήνιες 000 ) ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ

15 ΚΕΦΑΛΑΙΟ. ΣΤΑΤΙΣΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ : ΟΜΑΔΟΠΟΙΗΣΗ ΠΑΡΑΤΗΡΗΣΕΩΝ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Όταν μια ποσοτική μεταβλητή Χ είναι συνεχής ή αν είναι διακριτή αλλά το πλήθος των παρατηρήσεων της είναι πολύ μεγάλο, τότε κάνουμε ομαδοποίηση των παρατηρήσεων. Πιο συγκεκριμένα ταξινομούμε (ομαδοποιούμε) τα δεδομένα σε μικρό πλήθος ομάδων οι οποίες ονομάζονται κλάσεις, ώστε κάθε τιμή να ανήκει σε μια μόνο κλάση. Τα άκρα των κλάσεων λέγονται όρια των κλάσεων. Οι κλάσεις είναι διαδοχικά διαστήματα της μορφής [, ). Μπορεί να συμβεί η τελευταία κλάση να είναι της μορφής [, ] ώστε να περιέχει την τελευταία παρατήρηση. Οι παρατηρήσεις κάθε κλάσης θεωρούνται όμοιες και μπορούν να «αντιπροσωπευτούν» από την κεντρική τιμή κάθε κλάσης. Για την κεντρική τιμή της κλάσης [α,β) ισχύει : Καλούμε πλάτος κλάσης τον αριθμό c Η διαφορά της μικρότερης παρατήρησης από τη μεγαλύτερη παρατήρηση του ύ ό δείγματος λέγεται εύρος και ισχύει : R ή ή ΔΙΑΔΙΚΑΣΙΑ ΟΜΑΔΟΠΟΙΗΣΗΣ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ ΒΗΜΑ Πρώτα πρέπει να γίνει η εκλογή του πλήθους των κλάσεων. Συνήθως αυτό δίνεται από την εκφώνηση της άσκησης. Αν όχι (σπάνια) χρησιμοποιούμε ως οδηγό τον παρακάτω πινάκα : Μέγεθος δείγματος ν < Αριθμός κλάσεων κ R ΒΗΜΑ Προσδιορίζουμε το πλάτος κάθε κλάσης με τον τύπο : c. (αν χρειαστεί στρογγυλοποιούμε προς τα πάνω) ΒΗΜΑ 3 Κατασκευάζουμε τις κλάσεις ως εξής : ξεκινάμε από τη μικρότερη παρατήρηση και προσθέτουμε κάθε φορά το πλάτος c, μέχρι να δημιουργηθούν οι κ κλάσεις. ΒΗΜΑ Τέλος κάνουμε τη διαλογή των παρατηρήσεων. Το πλήθος των παρατηρήσεων της κλάσης λέγεται συχνότητα της κλάσης αυτής και αντιπροσωπεύει τη συχνότητα της κεντρικής τιμής της κλάσης αυτής. ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ :. Το ύψος των μαθητών (σε cm) της Γ Λυκείου ενός σχολείου δίνονται παρακάτω : Να ομαδοποιήσετε τα δεδομένα σε κατάλληλο αριθμό κλάσεων και να κατασκευάσετε τον πίνακα με τις συχνότητες, N, %, F %. ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ 5

16 ΚΕΦΑΛΑΙΟ. ΣΤΑΤΙΣΤΙΚΗ Λύση :. Παρατηρούμε ότι το εύρος του δείγματος είναι R Έχουμε ν=0 παρατηρήσεις, δηλ. το μέγεθος του δείγματος είναι ν=0, άρα από τον κατάλληλο πινάκα θα χρειαστούμε κ=6 κλάσεις. Το πλάτος κάθε κλάσης είναι R 35 c 5,83 6, άρα χρησιμοποιώντας τους τύπους, F, 6 F F και F % 00F, συμπληρώνουμε τον πινάκα ως εξής : Κλάσεις [, ) Κεντρικές τιμές Διαλογή Συχν. Σχετ. Συχν. Σχετ. Συχν. % Αθρ. Συχν. N Αθρ. Συχν. F [56-6) 59 ΙΙ 0, [6-68) 65 ΙΙΙΙΙ ΙΙΙ 8 0, [68-7) 7 ΙΙΙΙΙ ΙΙΙΙΙ ΙΙ 0, [7-80) 77 ΙΙΙΙΙ ΙΙΙΙΙ Ι 0,75 7,5 33 8,5 [80-86) 83 ΙΙΙΙΙ 5 0,5, [86-9) 89 ΙΙ 0, Σύνολο 0,00 00 % ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ 6

17 ΚΕΦΑΛΑΙΟ. ΣΤΑΤΙΣΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ 5 : ΟΜΑΔΟΠΟΙΗΣΗ ΠΑΡΑΤΗΡΗΣΕΩΝ ΚΑΙ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΙΣΤΟΓΡΑΜΜΑ ΚΑΙ ΠΟΛΥΓΩΝΟ ΣΥΧΝΟΤΗΤΩΝ ΚΑΙ ΣΧΕΤΙΚΩΝ ΣΥΧΝΟΤΗΤΩΝ Για να κάνουμε τη γραφική παράσταση σε ομαδοποιημένες παρατηρήσεις, χρησιμοποιούμε το ιστόγραμμα συχνοτήτων. Για να κατασκευάσουμε ιστόγραμμα συχνοτήτων τοποθετούμε τις κλάσεις στον οριζόντιο άξονα και δημιουργούμε ορθογώνια (ενωμένα μεταξύ τους), των οποίων οι βάσεις έχουν πλάτος ισο με το πλάτος c κάθε κλάσης και ύψος ισο με. Για να κατασκευάσουμε το πολύγωνο συχνοτήτων, κατασκευάζουμε δυο ακόμα κλάσεις μια στην αρχή και μια στο τέλος των κλάσεων με συχνότητα μηδέν. Μετά ενώνουμε τα μέσα των άνω βάσεων των ορθογωνίων (δηλ τα σημεία (, ) όπου τα κέντρα των κλάσεων) και έτσι σχηματίζεται το πολύγωνο συχνοτήτων. Προσοχή :. Το εμβαδόν κάθε ορθογωνίου ισούται με τη συχνότητα της αντίστοιχης κλάσης. Αυτό σημαίνει ότι το άθροισμα των εμβαδών όλων των ορθογωνίων του ιστογράμματος συχνοτήτων, ισούται με το μέγεθος ν του δείγματος. Δηλ..... Το εμβαδόν του χωρίου που περικλείεται ανάμεσα στο πολύγωνο συχνοτήτων και τον οριζόντιο άξονα ισούται με το άθροισμα των εμβαδών των ορθογωνίων, δηλαδή με το μέγεθος ν του δείγματος. ώ 3. Με παρόμοιο τρόπο κατασκευάζουμε το ιστόγραμμα και το πολύγωνο σχετικών συχνοτήτων ή %, αρκεί στον κατακόρυφο άξονα να βάλουμε τις τιμές ή % ΙΣΤΟΓΡΑΜΜΑ ΚΑΙ ΠΟΛΥΓΩΝΟ ΑΘΡΟΙΣΤΙΚΩΝ ΣΥΧΝΟΤΗΤΩΝ ΚΑΙ ΑΘΡΟΙΣΤΙΚΩΝ ΣΧΕΤΙΚΩΝ ΣΥΧΝΟΤΗΤΩΝ Ανάλογα με το ιστόγραμμα συχνοτήτων κατασκευάζουμε και το ιστόγραμμα αθροιστικών συχνοτήτων, αρκεί στον κατακόρυφο άξονα να βάλουμε τις αθροιστικές συχνότητες N. Για να κατασκευάσουμε το πολύγωνο αθροιστικών συχνοτήτων ενώνουμε τα δεξιά άκρα των άνω βάσεων των ορθογωνίων (όχι τα μέσα). Με ανάλογο τρόπο κατασκευάζουμε το πολύγωνο αθροιστικών σχετικών % συχνοτήτων με τη διαφορά ότι στον κατακόρυφο άξονα βάζουμε τις τιμές F %. ΜΙΑ ΣΗΜΑΝΤΙΚΗ ΠΑΡΑΤΗΡΗΣΗ Ας υποθέσουμε ότι σε ένα δείγμα ομαδοποιημένων παρατηρήσεων η η κλάση είναι [,0) και έχει συχνότητα 0 και σχετική % συχνότητα 3. Τότε c 0 6, 0 και % 3. Όταν λέμε ότι οι παρατηρήσεις κατανέμονται ομοιόμορφα σε κάθε κλάση, σημαίνει ότι οι αποστάσεις των διαδοχικών τιμών τους είναι ίσες. Δηλαδή η υποθετική κλάση [,7) που έχει το μισό πλάτος c 7 3, θα έχει και τις μισές παρατηρήσεις δηλ. 0 και % 6. Καταλαβαίνουμε δηλαδή ότι τα ποσά πλάτος κλάσης και συχνότητα ή σχετική συχνότητα % είναι ανάλογα, έτσι ισχύουν : c c % και όπου c το πλάτος της αρχικής και c το πλάτος της c c % υποθετικής κλάσης, και % η συχνότητα και η σχετική συχνότητα % της αρχικής κλάσης και και % η συχνότητα και η σχετική συχνότητα % της υποθετικής κλάσης ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ 7

