Το παράδοξο του Albert Eistein

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Το παράδοξο του Albert Eistein"

Transcript

1 Το παράδοξο του Albert Eistein O Einstein Σαν παιδί ήταν αρκετά ήσυχο και μοναχικό. Σαν μαθητής ήταν καλός, ειδικά στα μαθηματικά, χωρίς όμως να ξεχωρίζει ιδιαίτερα. Η κακή του μνήμη και ο αργός τρόπος ομιλίας του, έκαναν τους καθηγητές του να τον θεωρούν ένα μέτριο μαθητή, παρά το γεγονός ότι μέχρι τα δεκαέξι του είχε καλύψει το διαφορικό και ολοκληρωτικό λογισμό. Η απέχθεια του για τον τρόπο που οι καθηγητές αντιμετώπιζαν τους μαθητές, οδηγεί τον δεκαεξάχρονο Αϊνστάιν στην απόφαση να εγκαταλείψει το σχολείο και να φύγει για το Μιλάνο, όπου είχε είδη μετακομίσει η οικογένεια του. Δίνει εισαγωγικές εξετάσεις για το Πολυτεχνείο της Ζυρίχης, αλλά αποτυγχάνει λόγω του ότι οι γνώσεις του στην Βιολογία και στις ξένες γλώσσες δεν ήταν αρκετές, παρόλο που είχε πάρει άριστα στα Μαθηματικά και στη Φυσική. 1

2 Βιογραφικό Γεννήθηκε στο Ουλμ της Γερμανίας. Τιμήθηκε το 1921 με το βραβείο Νόμπελ «για τη συμβολή του στη θεωρητική φυσική, και για την εξήγηση του φωτοηλεκτρικού φαινομένου». Του προτάθηκε το 1950 η προεδρία του νεοσύστατου τότε κράτους του Ισραήλ, την οποία αρνήθηκε για διάφορους λόγους. Απεβίωσε στον Πρίνστον του New Jersey στις 18 Απριλίου του Ο Eistein και το έργο του Ο Εinstein ανέπτυξε μια σειρά από θεωρείες που διακήρυξαν, για πρώτη φορά, την ισοδυναμία της μάζας προς την ενέργεια, ενώ ταυτόχρονα έδωσαν εντελώς νέο περιεχόμενο στις έννοιες του χώρου, του χρόνου και της βαρύτητας. Οι θεωρίες αυτές ήταν κατ ουσίαν μια βαθιά αναθεώρηση της παλαιάς Νευτώνειας Φυσικής και αποτέλεσαν επανάσταση για την επιστημονική αλλά και φιλοσοφική έρευνα. 2

3 ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ Ειδική σχετικότητα Η ταχύτητα του φωτός είναι ίδια για όλους τους αδρανειακούς παρατηρητές, ανεξάρτητα από τη σχετική τους ταχύτητα. Ο χρόνος είναι κάτι σχετικό και κινείται με διαφορετική ταχύτητα, ανάλογα με τις ειδικές περιστάσεις καθενός ανθρώπου. Ο χρόνος επιβραδύνεται όταν κανείς βρίσκεται πιο κοντά στη Γη, ή όταν κινείται με μεγαλύτερη ταχύτητα. Προβλέπει ένα περίεργο αποτέλεσμα για ρολόγια σε κίνηση- ένα στάσιμο ρολόι θα πάει γρηγορότερα από ένα κινούμενο ρολόι. 3

4 Αξιώματα 1. Οι νόμοι της φυσικής είναι ίδιοι και αναλλοίωτοι σε όλα τα αδρανειακά συστήματα. ( δε μπορεί να εφαρμοστεί σε συστήματα αναφοράς που βρίσκονται εντός βαρυτικού πεδίου ή υφίστανται κάποιου είδους επιτάχυνση) 2. Η ταχύτητα του φωτός είναι ίδια σε όλα τα αδρανειακά συστήματα ανεξάρτητα από την κίνηση της πηγής και του παρατηρητή. Πειράματα Θεωρητικό πείραμα των διδύμων (Μετά από ένα ταξίδι μετ επιστροφής με ένα διαστημόπλοιο, ο ταξιδιώτης θα επιστρέψει στη Γη για να διαπιστώσει ότι ο δίδυμος αδελφό του είναι πλέον μεγαλύτερος από ότι είναι αυτός, επειδή ο χρόνος περνάει πιο αργά στο διαστημόπλοιο από ότι στη Γη.) Πραγματικό πείραμα 1971 (ο Joseph Hafele και ο Richard Keating πέταξαν με ατομικά ρολόγια γύρω από τη Γη για να τα συγκρίνουν με ρολόγια αναφοράς στη Γη. Αποτέλεσμα : Τα ρολόγια διέφεραν κατά λίγες δεκάδες έως εκατοντάδες νανοδευτερολέπτων.) 4

5 Συνέπειες Ο χώρος και ο χρόνος έπαψαν να είναι σταθεροί και αμετάβλητοι, αλλά εξαρτώνται από τη σχετική κίνηση του παρατηρητή. Υπάρχει διαστολή του ιδίου χρόνου και συστολή του μήκους. Η απόσταση μεταξύ δύο σημείων και το χρονικό διάστημα μεταξύ δύο συμβάντων εξαρτώνται από το σύστημα αναφοράς στο οποίο μετρούνται. Δεν υπάρχει η έννοια του απόλυτου μήκους ή του απόλυτου χρόνου. Συμβάντα που συντελούνται ταυτοχρόνως σε διαφορετικές θέσεις σε ένα σύστημα, δεν είναι ταυτόχρονα σε ένα άλλο σύστημα. ΓΕΝΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ 5

6 ΓΕΝΙΚΑ Ο Albert Einstein ξεκίνησε την «επανάσταση» του στη σύγχρονη φυσική με την παρουσίαση της Ειδικής Θεωρίας της Σχετικότητας. Στη συνέχεια, σε διάστημα δέκα χρόνων, προχώρησε στην παρουσίαση της Θεωρία της Γενικής Σχετικότητας και πιο συγκεκριμένα τον Νοέμβριο του 1915, σε μια σειρά διαλέξεων ενώπιον της Πρωσικής Ακαδημίας Επιστημών. Η παρουσίαση του προκάλεσε αναστάτωση στον επιστημονικό κόσμο, καθώς ο Einstein με την πρόταξη αυτής της νέας θεωρίας του, αντικαθιστούσε τον νόμο του Νεύτωνα για τη Βαρύτητα. Επίσης, η θεωρία της Γενικής Σχετικότητας σηματοδότησε το ξεκίνημα μιας νέας επιστήμης, της Κοσμολογίας. ΓΕΝΙΚΑ Η πρώτη πειραματική επαλήθευση της Γενικής Σχετικότητας έγινε το 1919 και σκοπός της ήταν η μέτρηση της εκτροπής του φωτός των αστεριών καθώς οι ακτίνες περνούν πολύ κοντά από τον Ήλιο. Η πρώτη πειραματική μελέτη με την παρουσία του Einstein πέτυχε αφού μπορούσε να παρατηρηθεί η καμπύλωση του φωτός ενός αστέρα γύρω από τον ήλιο, καθώς έφτανε στον παρατηρητή στη Γη, κατά τη διάρκεια μιας ολικής έκλειψης ηλίου. Σύμφωνα με τη θεωρία της Γενικής Σχετικότητας, η βαρύτητα οφείλεται στις καμπυλώσεις του χωροχρόνου και δεν είναι απλά μία δύναμη, όπως υποστήριζε η κλασσική θεωρία του Νεύτωνα. Ως κύρια αρχή της Γενικής Θεωρίας της Σχετικότητας θεωρείται η ισοδυναμία των επιταχυνόμενων συστημάτων αναφοράς με συστήματα που βρίσκονται εντός του βαρυτικού πεδίου. 6

7 Η Νευτώνεια θεωρία, διατηρήθηκε αναλλοίωτη πριν από τον 20ό αιώνα, και περιέγραφε τη βαρύτητα ως μια δύναμη. Δύο σώματα με μάζα, όπως η γη και ένα μήλο, ασκούν μια έλξη το ένα στο άλλο, ως αποτέλεσμα του νόμου της βαρύτητας. Εάν ένα μήλο ξεκινά από την ηρεμία τότε η βαρύτητα θα το αναγκάσει να κινηθεί προς τη Γη έως ότου συγκρουστεί μαζί της. Ο νόμος της βαρύτητας του Νεύτωνα μπορούσε να εξηγήσει λεπτομερώς την τροχιά του φεγγαριού γύρω από τη Γη, τις κινήσεις των πλανητών γύρω από τον ήλιο και άλλα πολλά. Η Γενική Σχετικότητα μπορεί επίσης να τα εξηγήσει όλα αυτά, αλλά με έναν πολύ διαφορετικό τρόπο. Στην Γενική Σχετικότητα, ένα σώμα με μάζα όπως ο ήλιος αναγκάζει τον χωρόχρονο γύρω του να καμφθεί, και αυτή η καμπυλότητα έχει επιπτώσεις στην κίνηση των πλανητών, αναγκάζοντάς τους να μπουν σε τροχιά γύρω από τον ήλιο. Ακόμη η βαρύτητα στην Θεωρία της Γενικής Σχετικότητας περιγράφεται με βάση το ότι ο χώρος και ο χρόνος είναι δυναμικές ποσότητες που μπορούν να καμφθούν σαν αποτέλεσμα της δράσης της ύλης και μπορούν στη συνέχεια να αλλάξουν τη συμπεριφορά της ύλης. ΧΩΡΟΧΡΟΝΟΣ 7

