Λίγα για το Πριν, το Τώρα και το Μετά.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Λίγα για το Πριν, το Τώρα και το Μετά."

Transcript

1 1 Λίγα για το Πριν, το Τώρα και το Μετά. Ψάχνοντας από το εσωτερικό κάποιων εφημερίδων μέχρι σε πιο εξειδικευμένα περιοδικά και βιβλία σίγουρα θα έχουμε διαβάσει ή θα έχουμε τέλος πάντων πληροφορηθεί, από κάποιο ΜΜΕ, ότι κάποιο τηλεσκόπιο (συνήθως πια τοποθετημένο σε δορυφόρο) φωτογράφισε κάποιο γαλαξία που απέχει πολλά, ακόμα και πάνω από δεκατρία, δις έτη φωτός από εμάς. Δε χρειάζονται και ιδιαίτερες γνώσεις για να καταλάβουμε ότι αυτό που φωτογράφισε δεν είναι παρά το φως το οποίο έφυγε από το συγκεκριμένο γαλαξία πριν τόσα δις χρόνια, σε μια εποχή που η ίδια η γη μας δεν υπήρχε. Με λίγο ψάξιμο ακόμα θα βρούμε ότι, το φως του ήλιου μας χρειάζεται κάτι λιγότερο από οκτώμισι λεπτά για να φτάσει στη γη, της σελήνης λίγο παραπάνω από ένα δευτερόλεπτο και αν κάνουμε μια διαίρεση κάπου 10 δισεκατομμυριοστά του δευτερολέπτου για να φτάσει στα μάτια μας από το συνάδελφο του δίπλα γραφείου. Το γεγονός του πεπερασμένου της ταχύτητας του φωτός ( km/sec) σε συνδυασμό με το ότι τίποτα (τουλάχιστο με βάση τις υπάρχουσες γνώσεις μας) δε μπορεί να ταξιδέψει, μέσα στο «χώρο-χρόνο», μεταφέροντας πληροφορία με ταχύτητα μεγαλύτερης αυτής του φωτός, δε μπορεί παρά να έχει κάποιες συνέπειες ως προς το απόλυτο της χρονικής τοποθέτησης των γεγονότων. Γεννάται δηλαδή το εξής ερώτημα: Μπορούμε πάντα να κατατάσσουμε τα γεγονότα σε χρονική σειρά, έτσι ώστε αν «εμείς», για δυο γεγονότα, έχουμε υπολογίσει ότι το «Γ1» συνέβη ενωρίτερα του «Γ2» άρα το «Γ1» προηγείται χρονικά του «Γ2» και άρα το «Γ1» θα μπορούσε να επηρεάσει ή και να προκαλέσει το «Γ2», ενώ το αντίστροφο αποκλείεται, τότε με την ίδια χρονική σειρά θα τα κατατάσσει και οποιοδήποτε άλλος παρατηρητής; Πάνω στη γη, βέβαια, δεδομένης της τεράστιας τιμής της ταχύτητας του φωτός, το ερώτημα δεν έχει νόημα, τουλάχιστον για συμβάντα της καθημερινής μας εμπειρίας και όχι μόνο. Για να καταλάβουμε όμως την ουσία του ερωτήματος ας θεωρήσουμε ότι η ταχύτητα του φωτός είναι πολύ μικρότερη από αυτήν που είναι στην πραγματικότητα, και ας υποθέσουμε ότι είναι 500 m/sec. Ας θεωρήσουμε, τώρα, δύο παρατηρητές, τους Α και Β (σχήμα 1) οι οποίοι απέχουν μεταξύ τους 10 km. Ας θεωρήσουμε επίσης το σημείο Μ να είναι το μέσο της μεταξύ τους απόστασης κι έστω ένα ακόμα σημείο, το Γ, το οποίο απέχει 2 km από τον Α και 8 km από τον Β. (σχήμα 1) Ας θεωρήσουμε, τέλος, ότι οι δύο παρατηρητές έχουν συντονισμένα τα ρολόγια τους έτσι ώστε να ξέρουν ότι αν του ενός δείχνει 12:00, την ίδια ακριβώς ένδειξη θα δείχνει και του άλλου. Ένας πολύ απλός τρόπος να γίνει αυτό είναι ο εξής. Έχουν συνεννοηθεί έτσι ώστε μόλις του Α, για παράδειγμα, το ρολόι δείξει ακριβώς 12:00:00, τότε αυτός θα στείλει ένα οπτικό σήμα προς τον Β. Μόλις ο Β το δει τότε αυτομάτως θα συντονίσει το ρολόι του ώστε, αυτό, να δείχνει 12:00:20 [καθόσον

2 2 ξέρουν ότι το οπτικό σήμα χρειάστηκε 20sec (10 km ήτοι m:500 m/sec = 20 sec) για να φτάσει από τον Α στον Β] Ας υποθέσουμε, τώρα, ότι ο Α καταγράφει ως εξής τα συμβάντα. 13:00:10. Λάμψη προερχόμενη από το Μ. 13:00:34. Λάμψη προερχόμενη από το Γ. 14:10:08. Λάμψη προερχόμενη από το Γ. 14:10:10. Λάμψη προερχόμενη από το Μ. Στη συνέχεια πηγαίνει προς τον Β και συγκρίνει με το πώς κατέγραψε ο Β τα ίδια συμβάντα και βλέπει. 13:00:10. Λάμψη προερχόμενη από το Μ. 13:00:46. Λάμψη προερχόμενη από το Γ. 14:10:10. Λάμψη προερχόμενη από το Μ. 14:10:20. Λάμψη προερχόμενη από το Γ. Το πρώτο συμπέρασμα στο οποίο κάποιος μπορεί να καταλήξει είναι ότι, αν η πληροφορία - που όπως είπαμε στην συγκεκριμένη υποθετική μας περίπτωση ταξιδεύει με 500 m/sec- ταξίδευε με «άπειρη» ταχύτητα τότε και οι δυο απλά θα κατέγραφαν τα εξής. 13:00:00. Λάμψη προερχόμενη από το Μ. 13:00:30. Λάμψη προερχόμενη από το Γ. 14:10:00. Λάμψη προερχόμενη από το Μ. 14:10:04. Λάμψη προερχόμενη από το Γ. Αυτό όμως δε συμβαίνει και τούτο εξ αιτίας του πεπερασμένου της ταχύτητας του φωτός. Μάλιστα ο Β καταγράφει με αντίστροφη χρονική σειρά το τρίτο και το τέταρτο γεγονός σε σχέση Α. Κάποιος θα μπορούσε να πει, επιμένοντας να θέλει να υπάρχει οπωσδήποτε μια απόλυτη χρονική σειρά των γεγονότων, ότι ο Α σφάλει μιας και, αν η πληροφορία μπορούσε να ταξιδέψει ακαριαία, θα κατέγραφε διαφορετικά τη χρονική σειρά. Αυτό όμως είναι λάθος διότι σε αυτήν την περίπτωση ο κόσμος δε θα ήταν αυτός που είναι αλλά, αν υπήρχε τέτοιος, κάτι τελείως μα τελείως διαφορετικό. Πέρα από αυτό, όμως, υπάρχει μια ουσιώδης διαφορά ανάμεσα στα γεγονότα που και οι δύο κατέγραψαν με την ίδια χρονική σειρά και σε αυτά που κατέγραψαν με αντίστροφη. Για να συνειδητοποιήσουμε τη διαφορά αυτή ας φανταστούμε το μέτωπο του φωτός, που προέρχεται από τη λάμψη του Μ στην πρώτη περίπτωση. Αυτό χρειάζεται 6 sec για να φτάσει στο Γ και όταν φτάσει, αυτό δε θα έχει λάμψει, αλλά θα χρειαστεί να περάσουν ακόμα 24 sec για να λάμψει. Είναι σαφές ότι στην περίπτωση αυτή μπορούμε να ισχυριστούμε ότι η λάμψη του Μ προηγείται της λάμψης του Γ. Στη δεύτερη περίπτωση, όμως, τα πράγματα είναι διαφορετικά και τούτο διότι όταν το μέτωπο φωτός που προέρχεται από τη λάμψη του Μ φτάσει στο Γ αλλά και το αντίστοιχο από τη λάμψη του Γ φτάσει στο Μ, τα δεύτερα θα έχουν ήδη λάμψει! Τι σημαίνει αυτό; Με απλά λόγια ότι Στην πρώτη περίπτωση αν τα δυο αυτά γεγονότα, δηλαδή οι λάμψεις, συσχετίζονται τότε ο μόνος δυνατός τρόπος να συμβαίνει αυτή η συσχέτιση είναι: η λάμψη του Μ να λειτούργησε ως το αίτιο αυτής του Γ ή με άλλα λόγια η λάμψη του Γ να είναι το αποτέλεσμα της λάμψης του Μ, ενώ Στη δεύτερη περίπτωση του κάθε ενός η λάμψη αποκλείεται να συσχετίζεται με τη λάμψη του άλλου, διότι όταν κάθε ένα από αυτά έλαμπε δε «γνώριζε» για τη λάμψη του άλλου μιας και το μέτωπο του φωτός, από το άλλο, που είναι ο ταχύτερος τρόπος