18 ΚΕΦΑΛΑΙΟ. ΣΤΑΤΙΣΤΙΚΗ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ :. Για τα δεδομένα της άσκησης :. να κατασκευάσετε το ιστόγραμμα και το πολύγωνο συχνοτήτων. να κατασκευάσετε το ιστόγραμμα και το πολύγωνο σχετικών % συχνοτήτων. να κατασκευάσετε το ιστόγραμμα και το πολύγωνο αθροιστικών συχνοτήτων. να κατασκευάσετε το ιστόγραμμα και το πολύγωνο αθροιστικών σχετικών % συχνοτήτων. να βρείτε το πλήθος των μαθητών που έχουν ύψος κάτω από 7cm. να βρείτε το ποσοστό των μαθητών που έχει ύψος μεγαλύτερο ή ισο με 8cm. αν στην πρώτη γραμμή της παρέλασης συμμετέχει το 0% των πιο ψηλών μαθητών, τι ύψος πρέπει να έχει κάποιος μαθητής για να βρίσκεται στην πρώτη σειρά; Λύση :... ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ 8

19 ΚΕΦΑΛΑΙΟ. ΣΤΑΤΙΣΤΙΚΗ.. Οι μαθητές με ύψος μικρότερο του 7cm θα είναι αυτοί που ανήκουν στην η κλάση συν αυτούς που ανήκουν στη η κλάση συν κάποιους από αυτούς που ανήκουν στην 3 η κλάση δηλ. 3. Όπου 3 είναι η συχνότητα της υποθετικής κλάσης [68-7) 7 68 έτσι έχω: Άρα 88 8 μαθητές. 3 ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ 9

20 ΚΕΦΑΛΑΙΟ. ΣΤΑΤΙΣΤΙΚΗ. Το ποσοστό των μαθητών με ύψος μεγαλύτερο ή ισο του 8cm θα είναι το ποσοστό αυτών που ανήκουν στην 6 η κλάση συν κάποιους από αυτούς που ανήκουν στην 5 η κλάση δηλ. 6 % 5 %. Όπου 5 % είναι η σχετική % συχνότητα της υποθετικής κλάσης % 5% [8-86) έτσι έχω: 6 5% 50 5% 8, % 6,5 Άρα 6 % 5 % 58,33 3,33%. Το 5% των ψηλότερων μαθητών ανήκει στην κλάση [86-9) άρα θέλω ακόμα 5% από την κλάση [80-86). Δηλ. το 0% των ψηλότερων μαθητών είναι 6 % 5 %, όπου % 5 είναι η σχετική % συχνότητα της υποθετικής κλάσης [,86) με να είναι το % 86 5 ζητούμενο ύψος. Έτσι έχω :,5(86 ) % 6,5 35,5 30, , 6cm. Άρα ο μαθητής πρέπει να έχει ύψος 83, 6cm και πάνω για να βρίσκεται στην πρώτη γραμμή της παρέλασης. ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ : 3. Δίνεται ο παρακάτω πίνακας κατανομής συχνοτήτων της μεταβλητής Χ. Κλάσεις [, ) Κεντρικές τιμές Συχν. Σχετ. Συχν. Αθρ. Συχν. F % [-5) 0 [5-9) 50 [9-3) 85 [3-7) 95 [7-) Σύνολο. Να γράψετε στο τετράδιο σας συμπληρωμένο τον παραπάνω πινάκα.. Να κατασκευάσετε το ιστόγραμμα αθροιστικών σχετικών συχνοτήτων % και το αντίστοιχο πολύγωνο. Να βρείτε το ποσοστό % των παρατηρήσεων που έχουν τιμές από έως 3 (Πανελλήνιες 00). Στα σχολεία ενός Δήμου υπηρετούν συνολικά 00 εκπαιδευτικοί. Ο συνολικός χρόνος υπηρεσίας των εκπαιδευτικών δίνεται από τον παρακάτω πίνακα. Χρόνια Υπηρεσίας Σχετική Συχνότητα [ - ) % Πόσοι εκπαιδευτικοί έχουν τουλάχιστον 5 χρόνια υπηρεσίας; ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ 0

21 ΚΕΦΑΛΑΙΟ. ΣΤΑΤΙΣΤΙΚΗ. Με την προϋπόθεση ότι κάθε εκπαιδευτικός θα συνταξιοδοτηθεί όταν συμπληρώσει 35 χρόνια; α) Πόσοι εκπαιδευτικοί θα συνταξιοδοτηθούν μέσα στα επόμενα,5 χρόνια; Δικαιολογήστε την απάντησή σας. β)πόσοι συνολικά εκπαιδευτικοί πρέπει να προσληφθούν μέσα στα επόμενα 5 χρόνια, ώστε ο αριθμός των εκπαιδευτικών που θα υπηρετούν στα σχολεία του Δήμου να παραμείνει ο ίδιος; Δικαιολογήστε την απάντησή σας. (Πανελλήνιες 000) 5. Το βάρος των αποσκευών καθενός εκ των 80 επιβατών μιας πτήσης κάποιας αεροπορικής εταιρίας είναι τουλάχιστον κιλά αλλά μικρότερη από 6 κιλά. Γνωρίζουμε ότι 8 επιβάτες έχουν αποσκευές με βάρος μικρότερο από κιλά, το 30% των επιβατών έχει αποσκευές με βάρος μικρότερο από 7 κιλά, 8 επιβάτες έχουν αποσκευές με βάρος μικρότερο από 0 κιλά και 5% των επιβατών έχει αποσκευές με βάρος τουλάχιστον 3 κιλά.. Να παρασταθούν τα δεδομένα σε ένα πινάκα συχνοτήτων (, N, %, F % ). Κάθε επιβάτης δικαιούται να μεταφέρει αποσκευές με βάρος μικρότερο των 0 κιλών, διαφορετικά έχει πρόσθετη οικονομική επιβάρυνση. Να βρείτε τι ποσοστό από τους 80 επιβάτες της πτήσης αυτής έχει πρόσθετη οικονομική επιβάρυνση. Να βρεθούν οι γωνίες των αντίστοιχων κυκλικών τομέων του κυκλικού διαγράμματος σχετικών συχνοτήτων, για τα δεδομένα του προβλήματος. (Πανελλήνιες 00) 6. Δίνεται ο εβδομαδιαίος μισθός σε 50 υπάλληλων μιας εταιρίας Να γίνει ομαδοποίηση των παρατηρήσεων σε κλάσεις ίσου πλάτους και να κατασκευαστεί ο αντίστοιχος πίνακας συχνοτήτων και σχετικών συχνοτήτων.. Να γίνουν : a. Ιστόγραμμα συχνοτήτων. b. Ιστόγραμμα αθροιστικών σχετικών συχνοτήτων F %. c. Τα αντίστοιχα πολύγωνα.. Ποιο ποσοστό των υπάλληλων έχει εβδομαδιαίο μισθό πάνω από 350 ; 7. Στον παρακάτω πίνακα Δίνεται η ημερήσια δαπάνη 00 μαθητών σε ευρώ: δαπάνη σε ευρώ Μαθητές [5,0) 0 [0,5) 30 [5,0) 5 [0,5) 0 [5,30) 0 [30,35) 5 Σύνολο 00. Να κατασκευάσετε τον πίνακα συχνοτήτων με τις στήλες των,, ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ N, %, F %.