8 ΧΩΡΟΧΡΟΝΟΣ Τόσο στην Ειδική Θεωρία Σχετικότητας όσο και στην Γενική Θεωρία Σχετικότητας, ο χρόνος και ο τρισδιάστατος χώρος θεωρούνται ως μία τετραδιάστατη πολλαπλότητα, που λέγεται χωροχρόνος. Η έννοια του χωροχρόνου πρωτοεμφανίστηκε το 1908 σε μια μαθηματική πραγματεία του Μινκόφσκι για τη γεωμετρία του χώρου και του χρόνου όπως αυτή είχε οριστεί στην ειδική θεωρία της σχετικότητας του Άλμπερτ Αϊνστάιν. ΧΩΡΟΧΡΟΝΟΣ Οι επιστήμονες συνήθως συνιστούν να σκεφτόμαστε το χωρόχρονο σαν ένα τεντωμένο, επίπεδο, ελαστικό φύλλο. Αν δεν υπάρχουν μεγάλες μάζες στην περιοχή, το φύλλο αυτό παραμένει επίπεδο, και κάθε σώμα που τοποθετείται πάνω σ αυτό θα κινείται σε ευθεία γραμμή. Αλλά μια μεγάλη μάζα όπως π.χ ο Ήλιος, δημιουργεί μια λακκούβα στο φύλλο αυτό γιατί στην πραγματικότητα καμπυλώνει τον χωρόχρονο. Κάθε άλλο αντικείμενο με μικρότερη μάζα, όπως π.χ η Γη, που κινείται στο χωρόχρονο κυλάει μέσα στην λακκούβα καθώς κινείται προς την περιοχή του Ήλιου. Κατ αυτόν τον τρόπο μας δίνει την εντύπωση ότι έλκεται από την μεγάλη μάζα του Ήλιου. Αυτό το φαινόμενο της καμπύλωσης του χωροχρόνου είναι που γεννά τη βαρύτητα. 8

9 Ο χρόνος εξαρτάται από το σύστημα αναφοράς στο οποίο γίνεται η μέτρηση του κι επομένως δεν είναι απόλυτος. Το ίδιο ισχύει για τον χώρο. Το μήκος ενός αντικειμένου μπορεί να είναι διαφορετικό ανάλογα με το σύστημα αναφοράς της μέτρησης. Μόνο ο χωροχρόνος ως ενοποιημένη έννοια είναι απόλυτος, ενώ οι συνιστώσες του, ο χώρος και ο χρόνος, αποτελούν πλευρές του που εξαρτώνται από τον παρατηρητή (το σύστημα αναφοράς). Η σχέση μεταξύ της μέτρησης χώρου και χρόνου που δίνεται από την παγκόσμια σταθερά c (την ταχύτητα του φωτός στο κενό), επιτρέπει την περιγραφή μιας απόστασης d με μέτρο το χρόνο: d = ct, t όντας ο χρόνος που χρειάζεται το φως για να διασχίσει την απόσταση d. Ο Ήλιος απέχει 150 εκατομμύρια χιλιόμετρα, δηλαδή 8 λεπτά φωτός από τη Γη. Με τον όρο λεπτά φωτός, γίνεται λόγος για μια μέτρηση του χρόνου που πολλαπλασιάζεται με το c, κι έτσι εξάγεται μια μέτρηση απόστασης, στην περίπτωση αυτή, σε χιλιόμετρα. Μ' άλλα λόγια, χάρη στο c μονάδες χρόνου μετατρέπονται σε μονάδες απόστασης. Χιλιόμετρα και λεπτά φωτός είναι επομένως δυο μονάδες μέτρησης της απόστασης. Αυτό που ενοποιεί χώρο και χρόνο στην ίδια εξίσωση είναι ότι η μέτρηση του χρόνου μπορεί να μετασχηματιστεί σε μέτρηση απόστασης (πολλαπλασιάζοντας το t, που εκφράζεται σε μονάδες χρόνου, με το c), και το t μπορεί έτσι να ταυτιστεί με τις τρεις άλλες συντεταγμένες απόστασης σε μια εξίσωση όπου όλες οι μετρήσεις γίνονται με μονάδες απόστασης. Από αυτήν την άποψη θα μπορούσε κανείς να πει ότι ο χρόνος είναι χώρος! 9

10 Η καμπύλωση του χωροχρόνου μπορεί να δημιουργήσει μια σκουληκότρυπα που θα συνδέει ένα τμήμα του χωροχρόνου με ένα άλλο, επιτρέποντας έτσι να πάμε μπροστά στο μέλλον ή πίσω στο παρελθόν. ΠΕΙΡΑΜΑ Το πείραμα της Φιλαδέλφειας είναι ένα από τα πιο απίθανα πειράματα, όμως αποδεικνύει τις ιδιότητες του χωροχρόνου. Τον Οκτώβριο του 1943,στις Η.Π.Α., έγινε η τελική δοκιμή του πειράματος. Ένα αντιτορπιλικό πλοίο το UUS Eldridge, φορτωμένο με επιστημονικά όργανα ( γεννήτριες, αναμεταδότες, χιλιάδες ενισχυτικές λυχνίες, μηχανισμοί συγχρονισμού και διαμόρφωσης καθώς και άλλα μυστηριώδη εξαρτήματα) ήταν έτοιμο να πραγματοποιήσει το στόχο του, δηλαδή να γίνει αόρατο στους παρατηρητές του. Οι γεννήτριες ξεκίνησαν, το ηλεκτρομαγνητικό πεδίο σχηματιζόταν και το πλοίο άρχισε να εξαφανίζεται. Μια φωτεινή πρασινωπή ομίχλη άρχισε να εμφανίζεται και ξαφνικά το πλοίο χάθηκε από τα μάτια όλων! Μάλλον όχι όλων, γιατί το είδαν.. Αλλά που το είδαν; Ε, λοιπόν το Eldridge εμφανίστηκε στη της Βιργίνια, δεκάδες μίλια μακριά από το ναύσταθμο της Φιλαδέλφειας, όπου πολλοί το είδαν για αρκετά λεπτά. Στη συνέχεια όπως ξαφνικά εμφανίστηκε, το ίδιο ξαφνικά εξαφανίστηκε από την Βιργίνια, για να «επιστρέψει» στη Φιλαδέλφεια! 10

11 ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΠΕΙΡΑΜΑΤΟΣ Το πλήρωμά του εμφάνισε σοβαρά συμπτώματα διάφορων ασθενειών. Άλλοι χάθηκαν για πάντα και άλλοι ενσωματώθηκαν στη μεταλλική δομή του πλοίου. Μερικοί (μετά το πείραμα) αυτοαναφλέγονταν. Άλλοι εξαφανίζονταν από τη παρέα τους και τους έβρισκαν αργότερα,χιλιάδες μέτρα μακριά. Όσοι έζησαν απέχτησαν σοβαρά ψυχολογικά προβλήματα. Everything should be as simple as possible, but not simpler. Albert Einstein 11

12 ΣΑΣ ΕΥΧΑΡΙΣΤΟΥΜΕ! 12

Διαδραστική Έκθεση Επιστήμης και Τεχνολογίας

Διαδραστική Έκθεση Επιστήμης και Τεχνολογίας Διαδραστική Έκθεση Επιστήμης και Τεχνολογίας «Η επιστήμη και η γνώση προχωρούν ρ μπροστά μόνο αν αμφισβητήσουμε τους μεγάλους» Χρονικά της Φυσικής 1905 (Annalen der Physik) Γενική Θεωρία της Σχετικότητας

Διαβάστε περισσότερα

ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ

ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ Διδάσκων: Θεόδωρος Ν. Τομαράς 1. Μετασχηματισμοί συντεταγμένων και συμμετρίες. 1α. Στροφές στο επίπεδο. Θεωρείστε δύο καρτεσιανά συστήματα συντεταγμένων στο επίπεδο, στραμμένα

Διαβάστε περισσότερα

Αριστοτέλης (384-322 π.χ) : «Για να ξεκινήσει και να διατηρηθεί μια κίνηση είναι απαραίτητη η ύπαρξη μιας συγκεκριμένης αιτίας»

Αριστοτέλης (384-322 π.χ) : «Για να ξεκινήσει και να διατηρηθεί μια κίνηση είναι απαραίτητη η ύπαρξη μιας συγκεκριμένης αιτίας» Εισαγωγή Επιστημονική μέθοδος Αριστοτέλης (384-322 π.χ) : «Για να ξεκινήσει και να διατηρηθεί μια κίνηση είναι απαραίτητη η ύπαρξη μιας συγκεκριμένης αιτίας» Διατύπωση αξιωματική της αιτίας μια κίνησης

Διαβάστε περισσότερα

Στοιχεία της θεωρίας της Σχετικότητας. Άλμπερτ Αϊνστάιν 1905

Στοιχεία της θεωρίας της Σχετικότητας. Άλμπερτ Αϊνστάιν 1905 Στοιχεία της θεωρίας της Σχετικότητας Άλμπερτ Αϊνστάιν 1905 Αξιώματα Ειδικής Θεωρίας της Σχετικότητας, Αϊνστάιν (1905) μοναδική γοητεία εξαιτίας της απλότητας και κομψότητας των δύο αξιωμάτων πάνω στα

Διαβάστε περισσότερα

Η καμπύλωση του χώρου-θεωρία της σχετικότητας

Η καμπύλωση του χώρου-θεωρία της σχετικότητας Η καμπύλωση του χώρου-θεωρία της σχετικότητας Σύμφωνα με τη Γενική Θεωρία της Σχετικότητας που διατύπωσε ο Αϊνστάιν, το βαρυτικό πεδίο κάθε μάζας δημιουργεί μια καμπύλωση στον χώρο (μάλιστα στον χωροχρόνο),

Διαβάστε περισσότερα

Κεφάλαιο 2 : Η Αρχή της Σχετικότητας του Einstein.