3 3 μετάδοσης της πληροφορίας, δεν είχε ακόμα φτάσει. Ουσιαστικά δηλαδή όχι μόνο δε μπορούμε αυτά τα δυο γεγονότα να τα κατατάξουμε σε απόλυτη χρονική σειρά αλλά αποκλείεται και η όποια συσχέτισή τους! Ας δούμε τώρα το πώς αυτά μεταφέρονται στο λεγόμενο κώνο φωτός (σχήμα 2). (σχήμα 2) Ο κώνος φωτός του σχήματος 2 αν και αποτελεί μια σημαντική απλοποίηση, καθόσον δεν υπάρχουν τρεις χωρικές διαστάσεις (μήκος - πλάτος - ύψος) αλλά μόνο μία (η X), εν τούτοις υπερκαλύπτει τους σκοπούς του παρόντος. Ας δούμε κατ αρχή το τι σημαίνει αυτός ο κώνος φωτός. Αρχικά παρατηρούμε δύο έντονες, κάθετες μεταξύ τους, γραμμές. Η μία είναι του χρόνου (t) και η άλλη της απόστασης (x). Κάθε σημείο το επιπέδου εκφράζει ένα συμβάν το οποίο συνέβη τη χρονική στιγμή που θα βρούμε αν από το εν λόγω σημείο φέρουμε την κάθετη στον άξονα του χρόνου και σε απόσταση, από τον παρατηρητή, την οποία θα βρούμε αν από το σημείο φέρουμε την κάθετη στον άξονα των x. Για παράδειγμα το συμβάν c συνέβη τη χρονική στιγμή t(c) και σε απόσταση x(c) από τον παρατηρητή. Στο σημείο t(0) βρίσκεται ο παρατηρητής τη χρονική του στιγμή «τώρα». Παρατηρούμε δύο γραμμές να ξεκινούν από το t(0) και να κατευθύνονται διαγώνια προς τα κάτω. Αυτές οι γραμμές δείχνουν τα γεγονότα τα οποία ο παρατηρητής παρατηρεί «τώρα». Για παράδειγμα το συμβάν c το παρατηρεί μεν «τώρα» αλλά αυτό συνέβη πριν από χρόνο = t(0) t(c) και σε απόσταση x(c) από αυτόν. Καθώς κυλάει ο χρόνος ο παρατηρητής κινείται κατά μήκος του άξονα του χρόνου προς τα πάνω, παρασύροντας φυσικά μαζί του και τις δυο αυτές διαγώνιες γραμμές. Όποιο σημείο / συμβάν περιλαμβάνεται εντός της σκιασμένης περιοχής αφορά συμβάν το οποίο ο παρατηρητής το έχει (ή θα μπορούσε να το έχει) παρατηρήσει στο παρελθόν του. Για παράδειγμα αν θεωρήσουμε το συμβάν a, αυτό το παρατήρησε πριν από χρονικό διάστημα: t(0) - tπ(a) και το οποίο, συμβάν a, είχε ήδη συμβεί πριν από tπ(a) - t(a) από τη στιγμή που αυτός το παρατήρησε.

4 4 Όποιο σημείο / συμβάν περιλαμβάνεται εκτός της σκιασμένης περιοχής αφορά συμβάν το οποίο ο παρατηρητής θα δύναται το παρατηρήσει στο μέλλον. Για παράδειγμα το συμβάν b το οποίο θα δύναται να το παρατηρήσει μετά από χρονικό διάστημα: tπ(b) t(0). Οφείλουμε φυσικά να επισημάνουμε ότι για το συμβάν b (αν και αυτό έχει «ήδη» συμβεί) αυτός, δεν έχει - ούτε μπορεί κατά οποιοδήποτε τρόπο να έχει - καμία πληροφορία ότι συνέβη πριν από τη χρονική στιγμή tπ(b)! Χρονική στιγμή στην οποία το φως θα φτάσει στη θέση παρατήρησης του. Ας δούμε τώρα το νόημα, στο σχήμα 2, της οριζόντιας γκρίζας γραμμής η οποία περνάει από το σημείο t(0). Για να καταλάβουμε τη σημασία της ας σκεφτούμε το εξής. Ας υποθέσουμε ότι κοιτάμε ένα αστέρι 10 έτη φωτός μακριά μας. Όπως έχουμε αναφέρει αυτό που βλέπουμε είναι το φως που αυτό εξέπεμψε πριν από 10 χρόνια και που τώρα φτάνει στα μάτια μας (μέσω του τηλεσκοπίου...). Ενδέχεται, το αστέρι αυτό «σήμερα», αν εμείς ήμασταν κάπου κοντά του και μπορούσαμε να το παρατηρήσουμε, να έχει ήδη εκραγεί. Το αν αυτό συνέβη εμείς «εδώ», το τονίζω αυτό!, δεν το ξέρουμε και θα το μάθουμε μόνον αν κάποια στιγμή, μέσα στα επόμενα 10 χρόνια φτάσει, σε μας, το φως της έκρηξης και την παρατηρήσουμε. Αυτό λοιπόν που εκφράζει αυτή η γκρίζα οριζόντια γραμμή, η οποία περνάει από το σημείο t(0), είναι ότι χωρίζει το χώρο των συμβάντων τα οποία δεν έχουμε παρατηρήσει μέχρι σήμερα (δηλαδή τη μη σκιασμένη περιοχή) σε δυο περιοχές, ήτοι: Αυτή των συμβάντων τα οποία έχουν ήδη συμβεί (είναι οι δυο μη σκιασμένες περιοχές που περιλαμβάνονται ανάμεσα στην οριζόντια γκρίζα γραμμή που περνάει από το t(0) και τις δυο πλάγιες μαύρες γραμμές που ξεκινούν από το t(0) και για τις οποίες αναφερθήκαμε ανωτέρω) και για τα οποία θα πληροφορηθούμε όταν το φως φτάσει σε μας και Αυτή των συμβάντων τα οποία δεν έχουν συμβεί και για τα οποία δε γνωρίζει οιοσδήποτε παρατηρητής αν θα συμβούν (ουσιαστικά τον όρο συμβάντα για την περιοχή αυτή το χρησιμοποιούμε καταχρηστικά!). Η περιοχή αυτή εκτείνεται από την γκρίζα οριζόντια γραμμή η οποία περνάει από το t(0) και πάνω. Θα κλείσουμε το παρόν κείμενο πάνω στο «Πριν, το Τώρα και το Μετά» και τη σχετικότητα που αυτά αποκτούν, εξ αιτίας της πεπερασμένης τιμής της ταχύτητας του φωτός, με το να δούμε το πώς καταγράφονται, στον κώνο φωτός, συμβάντα για τα οποία κάναμε αναφορά στο πρώτο μέρος του παρόντος, δηλαδή 1) γι αυτά που κατατάσσονται με την ίδια χρονική σειρά από οποιονδήποτε παρατηρητή και 2) γι αυτά που η χρονική τους σειρά εξαρτάται από τον παρατηρητή και για τα οποία, όπως ήδη είπαμε, αποκλείεται κάθε συσχέτισή τους όσον αφορά το ένα να δύναται να είναι το αίτιο του άλλου. Για να μπορέσουμε να πούμε σε πια από τις δυο κατηγορίες ανήκουν δυο συμβάντα πρέπει να σχεδιάσουμε τους κώνους φωτός τους και τότε: Αν παρατηρήσουμε ότι το ένα από τα δύο περιέχεται στον κώνο φωτός του άλλου (όπως στο παρακάτω σχήμα), τότε αυτό που περιέχεται είναι το προγενέστερο, και θα καταγράφεται ως προγενέστερο από οποιονδήποτε παρατηρητή. Επιπλέον δε θα μπορούσε ενδεχομένως να είναι το αίτιο του άλλου.