22 ΚΕΦΑΛΑΙΟ. ΣΤΑΤΙΣΤΙΚΗ. Ποιο ποσοστό μαθητών ξοδεύει τουλάχιστον 0 ευρώ την ημέρα;. Να κατασκευάσετε το Ιστόγραμμα συχνοτήτων και το πολύγωνο συχνοτήτων.. Να κατασκευάσετε το Ιστόγραμμα των αθροιστικών επί τοις εκατό συχνοτήτων καθώς και το αντίστοιχο πολύγωνο.. Με τι ισούται το εμβαδόν του χωρίου που περικλείεται ανάμεσα στο πολύγωνο συχνοτήτων και στον οριζόντιο άξονα; 8. Οι μέρες καλοκαιρινών διακοπών μιας ομάδας ατόμων δίνεται στο παρακάτω πίνακα. Ημέρες Άτομα [7,) [,5) 0 [5,9) 8 [9,3) 3 [3,7 6. Να κατασκευάσετε τον πίνακα με τις συχνότητες, N, %, F %.. Να κατασκευάσετε το Ιστόγραμμα συχνοτήτων και το πολύγωνο συχνοτήτων.. Να κατασκευάσετε το Ιστόγραμμα των αθροιστικών επί τοις εκατό συχνοτήτων καθώς και το αντίστοιχο πολύγωνο.. Να βρείτε : a. Το πλήθος των ατόμων που έκαναν διακοπές κάτω από Ημέρες. b. Το ποσοστό των ατόμων που έκαναν διακοπές τουλάχιστον 6 Ημέρες. ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ

23 ΚΕΦΑΛΑΙΟ. ΣΤΑΤΙΣΤΙΚΗ.3 ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ ΜΕΤΡΑ ΘΕΣΗΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Με τον όρο μέτρα θέσης εννοούμε τα μέτρα τα οποία δίνουν τη θέση του «κέντρου» των παρατηρήσεων στον οριζόντιο άξονα, δηλαδή τη θέση γύρω από την οποία είναι συγκεντρωμένες οι περισσότερες τιμές της κατανομής. Τα κυριότερα μέτρα θέσης με τα οποία θα ασχοληθούμε είναι η μέση τιμή ή αριθμητικός μέσος, ο σταθμικός μέσος και η διάμεσος. Το σύμβολο που θα συναντήσουμε παρακάτω, συμβολίζει το άθροισμα πολλών προσθετέων. Για παράδειγμα έως 0». 0 t t t... t0 και διαβάζουμε «άθροισμα των t από ΜΕΘΟΔΟΛΟΓΙΑ : ΕΥΡΕΣΗ ΜΕΣΗΣ ΤΙΜΗΣ Η μέση τιμή (μέσος Όρος) είναι ίσως το πιο χρήσιμο μέτρο θέσης και εκφράζει το άθροισμα των παρατηρήσεων δια του πλήθους των παρατηρήσεων Όταν οι παρατηρήσεις μιας μεταβλητής Χ είναι όλες διαφορετικές μεταξύ τους δηλ. της μορφής t, t,..., t, τότε για την εύρεση μέσης τιμής χρησιμοποιούμε τον τύπο : _ t t... t Όταν οι παρατηρήσεις,,... έχουν συχνότητα,,... αντίστοιχα, τότε θα χρησιμοποιούμε τον τύπο : _... Καλό θα είναι, αν πρόκειται να χρησιμοποιήσουμε αυτόν τον τύπο, να συμπληρώσουμε στον πίνακα συχνοτήτων τη στήλη. Όταν γνωρίζουμε τη σχετική συχνότητα της παρατήρησης, τότε αξιοποιούμε τον τύπο : Ο τύπος αυτός προκύπτει επειδή : t Στην περίπτωση ομαδοποιημένων παρατηρήσεων, ως παρατήρηση παραπάνω τύπους θα παίρνουμε την κεντρική τιμή της -κλάσης. στους ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ 3

24 ΚΕΦΑΛΑΙΟ. ΣΤΑΤΙΣΤΙΚΗ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ :. Οι βαθμοί ενός μαθητή της γ λυκείου στα 6 μαθήματα που έδωσε εξετάσεις είναι : 5, 6,, 6, 8,.. Να βρείτε τη μέση βαθμολογία του μαθητή.. Τι βαθμό πρέπει να γράψει στο 7 ο μάθημα (ΑΟΘ) ώστε ο μέσος όρος του να γίνει 5,5; Λύση : 6 t _ t t... t Έστω t 7 ο βαθμός που πρέπει να γράψει στο 7 ο μάθημα (ΑΟΘ), τότε για την καινούρια μέση τιμή ισχύει : 90 t 7 7 5,5 90 t 7 _ t 5,5 08,5 t 7 8,5 t... t 7 6 t 7 5,5 6 t 7 t 7 5,5. Ο παρακάτω πίνακας δίνει την κατανομή συχνοτήτων των οικογενειών ως προς τον αριθμό των παιδιών τους. Αριθμός παιδιών Αριθμός οικογενειών Σύνολο 50 Να βρείτε τη μέση τιμή των παιδιών που έχει κάθε οικογένεια. Λύση : Η μέση τιμή του πλήθους των παιδιών δίνεται από τον τύπο : 5 _ Στον πινάκα κατανομής συχνοτήτων θα προσθέσω μια στήλη με τα γινόμενα Άρα : Αριθμός παιδιών Αριθμός οικογενειών Σύνολο ν= _ 88, 76 παιδιά : ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ

25 ΚΕΦΑΛΑΙΟ. ΣΤΑΤΙΣΤΙΚΗ 3. Εξετάσαμε ένα δείγμα οικογενειών ως προς τον αριθμό των υπολογιστών (laptop ή pc) που υπάρχουν στο σπίτι. Οι αθροιστικές συχνότητες % που πρόεκυψαν φαίνονται στον παρακάτω πινάκα. Να βρείτε τη μέση τιμή των υπολογιστών που υπάρχουν σε κάθε σπίτι. Αριθμός υπολογιστών F % Σύνολο Λύση : Από τα δεδομένα του πινάκα καταλαβαίνουμε ότι πρέπει να βρούμε τις σχετικές συχνότητες, και μετά για να βρούμε τη μέση τιμή να χρησιμοποιήσουμε τον τύπο : _ 5. Από τις σχέσεις : F % 00F, F και F F συμπληρώνουμε τον πινάκα : Αριθμός υπολογιστών F % F 0 0,05 0, ,5 0, ,5 0,50 0, ,5 0, ,5 0,05, ,0 Σύνολο,9 _ 5 Άρα, 9 υπολογιστές.. Ο παρακάτω πίνακας δίνει τον αριθμό των επισκέψεων 0 μαθητών σε διάφορα μουσεία της χώρας κατά τη διάρκεια ενός έτους. Κλάσεις Συχν. [, ) [0-) 8 [-) [-6) 0 [6-8) 6 [8-0) Να βρείτε τη μέση τιμή. Λύση : Στον πινάκα κατανομής συχνοτήτων που δίνεται θα συμπληρώσουμε δυο επιπλέον στήλες, μια με τις κεντρικές τιμές και μια στήλη με τα γινόμενα. Έτσι έχω : ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ 5

26 ΚΕΦΑΛΑΙΟ. ΣΤΑΤΙΣΤΙΚΗ Άρα : 5 Κλάσεις [, ) Κεντρικές τιμές Συχν. [0-) 8 8 [-) 3 36 [-6) [6-8) 7 6 [8-0) 9 36 Σύνολο ν=0 7 _ 7, 3 μουσεία. 0 0 ΜΕΘΟΔΟΛΟΓΙΑ : ΣΤΑΘΜΙΚΟΣ ΜΕΣΟΣ Το σταθμικό μέσο τον χρησιμοποιούμε σε περιπτώσεις στις τιμές,,... ενός συνόλου παρατηρήσεων δίνεται διαφορετική βαρύτητα. Πιο συγκεκριμένα αν σε κάθε τιμή της μεταβλητής,,... δίνεται διαφορετική βαρύτητα που εκφράζεται από τους συντελεστές στάθμισης (βαρύτητα) w, w,... w, τότε ο σταθμικός μέσος δίνεται από τον _ τύπο : w w... w w w... w w w ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ : 5. Η επίδοση ενός μαθητή σε πέντε μαθήματα είναι, 0, 6, 8,. Να βρείτε τη μέση επίδοση. Αν τα μαθήματα είχαν συντελεστές στάθμισης, 3,,, και 3 αντίστοιχα ποια θα ήταν η μέση επίδοση; Λύση : _ _ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ 6

ΚΕΦΑΛΑΙΟ 2 ο : ΣΤΑΤΙΣΤΙΚΗ

ΚΕΦΑΛΑΙΟ 2 ο : ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 2 ο : ΣΤΑΤΙΣΤΙΚΗ 1 ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Ποιες μεταβλητές λέγονται ποσοτικές; (ΓΕΛ 2005) 2. Πότε μια ποσοτική μεταβλητή ονομάζεται διακριτή και πότε συνεχής; (ΓΕΛ 2005,2014) 3. Τι ονοµάζεται απόλυτη

Διαβάστε περισσότερα

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ο Κεφάλαιο: Στατιστική ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός: Λέγεται ένα σύνολο στοιχείων που θέλουμε να εξετάσουμε με ένα ή περισσότερα χαρακτηριστικά. Μεταβλητές X: Ονομάζονται

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ-ΣΤΑΤΙΣΤΙΚΗΣ. Να γράψετε στο τετράδιο σας τον πίνακα των τιμών της μεταβλητής Χ σωστά συμπληρωμένο.