Κεφάλαιο 2 : Η Αρχή της Σχετικότητας του Einstein. Κεφάλαιο : Η Αρχή της Σχετικότητας του Einstein..1 Ο απόλυτος χώρος και ο αιθέρας. Ας υποθέσουμε ότι ένας παρατηρητής μετρά την ταχύτητα ενός φωτεινού σήματος και την βρίσκει ίση με 10 m/se. Σύμφωνα με

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΣΧΕΤΙΚΟΤΗΤΑΣ: Ιστορική εξέλιξη και σύγχρονα πειράματα

ΘΕΩΡΙΑ ΣΧΕΤΙΚΟΤΗΤΑΣ: Ιστορική εξέλιξη και σύγχρονα πειράματα ΘΕΩΡΙΑ ΣΧΕΤΙΚΟΤΗΤΑΣ: Ιστορική εξέλιξη και σύγχρονα πειράματα ΝΙΚΟΛΑΟΣ ΣΤΕΡΓΙΟΥΛΑΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Νάουσα, 31/3/2012 Περιεχόμενα 1. Ειδική Θεωρία Σχετικότητας (ΕΘΣ)

Διαβάστε περισσότερα

Συστήµατος Αναφοράς. Συγχρονισµός των Ρολογιών Ενός

Συστήµατος Αναφοράς. Συγχρονισµός των Ρολογιών Ενός 2. ΠΡΟΛΕΓΟΜΕΝΑ Συστήµατα Αναφοράς Συγχρονισµός των Ρολογιών Ενός Συστήµατος Αναφοράς t A Ρολόι Α t 1 D A t + t + = A 1 t t t t 2 1 1 2 Ρολόι Αναφοράς t 2 D A = t t 2 2 1 ύο Αδρανειακά Συστήµατα Αναφοράς

Διαβάστε περισσότερα

Κεφάλαιο 1 : Μετασχηματισμοί Γαλιλαίου.

Κεφάλαιο 1 : Μετασχηματισμοί Γαλιλαίου. Κεφάλαιο : Μετασχηματισμοί Γαλιλαίου.. Γεγονότα, συστήματα αναφοράς και η αρχή της Νευτώνειας Σχετικότητας. Ως φυσικό γεγονός ορίζεται ένα συμβάν το οποίο λαμβάνει χώρα σε ένα σημείο του χώρου μια συγκεκριμένη

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Σύγχρονη Φυσική

Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Σύγχρονη Φυσική Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Σύγχρονη Φυσική Βαρουτάς Δημήτρης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Μια σύντομη επισκόπηση της σύγχρονης φυσικής Σχετικότητα

Διαβάστε περισσότερα

Η ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ

Η ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ ΑΕΝ/MAKEΔOΝΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΤΙΤΛΟΣ ΘΕΜΑΤΟΣ Η ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ ΟΝΟΜΑ ΣΠΟΥΔΑΣΤΗ: ΧΑΤΖΗΙΩΑΝΝΟΥ ΓΕΩΡΓΙΟΣ Α.Γ.Μ.: 3194 ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΛΑΜΠΟΥΡΑ ΣΤΕΦΑΝΙΑ 1 ΑΚΑΔΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ Α.Ε.Ν ΜΑΚΕΔΟΝΙΑΣ

Διαβάστε περισσότερα

Σύγχρονη Φυσική 1, Διάλεξη 4, Τμήμα Φυσικής, Παν/μιο Ιωαννίνων Η Αρχές της Ειδικής Θεωρίας της Σχετικότητας και οι μετασχηματισμοί του Lorentz

Σύγχρονη Φυσική 1, Διάλεξη 4, Τμήμα Φυσικής, Παν/μιο Ιωαννίνων Η Αρχές της Ειδικής Θεωρίας της Σχετικότητας και οι μετασχηματισμοί του Lorentz 1 Η Αρχές της Ειδικής Θεωρίας της Σχετικότητας και οι μετασχηματισμοί του Lorentz Σκοποί της τέταρτης διάλεξης: 25.10.2011 Να κατανοηθούν οι αρχές με τις οποίες ο Albert Einstein θεμελίωσε την ειδική θεωρία

Διαβάστε περισσότερα

5 Σχετικιστική μάζα. Στο Σ Πριν Μετά. Στο Σ

5 Σχετικιστική μάζα. Στο Σ Πριν Μετά. Στο Σ Α Τόγκας - ΑΜ333: Ειδική Θεωρία Σχετικότητας Σχετικιστική μάζα 5 Σχετικιστική μάζα Όπως έχουμε διαπιστώσει στην ειδική θεωρία της Σχετικότητας οι μετρήσεις των χωρικών και χρονικών αποστάσεων εξαρτώνται

Διαβάστε περισσότερα

3α. ΣΧΕΤΙΚΙΣΤΙΚΗ ΚΙΝΗΜΑΤΙΚΗ ΠΑΡΑ ΕΙΓΜΑΤΑ «ΠΑΡΑ ΟΞΑ» ΑΣΚΗΣΕΙΣ

3α. ΣΧΕΤΙΚΙΣΤΙΚΗ ΚΙΝΗΜΑΤΙΚΗ ΠΑΡΑ ΕΙΓΜΑΤΑ «ΠΑΡΑ ΟΞΑ» ΑΣΚΗΣΕΙΣ 3α. ΣΧΕΤΙΚΙΣΤΙΚΗ ΚΙΝΗΜΑΤΙΚΗ ΠΑΡΑ ΕΙΓΜΑΤΑ «ΠΑΡΑ ΟΞΑ» ΑΣΚΗΣΕΙΣ Παράδειγµα: Το τρένο του Άινστάιν Ένα τρένο κινείται ως προς έναν αδρανειακό παρατηρητή Ο µε σταθερή ταχύτητα V. Στο µέσο ακριβώς του τρένου

Διαβάστε περισσότερα

Κίνηση φορτισμένου σωματιδίου σε χώρο, όπου συνυπάρχουν ηλεκτρικό και μαγνητικό πεδίο ομογενή και χρονοανεξάρτητα

Κίνηση φορτισμένου σωματιδίου σε χώρο, όπου συνυπάρχουν ηλεκτρικό και μαγνητικό πεδίο ομογενή και χρονοανεξάρτητα Κίνηση φορτισμένου σωματιδίου σε χώρο, όπου συνυπάρχουν ηλεκτρικό και μαγνητικό πεδίο ομογενή και χρονοανεξάρτητα Μέρος α : Εξισώσεις κίνησης και συμπεράσματα) Α. Τι βλέπει ένας αδρανειακός παρατηρητής

Διαβάστε περισσότερα

Σύγχρονη Φυσική 1, Διάλεξη 12, Τμήμα Φυσικής, Παν/μιο Ιωαννίνων Διαγράμματα Minkowski

Σύγχρονη Φυσική 1, Διάλεξη 12, Τμήμα Φυσικής, Παν/μιο Ιωαννίνων Διαγράμματα Minkowski 1 Διαγράμματα Minkowski Σκοποί της διάλεξης 12: Να εισάγει τα διαγράμματα Minkowski. 18.1.2012 Να περιγράψει την ιδέα του ταυτοχρονισμού στην θεωρία της σχετικότητας με μεθόδους γεωμετρίας. Να εισάγει

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5: ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΣΩΜΑΤΩΝ

ΚΕΦΑΛΑΙΟ 5: ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΣΩΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 5: ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΣΩΜΑΤΩΝ Στο κεφάλαιο αυτό θα ασχοληθούµε αρχικά µε ένα µεµονωµένο σύστηµα δύο σωµάτων στα οποία ασκούνται µόνο οι µεταξύ τους κεντρικές δυνάµεις, επιτρέποντας ωστόσο και την

Διαβάστε περισσότερα

Ο ΓΑΛΙΛΑΙΟΣ ΕΙΝΑΙ ΛΑΘΟΣ!

Ο ΓΑΛΙΛΑΙΟΣ ΕΙΝΑΙ ΛΑΘΟΣ! Ο ΓΑΛΙΛΑΙΟΣ ΕΙΝΑΙ ΛΑΘΟΣ! ΤΟ ΠΕΙΡΑΜΑ ΤΟΥ ΓΑΛΙΛΑΙΟΥ Ας υποθέσουµε σχ. 1, ότι έχουµε ένα ουράνιο σώµα µάζας Μ (γη, σελήνη, αστεροειδής, κ.λ.π.). K 1 M2 R K 1 K M 2 2 M 1 M 1 t = (Ι) (ΙΙ) Ελεύθερη πτώση των

Διαβάστε περισσότερα

Εναλλακτικές ιδέες των µαθητών

Εναλλακτικές ιδέες των µαθητών Εναλλακτικές ιδέες των µαθητών Αντωνίου Αντώνης, Φυσικός antoniou@sch.gr, http://users.att.sch.gr/antoniou Απόδοση στα ελληνικά της µελέτης του Richard P. Olenick, καθηγητή Φυσικής του University of Dallas.

Διαβάστε περισσότερα

6-1 ΕΙΣΑΓΩΓΗ. Αν και - ακόμη και σήμερα - η γενική θεωρία δεν έχει επιβεβαιωθεί πλήρως, οι δρόμοι που άνοιξε επηρέασαν βαθιά τη σύγχρονη φυσική.