5 5 Αντίθετα, αν κανένα από τα δύο δεν περιέχεται στον κώνο φωτός του άλλου, τότε θα εξαρτάται από τον παρατηρητή (τη θέση που αυτός βρίσκεται δηλαδή) πιο θα καταγράφεται ως προγενέστερο και, βέβαια, κανένα από τα δύο δε θα μπορούσε να είναι το αίτιο του άλλου. Έτσι για παράδειγμα, ως παρακάτω σχήμα, ένας παρατηρητής που θα τύχει να βρεθεί «δίπλα» στο συμβάν a1 θα παρατηρήσει αυτό πρώτα και αργότερα το a2, ενώ ένας παρατηρητής που θα τύχει να βρεθεί «δίπλα» στο συμβάν a2 θα παρατηρήσει αυτό πρώτα κι αργότερα το a1. Τέλος ο παρατηρητής Π (τη χρονική στιγμή tπ(0)) θα παρατηρήσει και τα δυο συμβάντα ταυτόχρονα! Γιώργος Πρίμπας (Ιανουάριος 2008)

Η καμπύλωση του χώρου-θεωρία της σχετικότητας

Η καμπύλωση του χώρου-θεωρία της σχετικότητας Η καμπύλωση του χώρου-θεωρία της σχετικότητας Σύμφωνα με τη Γενική Θεωρία της Σχετικότητας που διατύπωσε ο Αϊνστάιν, το βαρυτικό πεδίο κάθε μάζας δημιουργεί μια καμπύλωση στον χώρο (μάλιστα στον χωροχρόνο),

Διαβάστε περισσότερα

Συστήµατος Αναφοράς. Συγχρονισµός των Ρολογιών Ενός

Συστήµατος Αναφοράς. Συγχρονισµός των Ρολογιών Ενός 2. ΠΡΟΛΕΓΟΜΕΝΑ Συστήµατα Αναφοράς Συγχρονισµός των Ρολογιών Ενός Συστήµατος Αναφοράς t A Ρολόι Α t 1 D A t + t + = A 1 t t t t 2 1 1 2 Ρολόι Αναφοράς t 2 D A = t t 2 2 1 ύο Αδρανειακά Συστήµατα Αναφοράς

Διαβάστε περισσότερα

3α. ΣΧΕΤΙΚΙΣΤΙΚΗ ΚΙΝΗΜΑΤΙΚΗ ΠΑΡΑ ΕΙΓΜΑΤΑ «ΠΑΡΑ ΟΞΑ» ΑΣΚΗΣΕΙΣ

3α. ΣΧΕΤΙΚΙΣΤΙΚΗ ΚΙΝΗΜΑΤΙΚΗ ΠΑΡΑ ΕΙΓΜΑΤΑ «ΠΑΡΑ ΟΞΑ» ΑΣΚΗΣΕΙΣ 3α. ΣΧΕΤΙΚΙΣΤΙΚΗ ΚΙΝΗΜΑΤΙΚΗ ΠΑΡΑ ΕΙΓΜΑΤΑ «ΠΑΡΑ ΟΞΑ» ΑΣΚΗΣΕΙΣ Παράδειγµα: Το τρένο του Άινστάιν Ένα τρένο κινείται ως προς έναν αδρανειακό παρατηρητή Ο µε σταθερή ταχύτητα V. Στο µέσο ακριβώς του τρένου

Διαβάστε περισσότερα

20 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ

20 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 20 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Αφιερωµένη στη µνήµη της Φυσικού Σύλβιας Γιασουµή Κυριακή, 19 Μαρτίου, 2006 Ώρα: 10:30-13:30 Οδηγίες: 1) Το δοκίµιο αποτελείται από έξι

Διαβάστε περισσότερα

Εργαστήριο 2008. Yπολογισμός της ταχύτητα διαστολής του Σύμπαντος, της ηλικίας του καθώς και της απόστασης μερικών κοντινών γαλαξιών.

Εργαστήριο 2008. Yπολογισμός της ταχύτητα διαστολής του Σύμπαντος, της ηλικίας του καθώς και της απόστασης μερικών κοντινών γαλαξιών. Υπολογισμός σταθεράς Hubble Εργαστήριο 2008 Yπολογισμός της ταχύτητα διαστολής του Σύμπαντος, της ηλικίας του καθώς και της απόστασης μερικών κοντινών γαλαξιών. Εισαγωγή Το 1929, ο Edwin Hubble (με βάση

Διαβάστε περισσότερα

ΔΥΝΑΜΗ, ΝΟΜΟΙ ΤΟΥ NEWTON

ΔΥΝΑΜΗ, ΝΟΜΟΙ ΤΟΥ NEWTON 1 ΔΥΝΑΜΗ, ΝΟΜΟΙ ΤΟΥ NEWTON Τι είναι «δύναμη»; Θα πρέπει να ξεκαθαρίσουμε ότι ο όρος «δύναμη» στη Φυσική έχει αρκετά διαφορετική σημασία από ότι στην καθημερινή γλώσσα. Εκφράσεις όπως «τον χτύπησε με δύναμη»,

Διαβάστε περισσότερα

ΕΙΔΗ ΔΥΝΑΜΕΩΝ ΔΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕΔΟ

ΕΙΔΗ ΔΥΝΑΜΕΩΝ ΔΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕΔΟ ΕΙΔΗ ΔΥΝΑΜΕΩΝ ΔΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕΔΟ ΕΙΔΗ ΔΥΝΑΜΕΩΝ 1 Οι δυνάμεις μπορούν να χωριστούν σε δυο κατηγορίες: Σε δυνάμεις επαφής, που ασκούνται μόνο ανάμεσα σε σώματα που βρίσκονται σε επαφή, και σε δυνάμεις

Διαβάστε περισσότερα

Σύγχρονη Φυσική 1, Διάλεξη 4, Τμήμα Φυσικής, Παν/μιο Ιωαννίνων Η Αρχές της Ειδικής Θεωρίας της Σχετικότητας και οι μετασχηματισμοί του Lorentz

Σύγχρονη Φυσική 1, Διάλεξη 4, Τμήμα Φυσικής, Παν/μιο Ιωαννίνων Η Αρχές της Ειδικής Θεωρίας της Σχετικότητας και οι μετασχηματισμοί του Lorentz 1 Η Αρχές της Ειδικής Θεωρίας της Σχετικότητας και οι μετασχηματισμοί του Lorentz Σκοποί της τέταρτης διάλεξης: 25.10.2011 Να κατανοηθούν οι αρχές με τις οποίες ο Albert Einstein θεμελίωσε την ειδική θεωρία

Διαβάστε περισσότερα

Κεφάλαιο 1 : Μετασχηματισμοί Γαλιλαίου.

Κεφάλαιο 1 : Μετασχηματισμοί Γαλιλαίου. Κεφάλαιο : Μετασχηματισμοί Γαλιλαίου.. Γεγονότα, συστήματα αναφοράς και η αρχή της Νευτώνειας Σχετικότητας. Ως φυσικό γεγονός ορίζεται ένα συμβάν το οποίο λαμβάνει χώρα σε ένα σημείο του χώρου μια συγκεκριμένη

Διαβάστε περισσότερα

Ερευνητική Εργασία με θέμα: «Ερευνώντας τα χρονικά μυστικά του Σύμπαντος»

Ερευνητική Εργασία με θέμα: «Ερευνώντας τα χρονικά μυστικά του Σύμπαντος» Ερευνητική Εργασία με θέμα: «Ερευνώντας τα χρονικά μυστικά του Σύμπαντος» Σωτήρης Τσαντίλας (PhD, MSc), Μαθηματικός Αστροφυσικός Σύντομη περιγραφή: Χρησιμοποιώντας δεδομένα από το διαστημικό τηλεσκόπιο

Διαβάστε περισσότερα

Κίνηση φορτισμένου σωματιδίου σε χώρο, όπου συνυπάρχουν ηλεκτρικό και μαγνητικό πεδίο ομογενή και χρονοανεξάρτητα

Κίνηση φορτισμένου σωματιδίου σε χώρο, όπου συνυπάρχουν ηλεκτρικό και μαγνητικό πεδίο ομογενή και χρονοανεξάρτητα Κίνηση φορτισμένου σωματιδίου σε χώρο, όπου συνυπάρχουν ηλεκτρικό και μαγνητικό πεδίο ομογενή και χρονοανεξάρτητα Μέρος α : Εξισώσεις κίνησης και συμπεράσματα) Α. Τι βλέπει ένας αδρανειακός παρατηρητής

Διαβάστε περισσότερα

< > Ο ΚΕΝΟΣ ΧΩΡΟΣ ΕΙΝΑΙ ΤΟ ΦΥΣΙΚΟ ΦΑΙΝΟΜΕΝΟ, ΤΟΥ ΟΠΟΙΟΥ Η ΕΞΗΓΗΣΗ ΑΠΟΔΕΙΚΝΥΕΙ ΕΝΑ ΠΑΓΚΟΣΜΙΟ ΠΝΕΥΜΑ

< > Ο ΚΕΝΟΣ ΧΩΡΟΣ ΕΙΝΑΙ ΤΟ ΦΥΣΙΚΟ ΦΑΙΝΟΜΕΝΟ, ΤΟΥ ΟΠΟΙΟΥ Η ΕΞΗΓΗΣΗ ΑΠΟΔΕΙΚΝΥΕΙ ΕΝΑ ΠΑΓΚΟΣΜΙΟ ΠΝΕΥΜΑ Κ. Γ. ΝΙΚΟΛΟΥΔΑΚΗΣ 1 < > Ο ΚΕΝΟΣ ΧΩΡΟΣ ΕΙΝΑΙ ΤΟ ΦΥΣΙΚΟ ΦΑΙΝΟΜΕΝΟ, ΤΟΥ ΟΠΟΙΟΥ Η ΕΞΗΓΗΣΗ ΑΠΟΔΕΙΚΝΥΕΙ ΕΝΑ ΠΑΓΚΟΣΜΙΟ ΠΝΕΥΜΑ Επαναλαμβάνουμε την έκπληξή μας για τα τεράστια συμπλέγματα γαλαξιών, τις πιο μακρινές