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ-ΣΤΑΤΙΣΤΙΚΗΣ. Να γράψετε στο τετράδιο σας τον πίνακα των τιμών της μεταβλητής Χ σωστά συμπληρωμένο. ΘΕΜΑ (ΙΟΥΝΙΟΣ 000) ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ-ΣΤΑΤΙΣΤΙΚΗΣ Να γράψετε στο τετράδιο σας τον πίνακα των τιμών της μεταβλητής Χ σωστά συμπληρωμένο. Τιμές Μεταβλητής Συχνότητα σχετική Σχετική Αθροιστική f % f N 0

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΠΑΛ ΚΕΦΑΛΑΙΟ 1 Ο «ΣΤΑΤΙΣΤΙΚΗ»

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΠΑΛ ΚΕΦΑΛΑΙΟ 1 Ο «ΣΤΑΤΙΣΤΙΚΗ» ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΠΑΛ ΚΕΦΑΛΑΙΟ Ο «ΣΤΑΤΙΣΤΙΚΗ» Επιμέλεια : Παλαιολόγου Παύλος ΚΕΦΑΛΑΙΟ ο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Στατιστική είναι ο κλάδος των μαθηματικών ο οποίος ως έργο έχει την συγκέντρωση

Διαβάστε περισσότερα

ΟΜΑΔΟΠΟΙΗΣΗ ΠΑΡΑΤΗΡΗΣΕΩΝ

ΟΜΑΔΟΠΟΙΗΣΗ ΠΑΡΑΤΗΡΗΣΕΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ Όταν το πλήθος των παρατηρήσεων είναι μεγάλο, είναι απαραίτητο οι παρατηρήσεις να ταξινομηθούν σε μικρό πλήθος ομάδων που ονομάζονται κλάσεις (class intervals). Η ομαδοποίηση αυτή γίνεται

Διαβάστε περισσότερα

Α. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ. Πληθυσμός: Το συνόλου του οποίου τα στοιχεία εξετάζουμε ως προς ένα ή περισσότερα χαρακτηριστικά τους.

Α. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ. Πληθυσμός: Το συνόλου του οποίου τα στοιχεία εξετάζουμε ως προς ένα ή περισσότερα χαρακτηριστικά τους. 1 Κεφάλαιο. ΣΤΑΤΙΣΤΙΚΗ Α. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Στατιστική: ένα σύνολο αρχών και μεθοδολογιών για: το σχεδιασμό της διαδικασίας συλλογής δεδομένων τη συνοπτική και αποτελεσματική παρουσίασή τους την ανάλυση

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ 1 Τί λέγεται πληθυσμός τι άτομα και τι μεταβλητή ενός πληθυσμού 2. Ποιες μεταβλητές λέγονται ποιοτικές ή κατηγορικές; 3.

ΣΤΑΤΙΣΤΙΚΗ 1 Τί λέγεται πληθυσμός τι άτομα και τι μεταβλητή ενός πληθυσμού 2. Ποιες μεταβλητές λέγονται ποιοτικές ή κατηγορικές; 3. .. ΣΤΑΤΙΣΤΙΚΗ 1 Τί λέγεται πληθυσμός τι άτομα και τι μεταβλητή ενός πληθυσμού 2. Ποιες μεταβλητές λέγονται ποιοτικές ή κατηγορικές; 3. Ποιες μεταβλητές λέγονται ποσοτικές; 4. Πότε μια ποσοτική μεταβλητή

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ. Ερωτήσεις του τύπου «Σωστό - Λάθος» 1. Το χρώμα κάθε αυτοκινήτου είναι ποιοτική μεταβλητή. Σ Λ

ΣΤΑΤΙΣΤΙΚΗ. Ερωτήσεις του τύπου «Σωστό - Λάθος» 1. Το χρώμα κάθε αυτοκινήτου είναι ποιοτική μεταβλητή. Σ Λ ΣΤΑΤΙΣΤΙΚΗ Ερωτήσεις του τύπου «Σωστό - Λάθος» 1. Το χρώμα κάθε αυτοκινήτου είναι ποιοτική μεταβλητή. Σ Λ 2. Ο αριθμός των ανθρώπων που παρακολουθούν μια συγκεκριμένη τηλεοπτική εκπομπή είναι διακριτή

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ. για τα οποία ισχύει y f (x) , δηλαδή το σύνολο, x A, λέγεται γραφική παράσταση της f και συμβολίζεται συνήθως με C

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ. για τα οποία ισχύει y f (x) , δηλαδή το σύνολο, x A, λέγεται γραφική παράσταση της f και συμβολίζεται συνήθως με C Επιμέλεια: Κ Μυλωνάκης ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΕΡΩΤΗΣΗ Τι ονομάζεται πραγματική συνάρτηση με πεδίο ορισμού το Α; Έστω Α ένα υποσύνολο του R Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α μια διαδικασία

Διαβάστε περισσότερα

Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος.

Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος. ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ ου ΚΕΦΑΛΑΙΟΥ Άσκηση 1 (Προτάθηκε από Χρήστο Κανάβη) Έστω CV 0.4 όπου CV ο συντελεστής μεταβολής, και η τυπική απόκλιση s = 0. ενός δείγματος που έχει την ίδια

Διαβάστε περισσότερα

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Θέμα εξετάσεων 2000 Εξετάσαμε 50 μαθητές ως προς τα βιβλία που έχουν διαβάσει και διαπιστώσαμε ότι: 5 μαθητές δεν έχουν διαβάσει κανένα βιβλίο, 15 μαθητές έχουν

Διαβάστε περισσότερα

15, 11, 10, 10, 14, 16, 19, 18, 13, 17

15, 11, 10, 10, 14, 16, 19, 18, 13, 17 ΜΕΡΟΣ 1 0 Α Σ Κ Η Σ Ε Ι Σ Σ Τ Α Τ Ι Σ Τ Ι Κ Η Σ 1. Σε ένα Λύκειο θέλουµε να εξετάσουµε την επίδοση 10 µαθητών στο µάθηµα της Στατιστικής στο τέλος του β τετραµήνου. Πήραµε τις ακόλουθες βαθµολογίες: 15,

Διαβάστε περισσότερα

2.3. Ασκήσεις σχ. βιβλίου σελίδας 100 104 Α ΟΜΑ ΑΣ

2.3. Ασκήσεις σχ. βιβλίου σελίδας 100 104 Α ΟΜΑ ΑΣ .3 Ασκήσεις σχ. βιβλίου σελίδας 00 04 Α ΟΜΑ ΑΣ. Έξι διαδοχικοί άρτιοι αριθµοί έχουν µέση τιµή. Να βρείτε τους αριθµούς και τη διάµεσό τους. Αν είναι ο ποιο µικρός άρτιος τότε οι ζητούµενοι αριθµοί θα είναι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΜΑ A A. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι f g f g,. Μονάδες 7 Α. Σε ένα πείραμα με ισοπίθανα αποτελέσματα

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. Πώς ορίζεται ο συντελεστής μεταβολής ή συντελεστής. μεταβλητότητας μιας μεταβλητής X, αν x > 0 και πώς, αν

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. Πώς ορίζεται ο συντελεστής μεταβολής ή συντελεστής. μεταβλητότητας μιας μεταβλητής X, αν x > 0 και πώς, αν ΘΕΜΑ 1o ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5)

Διαβάστε περισσότερα

ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ

ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ 9 ο ΜΑΘΗΜΑ ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ Πότε κάνουμε ομαδοποίηση των παρατηρήσεων; Όταν το πλήθος των τιμών μιας μεταβλητής είναι αρκετά μεγάλο κάνουμε ομαδοποίηση των παρατηρήσεων. Αυτό συμβαίνει είτε

Διαβάστε περισσότερα

ΘΕΜΑ 1ο Α. Να αποδειχθεί ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B). Μονάδες 10

ΘΕΜΑ 1ο Α. Να αποδειχθεί ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B). Μονάδες 10 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 8 ΜΑΪΟΥ 005 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4)

Διαβάστε περισσότερα

Στατιστική. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Γενικής κεφάλαιο ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α

Στατιστική. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Γενικής κεφάλαιο ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α Στατιστική Κώστας Γλυκός Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglykos.gr 1 7 / 5 / 2 0 1 6 Γενικής κεφάλαιο 2 154 ασκήσεις και τεχνικές σε 24 σελίδες εκδόσεις Καλό πήξιμο Τα πάντα για

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ. ν 1 + ν ν κ = v (1) Για τη σχετική συχνότητα ισχύουν οι ιδιότητες:

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ. ν 1 + ν ν κ = v (1) Για τη σχετική συχνότητα ισχύουν οι ιδιότητες: Συχνότητα v i O φυσικός αριθμός που δείχνει πόσες φορές εμφανίζεται η τιμή x i της εξεταζόμενης μεταβλητής Χ στο σύνολο των παρατηρήσεων. Είναι φανερό ότι το άθροισμα όλων των συχνοτήτων είναι ίσο με το

Διαβάστε περισσότερα

Μ Ε Τ Ρ Α Δ Ι Α Σ Π Ο Ρ Α Σ.