6-1 ΕΙΣΑΓΩΓΗ. Αν και - ακόμη και σήμερα - η γενική θεωρία δεν έχει επιβεβαιωθεί πλήρως, οι δρόμοι που άνοιξε επηρέασαν βαθιά τη σύγχρονη φυσική. EΞΩΦΥΛΛΟ 185 6-1 ΕΙΣΑΓΩΓΗ Στις αρχές του έτους 1905 ένας άγνωστος εικοσιεξάχρονος υπάλληλος της Ελβετικής Υπηρεσίας Ευρεσιτεχνιών, ο Albert Einstein, δημοσίευσε τρεις εργασίες τεράστιας σημασίας. Η πρώτη

Διαβάστε περισσότερα

Μέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς.

Μέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς. Μ2 Μέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς. 1 Σκοπός Η εργαστηριακή αυτή άσκηση αποσκοπεί στη μέτρηση της επιτάχυνσης της βαρύτητας σε ένα τόπο. Αυτή η μέτρηση επιτυγχάνεται

Διαβάστε περισσότερα

Φυσικό Τμήμα Παν/μιο Ιωαννίνων - Ειδική Σχετικότητα - Λυμένα Προβλήματα - ΙI

Φυσικό Τμήμα Παν/μιο Ιωαννίνων - Ειδική Σχετικότητα - Λυμένα Προβλήματα - ΙI .11.011 Άσκηση 1: Χρησιμοποιήστε την διωνυμική σχέση 1x N = i=0 N! i! N i! xi για να υπολογίστε το 1 V /c για (α) V = 0.01c και (β) V = 0.9998c (α) Η διωνυμική σχέση είναι ιδανική για προσεγγίσεις όταν

Διαβάστε περισσότερα

Εξερευνώντας το Σύμπαν με τα Κύματα της Βαρύτητας

Εξερευνώντας το Σύμπαν με τα Κύματα της Βαρύτητας Εξερευνώντας το Σύμπαν με τα Κύματα της Βαρύτητας ΝΙΚΟΛΑΟΣ ΣΤΕΡΓΙΟΥΛΑΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Νάουσα, 28/11/2015 Πως διαδίδεται η βαρυτική έλξη; 1900: ο Lorentz προτείνει

Διαβάστε περισσότερα

Φυσική Ι 1ο εξάμηνο. Γεώργιος Γκαϊντατζής Επίκουρος Καθηγητής. Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης

Φυσική Ι 1ο εξάμηνο. Γεώργιος Γκαϊντατζής Επίκουρος Καθηγητής. Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Φυσική Ι 1ο εξάμηνο Γεώργιος Γκαϊντατζής Επίκουρος Καθηγητής Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Κεφάλαιο 5 Δυναμική - Οι νόμοι του Newton Ο 1 ος νόμος του Newton (νόμος

Διαβάστε περισσότερα

Οι μεγάλες εξισώσεις....όχι μόνο σωστές αλλά και ωραίες...

Οι μεγάλες εξισώσεις....όχι μόνο σωστές αλλά και ωραίες... Οι μεγάλες εξισώσεις. {...όχι μόνο σωστές αλλά και ωραίες... Ερευνητική εργασία μαθητών της Β λυκείου. E = mc 2 Στοιχεία ταυτότητας: Ε: ενέργεια (joule) m: μάζα (kg) c: ταχύτητα του φωτός στο κενό (m/s)

Διαβάστε περισσότερα

Γενική Θεωρία της Σχετικότητας

Γενική Θεωρία της Σχετικότητας Γενική Θεωρία της Σχετικότητας Αδρανειακή Βαρυτική Μάζα Σύμφωνα με τον Νεύτωνα η μάζα ενός σώματος ορίζεται με δύο τρόπους: Μέσω του δευτέρου νόμου F=ma. (Αδρανειακή Μάζα). Ζυγίζοντας το σώμα και εφαρμόζοντας

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Τι λέμε δύναμη, πως συμβολίζεται και ποια η μονάδα μέτρησής της. Δύναμη είναι η αιτία που προκαλεί τη μεταβολή της κινητικής κατάστασης των σωμάτων ή την παραμόρφωσή

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Μηχανική Εικόνα: Isaac Newton: Θεωρείται πατέρας της Κλασικής Φυσικής, καθώς ξεκινώντας από τις παρατηρήσεις του Γαλιλαίου αλλά και τους νόμους του Κέπλερ για την κίνηση των πλανητών

Διαβάστε περισσότερα

Θεωρία Φυσικής Τμήματος Πληροφορικής και Τεχνολογίας Υπολογιστών Τ.Ε.Ι. Λαμίας

Θεωρία Φυσικής Τμήματος Πληροφορικής και Τεχνολογίας Υπολογιστών Τ.Ε.Ι. Λαμίας Θεωρία Φυσικής Τμήματος Πληροφορικής και Τεχνολογίας Υπολογιστών Τ.Ε.Ι. Λαμίας Νόμος της Βαρύτητας επιτάχυνση της βαρύτητας Κίνηση δορυφόρου Νόμοι Keple Το σύμπαν και οι δυνάμεις βαρύτητας Ο λόγος που

Διαβάστε περισσότερα

ΒΑΡΥΤΗΤΑ. Το μέτρο της βαρυτικής αυτής δύναμης είναι: F G όπου M,

ΒΑΡΥΤΗΤΑ. Το μέτρο της βαρυτικής αυτής δύναμης είναι: F G όπου M, ΒΑΡΥΤΗΤΑ ΝΟΜΟΣ ΤΗΣ ΠΑΓΚΟΣΜΙΑΣ ΕΛΞΗΣ Ο Νεύτωνας ανακάλυψε τον νόμο της βαρύτητας μελετώντας τις κινήσεις των πλανητών γύρω από τον Ήλιο και τον δημοσίευσε το 1686. Από την ανάλυση των δεδομένων αυτών ο

Διαβάστε περισσότερα

Ο ΧΩΡΟΣ ΚΑΙ Ο ΧΡΟΝΟΣ

Ο ΧΩΡΟΣ ΚΑΙ Ο ΧΡΟΝΟΣ Ο ΧΩΡΟΣ ΚΑΙ Ο ΧΡΟΝΟΣ. Γενικές αρχές. Η αντιληπτική μας ικανότητα του Φυσικού Χώρου, μας οδηγεί στον προσδιορισμό των σημείων του, μέσω τριών ανεξαρτήτων παραμέτρων. Είναι, λοιπόν, αποδεκτή η απεικόνισή

Διαβάστε περισσότερα

ΩΡΙΩΝ ΑΣΤΡΟΝΟΜΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΤΡΑΣ

ΩΡΙΩΝ ΑΣΤΡΟΝΟΜΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΤΡΑΣ ΩΡΙΩΝ ΑΣΤΡΟΝΟΜΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΤΡΑΣ Κ. Ν. Γουργουλιάτος ΜΑΥΡΕΣ ΤΡΥΠΕΣ Η ΒΑΣΙΚΗ ΙΔΕΑ Αντικείμενα που εμποδίζουν την διάδοση φωτός από αυτά Πρωτοπροτάθηκε γύρω στα 1783 (John( John Michell) ως αντικείμενο

Διαβάστε περισσότερα

Ο χρόνος σαν τέταρτη διάσταση

Ο χρόνος σαν τέταρτη διάσταση 1 Πρόλογος ΜΕΡΟΣ ΠΡΩΤΟ Μια ιστορική αναδρομή Ο χρόνος σαν τέταρτη διάσταση Ο Νευτώνειος χρόνος Ο κλασσικός χωρόχρονος ΠΡΟΛΟΓΟΣ Οι απόψεις που θα εκθέσω σχετικά με το χώρο και το χρόνο πηγάζουν απ την περιοχή

Διαβάστε περισσότερα

Κεφάλαιο 4. Νόμοι κίνησης του Νεύτωνα

Κεφάλαιο 4. Νόμοι κίνησης του Νεύτωνα Κεφάλαιο 4 Νόμοι κίνησης του Νεύτωνα Στόχοι 4 ου Κεφαλαίου Δύναμη και αλληλεπιδράσεις. Η δύναμη σαν διάνυσμα και ο συνδυασμός δυνάμεων- Επαλληλία δυνάμεων. Πρώτος νόμος του Νεύτωνα- η έννοια της αδράνειας.

Διαβάστε περισσότερα

Αρχή της απροσδιοριστίας και διττή σωματιδιακή και κυματική φύση της ύλης.