Διαβάστε περισσότερα

Ηλεκτρικά Κυκλώματα (Μ.Χ. ΠΑΠΑΧΡΙΣΤΟΦΟΡΟΥ) Η προσθήκη λαμπτήρων επηρεάζει την ένταση του ρεύματος σε ένα ηλεκτρικό κύκλωμα;

Ηλεκτρικά Κυκλώματα (Μ.Χ. ΠΑΠΑΧΡΙΣΤΟΦΟΡΟΥ) Η προσθήκη λαμπτήρων επηρεάζει την ένταση του ρεύματος σε ένα ηλεκτρικό κύκλωμα; Ηλεκτρικά Κυκλώματα (Μ.Χ. ΠΑΠΑΧΡΙΣΤΟΦΟΡΟΥ) Η προσθήκη λαμπτήρων επηρεάζει την ένταση του ρεύματος σε ένα ηλεκτρικό κύκλωμα; Στη διερεύνηση που κάναμε με τα παιδιά, όπως φαίνεται και από τον τίτλο ασχοληθήκαμε

Διαβάστε περισσότερα

Σύγχρονη Φυσική 1, Διάλεξη 12, Τμήμα Φυσικής, Παν/μιο Ιωαννίνων Διαγράμματα Minkowski

Σύγχρονη Φυσική 1, Διάλεξη 12, Τμήμα Φυσικής, Παν/μιο Ιωαννίνων Διαγράμματα Minkowski 1 Διαγράμματα Minkowski Σκοποί της διάλεξης 12: Να εισάγει τα διαγράμματα Minkowski. 18.1.2012 Να περιγράψει την ιδέα του ταυτοχρονισμού στην θεωρία της σχετικότητας με μεθόδους γεωμετρίας. Να εισάγει

Διαβάστε περισσότερα

Το ταξίδι στην 11η διάσταση

Το ταξίδι στην 11η διάσταση Το ταξίδι στην 11η διάσταση Το κείμενο αυτό δεν αντιπροσωπεύει το πώς παρουσιάζονται οι 11 διστάσεις βάση της θεωρίας των υπερχορδών! Είναι περισσότερο «τροφή για σκέψη» παρά επιστημονική άποψη. Οι σκέψεις

Διαβάστε περισσότερα

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής:

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής: Αυτό που πρέπει να θυμόμαστε, για να μη στεναχωριόμαστε, είναι πως τόσο στις εξισώσεις, όσο και στις ανισώσεις 1ου βαθμού, που θέλουμε να λύσουμε, ακολουθούμε ακριβώς τα ίδια βήματα! Εκεί που πρεπει να

Διαβάστε περισσότερα

Αρχή της απροσδιοριστίας και διττή σωματιδιακή και κυματική φύση της ύλης.

Αρχή της απροσδιοριστίας και διττή σωματιδιακή και κυματική φύση της ύλης. 1 Αρχή της απροσδιοριστίας και διττή σωματιδιακή και κυματική φύση της ύλης. Μέχρι τις αρχές του 20ου αιώνα υπήρχε μια αντίληψη για τη φύση των πραγμάτων βασισμένη στις αρχές που τέθηκαν από τον Νεύτωνα

Διαβάστε περισσότερα

ΥΔΡΟΠΕΡΑΤΟΤΗΤΑ (ΧΡΙΣΤΟΦΟΡΟΥ) Τίτλος διερεύνησης: Ποιοί παράγοντες επηρεάζουν το πόσο νερό συγκρατεί το χώμα;

ΥΔΡΟΠΕΡΑΤΟΤΗΤΑ (ΧΡΙΣΤΟΦΟΡΟΥ) Τίτλος διερεύνησης: Ποιοί παράγοντες επηρεάζουν το πόσο νερό συγκρατεί το χώμα; ΥΔΡΟΠΕΡΑΤΟΤΗΤΑ (ΧΡΙΣΤΟΦΟΡΟΥ) Τίτλος διερεύνησης: Ποιοί παράγοντες επηρεάζουν το πόσο νερό συγκρατεί το χώμα; Σύντομη περιγραφή διερεύνησης: Σκοπός αυτής της διερεύνησης ήταν να κάνουν κάποιες υποθέσεις

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 3 ο, Τμήμα Α Ο πυρήνας των μαθηματικών είναι οι τρόποι με τους οποίους μπορούμε να συλλογιζόμαστε στα μαθηματικά. Τρόποι απόδειξης Επαγωγικός συλλογισμός (inductive)

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Ο νόμος του Gauss Εικόνα: Σε μια επιτραπέζια μπάλα πλάσματος, οι χρωματιστές γραμμές που βγαίνουν από τη σφαίρα αποδεικνύουν την ύπαρξη ισχυρού ηλεκτρικού πεδίου. Με το νόμο του Gauss,

Διαβάστε περισσότερα

11ο Μάθημα ΒΑΡΟΣ - ΒΑΡΥΤΗΤΑ - ΠΕΔΙΟ ΒΑΡΥΤΗΤΑΣ

11ο Μάθημα ΒΑΡΟΣ - ΒΑΡΥΤΗΤΑ - ΠΕΔΙΟ ΒΑΡΥΤΗΤΑΣ 11ο Μάθημα ΒΑΡΟΣ - ΒΑΡΥΤΗΤΑ - ΠΕΔΙΟ ΒΑΡΥΤΗΤΑΣ Το βάρος ενός σώματος: Μια εξ αποστάσεως ή εξ επαφής δύναμη που ασκεί η γη στο σώμα Το βάρος ενός σώματος είναι δύναμη και μετρείται κι αυτό σε νιούτον. Είναι

Διαβάστε περισσότερα

«Ο Αϊούλαχλης και ο αετός»

«Ο Αϊούλαχλης και ο αετός» ΠΑΡΑΜΥΘΙ #25 «Ο Αϊούλαχλης και ο αετός» (Φλώρινα - Μακεδονία Καύκασος) Διαγωνισμός παραδοσιακού παραμυθιού ebooks4greeks.gr ΠΑΡΑΜΥΘΙ #25 Ψηφίστε το παραμύθι που σας άρεσε περισσότερο εδώ μέχρι 30/09/2011

Διαβάστε περισσότερα

Ένα αναλογικό σήμα περιέχει άπειρες πιθανές τιμές. Για παράδειγμα ένας απλός ήχος αν τον βλέπαμε σε ένα παλμογράφο θα έμοιαζε με το παρακάτω:

Ένα αναλογικό σήμα περιέχει άπειρες πιθανές τιμές. Για παράδειγμα ένας απλός ήχος αν τον βλέπαμε σε ένα παλμογράφο θα έμοιαζε με το παρακάτω: Σημειώσεις Δικτύων Αναλογικά και ψηφιακά σήματα Ένα αναλογικό σήμα περιέχει άπειρες πιθανές τιμές. Για παράδειγμα ένας απλός ήχος αν τον βλέπαμε σε ένα παλμογράφο θα έμοιαζε με το παρακάτω: Χαρακτηριστικά

Διαβάστε περισσότερα

Δt 1 x=υo t+ α t 1.2 Εξισώσεις κίνησης

Δt 1 x=υo t+ α t 1.2 Εξισώσεις κίνησης ΛΥΚΕΙΟ ΛΙΝΟΠΕΤΡΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2013-2014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2014 ΤΑΞΗ: Α ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΗΜΕΡΟΜΗΝΙΑ: 02/06/2014 ΔΙΑΡΚΕΙΑ: 10.45-12.45 Ονοματεπώνυμο Μαθητή/τριας:.......

Διαβάστε περισσότερα

ΕΝΤΟΛΕΣ. 7.1 Εισαγωγικό μέρος με επεξήγηση των Εντολών : Επεξήγηση των εντολών που θα

ΕΝΤΟΛΕΣ. 7.1 Εισαγωγικό μέρος με επεξήγηση των Εντολών : Επεξήγηση των εντολών που θα 7.1 Εισαγωγικό μέρος με επεξήγηση των Εντολών : Επεξήγηση των εντολών που θα ΕΝΤΟΛΕΣ χρησιμοποιηθούν παρακάτω στα παραδείγματα Βάζοντας την εντολή αυτή σε οποιοδήποτε αντικείμενο μπορούμε να αλλάζουμε

Διαβάστε περισσότερα

Φυσική Β Γυμνασίου - Κεφάλαιο 2: Κινήσεις ΚΕΦΑΛΑΙΟ 2: ΚΙΝΗΣΕΙΣ. Φυσική Β Γυμνασίου

Φυσική Β Γυμνασίου - Κεφάλαιο 2: Κινήσεις ΚΕΦΑΛΑΙΟ 2: ΚΙΝΗΣΕΙΣ. Φυσική Β Γυμνασίου ΚΕΦΑΛΑΙΟ 2: ΚΙΝΗΣΕΙΣ Φυσική Β Γυμνασίου Εισαγωγή Τα πάντα γύρω μας κινούνται. Στο διάστημα όλα τα ουράνια σώματα κινούνται. Στο μικρόκοσμο συμβαίνουν κινήσεις που δεν μπορούμε να τις αντιληφθούμε άμεσα.