Μ Ε Τ Ρ Α Δ Ι Α Σ Π Ο Ρ Α Σ. Μ Ε Τ Ρ Α Δ Ι Α Σ Π Ο Ρ Α Σ. π.χ. Βαθμολογία διαγωνίσματος σε τμήματα: Α : 7, 11,16, 16,,. Β : 11, 13, 16, 16, 17, 17. Παρατήρηση : Για τέτοιους λόγους χρειάζεται και η εξέταση κάποιων μέτρων διασποράς

Διαβάστε περισσότερα

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Γενικής Παιδείας Μαθηματικά Γ Λυκείου Στατιστική ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Γενικής Παιδείας Μαθηματικά Γ Λυκείου Στατιστική ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Γενικής Παιδείας Μαθηματικά Γ Λυκείου Στατιστική Επιμέλεια: ΑΝΔΡΕΑΣ ΓΚΟΥΡΤΖΟΥΝΗΣ ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ e-mail: info@iliaskos.gr www.iliaskos.gr 1) Να

Διαβάστε περισσότερα

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 3 ΜΑΪΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

ν ν = 6. όταν είναι πραγµατικός αριθµός.

ν ν = 6. όταν είναι πραγµατικός αριθµός. Συνάρτηση: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ λέγεται µια διαδικασία µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σε ένα ακριβώς στοιχείο κάποιου άλλου συνόλου Β. Γνησίως αύξουσα: σε ένα διάστηµα του πεδίου

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΓΕΝΙΚΩΝ ΕΞΕΤΑΣΕΩΝ

ΘΕΜΑΤΑ ΓΕΝΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑΤΑ ΓΕΝΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 000 0 ΑΠΟΛΥΤΗΡΙΕΣ ΕΞETΑΣΕΙΣ 000 ΘΕΜΑ ο Α. α) Δίνεται η συνάρτηση F() = f()+g(). Αν οι συναρτήσεις f,g είναι παραγωγίσιμες, να αποδείξετε ότι F () f () g (). Μονάδες 8 β) Να γράψετε

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο R, να αποδείξετε ότι (f() + g() )=f ()+g (), R Μονάδες 7 Α. Σε

Διαβάστε περισσότερα

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. 11. Δίνεται ο μηνιαίος μισθός (σε ευρώ) των 50 υψηλόμισθων υπαλλήλων μιας μεγάλης εταιρείας.

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. 11. Δίνεται ο μηνιαίος μισθός (σε ευρώ) των 50 υψηλόμισθων υπαλλήλων μιας μεγάλης εταιρείας. ΟΜΑΔΟΠΟΙΗΣΗ ΠΑΡΑΤΗΡΗΣΕΩΝ (κλάσεις ίσου πλάτους) ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ου 11. Δίνεται ο μηνιαίος μισθός (σε ευρώ) των 5 υψηλόμισθων υπαλλήλων μιας μεγάλης εταιρείας. 18 11 17 19 1 195 195 13 13 195 2 3 2 3 2

Διαβάστε περισσότερα

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας.

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας. 7 ο ΜΑΘΗΜΑ ΚΕΦΑΛΑΙΟ 2 ΣΤΑΤΙΣΤΙΚΗ Σκοπός Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας. Προσδοκώμενα αποτελέσματα Όταν θα έχετε ολοκληρώσει τη μελέτη αυτού του κεφαλαίου

Διαβάστε περισσότερα

Πίνακας κατανοµής συχνοτήτων και αθροιστικών συχνοτήτων. Σχετ.

Πίνακας κατανοµής συχνοτήτων και αθροιστικών συχνοτήτων. Σχετ. Λυµένη Άσκηση στην οµαδοποιηµένη κατανοµή Στην Γ τάξη του Ενιαίου Λυκείου µιας περιοχής φοιτούν 4 µαθητές των οποίων τα ύψη τους σε εκατοστά φαίνονται στον ακόλουθο πίνακα. 7 4 76 7 6 7 3 77 77 7 6 7 6

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ. 1 12 2 3 24 40 5 0,05 Σύνολο. x i v i f i % N i F i -1 4 0,1 0 30 2 3 6 Άθροισμα 40

ΣΤΑΤΙΣΤΙΚΗ. 1 12 2 3 24 40 5 0,05 Σύνολο. x i v i f i % N i F i -1 4 0,1 0 30 2 3 6 Άθροισμα 40 ΣΤΑΤΙΣΤΙΚΗ 1.Να συμπληρωθούν οι πίνακες x i v i f i f i % x 1 7 x 2 5 x 3 15 x 4 14 x 5 9 Άθροισμα 50 x i v i f i f i % 1 12 2 3 24 40 5 0,05 Σύνολο x i v i f i % N i F i -1 4 0,1 0 30 2 3 6 Άθροισμα 40

Διαβάστε περισσότερα

ΘΕΜΑ 2ο (2000) Α. Να γράψετε στο τετράδιό σας τον πίνακα των τιμών της μεταβλητής Χ σωστά συμπληρωμένο.

ΘΕΜΑ 2ο (2000) Α. Να γράψετε στο τετράδιό σας τον πίνακα των τιμών της μεταβλητής Χ σωστά συμπληρωμένο. ΘΕΜΑ 2ο (2000) Α. Να γράψετε στο τετράδιό σας τον πίνακα των τιμών της μεταβλητής Χ σωστά συμπληρωμένο. Τιμές Μεταβλητής Συχνότητα Σχετική Συχνότητα Σχετική Συχνότητα Αθροιστική Συχνότητα x i ν i f i f

Διαβάστε περισσότερα

ΖΗΤΗΜ Α 1 Ο. Α1. Τι είναι το ραβδόγραµµα και πότε χρησιµοποιείται; 5) Α2. Σε τι διακρίνονται οι µεταβλητές και τι είναι οι τιµές τους;

ΖΗΤΗΜ Α 1 Ο. Α1. Τι είναι το ραβδόγραµµα και πότε χρησιµοποιείται; 5) Α2. Σε τι διακρίνονται οι µεταβλητές και τι είναι οι τιµές τους; ΔΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 1 ΦΕΒΡΟΥΑΡΙΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΖΗΤΗΜ Α 1 Ο Α1. Τι είναι το ραβδόγραµµα

Διαβάστε περισσότερα

Σ Τ Α Τ Ι Σ Τ Ι Κ Η 2. 1. Β Α Σ Ι Κ Ε Σ Ε Ν Ν Ο Ι Ε Σ.