Αρχή της απροσδιοριστίας και διττή σωματιδιακή και κυματική φύση της ύλης. 1 Αρχή της απροσδιοριστίας και διττή σωματιδιακή και κυματική φύση της ύλης. Μέχρι τις αρχές του 20ου αιώνα υπήρχε μια αντίληψη για τη φύση των πραγμάτων βασισμένη στις αρχές που τέθηκαν από τον Νεύτωνα

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 12 ΣΕΠΤΕΜΒΡΙΟΥ 2013 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

Βαρύτητα Βαρύτητα Κεφ. 12

Βαρύτητα Βαρύτητα Κεφ. 12 Κεφάλαιο 1 Βαρύτητα 6-1-011 Βαρύτητα Κεφ. 1 1 Νόμος βαρύτητας του Νεύτωνα υο ή περισσότερες μάζες έλκονται Βαρυτική δύναμη F G m1m ˆ Βαρυτική σταθερά G =667*10 6.67 11 N*m Nm /kg παγκόσμια σταθερά 6-1-011

Διαβάστε περισσότερα

1 Η ΑΡΧΗ ΤΗΣ ΙΣΟΔΥΝΑΜΙΑΣ

1 Η ΑΡΧΗ ΤΗΣ ΙΣΟΔΥΝΑΜΙΑΣ 1 Η ΑΡΧΗ ΤΗΣ ΙΣΟΔΥΝΑΜΙΑΣ Διδάσκων: Θεόδωρος Ν. Τομαράς 1.1 Newton s law A. Newton s law: Περιγράφει τη κίνηση υλικού σημείου μάζας m σε χωρο-χρονικά μεταβαλλόμενο πεδίο δυνάμεων F. Σε Αδρανειακό Σύστημα

Διαβάστε περισσότερα

Κεφάλαιο 6 ο : Φύση και

Κεφάλαιο 6 ο : Φύση και Κεφάλαιο 6 ο : Φύση και Διάδοση του Φωτός Φυσική Γ Γυμνασίου Βασίλης Γαργανουράκης http://users.sch.gr/vgargan Η εξέλιξη ξ των αντιλήψεων για την όραση Ορισμένοι αρχαίοι Έλληνες φιλόσοφοι ερμήνευαν την

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 11. Προσδιορισμός του πηλίκου του φορτίου προς τη μάζα ενός ηλεκτρονίου

ΑΣΚΗΣΗ 11. Προσδιορισμός του πηλίκου του φορτίου προς τη μάζα ενός ηλεκτρονίου ΑΣΚΗΣΗ 11 Προσδιορισμός του πηλίκου του φορτίου προς τη μάζα ενός ηλεκτρονίου Σκοπός : Να προσδιορίσουμε μια από τις φυσικές ιδιότητες του ηλεκτρονίου που είναι το πηλίκο του φορτίου προς τη μάζα του (/m

Διαβάστε περισσότερα

ΠΑΡΑΤΗΡΗΣΙΑΚΗ ΚΟΣΜΟΛΟΓΙΑ

ΠΑΡΑΤΗΡΗΣΙΑΚΗ ΚΟΣΜΟΛΟΓΙΑ Ελένη Πετράκου - National Taiwan University ΠΑΡΑΤΗΡΗΣΙΑΚΗ ΚΟΣΜΟΛΟΓΙΑ Πρόγραμμα επιμόρφωσης ελλήνων εκπαιδευτικών CERN, 7 Νοεμβρίου 2014 You are here! 1929: απομάκρυνση γαλαξιών θεωρία της μεγάλης έκρηξης

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 6 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Κυριακή, 13 Μαΐου, 01 Παρακαλώ διαβάστε πρώτα τα πιο κάτω, πριν απαντήσετε οποιαδήποτε ερώτηση Γενικές Οδηγίες: 1) Είναι πολύ σημαντικό να

Διαβάστε περισσότερα

ΤΟ ΦΩΣ ΩΣ ΑΓΓΕΛΙΟΦΟΡΟΣ ΤΟΥ ΣΥΜΠΑΝΤΟΣ. Κατερίνα Νικηφοράκη Ακτινοφυσικός (FORTH)

ΤΟ ΦΩΣ ΩΣ ΑΓΓΕΛΙΟΦΟΡΟΣ ΤΟΥ ΣΥΜΠΑΝΤΟΣ. Κατερίνα Νικηφοράκη Ακτινοφυσικός (FORTH) ΤΟ ΦΩΣ ΩΣ ΑΓΓΕΛΙΟΦΟΡΟΣ ΤΟΥ ΣΥΜΠΑΝΤΟΣ Κατερίνα Νικηφοράκη Ακτινοφυσικός (FORTH) ΟΙΚΕΙΟ ΦΩΣ Φιλοσοφική προσέγγιση με στοιχεία επιστήμης προσωκρατικοί φιλόσοφοι έχουν σκοπό να κατανοήσουν και όχι να περιγράψουν

Διαβάστε περισσότερα

Ολοήμερο Δημοτικό Σχολείο Πορταριάς «Ν. Τσοποτός» Ανάπτυξη σχεδίου εργασίας στο ολοήμερο δημοτικό σχολείο. Εισηγητής: Μακρής Νικόλαος

Ολοήμερο Δημοτικό Σχολείο Πορταριάς «Ν. Τσοποτός» Ανάπτυξη σχεδίου εργασίας στο ολοήμερο δημοτικό σχολείο. Εισηγητής: Μακρής Νικόλαος Ολοήμερο Δημοτικό Σχολείο Πορταριάς «Ν. Τσοποτός» Ανάπτυξη σχεδίου εργασίας στο ολοήμερο δημοτικό σχολείο Εισηγητής: Μακρής Νικόλαος Γενικός τίτλος «Ένας μαγικός αλλά άγνωστος κόσμος» Ένας μαγικός αλλά

Διαβάστε περισσότερα

Μη Ευκλείδεια Γεωμετρία

Μη Ευκλείδεια Γεωμετρία Μη Ευκλείδεια Γεωμετρία (Γεωμετρία του σύμπαντος) Μιχαηλίδη Κων/να - Κωνσταντοπούλου Ελισάβετ 2017 H μη-ευκλείδεια γεωμετρία συνιστάται από δύο γεωμετρίες βασισμένες σε αξιώματα στενά συνδεδεμένα με αυτά

Διαβάστε περισσότερα

Ο ΧΡΟΝΟΣ ΣΤΗ ΣΥΓΧΡΟΝΗ ΦΥΣΙΚΗ

Ο ΧΡΟΝΟΣ ΣΤΗ ΣΥΓΧΡΟΝΗ ΦΥΣΙΚΗ Ο ΧΡΟΝΟΣ ΣΤΗ ΣΥΓΧΡΟΝΗ ΦΥΣΙΚΗ Χάρης Αναστόπουλος Τμήμα Φυσικής Πανεπιστήμιο Πατρών Μάρτιος 2015 Τί είναι ο χρόνος; «τοῦτο γάρ ἐστιν τὸν χρόνον, ἀριθμός κινήσεως κατὰ τὸ πρότερον καὶ τὸ ὕστερον» Αριστοτέλης,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 Ο ΑΤΟΜΙΚΑ ΦΑΙΝΟΜΕΝΑ. 1 η Ατομική θεωρία 2.1. ΕΝΕΡΓΕΙΑ ΤΟΥ ΗΛΕΚΤΡΟΝΙΟΥ ΣΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ. 2 η Ατομική θεωρία (Thomson)

ΚΕΦΑΛΑΙΟ 2 Ο ΑΤΟΜΙΚΑ ΦΑΙΝΟΜΕΝΑ. 1 η Ατομική θεωρία 2.1. ΕΝΕΡΓΕΙΑ ΤΟΥ ΗΛΕΚΤΡΟΝΙΟΥ ΣΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ. 2 η Ατομική θεωρία (Thomson) 1 ΚΕΦΑΛΑΙΟ 2 Ο ΑΤΟΜΙΚΑ ΦΑΙΝΟΜΕΝΑ 2.1. ΕΝΕΡΓΕΙΑ ΤΟΥ ΗΛΕΚΤΡΟΝΙΟΥ ΣΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ 2 η Ατομική θεωρία (Thomson) Tο άτομο αποτελείται από μία σφαίρα ομοιόμορφα κατανεμημένου θετικού φορτίου μέσα στην

Διαβάστε περισσότερα

H ΚΟΣΜΟΛΟΓΙΑ ΜΕΤΑ ΑΠΟ 100 ΧΡΟΝΙΑ ΓΕΝΙΚΗΣ ΘΕΩΡΙΑΣ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΟΣ

H ΚΟΣΜΟΛΟΓΙΑ ΜΕΤΑ ΑΠΟ 100 ΧΡΟΝΙΑ ΓΕΝΙΚΗΣ ΘΕΩΡΙΑΣ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΟΣ H ΚΟΣΜΟΛΟΓΙΑ ΜΕΤΑ ΑΠΟ 100 ΧΡΟΝΙΑ ΓΕΝΙΚΗΣ ΘΕΩΡΙΑΣ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΟΣ ΔΡ. ΣΠΥΡΟΣ ΒΑΣΙΛΑΚΟΣ ΚΕΝΤΡΟ ΕΡΕΥΝΩΝ ΑΣΤΡΟΝΟΜΙΑΣ ΑΚΑΔΗΜΙΑ ΑΘΗΝΩΝ ΑΚΑΔΗΜΙΑ ΑΘΗΝΩΝ 25/11/2015 Η ΧΡΥΣΗ ΠΕΡΙΟΔΟΣ ΤΗΣ ΚΟΣΜΟΛΟΓΙΑΣ 96% του Σύμπαντος

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ . ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ Θεόδωρος Ν. Τομαράς 1 Περιεχόμενα 1 Εισαγωγή 3 2 Tα αξιώματα της Σχετικότητας 5 3 Η σχετικότητα του ταυτόχρονου 9 4 Η διαστολή του χρόνου 11 5 Η συστολή του

Διαβάστε περισσότερα

Κεφάλαιο 4 Δυναµική: Νόµοι Κίνησης του Νεύτωνα

Κεφάλαιο 4 Δυναµική: Νόµοι Κίνησης του Νεύτωνα Κεφάλαιο 4 Δυναµική: Νόµοι Κίνησης του Νεύτωνα Δύναµη Περιεχόµενα Κεφαλαίου 4 1 ος Νόµος Κίνησης του Νεύτωνα Μάζα 2 ος Νόµος Κίνησης του Νεύτωνα 3 ος Νόµος Κίνησης του Νεύτωνα Βάρος: Η Δύναµη της Βαρύτητας

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Μηχανική Εικόνα: Isaac Newton: Θεωρείται πατέρας της Κλασικής Φυσικής, καθώς ξεκινώντας από τις παρατηρήσεις του Γαλιλαίου αλλά και τους νόμους του Κέπλερ για την κίνηση των πλανητών

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΣΕΡΡΩΝ ΦΥΣΙΚΗΣ ΣΧΟΛΕΙΟ:. Σέρρες 26/11/2011. Σύνολο µορίων:...

ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΣΕΡΡΩΝ ΦΥΣΙΚΗΣ ΣΧΟΛΕΙΟ:. Σέρρες 26/11/2011. Σύνολο µορίων:... ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΣΕΡΡΩΝ 10 η Ευρωπαϊκή Ολυµπιάδα Επιστηµών EUSO 2012 ΤΟΠΙΚΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΠΕΙΡΑΜΑΤΩΝ ΦΥΣΙΚΗΣ ΣΧΟΛΕΙΟ:. Μαθητές/τριες που συµµετέχουν: (1) (2) (3) Σέρρες 26/11/2011

Διαβάστε περισσότερα

ΛΥΚΕΙΟ ΑΓΙΟΥ ΣΠΥΡΙΔΩΝΑ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΛΥΚΕΙΟ ΑΓΙΟΥ ΣΠΥΡΙΔΩΝΑ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΛΥΚΕΙΟ ΑΓΙΟΥ ΠΥΡΙΔΩΝΑ ΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕ ΠΡΟΑΓΩΓΙΚΕ ΕΞΕΤΑΕΙ ΦΥΙΚΗ ΚΑΤΕΥΘΥΝΗ Β ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 31-05-2012 ΔΙΑΡΚΕΙΑ: 07.45 10.15 Οδηγίες 1. Το εξεταστικό δοκίμιο αποτελείται από 9 σελίδες.

Διαβάστε περισσότερα

ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ ΤΩΝ ΣΩΜΑΤΩΝ: ΑΠΟ ΤΟΝ ΑΡΙΣΤΟΤΕΛΗ ΣΤΟ ΓΑΛΙΛΑΙΟ ΚΑΙ ΕΩΣ ΣΗΜΕΡΑ

ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ ΤΩΝ ΣΩΜΑΤΩΝ: ΑΠΟ ΤΟΝ ΑΡΙΣΤΟΤΕΛΗ ΣΤΟ ΓΑΛΙΛΑΙΟ ΚΑΙ ΕΩΣ ΣΗΜΕΡΑ ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ Α ΤΕΤΡΑΜΗΝΟΥ ΣΧΟΛ. ΕΤΟΣ 2012-13 ΤΑΞΗ Α ΛΥΚΕΙΟΥ ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ ΤΩΝ ΣΩΜΑΤΩΝ: ΑΠΟ ΤΟΝ ΑΡΙΣΤΟΤΕΛΗ ΣΤΟ ΓΑΛΙΛΑΙΟ ΚΑΙ ΕΩΣ ΣΗΜΕΡΑ ΥΠΕΥΘΥΝΟΣ ΕΚΠΑΙΔΕΥΤΙΚΟΣ ΦΥΤΤΑΣ ΓΕΩΡΓΙΟΣ Page1 ΤΟ ΘΕΩΡΗΤΙΚΟ ΠΛΑΙΣΙΟ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004 Τµήµα Π. Ιωάννου & Θ. Αποστολάτου Θέµα 1 (25 µονάδες) Ένα εκκρεµές µήκους l κρέµεται έτσι ώστε η σηµειακή µάζα να βρίσκεται ακριβώς

Διαβάστε περισσότερα

ΔΥΝΑΜΗ, ΝΟΜΟΙ ΤΟΥ NEWTON

ΔΥΝΑΜΗ, ΝΟΜΟΙ ΤΟΥ NEWTON 1 ΔΥΝΑΜΗ, ΝΟΜΟΙ ΤΟΥ NEWTON Τι είναι «δύναμη»; Θα πρέπει να ξεκαθαρίσουμε ότι ο όρος «δύναμη» στη Φυσική έχει αρκετά διαφορετική σημασία από ότι στην καθημερινή γλώσσα. Εκφράσεις όπως «τον χτύπησε με δύναμη»,

Διαβάστε περισσότερα

Κεφάλαιο 2 ο Δυναμική σε μια διάσταση

Κεφάλαιο 2 ο Δυναμική σε μια διάσταση 1 Σκοπός Να αποκτήσουν οι μαθητές τη δυνατότητα να απαντούν σε ερωτήματα που εμφανίζονται στην καθημερινή μας ζωή και έχουν σχέση με την δύναμη, μάζα και αδράνεια. Λέξεις κλειδιά Δύναμη, αδράνεια, μάζα,

Διαβάστε περισσότερα

Κεφάλαιο 2: Ο Νεύτωνας παίζει μπάλα

Κεφάλαιο 2: Ο Νεύτωνας παίζει μπάλα Κεφάλαιο : Ο Νεύτωνας παίζει μπάλα Το ποδόσφαιρο κατέχει αδιαμφισβήτητα τη θέση του βασιλιά όλων των αθλημάτων. Είναι το μέσο εκείνο που ενώνει εκατομμύρια ανθρώπους σε όλον τον κόσμο επηρεάζοντας ακόμα

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Μηχανική Εικόνα: Isaac Newton: Θεωρείται πατέρας της Κλασικής Φυσικής, καθώς ξεκινώντας από τις παρατηρήσεις του Γαλιλαίου αλλά και τους νόμους του Κέπλερ για την κίνηση των πλανητών

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Μηχανική Εικόνα: Isaac Newton: Θεωρείται πατέρας της Κλασικής Φυσικής, καθώς ξεκινώντας από τις παρατηρήσεις του Γαλιλαίου αλλά και τους νόμους του Κέπλερ για την κίνηση των πλανητών

Διαβάστε περισσότερα

minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014

minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014 minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/014 minimath.eu Περιεχόμενα Κινηση 3 Ευθύγραμμη ομαλή κίνηση 4 Ευθύγραμμη ομαλά μεταβαλλόμενη κίνηση 5 Δυναμικη 7 Οι νόμοι του Νεύτωνα 7 Τριβή 8 Ομαλη κυκλικη

Διαβάστε περισσότερα

Το Σύμπαν. (Δημιουργία, δομή και εξέλιξη) Λουκάς Βλάχος Τμήμα Φυσικής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Το Σύμπαν. (Δημιουργία, δομή και εξέλιξη) Λουκάς Βλάχος Τμήμα Φυσικής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Το Σύμπαν (Δημιουργία, δομή και εξέλιξη) Λουκάς Βλάχος Τμήμα Φυσικής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Αφιέρωση Θα ήθελα να αφιερώσω αυτή την διάλεξη στο Νίκο Λαμπρόπουλο σαν ένα δείγμα ευγνωμοσύνης

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ 3 η. Παράδοση Οι ασκήσεις είναι βαθμολογικά ισοδύναμες

ΕΡΓΑΣΙΑ 3 η. Παράδοση Οι ασκήσεις είναι βαθμολογικά ισοδύναμες ΕΡΓΑΣΙΑ 3 η Παράδοση 9--9 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες Άσκηση 1 A) Δυο τραίνα ταξιδεύουν στην ίδια σιδηροτροχιά το ένα πίσω από το άλλο. Το πρώτο τραίνο κινείται με ταχύτητα 1 m s. Το δεύτερο

Διαβάστε περισσότερα

2. Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης

2. Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης Βιβλιογραφία C Kittel, W D Knight, A Rudeman, A C Helmholz και B J oye, Μηχανική (Πανεπιστηµιακές Εκδόσεις ΕΜΠ, 1998) Κεφ, 3 R Spiegel, Θεωρητική

Διαβάστε περισσότερα

ΘΕΜΑ 2: Α. Ένα σωματίδιο κινείται στο επίπεδο xy έτσι ώστε υ

ΘΕΜΑ 2: Α. Ένα σωματίδιο κινείται στο επίπεδο xy έτσι ώστε υ 3 η ΕΡΓΑΣΙΑ Τα θέματα είναι ισοδύναμα. Όπου απαιτείται δίνεται η τιμή της επιτάχυνσης της βαρύτητας ως g=9.8m/sec 2. Ημερομηνία Παράδοσης: 26/2/2006 ΘΕΜΑ 1: A. Σχεδιάστε τα διαγράμματα θέσης-χρόνου, ταχύτητας-χρόνου

Διαβάστε περισσότερα

F Στεφάνου Μ. 1 Φυσικός

F Στεφάνου Μ. 1 Φυσικός F 1 ΠΑΡΑΤΗΡΗΣΕΙΣ ΓΙΑ ΤΙΣ ΑΣΚΗΣΕΙΣ Όταν δίνονται οι δυνάμεις οι οποίες ασκούνται σε ένα σώμα, υπολογίζουμε τη συνισταμένη των δυνάμεων και από τη σχέση (ΣF=m.α ) την επιτάχυνσή του. Αν ασκούνται σε αρχικά