Διαβάστε περισσότερα

Κεφάλαιο 1: Φανταστικές κούρσες ταχύτητας

Κεφάλαιο 1: Φανταστικές κούρσες ταχύτητας Κεφάλαιο 1: Φανταστικές κούρσες ταχύτητας Οι υψηλές ταχύτητες και επιταχύνσεις συναρπάζουν τους περισσότερους από εμάς. Η αίσθηση που νιώθουμε όταν απογειώνεται ένα αεροπλάνο ή όταν ξεκινάμε με ένα τρενάκι

Διαβάστε περισσότερα

Λύση. Γνωρίζουµε ότι η µετατόπιση µπορεί να υπολογιστεί και από το εµβαδόν της γραφικής παράστασης υ=f(t) ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΠΑΡΑ ΕΙΓΜΑ :

Λύση. Γνωρίζουµε ότι η µετατόπιση µπορεί να υπολογιστεί και από το εµβαδόν της γραφικής παράστασης υ=f(t) ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΠΑΡΑ ΕΙΓΜΑ : ΠΑΡΑ ΕΙΓΜΑ : X 6 (s) Σηµαντικό: Στην Ε.Ο.Κ και στο διάγραµµα µετατόπισης -χρόνου: Χ υ = = εφθ Μοτοσικλετιστής κινείται ευθύγραµµα και η κίνηση του περιγράφεται από το διάγραµµα Θέσης χρόνου του διπλανού

Διαβάστε περισσότερα

Συμπληρωματικό Φύλλο Εργασίας 2+ ( * ) Μετρήσεις Χρόνου Η Ακρίβεια

Συμπληρωματικό Φύλλο Εργασίας 2+ ( * ) Μετρήσεις Χρόνου Η Ακρίβεια Συμπληρωματικό Φύλλο Εργασίας 2+ ( * ) Μετρήσεις Χρόνου Η Ακρίβεια ( * ) + επιπλέον πληροφορίες, ιδέες και προτάσεις προαιρετικών πειραματικών δραστηριοτήτων, ερωτήσεις... Ένας σημαντικός χρόνος περιορισμένης

Διαβάστε περισσότερα

Λυμένες Ασκήσεις. Λύση. (βασική απλή άσκηση)

Λυμένες Ασκήσεις. Λύση. (βασική απλή άσκηση) Λυμένες Ασκήσεις (βασική απλή άσκηση) 1. Ένα μικρό σώμα εκτελεί ευθύγραμμη ομαλή κίνηση με σταθερή ταχύτητα μέτρου υ = 108 km/h και για να μεταβει το σώμα από το σημείο Α στο σημείο Β, χρειάστηκε χρόνο

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΣΧΟΛ. ΕΤΟΣ 2014-125 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΑΣΚΗΣΗ 1 Μικρή σφαίρα εκτοξεύεται τη χρονική στιγμή t=0 από ορισμένο ύψος με αρχική ταχύτητα

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ 3 η. Παράδοση Οι ασκήσεις είναι βαθμολογικά ισοδύναμες

ΕΡΓΑΣΙΑ 3 η. Παράδοση Οι ασκήσεις είναι βαθμολογικά ισοδύναμες ΕΡΓΑΣΙΑ 3 η Παράδοση 9--9 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες Άσκηση 1 A) Δυο τραίνα ταξιδεύουν στην ίδια σιδηροτροχιά το ένα πίσω από το άλλο. Το πρώτο τραίνο κινείται με ταχύτητα 1 m s. Το δεύτερο

Διαβάστε περισσότερα

Ο επιθετικός δημιουργεί χώρο στον άξονα

Ο επιθετικός δημιουργεί χώρο στον άξονα ΚΕΦΑΛΑΙΟ 5 ΕΠΙΘΕΣΗ: ΤΑΚΤΙΚΗ ΚΑΤΑΣΤΑΣΗ 2 Ο επιθετικός δημιουργεί χώρο στον άξονα Κινήσεις του επιθετικού: Δημιουργία χώρου στον άξονα...73 Τακτική ανάλυση: Ο επιθετικός δημιουργεί χώρο στον άξονα...75 Προπονητική

Διαβάστε περισσότερα

6.1 ΠΑΡΑΣΤΑΣΗ ΣΗΜΕΙΩΝ ΣΤΟ ΕΠΙΠΕ Ο

6.1 ΠΑΡΑΣΤΑΣΗ ΣΗΜΕΙΩΝ ΣΤΟ ΕΠΙΠΕ Ο 6. ΠΑΡΑΣΤΑΣΗ ΣΗΜΕΙΩΝ ΣΤ ΕΠΙΠΕ ΘΕΩΡΙΑ. Σύστηµα καθέτων ηµιαξόνων: Είναι δύο κάθετες µεταξύ τους ηµιευθείες µία οριζόντια και µία κατακόρυφη. Την οριζόντια την ονοµάζουµε και την λέµε ηµιάξονα των ή ηµιάξονα

Διαβάστε περισσότερα

Λύσεις: Τελική Εξέταση 28 Αυγούστου 2015

Λύσεις: Τελική Εξέταση 28 Αυγούστου 2015 Φ230: Αστροφυσική Ι Λύσεις: Τελική Εξέταση 28 Αυγούστου 2015 1. Ο Σείριος Α, έχει φαινόμενο οπτικό μέγεθος mv - 1.47 και ακτίνα R1.7𝑅 και αποτελεί το κύριο αστέρι ενός διπλού συστήματος σε απόσταση 8.6

Διαβάστε περισσότερα

Φύση του φωτός. Θεωρούμε ότι το φως έχει διττή φύση: διαταραχή που διαδίδεται στο χώρο. μήκος κύματος φωτός. συχνότητα φωτός

Φύση του φωτός. Θεωρούμε ότι το φως έχει διττή φύση: διαταραχή που διαδίδεται στο χώρο. μήκος κύματος φωτός. συχνότητα φωτός Γεωμετρική Οπτική Φύση του φωτός Θεωρούμε ότι το φως έχει διττή φύση: ΚΥΜΑΤΙΚΗ Βασική ιδέα Το φως είναι μια Η/Μ διαταραχή που διαδίδεται στο χώρο Βασική Εξίσωση Φαινόμενα που εξηγεί καλύτερα (κύμα) μήκος

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 24 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Κυριακή, 25 Απριλίου, 2010 Ώρα: 11:00-14:00 Οδηγίες: 1) Το δοκίμιο αποτελείται από οκτώ (8) θέματα. 2) Να απαντήσετε σε όλα τα θέματα. 3)

Διαβάστε περισσότερα

Επιστημονική φαντασία

Επιστημονική φαντασία Ενότητα 10 Περιγράφουμε ταξίδια στο μέλλον Αφηγούμαστε φανταστικές ιστορίες Περιγράφουμε ανεξήγητα φαινόμενα Περιγράφουμε μυστηριώδη αντικείμενα Χρησιμοποιούμε μελλοντικούς χρόνους Αναγνωρίζουμε και χρησιμοποιούμε

Διαβάστε περισσότερα

ΦΩΤΟΓΡΑΦΙΖΩ ΤΑ ΑΣΤΕΡΙΑ

ΦΩΤΟΓΡΑΦΙΖΩ ΤΑ ΑΣΤΕΡΙΑ ΦΩΤΟΓΡΑΦΙΖΩ ΤΑ ΑΣΤΕΡΙΑ Γαλαξίας(Milky way)& Star trail ΠΑΡΟΥΣΙΑΣΕΙ: ΠΑΝΤΕΛΗΣ ΝΙΚΟΛΑΙΔΗΣ Α ΜΕΡΟΣ Τι είναι ο Γαλαξίας. Πως εντοπίζουμε τον Γαλαξία. Ποιες μέρες και ώρες μπορούμε να φωτογραφίσουμε. Τι πρέπει

Διαβάστε περισσότερα

Κεφάλαιο 2 : Η Αρχή της Σχετικότητας του Einstein.

Κεφάλαιο 2 : Η Αρχή της Σχετικότητας του Einstein. Κεφάλαιο : Η Αρχή της Σχετικότητας του Einstein..1 Ο απόλυτος χώρος και ο αιθέρας. Ας υποθέσουμε ότι ένας παρατηρητής μετρά την ταχύτητα ενός φωτεινού σήματος και την βρίσκει ίση με 10 m/se. Σύμφωνα με

Διαβάστε περισσότερα

Η ΜΕΓΑΛΗ ΑΡΚΤΟΣ. Τα κυριότερα αντικείμενα της Μ. Άρκτου ALIOTH. Μπλε γίγαντας ορατός με γυμνό μάτι. Απόσταση : 82 ε.φ. Διάμετρος : 6 εκ. χιλιόμετρα.