Σ Τ Α Τ Ι Σ Τ Ι Κ Η 2. 1. Β Α Σ Ι Κ Ε Σ Ε Ν Ν Ο Ι Ε Σ. Σ Τ Α Τ Ι Σ Τ Ι Κ Η Στατιστική έρευνα : Πρόκειται για ένα σύνολο αρχών και μεθοδολογιών με αντικείμενο : 1) το σχεδιασμό της διαδικασίας συλλογής δεδομένων. Κλάδος της στατιστικής που ασχολείται : Σχεδιασμός

Διαβάστε περισσότερα

f x g x f x g x, x του πεδίου ορισμού της; Μονάδες 4 είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w

f x g x f x g x, x του πεδίου ορισμού της; Μονάδες 4 είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 0 ΜΑΪΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α Α1 Αν οι συναρτήσεις f,g

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 0 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιµες στο, να αποδείξετε ότι (f() + g ()) f () + g (),. Μονάδες 7 Α. Σε ένα πείραµα µε ισοπίθανα

Διαβάστε περισσότερα

P(A ) = 1 P(A). Μονάδες 7

P(A ) = 1 P(A). Μονάδες 7 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 20 ΜΑΪΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

ΗΜΟΣΘΕΝΕΙΟ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΠΑΙΑΝΙΑΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΗΜΟΣΘΕΝΕΙΟ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΠΑΙΑΝΙΑΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ () Χρησιµοποιώντας τον παρακάτω πίνακα συχνοτήτων που δίνει την κατανοµή συχνοτήτων 0 οικογενειών ως προς τον αριθµό των παιδιών τους, να βρεθεί ο αριθµός

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ( ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ)

ΣΤΑΤΙΣΤΙΚΗ ( ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ) ΣΤΑΤΙΣΤΙΚΗ ( ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ) ΠΕΡΙΕΧΟΜΕΝΑ Μέτρα θέσης και διασποράς (Εισαγωγή) Μέση τιμή Διάμεσος Σταθμικός μέσος Επικρατούσα τιμή Εύρος Διακύμανση Τυπική απόκλιση Συντελεστής μεταβολής Κοζαλάκης

Διαβάστε περισσότερα

Σ Υ Λ Λ Ο Γ Ι Σ Μ Ο Ι Π Ρ Ο Β Λ Η Μ Α Τ Ι Σ Μ Ο Ι. της απαντήσεις τους κατασκευάστηκε το παρακάτω ραβδόγραμμα. κανάλι α i. συχνότητα ν i.

Σ Υ Λ Λ Ο Γ Ι Σ Μ Ο Ι Π Ρ Ο Β Λ Η Μ Α Τ Ι Σ Μ Ο Ι. της απαντήσεις τους κατασκευάστηκε το παρακάτω ραβδόγραμμα. κανάλι α i. συχνότητα ν i. Γ. ΛΥΚ. ΘΡΑΚΟΜΑΚΕΔΟΝΩΝ (2014-15) Λ. Γρίλλιας Σ Υ Λ Λ Ο Γ Ι Σ Μ Ο Ι Π Ρ Ο Β Λ Η Μ Α Τ Ι Σ Μ Ο Ι 1) Σε ένα σχολείο ρωτήθηκαν 70 μαθητές για την προτίμησή τους σε ποδοσφαιρικές ομάδες. Από της απαντήσεις

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

δεδομένων με συντελεστές στάθμισης (βαρύτητας)

δεδομένων με συντελεστές στάθμισης (βαρύτητας) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ-1 ΠΑΡΑΣΚΕΥΗ, 26 ΦΕΒΡΟΥΑΡΙΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ

Διαβάστε περισσότερα

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 3 ΜΑΪΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

F(x h) F(x) (f(x h) g(x h)) (f(x) g(x)) F(x h) F(x) f(x h) f(x) g(x h) g(x) h h h. lim lim lim f (x) g (x). h h h

F(x h) F(x) (f(x h) g(x h)) (f(x) g(x)) F(x h) F(x) f(x h) f(x) g(x h) g(x) h h h. lim lim lim f (x) g (x). h h h ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 3 MAΪΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α A1. Έστω η συνάρτηση

Διαβάστε περισσότερα

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 3 ΜΑΪΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

2.5. Τα 16 τµήµατα ενός Λυκείου έχουν τους Οι αποστάσεις (σε Km) των Σε ένα κυκλικό διάγραµµα παριστάνονται

2.5. Τα 16 τµήµατα ενός Λυκείου έχουν τους Οι αποστάσεις (σε Km) των Σε ένα κυκλικό διάγραµµα παριστάνονται .1. Σε ένα Λύκειο θέλουµε να εξετάσουµε την επίδοση 10 µαθητών, στη Στατιστική στο τέλος του β τριµήνου. Πήραµε τις επόµενες βαθµολογίες: 15, 11, 10, 10, 14, 16, 19, 18, 13, 17. Να βρείτε: α) Ποιος είναι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2005

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2005 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 005 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α. Να αποδειχθεί ότι για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B) Τα απλά ενδεχόµενα

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ 1 ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1. Ένα σηµείο Α(χ, ψ) ανήκει στη γραφική παράσταση της f αν f(ψ)=χ. 2. Αν µια συνάρτηση είναι γνησίως αύξουσα σε ένα διάστηµα A,

Διαβάστε περισσότερα

ΘΕΜΑ 1ο Α. Να αποδειχθεί ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B). Μονάδες 10

ΘΕΜΑ 1ο Α. Να αποδειχθεί ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B). Μονάδες 10 ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 8 ΜΑΪΟΥ 005 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4)

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ Γ.Π. ΚΕΦ 1,2,3

ΑΣΚΗΣΕΙΣ Γ.Π. ΚΕΦ 1,2,3 Ασκηση 1 ΑΣΚΗΣΕΙΣ Γ.Π. ΚΕΦ 1,2,3 Δίνεται η συνάρτηση α. Να εξετάσετε την f ως προς τα ακρότατα. β. Να βρείτε την εξίσωση της εφαπτομένης της C f στο (1,f(1)). γ. Αν το α παίρνει τιμές που προκύπτουν από

Διαβάστε περισσότερα

x, όπου c σταθερός πραγματικός αριθμός. Μονάδες 10

x, όπου c σταθερός πραγματικός αριθμός. Μονάδες 10 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ - ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 23 ΜΑΪΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 008 ΘΕΜΑ o ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ ΜΑΪΟΥ 008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Διαβάστε περισσότερα

Î. Να υπολογίσετε τις τιμές f(1), f( 1 2 ), f(α+1), f( α) και f(x+α), για τις κατάλληλες τιμές των μεταβλητών. β. f(x) = ε. f(x) = x - 4. κ.

Î. Να υπολογίσετε τις τιμές f(1), f( 1 2 ), f(α+1), f( α) και f(x+α), για τις κατάλληλες τιμές των μεταβλητών. β. f(x) = ε. f(x) = x - 4. κ. συναρτήσεις ο κεφάλαιο: διαφορικός λογισμός. Δίνεται η συνάρτηση f() = +, * Î. Να υπολογίσετε τις τιμές f(), f( ), f(α+), f( α) και f(+α), για τις κατάλληλες τιμές των μεταβλητών.. Να βρείτε το πεδίο ορισμού

Διαβάστε περισσότερα

4.4 ΟΜΑΔΟΠΟΙΗΣΗ ΠΑΡΑΤΗΡΗΣΕΩΝ

4.4 ΟΜΑΔΟΠΟΙΗΣΗ ΠΑΡΑΤΗΡΗΣΕΩΝ ΜΕΡΟΣ Α. ΟΜΑΔΟΠΟΙΗΣΗ ΠΑΡΑΤΗΡΗΣΕΩΝ 177. ΟΜΑΔΟΠΟΙΗΣΗ ΠΑΡΑΤΗΡΗΣΕΩΝ ΟΡΙΣΜΟΙ Αν οι παρατηρήσεις είναι πολλές τότε κάνουμε ομαδοποίηση των παρατηρήσεων χωρίζοντας το διάστημα που ανήκουν οι παρατηρήσεις σε υποδιαστήματα.

Διαβάστε περισσότερα

Οµάδα (I): Οµάδα (II): Οµάδα (III):

Οµάδα (I): Οµάδα (II): Οµάδα (III): I Α) Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στο τετράδιο σας την ένδειξη Σωστό (Σ) ή Λάθος (Λ), δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση ίνονται τρείς οµάδες τιµών Οµάδα (I): 0

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2015 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2015 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 05 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιµες στο R, να αποδείξετε ότι: f + g ' = f ' + g ', R Μονάδες 7 Α. Πότε λέµε ότι µια συνάρτηση

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 04 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Διαβάστε περισσότερα

ΚΩΣΤΑΣ ΤΣΑΒΕΣ & ΧΡΗΣΤΟΣ ΤΣΑΒΕΣ

ΚΩΣΤΑΣ ΤΣΑΒΕΣ & ΧΡΗΣΤΟΣ ΤΣΑΒΕΣ 1 1) Δίνεται ο διπλανός πίνακας 43 παρατηρήσεων της μεταβλητής Χ και οι αντίστοιχες συχνότητές τους ν i. Αν 116 η μέση τιμή των παρατηρήσεων είναι x =, η διάμε- 43 σος είναι δ=3 και ισχύει κ>10, να υπολογιστούν

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ. ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ - ΘΕΜΑ Ο Έστω η συνάρτηση f( ) =, 0 ) Να αποδείξετε ότι f ( ). f( ) =. ) Να υπολογίσετε το όριο lm f ( )+ 4. ) Να βρείτε την εξίσωση της εφαπτομένης