Διαβάστε περισσότερα

Τροχιές σωμάτων σε πεδίο Βαρύτητας. Γιώργος Νικολιδάκης

Τροχιές σωμάτων σε πεδίο Βαρύτητας. Γιώργος Νικολιδάκης Τροχιές σωμάτων σε πεδίο Βαρύτητας Γιώργος Νικολιδάκης 9/18/2013 1 Κωνικές Τομές Είναι καμπύλες που σχηματίζονται καθώς επίπεδα τέμνουν με διάφορες γωνίες επιφάνειες κώνων. Παραβολή Έλλειψη -κύκλος Υπερβολή

Διαβάστε περισσότερα

Φύλλο εργασίας Το φωτοβολταϊκό στοιχείο

Φύλλο εργασίας Το φωτοβολταϊκό στοιχείο Φύλλο εργασίας Το φωτοβολταϊκό στοιχείο Στοιχεία ομάδας: Ονοματεπώνυμο Α.Μ. Ημερομηνία: Τμήμα: Απαραίτητες Θεωρητικές Γνώσεις: Το φωτοβολταϊκό στοιχείο είναι μία διάταξη που μετατρέπει τη φωτεινή ενέργεια

Διαβάστε περισσότερα

Περί της «Αρχής ανεξαρτησίας των κινήσεων»

Περί της «Αρχής ανεξαρτησίας των κινήσεων» Περί της «Αρχής ανεξαρτησίας των κινήσεων» Παρακολουθώ στο δίκτυο τις τελευταίες µέρες να γίνεται συζήτηση για την «Αρχή ανεξαρτησίας των κινήσεων» ή την «επαλληλία εξισώσεων κίνησης». Προσπαθώ στο µέτρο

Διαβάστε περισσότερα

β. F = 2ρΑυ 2 γ. F = 1 2 ραυ 2 δ. F = 1 3 ραυ 2

β. F = 2ρΑυ 2 γ. F = 1 2 ραυ 2 δ. F = 1 3 ραυ 2 Στις ερωτήσεις 1-4 να επιλέξετε μια σωστή απάντηση. 1. Ένα σύστημα ελατηρίου - μάζας εκτελεί απλή αρμονική ταλάντωση πλάτους Α. Αν τετραπλασιάσουμε την ολική ενέργεια της ταλάντωσης αυτού του συστήματος

Διαβάστε περισσότερα

2.1 ΕΝΕΡΓΕΙΑ ΤΟΥ ΗΛΕΚΤΡΟΝΙΟΥ ΣΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ

2.1 ΕΝΕΡΓΕΙΑ ΤΟΥ ΗΛΕΚΤΡΟΝΙΟΥ ΣΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ 2-1 Ένας φύλακας του ατομικού ρολογιού καισίου στο Γραφείο Μέτρων και Σταθμών της Ουάσιγκτον. 2-2 Άτομα στην επιφάνεια μιας μύτης βελόνας όπως φαίνονται μεηλεκτρονικόμικροσκό 2.1 ΕΝΕΡΓΕΙΑ ΤΟΥ ΗΛΕΚΤΡΟΝΙΟΥ

Διαβάστε περισσότερα

Φύση του φωτός. Θεωρούμε ότι το φως έχει διττή φύση: διαταραχή που διαδίδεται στο χώρο. μήκος κύματος φωτός. συχνότητα φωτός

Φύση του φωτός. Θεωρούμε ότι το φως έχει διττή φύση: διαταραχή που διαδίδεται στο χώρο. μήκος κύματος φωτός. συχνότητα φωτός Γεωμετρική Οπτική Φύση του φωτός Θεωρούμε ότι το φως έχει διττή φύση: ΚΥΜΑΤΙΚΗ Βασική ιδέα Το φως είναι μια Η/Μ διαταραχή που διαδίδεται στο χώρο Βασική Εξίσωση Φαινόμενα που εξηγεί καλύτερα (κύμα) μήκος

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2005 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος.

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2005 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος. Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 005 Θεωρητικό Μέρος Θέμα 1 ο Α Λυκείου Α. Ο Αλέξης και η Χρύσα σκαρφάλωσαν σε ένα λόφο που είχε κλίση 0 ο. Επιβιβάστηκαν σε ένα έλκηθρο, και άρχισαν

Διαβάστε περισσότερα

4 η Εργασία F 2. 90 o 60 o F 1. 2) ύο δυνάµεις F1

4 η Εργασία F 2. 90 o 60 o F 1. 2) ύο δυνάµεις F1 4 η Εργασία 1) ύο δυνάµεις F 1 και F 2 ασκούνται σε σώµα µάζας 5kg. Εάν F 1 =20N και F 2 =15N βρείτε την επιτάχυνση του σώµατος στα σχήµατα (α) και (β). [ 2 µονάδες] F 2 F 2 90 o 60 o (α) F 1 (β) F 1 2)

Διαβάστε περισσότερα

Η ύπαρξη ορίων στις μεταβολές (min και max) και πρώτα απ' όλα στο χρόνο. Ειδικότερα η ύπαρξη σταθερών μέσων όρων και των φυσικών σταθερών.

Η ύπαρξη ορίων στις μεταβολές (min και max) και πρώτα απ' όλα στο χρόνο. Ειδικότερα η ύπαρξη σταθερών μέσων όρων και των φυσικών σταθερών. Ποια φαινόμενα περιγράφονται ενοποιημένα, ερμηνεύονται και προβλέπονται στη θεωρία του Τελειωμένου Χρόνου και της Σχετικότητας της Ενέργειας (Ενιαία θεωρία περί χρόνου, χώρου, ύλης και νόησης) " Δεν είναι

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 14 Μάθημα: ΦΥΣΙΚΗ 4ωρο Τ.Σ. Ημερομηνία και ώρα εξέτασης: Παρασκευή, 13 Ιουνίου 14 8:

Διαβάστε περισσότερα

Κεφάλαιο 7 : 7.1. Einstein. του Νεύτωνα, επαληθεύουν την. Σχήμα 7.1

Κεφάλαιο 7 : 7.1. Einstein. του Νεύτωνα, επαληθεύουν την. Σχήμα 7.1 Κεφάλαιο 7 : Στοιχεία της Γενικής Θεωρίας της Σχετικότητας. 7. Η Αρχή της Ισοδυναμίας του Einstein. Σύμφωνα με τον Νεύτωνα η μάζα ενός σώματος ορίζεται με δύο τρόπους: Υποθέστε πως εφαρμόζουμε μια γνωστή

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 03 Νόμοι κίνησης του Νεύτωνα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 03 Νόμοι κίνησης του Νεύτωνα Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 03 Νόμοι κίνησης του Νεύτωνα ΦΥΣ102 1 Δύναμη είναι: Η αιτία που προκαλεί μεταβολή

Διαβάστε περισσότερα

Σχολή Θετικών Επιστημών και Τεχνολογίας

Σχολή Θετικών Επιστημών και Τεχνολογίας ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Σχολή Θετικών Επιστημών και Τεχνολογίας Πρόγραμμα Σπουδών Μεταπτυχιακή Ειδίκευση Καθηγητών Φυσικών Επιστημών ΘΕΜΑ ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΕ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΕΙΔΙΚΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ

Διαβάστε περισσότερα

Αναλυτικά Προγράμματα Φυσικής. στην Δευτεροβάθμια Εκπαίδευση

Αναλυτικά Προγράμματα Φυσικής. στην Δευτεροβάθμια Εκπαίδευση Αναλυτικά Προγράμματα Φυσικής στην Δευτεροβάθμια Εκπαίδευση Πρόταση Διαλόγου Σύλλογος Φυσικών Κρήτης Ηράκλειο, Σεπτέμβρης 2016 www.sfkritis.gr sfkritis@gmail.com Η σημερινή πραγματικότητα Αναμφίβολα ζούμε

Διαβάστε περισσότερα

Φυσικό Τμήμα Παν/μιο Ιωαννίνων - Ειδική Σχετικότητα - 1 Λυμένα Προβλήματα - IV

Φυσικό Τμήμα Παν/μιο Ιωαννίνων - Ειδική Σχετικότητα - 1 Λυμένα Προβλήματα - IV Φυσικό Τμήμα Παν/μιο Ιωαννίνων - Ειδική Σχετικότητα - 23..20 Άσκηση : Χρησιμοποιώντας την διωνυμική σχέση για προσεγγίσεις υπολογίστε πόσο γρήγορα πρέπει να κινείται χρονόμετρο έτσι ώστε να χτύπα 0 φορές

Διαβάστε περισσότερα

1 + Φ r /c 2 = 1 (1) (2) c 2 k y 1 + (V/c) 1 + tan 2 α = sin α (3) tan α = k y k x

1 + Φ r /c 2 = 1 (1) (2) c 2 k y 1 + (V/c) 1 + tan 2 α = sin α (3) tan α = k y k x ΛΥΣΕΙΣ ΣΕΙΡΑΣ ΑΣΚΗΣΕΩΝ 6 Θ. Τομαράς 1. Πρωτόνια στις κοσμικές ακτίνες φτάνουν ακόμα και ενέργειες της τάξης των 10 20 ev. Να συγκρίνετε την ενέργεια αυτή με την ενέργεια που έχει μια πέτρα που πετάτε με

Διαβάστε περισσότερα

Η ΣΧΕΤΙΚΟΤΗΤΑ ΣΗΜΕΡΑ ΝΙΚΟΛΑΟΣ ΣΤΕΡΓΙΟΥΛΑΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Η ΣΧΕΤΙΚΟΤΗΤΑ ΣΗΜΕΡΑ ΝΙΚΟΛΑΟΣ ΣΤΕΡΓΙΟΥΛΑΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Η ΣΧΕΤΙΚΟΤΗΤΑ ΣΗΜΕΡΑ ΝΙΚΟΛΑΟΣ ΣΤΕΡΓΙΟΥΛΑΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ 12ο Θερινό Σχολείο Αστρονομίας Βόλος, 8/7/2011 Περιεχόμενα 1. Ειδική Θεωρία Σχετικότητας (ΕΘΣ) 2. Γενική Θεωρία

Διαβάστε περισσότερα

1 Ο παράγοντας κλίμακας και ο Νόμος του Hubble

1 Ο παράγοντας κλίμακας και ο Νόμος του Hubble ΤΟ ΚΑΘΙΕΡΩΜΕΝΟ ΠΡΟΤΥΠΟ ΤΗΣ ΚΟΣΜΟΛΟΓΙΑΣ Διδάσκων: Θεόδωρος Ν. Τομαράς Ο παράγοντας κλίμακας και ο Νόμος του Hubble Σύμφωνα με την Κοσμολογική Αρχή το Σύμπαν είναι σε μεγάλες κλίμακες ομογενές και ισότροπο.