Η ΜΕΓΑΛΗ ΑΡΚΤΟΣ. Τα κυριότερα αντικείμενα της Μ. Άρκτου ALIOTH. Μπλε γίγαντας ορατός με γυμνό μάτι. Απόσταση : 82 ε.φ. Διάμετρος : 6 εκ. χιλιόμετρα. Αστρονομία Μπιρσιάνης Γιώργος Η ΜΕΓΑΛΗ ΑΡΚΤΟΣ Τα κυριότερα αντικείμενα της Μ. Άρκτου ALIOTH Μπλε γίγαντας ορατός με γυμνό μάτι. Απόσταση : 82 ε.φ. Διάμετρος : 6 εκ. χιλιόμετρα. Λαμπρότητα : 100 φορές τη

Διαβάστε περισσότερα

Ορισµοί και εξισώσεις κίνησης

Ορισµοί και εξισώσεις κίνησης Ορισµοί και εξισώσεις κίνησης Σκοπός του κειµένου είναι να υποστηριχθούν οι παρακάτω θέσεις εν έχουν κανένα απολύτως νόηµα φράσεις του τύπου «η φάση της ταλάντωσης είναι» ή «η αρχική φάση της ταλάντωσης

Διαβάστε περισσότερα

Η εκδρομή των φυσικών...

Η εκδρομή των φυσικών... Η εκδρομή των φυσικών... Ιούλιος μήνας και η ζέστη έχει φωλιάσει στην πόλη του Ηρακλείου. Μια παρέα από τέσσερις φυσικούς αποφασίζει να εκδράμει στο αστεροσκοπείο του Σκίνακα. Το σημείο εκκίνησης ορίζεται

Διαβάστε περισσότερα

1. Εγκάρσιο αρμονικό κύμα μήκους κύματος 0,2 m διαδίδεται σε γραμμικό ελαστικό μέσο το οποίο ταυτίζεται

1. Εγκάρσιο αρμονικό κύμα μήκους κύματος 0,2 m διαδίδεται σε γραμμικό ελαστικό μέσο το οποίο ταυτίζεται Με αρχική φάση. 1. Εγκάρσιο αρμονικό κύμα μήκους κύματος 0,2 m διαδίδεται σε γραμμικό ελαστικό μέσο το οποίο ταυτίζεται με τον άξονα x Ox προς τη θετική κατεύθυνση του άξονα, εξαναγκάζοντας το υλικό σημείο

Διαβάστε περισσότερα

20 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ

20 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 0 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Κυριακή, 19 Μαρτίου, 006 Ώρα: 10:30-13:30 Θέµα 1 0 (µονάδες 10) α ) Το βέλος δέχεται σταθερή επιτάχυνση για όλη τη διάρκεια της κίνησης (

Διαβάστε περισσότερα

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015 ΜΑΘΗΜΑΤΙΚΑ ΚΟΙΝΟΥ ΚΟΡΜΟΥ

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015 ΜΑΘΗΜΑΤΙΚΑ ΚΟΙΝΟΥ ΚΟΡΜΟΥ ΜΕΡΟΣ A ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Στασίνου 36, Γραφ. 102, Στρόβολος 2003, Λευκωσία Τηλ. 357 22378101 Φαξ: 357 22379122 cms@cms.org.cy, www.cms.org.cy ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015 ΜΑΘΗΜΑΤΙΚΑ ΚΟΙΝΟΥ ΚΟΡΜΟΥ

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε. 2003 ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Θ Ε Μ Α 1 ο Οδηγία: Στις ερωτήσεις 1-5 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α Β ΦΑΣΗ: ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α Β ΦΑΣΗ: ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α Β ΦΑΣΗ: ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Φοιτητής: Παύλου Νικόλαος, Α.Ε.Μ: 2245, Ε Εξάμηνο Σχολείο: 1 ο Πειραματικό

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 1 ΤΕΤΑΡΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 1 ΤΕΤΑΡΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 1 ΤΕΤΑΡΤΟ ΜΑΘΗΜΑ, 15-10-13 Μ. Παπαδημητράκης. 1 Παράδειγμα. Ως εφαρμογή της Αρχιμήδειας Ιδιότητας θα μελετήσουμε το σύνολο { 1 } A = n N = {1, 1 n 2, 1 } 3,.... Κατ αρχάς το σύνολο A έχει προφανώς

Διαβάστε περισσότερα

1 Ο ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ - ΕΚΦΩΝΗΣΕΙΣ

1 Ο ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ - ΕΚΦΩΝΗΣΕΙΣ Ο ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ - ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Στις ημιτελείς προτάσεις - 4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η οποία τη συμπληρώνει σωστά

Διαβάστε περισσότερα

Ασκήσεις στην οριζόντια βολή

Ασκήσεις στην οριζόντια βολή Ασκήσεις στην οριζόντια βολή 1. Από ένα σημείο Ο στην ταράτσα ενός ψηλού κτηρίου σε ύψος Η=80m, εκτοξεύεται οριζόντια ένα σώμα μάζας m=0,2kg με αρχική ταχύτητα υ0=20m/s τη στιγμή t0=0. Η αντίσταση του

Διαβάστε περισσότερα

ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ

ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Y404. ΔΙΜΕΠΑ: ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗ ΕΡΓΑΣΙΑ ΠΕΙΡΑΜΑΤΙΣΜΟΥ ΜΕ ΜΑΘΗΤΗ ΔΙΔΑΣΚΩΝ: ΧΑΡΑΛΑΜΠΟΣ ΛΕΜΟΝΙΔΗΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΔΗΜΗΤΡΙΑΔΗΣ ΗΡΑΚΛΗΣ ΑΕΜ: 3734 Περιεχόμενα

Διαβάστε περισσότερα

Υπάρχουν πολλά είδη Ηλιακών Ρολογιών. Τα σημαντικότερα και συχνότερα απαντόμενα είναι:

Υπάρχουν πολλά είδη Ηλιακών Ρολογιών. Τα σημαντικότερα και συχνότερα απαντόμενα είναι: ΗΛΙΑΚΑ ΩΡΟΛΟΓΙΑ Υπάρχουν πολλά είδη Ηλιακών Ρολογιών. Τα σημαντικότερα και συχνότερα απαντόμενα είναι: Οριζόντια Κατακόρυφα Ισημερινά Το παρακάτω άρθρο αναφέρεται στον τρόπο λειτουργίας αλλά και κατασκευής

Διαβάστε περισσότερα

Φυσικό Τμήμα Παν/μιο Ιωαννίνων - Ειδική Σχετικότητα - Λυμένα Προβλήματα - ΙI

Φυσικό Τμήμα Παν/μιο Ιωαννίνων - Ειδική Σχετικότητα - Λυμένα Προβλήματα - ΙI .11.011 Άσκηση 1: Χρησιμοποιήστε την διωνυμική σχέση 1x N = i=0 N! i! N i! xi για να υπολογίστε το 1 V /c για (α) V = 0.01c και (β) V = 0.9998c (α) Η διωνυμική σχέση είναι ιδανική για προσεγγίσεις όταν

Διαβάστε περισσότερα

Μιχάλης Μακρή EFIAP. www.michalismakri.com

Μιχάλης Μακρή EFIAP. www.michalismakri.com Μιχάλης Μακρή EFIAP www.michalismakri.com Γιατί κάποιες φωτογραφίες είναι πιο ελκυστικές από τις άλλες; Γιατί κάποιες φωτογραφίες παραμένουν κρεμασμένες σε γκαλερί για μήνες ή και για χρόνια για να τις

Διαβάστε περισσότερα

Γ. ΠΑΤΟΥΛΗΣ: Καταρχήν να ευχηθώ στο νέο Προεδρείο ότι καλύτερο και πιστεύω ότι όλοι εδώ, πέραν των εργαζομένων ΠΟΕ ΟΤΑ και του ΕΔΣΝΑ, ήρθαμε ως

Γ. ΠΑΤΟΥΛΗΣ: Καταρχήν να ευχηθώ στο νέο Προεδρείο ότι καλύτερο και πιστεύω ότι όλοι εδώ, πέραν των εργαζομένων ΠΟΕ ΟΤΑ και του ΕΔΣΝΑ, ήρθαμε ως Γ. ΠΑΤΟΥΛΗΣ: Καταρχήν να ευχηθώ στο νέο Προεδρείο ότι καλύτερο και πιστεύω ότι όλοι εδώ, πέραν των εργαζομένων ΠΟΕ ΟΤΑ και του ΕΔΣΝΑ, ήρθαμε ως αυτοδιοικητικοί και όχι κομίζοντας κανείς καμία άλλη ταυτότητα.