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 0 ΜΑΪΟΥ 0 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα Δύο κύριοι τρόποι παρουσίασης δεδομένων Παράδειγμα Με πίνακες Με διαγράμματα Ονομαστικά δεδομένα Εδώ τα περιγραφικά μέτρα (μέσος, διάμεσος κλπ ) δεν έχουν νόημα Πήραμε ένα δείγμα από 25 άτομα και τα ρωτήσαμε

Διαβάστε περισσότερα

Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική

Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη MSc Τραπεζική & Χρηματοοικονομική Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΗ ΘΕΩΡΙΑ ΕΠΙΣΗΜΑΝΣΕΙΣ

ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΗ ΘΕΩΡΙΑ ΕΠΙΣΗΜΑΝΣΕΙΣ ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΗ ΘΕΩΡΙΑ ΕΠΙΣΗΜΑΝΣΕΙΣ ΟΡΙΣΜΟΙ Πληθυσμός : Ονομάζεται το σύνολο του οποίου θέλουμε να εξετάσουμε τα στοιχεία του ως προς ένα ή περισσότερα χαρακτηριστικά. Μεταβλητές : Τα χαρακτηριστικά ως

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ )

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ ) 5 1 1 1η σειρά ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ ) ΘΕΜΑ 1 Α. Ας υποθέσουμε ότι x 1,x,...,x κ είναι οι τιμές μιας μεταβλητής X, που αφορά τα άτομα ενός δείγματος μεγέθους

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΠΑΝΟΣ ΣΑΡΑΚΗΝΟΣ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΠΑΝΟΣ ΣΑΡΑΚΗΝΟΣ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΠΑΝΟΣ ΣΑΡΑΚΗΝΟΣ Άσκηση 1 Οι βαθμοί 5 φοιτητών που πέρασαν το μάθημα της Στατιστικής ήταν: 6 5 7 5 9 5 6 6 8 10 8 5 6 7 5 6 5 7 8 9 5 6 7 5 8 i. Να κάνετε πίνακα κατανομής

Διαβάστε περισσότερα

Μαθηματικός Περιηγητής σχ. έτος

Μαθηματικός Περιηγητής σχ. έτος =================================================================== ΛΥΣΕΙΣ ΤΟΥ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ 06 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΗΜΕΡΗΣΙΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΟΜΑΔΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1 ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Πότε µια συνάρτηση f σε ένα διάστηµα του πεδίου ορισµού της λέγεται γνησίως αύξουσα και πότε γνησίως φθίνουσα; 2. Να αποδείξετε ότι η παράγωγος

Διαβάστε περισσότερα

Μαθηµατικά & Στοιχεία Στατιστικής Γενικής Παιδείας Γ Λυκείου 2001 ΕΚΦΩΝΗΣΕΙΣ

Μαθηµατικά & Στοιχεία Στατιστικής Γενικής Παιδείας Γ Λυκείου 2001 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα ο Α.. Α.. Β.. Β.. Β.. Μαθηµατικά & Στοιχεία Στατιστικής Γενικής Παιδείας Γ Λυκείου 00 ΕΚΦΩΝΗΣΕΙΣ Να αποδείξετε ότι για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω ισχύει ότι: Ρ (Α Β) Ρ (Α) Ρ

Διαβάστε περισσότερα

γ. Η διακύμανση είναι μέτρο διασποράς και είναι καθαρός αριθμός, δηλαδή δεν έχει μονάδες. Μονάδες 9

γ. Η διακύμανση είναι μέτρο διασποράς και είναι καθαρός αριθμός, δηλαδή δεν έχει μονάδες. Μονάδες 9 ΟΝΟΜΑΤΕΠΩΝΥΜΟ:........................................... ΤΜΗΜΑ:....... ΗΜΕΡΟΜΗΝΙΑ:.... / 0 / 20 ΘΕΜΑ A. Έστω μεταβλητή Χ, με τιμές x, x 2,...., x k, που αφορά τα άτομα ενός δείγματος μεγέθους ν, με k,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 0 ΜΑΪΟΥ 05 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

1 και Ρ(Β) = τότε η Ρ (Α Β) είναι ίση µε: 2 δ και Ρ(Α Β) = 4

1 και Ρ(Β) = τότε η Ρ (Α Β) είναι ίση µε: 2 δ και Ρ(Α Β) = 4 ΘΕΜΑ ο Α.. Να αποδείξετε ότι για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω ισχύει ότι: Ρ (Α Β) Ρ (Α) Ρ (Α Β). Μονάδες 8, Α.. Να µεταφέρετε στο τετράδιό σας τις παρακάτω σχέσεις και να συµπληρώσετε

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Nα χαρακτηρίσετε τις προτάσεις που ακλουθούν γράφοντας στο τετράδιο σας την ένδειξη Σωστό ή Λάθος δίπλα στο γράμμα που αντιστοιχεί σε κάθε

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ

ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ 2o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ: ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδες Μαθήματος: users.auth.gr/gvasil

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ 2 ΓΥΜΝΑΣΙΟ ΥΜΗΤΤΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ - Σελίδα 1 από 6 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και

Διαβάστε περισσότερα

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Διαφορικός Λογισμός 1. Ισχύει f (g())) ) f ( = f (g())g () όπου f,g παραγωγίσιµες συναρτήσεις 2. Αν µια συνάρτηση f είναι παραγωγίσιµη σε ένα διάστηµα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ. ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO 1o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ. ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO 1o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ 000 ΘΕΜΑ ο Α.α) Δίνεται η συνάρτηση F f g αποδείξετε ότι: F f g. cf,. Αν οι συναρτήσεις

Διαβάστε περισσότερα

ΘΕΜΑ Α Α1. Αν και είναι δύο συμπληρωματικά ενδεχόμενα ενός δειγματικού χώρου να αποδείξετε ότι για τις πιθανότητές τους ισχύει: ( ) 1 ( ).

ΘΕΜΑ Α Α1. Αν και είναι δύο συμπληρωματικά ενδεχόμενα ενός δειγματικού χώρου να αποδείξετε ότι για τις πιθανότητές τους ισχύει: ( ) 1 ( ). ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 0 ΜΑΪΟΥ 016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΕΣΣΕΡΙΣ() ΘΕΜΑ

Διαβάστε περισσότερα

Μέση τιμή Για να βρούµε τη µέση τιµή ενός συνόλου παρατηρήσεων, προσθέτουµε όλες τις παρατηρήσεις και διαιρούµε µε το πλήθος των παρατηρήσεων αυτών.

Μέση τιμή Για να βρούµε τη µέση τιµή ενός συνόλου παρατηρήσεων, προσθέτουµε όλες τις παρατηρήσεις και διαιρούµε µε το πλήθος των παρατηρήσεων αυτών. ΜΕΡΟΣ Α 4.5 ΜΕΣΗ ΤΙΜΗ-ΔΙΑΜΕΣΟΣ 185 4.5 ΜΕΣΗ ΤΙΜΗ-ΔΙΑΜΕΣΟΣ Μέση τιμή Για να βρούµε τη µέση τιµή ενός συνόλου παρατηρήσεων, προσθέτουµε όλες τις παρατηρήσεις και διαιρούµε µε το πλήθος των παρατηρήσεων αυτών.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 04/ 01/ 2010

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 04/ 01/ 2010 ΕΠΩΝΥΜΟ:........................ ΟΝΟΜΑ:........................... ΤΜΗΜΑ:........................... ΤΣΙΜΙΣΚΗ & ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ THΛ : 270727 222594 ΑΡΤΑΚΗΣ 12 Κ. ΤΟΥΜΠΑ THΛ : 919113 949422 www.syghrono.gr

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΟ ΚΕΦΑΛΑΙΟ «ΣΤΑΤΙΣΤΙΚΗ»

ΑΣΚΗΣΕΙΣ ΣΤΟ ΚΕΦΑΛΑΙΟ «ΣΤΑΤΙΣΤΙΚΗ» 1. Να αντιστοιχίσετε κάθε μεταβλητή της αριστερής στήλης του παρακάτω πίνακα με την κατηγορία που βρίσκεται στη δεξιά στήλη: ΜΕΤΑΒΛΗΤΗ ΚΑΤΗΓΟΡΙΑ 1. ΦΥΣΙΚΗ ΚΑΤΑΣΤΑΣΗ 2. ΜΙΣΘΟΣ 3.ΑΡΙΘΜΟΣ ΤΗΛΕΦΩΝΟΥ Α. ΠΟΙΟΤΙΚΗ