Διαβάστε περισσότερα

Μέγεθος είναι κάθε ποσότητα που μπορεί να μετρηθεί.

Μέγεθος είναι κάθε ποσότητα που μπορεί να μετρηθεί. Μέγεθος είναι κάθε ποσότητα που μπορεί να μετρηθεί. μέγεθος οι διαστάσεις, η ποσότητα, η ένταση, το ποσό, η ποιότητα, κάποιου πράγματος (σώματος) Φυσικά μεγέθη λέγονται τα μεγέθη που χρησιμοποιούμε για

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 5 Η ΠΓΚΥΠΡΙ ΟΛΥΜΠΙ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Κυριακή, πριλίου, Παρακαλώ διαβάστε πρώτα τα πιο κάτω, πριν απαντήσετε οποιαδήποτε ερώτηση Γενικές Οδηγίες: ) Είναι πολύ σημαντικό να δηλώσετε

Διαβάστε περισσότερα

Λίγα για το Πριν, το Τώρα και το Μετά.

Λίγα για το Πριν, το Τώρα και το Μετά. 1 Λίγα για το Πριν, το Τώρα και το Μετά. Ψάχνοντας από το εσωτερικό κάποιων εφημερίδων μέχρι σε πιο εξειδικευμένα περιοδικά και βιβλία σίγουρα θα έχουμε διαβάσει ή θα έχουμε τέλος πάντων πληροφορηθεί,

Διαβάστε περισσότερα

Άσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης

Άσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης Άσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης Σύνοψη Σκοπός της συγκεκριμένης άσκησης είναι ο υπολογισμός του μέτρου της στιγμιαίας ταχύτητας και της επιτάχυνσης ενός υλικού σημείου

Διαβάστε περισσότερα

Το ταξίδι στην 11η διάσταση

Το ταξίδι στην 11η διάσταση Το ταξίδι στην 11η διάσταση Το κείμενο αυτό δεν αντιπροσωπεύει το πώς παρουσιάζονται οι 11 διστάσεις βάση της θεωρίας των υπερχορδών! Είναι περισσότερο «τροφή για σκέψη» παρά επιστημονική άποψη. Οι σκέψεις

Διαβάστε περισσότερα

Κβαντική µηχανική. Τύχη ή αναγκαιότητα. Ηµερίδα σύγχρονης φυσικής Καραδηµητρίου Μιχάλης

Κβαντική µηχανική. Τύχη ή αναγκαιότητα. Ηµερίδα σύγχρονης φυσικής Καραδηµητρίου Μιχάλης Κβαντική µηχανική Τύχη ή αναγκαιότητα Ηµερίδα σύγχρονης φυσικής Καραδηµητρίου Μιχάλης Ηφυσικήστόγύρισµα του αιώνα «Όλοι οι θεµελιώδεις νόµοι και δεδοµένα της φυσικής επιστήµης έχουν ήδη ανακαλυφθεί και

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7. Συστήµατα Υλικών Σηµείων

ΚΕΦΑΛΑΙΟ 7. Συστήµατα Υλικών Σηµείων ΚΕΦΑΛΑΙΟ 7. Συστήµατα Υλικών Σηµείων 1. Να βρεθεί το δυναµικό που οφείλεται σε δύο ακίνητα ελκτικά κέντρα µε µάζες 1 και. Γράψτε την εξίσωση της κίνησης ενός υλικού σηµείου µάζας στο παραπάνω δυναµικό.

Διαβάστε περισσότερα

ΦΩΣ ΚΑΙ ΣΚΙΑ. Πως δημιουργείτε η σκιά στη φυσική ;

ΦΩΣ ΚΑΙ ΣΚΙΑ. Πως δημιουργείτε η σκιά στη φυσική ; ΦΩΣ ΚΑΙ ΣΚΙΑ Πως δημιουργείτε η σκιά στη φυσική ; Λόγω της ευθύγραμμης διάδοσης του φωτός, όταν μεταξύ μιας φωτεινής πηγής και ενός περάσματος παρεμβάλλεται ένα αδιαφανές σώμα, δημιουργείτε στο πέρασμα

Διαβάστε περισσότερα

Τι είναι η σελήνη; Πως Δημιουργήθηκε; Ποιες είναι οι κινήσεις της; Σημάδια ζωής στη σελήνη. Πόσο απέχει η σελήνη από την γη; Τι είναι η πανσέληνος;

Τι είναι η σελήνη; Πως Δημιουργήθηκε; Ποιες είναι οι κινήσεις της; Σημάδια ζωής στη σελήνη. Πόσο απέχει η σελήνη από την γη; Τι είναι η πανσέληνος; Τι είναι η σελήνη; Πως Δημιουργήθηκε; Ποιες είναι οι κινήσεις της; Σημάδια ζωής στη σελήνη. Πόσο απέχει η σελήνη από την γη; Τι είναι η πανσέληνος; Μαγνητικό πεδίο. Κρατήρες. Ο πρώτος άνθρωπος που πήγε

Διαβάστε περισσότερα

ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 10

ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 10 ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 10 1. Τρια αντικείµενα Α, Β και C µε µάζα m, 2m και 8m αντίστοιχα βρίσκονται στο ίδιο επίπεδο και στις θέσεις που φαίνονται στο σχήµα. Σε ποια θέση (x,y) πρέπει να τοποθετεί ένα τέταρτο

Διαβάστε περισσότερα

Σφάλμα. (c) Για λόγους απλούστευσης, θέτουμε Άρα θα είναι ή. Όπου είναι προφανώς θετικός αριθμός. Άρα και. Αφού. Αφού

Σφάλμα. (c) Για λόγους απλούστευσης, θέτουμε Άρα θα είναι ή. Όπου είναι προφανώς θετικός αριθμός. Άρα και. Αφού. Αφού Πρόβλημα 10.1 Σε Σφάλμα 14 6.7 10 % (πολύ μικρό!!) Είναι ακόμα μικρότερο του c (c) Για λόγους απλούστευσης, θέτουμε Άρα θα είναι ή Όπου είναι προφανώς θετικός αριθμός. Άρα και Πρόβλημα 10.2 (a) Ταχύτητα

Διαβάστε περισσότερα

ΤΟ ΑΙΝΙΓΜΑ ΤΗΣ ΒΑΡΥΤΗΤΑΣ Του Αλέκου Χαραλαµπόπουλου Μία προσέγγιση από φιλοσοφικής και φυσικής πλευράς, της παραγωγής και της φύσης της Βαρύτητας. ΠΡΟΛΟΓΟΣ Είναι κοινή πείρα η έλξη της γης, την οποία ονοµάζουµε

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016 Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr 1 Περιεχόμενα ενότητας Α Βασικές έννοιες Στατική υλικού σημείου Αξιωματικές αρχές Νόμοι Νεύτωνα Εξισώσεις

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2. Τρισδιάστατες κινήσεις

ΚΕΦΑΛΑΙΟ 2. Τρισδιάστατες κινήσεις ΚΕΦΑΛΑΙΟ Τρισδιάστατες κινήσεις Οι µονοδιάστατες κινήσεις είναι εύκολες αλλά ζούµε σε τρισδιάστατο χώρο Θα δούµε λοιπόν τώρα πως θα αντιµετωπίζοµε την κίνηση υλικού σηµείου στις τρεις διαστάσεις Ας θεωρήσοµε

Διαβάστε περισσότερα

ΚΙΝΗΜΑΤΙΚΗ. Νίκος Κανδεράκης

ΚΙΝΗΜΑΤΙΚΗ. Νίκος Κανδεράκης ΚΙΝΗΜΑΤΙΚΗ Νίκος Κανδεράκης Η ΚΙΝΗΣΗ ΣΤΗΝ ΑΡΙΣΤΟΤΕΛΙΚΗ ΦΥΣΙΚΗ Φυσική κίνηση: τα σώματα πηγαίνουν προς στη φυσική τους θέση Βαριά σώματα (γη, νερό) προς τα κάτω Ελαφριά σώματα (αέρας, φωτιά) προς τα πάνω

Διαβάστε περισσότερα

Ακτίνες επιτρεπόμενων τροχιών (2.6)

Ακτίνες επιτρεπόμενων τροχιών (2.6) Αντικαθιστώντας το r με r n, έχουμε: Ακτίνες επιτρεπόμενων τροχιών (2.6) Αντικαθιστώντας n=1, βρίσκουμε την τροχιά με τη μικρότερη ακτίνα n: Αντικαθιστώντας την τελευταία εξίσωση στη 2.6, παίρνουμε: Αν

Διαβάστε περισσότερα