Διαβάστε περισσότερα

ΔΕΙΓΜΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΧΙΛΙΑΔΩΝ ΕΡΩΤΗΣΕΩΝ ΓΝΩΣΤΙΚΟΥ ΦΥΣΙΚΩΝ (ΒΑΣΙΚΟ+ΣΥΝΕΞΕΤΑΖΟΜΕΝΟ)

ΔΕΙΓΜΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΧΙΛΙΑΔΩΝ ΕΡΩΤΗΣΕΩΝ ΓΝΩΣΤΙΚΟΥ ΦΥΣΙΚΩΝ (ΒΑΣΙΚΟ+ΣΥΝΕΞΕΤΑΖΟΜΕΝΟ) ΔΕΙΓΜΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΧΙΛΙΑΔΩΝ ΕΡΩΤΗΣΕΩΝ ΓΝΩΣΤΙΚΟΥ ΦΥΣΙΚΩΝ (ΒΑΣΙΚΟ+ΣΥΝΕΞΕΤΑΖΟΜΕΝΟ) ΠΟΥ ΔΙΑΘΕΤΟΥΜΕ ΚΑΙ ΠΟΥ ΑΝΟΙΓΟΥΝ ΤΟ ΔΡΟΜΟ ΓΙΑ ΤΟΝ ΔΙΟΡΙΣΜΟ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΜΑΣ ΣΤΟ ΔΗΜΟΣΙΟ 1. Για το κωνικό

Διαβάστε περισσότερα

ΓΑΛΑΝΑΚΗΣ ΓΙΩΡΓΟΣ ΔΗΜΗΤΡΑΚΟΠΟΥΛΟΣ ΜΙΧΑΛΗΣ

ΓΑΛΑΝΑΚΗΣ ΓΙΩΡΓΟΣ ΔΗΜΗΤΡΑΚΟΠΟΥΛΟΣ ΜΙΧΑΛΗΣ ΘΕΜΑ Α Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί η σωστή απάντηση. Ένας ακίνητος τρoχός δέχεται σταθερή συνιστάμενη ροπή ως προς άξονα διερχόμενο

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015 Μάθημα: ΜΑΘΗΜΑΤΙΚΑ ΚΟΙΝΟΥ ΚΟΡΜΟΥ (4) Ημερομηνία και ώρα εξέτασης: Δευτέρα, 25/5/2015

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ

ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ Άσκηση 1 Δίνονται οι ανισώσεις: 3x και 2 x α) Να βρείτε τις λύσεις τους (Μονάδες 10) β) Να βρείτε το σύνολο των κοινών τους λύσεων (Μονάδες 15) α) Έχουμε 3x 2x x 2

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 11. Προσδιορισμός του πηλίκου του φορτίου προς τη μάζα ενός ηλεκτρονίου

ΑΣΚΗΣΗ 11. Προσδιορισμός του πηλίκου του φορτίου προς τη μάζα ενός ηλεκτρονίου ΑΣΚΗΣΗ 11 Προσδιορισμός του πηλίκου του φορτίου προς τη μάζα ενός ηλεκτρονίου Σκοπός : Να προσδιορίσουμε μια από τις φυσικές ιδιότητες του ηλεκτρονίου που είναι το πηλίκο του φορτίου προς τη μάζα του (/m

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Ηλεκτρικό Δυναμικό Εικόνα: Οι διαδικασίες που συμβαίνουν κατά τη διάρκεια μιας καταιγίδας προκαλούν μεγάλες διαφορές ηλεκτρικού δυναμικού ανάμεσα στα σύννεφα και στο έδαφος. Το αποτέλεσμα

Διαβάστε περισσότερα

Η ΆΝΝΑ ΚΑΙ Ο ΑΛΈΞΗΣ ΕΝΆΝΤΙΑ ΣΤΟΥΣ ΠΑΡΑΧΑΡΆΚΤΕΣ

Η ΆΝΝΑ ΚΑΙ Ο ΑΛΈΞΗΣ ΕΝΆΝΤΙΑ ΣΤΟΥΣ ΠΑΡΑΧΑΡΆΚΤΕΣ ΤΟ ΠΑΙΧΝΙΔΙ EURO RUN www.nea-trapezogrammatia-euro.eu Η ΆΝΝΑ ΚΑΙ Ο ΑΛΈΞΗΣ ΕΝΆΝΤΙΑ ΣΤΟΥΣ ΠΑΡΑΧΑΡΆΚΤΕΣ - 2 - Η Άννα και ο Αλέξης είναι συμμαθητές και πολύ καλοί φίλοι. Μπλέκουν πάντοτε σε φοβερές καταστάσεις.

Διαβάστε περισσότερα

- 17 Ερωτήσεις Αξιολόγησης για ΤΕΣΤ Θεωρίας.

- 17 Ερωτήσεις Αξιολόγησης για ΤΕΣΤ Θεωρίας. Test Αξιολόγησης: ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΕΦΑΛΑΙΟ 1 ο Καμπυλόγραμμες Κινήσεις (Οριζόντια Βολή,Ο.Κ.Κ.) - 17 Ερωτήσεις Αξιολόγησης για ΤΕΣΤ Θεωρίας. Εισηγητής : Γ. Φ. Σ ι

Διαβάστε περισσότερα

Το παραμύθι της Επιπεδίας

Το παραμύθι της Επιπεδίας Το παραμύθι της Επιπεδίας Ιστορία του J.Weeks, βασισμένη σε ιδέες του μυθιστορήματος Flatland: a romance in many dimensions, του E.A.Abbott, το οποίο δημοσιεύτηκε το 1884, και στο οποίο βασίστηκε το κινηματογραφικό

Διαβάστε περισσότερα

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014 ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΕΡΩΤΗΣΗ 1. Το φαινόμενο

Διαβάστε περισσότερα

4. Σώμα Σ 1 μάζας m 1 =1kg ισορροπεί πάνω σε λείο κεκλιμένο επίπεδο που σχηματίζει με τον ορίζοντα γωνία φ=30 ο. Το σώμα Σ 1 είναι δεμένο στην άκρη

4. Σώμα Σ 1 μάζας m 1 =1kg ισορροπεί πάνω σε λείο κεκλιμένο επίπεδο που σχηματίζει με τον ορίζοντα γωνία φ=30 ο. Το σώμα Σ 1 είναι δεμένο στην άκρη 1. Δίσκος μάζας Μ=1 Kg είναι στερεωμένος στο πάνω άκρο κατακόρυφου ελατηρίου, σταθεράς k=200 N/m. Το άλλο άκρο του ελατηρίου είναι στερεωμένο σε οριζόντιο δάπεδο. Πάνω στο δίσκο κάθεται ένα πουλί με μάζα

Διαβάστε περισσότερα

2. Η μονάδα μέτρησης της στροφορμής στο σύστημα S.I. είναι. m s. δ. 1 J s. Μονάδες 5. m s

2. Η μονάδα μέτρησης της στροφορμής στο σύστημα S.I. είναι. m s. δ. 1 J s. Μονάδες 5. m s ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 15 ΣΕΠΤΕΜΒΡΙΟΥ 005 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:

Διαβάστε περισσότερα

Λήστευαν το δημόσιο χρήμα - Το Α' Μέρος με τους αποκαλυπτικούς διαλόγους Άκη Σμπώκου

Λήστευαν το δημόσιο χρήμα - Το Α' Μέρος με τους αποκαλυπτικούς διαλόγους Άκη Σμπώκου Λήστευαν το δημόσιο χρήμα - Το Α' Μέρος με τους αποκαλυπτικούς διαλόγους Άκη Σμπώκου - Έλα - πέρασες μια φορά ε; Σε είδα σε μια στιγμή αλλά δεν ήμουν βέβαιος, δεν με είδες; - πέρασα με το αμάξι και έκανα

Διαβάστε περισσότερα

Sudoku. - Οι άμεσοι αποκλεισμοί είναι δυο ειδών, ήτοι: 1) Απευθείας αποκλεισμός από ένα κουτάκι όλων, πλην ενός, των αριθμών.