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 7 ο, Τμήμα Α

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 7 ο, Τμήμα Α Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 7 ο, Τμήμα Α Δεδομένα Συχνότητα Μέτρα θέσης Μέτρα διασποράς Στοχαστικά μαθηματικά διαφέρουν από τα κλασσικά μαθηματικά διότι τα φαινόμενα δεν είναι αιτιοκρατικά,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΓΕΛ ΣΤΑΥΡΟΥΠΟΛΗΣ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ 1 Ο ΣΥΝΑΡΤΗΣΕΙΣ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ Σελίδα 1 ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Σ

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΠΛΗΘΥΣΜΟΙ ΔΕΙΓΜΑΤΑ ΠΑΡΟΥΣΙΑΣΗ ΔΕΔΟΜΕΝΩΝ Περιγραφική Στατιστική Με τις στατιστικές μεθόδους επιδιώκεται: - η συνοπτική αλλά πλήρης και κατατοπιστική παρουσίαση των ευρημάτων μιας

Διαβάστε περισσότερα

Το άθροισµα των σχετικών συχνοτήτων ισούται µε 100. ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ

Το άθροισµα των σχετικών συχνοτήτων ισούται µε 100. ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΜΕΡΟΣ Α 4.3 ΚΑΤΑΝΟΜΗ ΣΥΧΝΟΤΗΤΩΝ ΚΑΙ ΣΧΕΤΙΚΩΝ ΣΥΧΝΟΤΗΤΩΝ 161 4.3 ΚΑΤΑΝΟΜΗ ΣΥΧΝΟΤΗΤΩΝ ΚΑΙ ΣΧΕΤΙΚΩΝ ΣΥΧΝΟΤΗΤΩΝ Συχνότητες Σχετικές συχνότητες Για να βρούμε τη σχετική συχνότητα µιας τιµής, διαιρούµε τη συχνότητα

Διαβάστε περισσότερα

Παρατηρήσεις για τη χρήση ενός κυκλικού διαγράμματος

Παρατηρήσεις για τη χρήση ενός κυκλικού διαγράμματος Παρατηρήσεις για τη χρήση ενός κυκλικού διαγράμματος Χρησιμοποιείται μόνο όταν οι τιμές της μεταβλητής έχουν ένα σταθερό άθροισμα (συνήθως 100%, όταν μιλάμε για σχετικές συχνότητες) Είναι χρήσιμο μόνο

Διαβάστε περισσότερα

Μαθηµατικά & Στοιχεία Στατιστικής Γενικής Παιδείας Γ Λυκείου 2001

Μαθηµατικά & Στοιχεία Στατιστικής Γενικής Παιδείας Γ Λυκείου 2001 Μαθηµατικά & Στοιχεία Στατιστικής Γενικής Παιδείας Γ Λυκείου 2001 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα 1ο Α.1. Να αποδείξετε ότι για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω ισχύει ότι: Ρ (Α Β) = Ρ (Α) Ρ (Α Β). Μονάδες

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ. 1. α. Tι ονοµάζεται συνάρτηση από το σύνολο Α στο σύνολο Β; β. Tι ονοµάζεται πραγµατική συνάρτηση πραγµατικής µεταβλητής;

ΚΕΦΑΛΑΙΟ. 1. α. Tι ονοµάζεται συνάρτηση από το σύνολο Α στο σύνολο Β; β. Tι ονοµάζεται πραγµατική συνάρτηση πραγµατικής µεταβλητής; Μαθηµατικά και Στοιχεία Στατιστικής ΚΕΦΑΛΑΙΟ ο 1 : ιαφορικός Λογισµός 1. α. Tι ονοµάζεται συνάρτηση από το σύνολο Α στο σύνολο Β; β. Tι ονοµάζεται πραγµατική συνάρτηση πραγµατικής µεταβλητής; 2. Έστω µια

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ. 1 ο ΔΙΑΓΩΝΙΣΜΑ. ΘΕΜΑ 1 ο Δίνεται η συνάρτηση f x. Ι. Το πεδίο ορισμού της f είναι:., 1 υ -1, B. 1, Γ. -1,., 1.

ΜΑΘΗΜΑΤΙΚΑ. 1 ο ΔΙΑΓΩΝΙΣΜΑ. ΘΕΜΑ 1 ο Δίνεται η συνάρτηση f x. Ι. Το πεδίο ορισμού της f είναι:., 1 υ -1, B. 1, Γ. -1,., 1. Γ ΛΥΚΕΙΟΥ-ΓΕΝΙΚΗ ΠΑΙΔΕΙΑ ΜΑΘΗΜΑΤΙΚΑ ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ ο Δίνεται η συνάρτηση f Ι. Το πεδίο ορισμού της f είναι:., υ -, B., Γ. -,.,., ΙΙ. Το όριο f lm 0 είναι ίσο με: Α. 0 Β. Γ. Δ. Ε. Τίποτε από τα προηγούμενα

Διαβάστε περισσότερα

Κεφάλαιο 4 Δείκτες Κεντρικής Τάσης

Κεφάλαιο 4 Δείκτες Κεντρικής Τάσης Πανεπιστήµιο Κρήτης Σχολή Επιστηµών Αγωγής Παιδαγωγικό Τµήµα Δηµοτικής Εκπαίδευσης Β06 03. Στατιστική περιγραφική εφαρµοσµένη στην Ψυχοπαιδαγωγική Διδάσκων: Κωνσταντίνος Π. Χρήστου ΑΣΚΗΣΗ 1 Κεφάλαιο 4

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436 A εξάμηνο 2009-2010 Περιγραφική Στατιστική Ι users.att.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr Μέτρα θέσης Η θέση αντιπροσωπεύει τη θέση της κατανομής κατά

Διαβάστε περισσότερα

Ποιοτική & Ποσοτική Ανάλυση εδομένων Εβδομάδα 5 η 6 η

Ποιοτική & Ποσοτική Ανάλυση εδομένων Εβδομάδα 5 η 6 η Ποιοτική & Ποσοτική Ανάλυση εδομένων Εβδομάδα 5 η 6 η Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη, 2013-2014 Εμπειρικές Στατιστικές Κατανομές Τα προβλήματα που

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 00 Πέµπτη, Ιουνίου 00 ΓΕΝΙΚΗ ΠΑΙ ΕΙΑ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α.. Να αποδείξετε ότι για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω ισχύει ότι P(A B) P(A)

Διαβάστε περισσότερα

ΘΕΜΑ 1ο. Στήλη ΙΙ Παράγωγος f (x) 1. -ημx. 2. x ρ-1 3. συνx 4. 1 Γ. x ρ, x > 0 και ρ ρητός. Β. x, x > ρ x ρ-1. Δ. ημx. Ε. συνx. 8.

ΘΕΜΑ 1ο. Στήλη ΙΙ Παράγωγος f (x) 1. -ημx. 2. x ρ-1 3. συνx 4. 1 Γ. x ρ, x > 0 και ρ ρητός. Β. x, x > ρ x ρ-1. Δ. ημx. Ε. συνx. 8. ΘΕΜΑ 1ο ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΕΣΣΕΡΙΣ(4)

Διαβάστε περισσότερα

(f(x) + g(x)) = f (x) + g (x).

(f(x) + g(x)) = f (x) + g (x). ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ 1o ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 1 ΙΟΥΛΙΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ

Διαβάστε περισσότερα

(f (x) g(x)) = f (x) g(x)+f (x) g (x) (μονάδες 2)

(f (x) g(x)) = f (x) g(x)+f (x) g (x) (μονάδες 2) ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΚΑΙ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 0 ΜΑΪΟΥ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΕΣΣΕΡΙΣ () ΘΕΜΑ Α Α.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ

ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ Άσκηση 1 Δίνονται οι ανισώσεις: 3x και 2 x α) Να βρείτε τις λύσεις τους (Μονάδες 10) β) Να βρείτε το σύνολο των κοινών τους λύσεων (Μονάδες 15) α) Έχουμε 3x 2x x 2

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 26 ΜΑΪΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ (ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ)

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 26 ΜΑΪΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ (ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ) ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 26 ΜΑΪΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ (ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ) ΘΕΜΑ 1ο Α. Ας υποθέσουμε ότι x 1, x 2,..., x κ είναι οι

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. A. Η συνάρτηση f είναι παραγωγίσιμη στο ΙR. και c πραγματική σταθερά. Να αποδείξετε ότι (c f(x)) =c f (x), x ΙR.

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. A. Η συνάρτηση f είναι παραγωγίσιμη στο ΙR. και c πραγματική σταθερά. Να αποδείξετε ότι (c f(x)) =c f (x), x ΙR. ΘΕΜΑ 1o ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 5 ΜΑΪΟΥ 006 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4)

Διαβάστε περισσότερα