Sudoku. - Οι άμεσοι αποκλεισμοί είναι δυο ειδών, ήτοι: 1) Απευθείας αποκλεισμός από ένα κουτάκι όλων, πλην ενός, των αριθμών. 1 από 10 Sudoku. Αν κάποιος ασχοληθεί με ένα λαό το σίγουρο είναι πως θα βρει πολλά ενδιαφέροντα πράγματα, χαρακτηριστικά του τρόπου σκέψης - και της στάσης ζωής γενικότερα - του λαού αυτού, και πιθανόν

Διαβάστε περισσότερα

Τίτλος: GPS Βρες το δρόμο σου

Τίτλος: GPS Βρες το δρόμο σου Τίτλος: GPS Βρες το δρόμο σου Θέματα: διασταύρωση σφαιρών, συστήματα με συντεταγμένες, απόσταση, ταχύτητα και χρόνος, μετάδοση σήματος Διάρκεια: 90 λεπτά Ηλικία: 16+ Διαφοροποίηση: Πιο ψηλό επίπεδο: μπορεί

Διαβάστε περισσότερα

«ΠΩΣ ΦΑΝΤΑΖΟΜΑΙ ΤΗ ΖΩΗ ΜΟΥ ΧΩΡΙΣ ΑΡΙΘΜΟΥΣ;» Α1 Γυμνασίου Προσοτσάνης 2011-2012

«ΠΩΣ ΦΑΝΤΑΖΟΜΑΙ ΤΗ ΖΩΗ ΜΟΥ ΧΩΡΙΣ ΑΡΙΘΜΟΥΣ;» Α1 Γυμνασίου Προσοτσάνης 2011-2012 «ΠΩΣ ΦΑΝΤΑΖΟΜΑΙ ΤΗ ΖΩΗ ΜΟΥ ΧΩΡΙΣ ΑΡΙΘΜΟΥΣ;» Α1 Γυμνασίου Προσοτσάνης 2011-2012 1 ΠΩΣ ΦΑΝΤΑΖΟΜΑΙ ΤΗ ΖΩΗ ΜΟΥ ΧΩΡΙΣ ΑΡΙΘΜΟΥΣ; Γράφει ο Ηλίας Δερμετζής «Τη ζωή μου χωρίς αριθμούς δεν μπορώ να τη φανταστώ,

Διαβάστε περισσότερα

12ο ΓΕΛ ΠΕΙΡΑΙΑ Οµάδα Α. Στις παρακάτω ερωτήσεις να επιλέξετε το γράµµα που αντιστοιχεί στη σωστή απάντηση:

12ο ΓΕΛ ΠΕΙΡΑΙΑ Οµάδα Α. Στις παρακάτω ερωτήσεις να επιλέξετε το γράµµα που αντιστοιχεί στη σωστή απάντηση: 12ο ΓΕΛ ΠΕΙΡΑΙΑ Οµάδα Α ΔΙΑΓΩΝΙΣΜΑ Α ΤΕΤΡ/ΝΟΥ ΣΤΗ ΦΥΣΙΚΗ Ονοµατεπώνυµο: Τµήµα: Ηµεροµηνία: 17/12/2010 Ζήτηµα 1ο Στις παρακάτω ερωτήσεις να επιλέξετε το γράµµα που αντιστοιχεί στη σωστή απάντηση: 1) Μια

Διαβάστε περισσότερα

Μια νύχτα. Μπαίνω στ αμάξι με το κορίτσι μου και γέρνει γλυκά στο πλάϊ μου και το φεγγάρι λες και περπατάει ίσως θέλει κάπου να μας πάει

Μια νύχτα. Μπαίνω στ αμάξι με το κορίτσι μου και γέρνει γλυκά στο πλάϊ μου και το φεγγάρι λες και περπατάει ίσως θέλει κάπου να μας πάει Μια νύχτα Μπαίνω στ αμάξι με το κορίτσι μου και γέρνει γλυκά στο πλάϊ μου και το φεγγάρι λες και περπατάει ίσως θέλει κάπου να μας πάει Μια νύχτα σαν κι αυτή μια νύχτα σαν κι αυτή θέλω να σου πω πόσο σ

Διαβάστε περισσότερα

Φαινόμενο Doppler Α. ΦΑΙΝΟΜΕΝΟ DOPPLER ΓΙΑ ΤΑ ΑΚΟΥΣΤΙΚΑ ΚΥΜΑΤΑ. α) Πηγή (S) ακίνητη - Παρατηρητής (Ο) κινούμενος. S(u s =0) u o O x.

Φαινόμενο Doppler Α. ΦΑΙΝΟΜΕΝΟ DOPPLER ΓΙΑ ΤΑ ΑΚΟΥΣΤΙΚΑ ΚΥΜΑΤΑ. α) Πηγή (S) ακίνητη - Παρατηρητής (Ο) κινούμενος. S(u s =0) u o O x. Φαινόμενο Dppler Α. ΦΑΙΝΟΜΕΝΟ DOPPLER ΓΙΑ ΤΑ ΑΚΟΥΣΤΙΚΑ ΚΥΜΑΤΑ α) Πηγή (S) ακίνητη - Παρατηρητής (Ο) κινούμενος S( =0) O x Σχήμα 72 t t t 0 0 0 άρα Όταν ο παρατηρητής πλησιάζει την πηγή, έχουμε: Όταν ο

Διαβάστε περισσότερα

Γραφική επίλυση γραμμικού συστήματος με δύο αγνώστους.

Γραφική επίλυση γραμμικού συστήματος με δύο αγνώστους. ΜΕΡΟΣ Α 3. Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΤΟΥ 71 3. Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΤΟΥ Αν έχουμε δύο γραμμικές εξισώσεις με δύο αγνώστους,, π.χ. α + β

Διαβάστε περισσότερα

Κύματα και φάσεις. Όταν αναφερόμαστε σε μια απλή αρμονική ταλάντωση, που η απομάκρυνση δίνεται από την εξίσωση x=aημ(ωt+φ 0

Κύματα και φάσεις. Όταν αναφερόμαστε σε μια απλή αρμονική ταλάντωση, που η απομάκρυνση δίνεται από την εξίσωση x=aημ(ωt+φ 0 Κύματα και φάσεις. Όταν αναφερόμαστε σε μια απλή αρμονική ταλάντωση, που η απομάκρυνση δίνεται από την εξίσωση x=aημ(ωt+φ 0 ), ονομάζουμε φάση την ποσότητα φ=ωt+φ 0 όπου το φ 0 ονομάζεται αρχική φάση και

Διαβάστε περισσότερα

φυσική κεφ.2 ΚΙΝΗΣΕΙΣ

φυσική κεφ.2 ΚΙΝΗΣΕΙΣ φυσική κεφ. ΚΙΝΗΣΕΙΣ Επισημάνσεις από τη θεωρία του βιβλίου Διανυσματική μέση ταχύτητα: v = = ό ό ά Είναι διάνυσμα, δε χρησιμοποιείται στην καθημερινή γλώσσα. Μέση ταχύτητα: v = = ή ή ό ά Δεν είναι διάνυσμα,

Διαβάστε περισσότερα

ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ

ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ Διδάσκων: Θεόδωρος Ν. Τομαράς 1. Μετασχηματισμοί συντεταγμένων και συμμετρίες. 1α. Στροφές στο επίπεδο. Θεωρείστε δύο καρτεσιανά συστήματα συντεταγμένων στο επίπεδο, στραμμένα

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 5 Η ΠΓΚΥΠΡΙ ΟΛΥΜΠΙ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Κυριακή, πριλίου, Παρακαλώ διαβάστε πρώτα τα πιο κάτω, πριν απαντήσετε οποιαδήποτε ερώτηση Γενικές Οδηγίες: ) Είναι πολύ σημαντικό να δηλώσετε

Διαβάστε περισσότερα

Κ Ε Φ Α Λ Α Ι Ο 1ο Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η

Κ Ε Φ Α Λ Α Ι Ο 1ο Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η 1 Σκοπός Να αποκτήσουν οι μαθητές τη δυνατότητα να απαντούν σε ερωτήματα που εμφανίζονται στην καθημερινή μας ζωή και έχουν σχέση με την ταχύτητα, την επιτάχυνση, τη θέση ή το χρόνο κίνησης ενός κινητού.

Διαβάστε περισσότερα

ΘΕΜΑ Β Παράδειγμα 1. Να δικαιολογήσετε την επιλογή σας. (Μονάδες 8)

ΘΕΜΑ Β Παράδειγμα 1. Να δικαιολογήσετε την επιλογή σας. (Μονάδες 8) ΘΕΜΑ Β Παράδειγμα 1 Β1. Στο σχολικό εργαστήριο μια μαθήτρια περιεργάζεται ένα ελατήριο και λέει σε συμμαθητή της: «Θα μπορούσαμε να βαθμολογήσουμε αυτό το ελατήριο και με τον τρόπο αυτό να κατασκευάσουμε

Διαβάστε περισσότερα

F Στεφάνου Μ. 1 Φυσικός

F Στεφάνου Μ. 1 Φυσικός F 1 ΠΑΡΑΤΗΡΗΣΕΙΣ ΓΙΑ ΤΙΣ ΑΣΚΗΣΕΙΣ Όταν δίνονται οι δυνάμεις οι οποίες ασκούνται σε ένα σώμα, υπολογίζουμε τη συνισταμένη των δυνάμεων και από τη σχέση (ΣF=m.α ) την επιτάχυνσή του. Αν ασκούνται σε αρχικά

Διαβάστε περισσότερα

Βιολογική εξήγηση των δυσκολιών στην ανθρώπινη επικοινωνία - Νικόλαος Γ. Βακόνδιος - Ψυχολόγ

Βιολογική εξήγηση των δυσκολιών στην ανθρώπινη επικοινωνία - Νικόλαος Γ. Βακόνδιος - Ψυχολόγ Οι άνθρωποι κάνουμε πολύ συχνά ένα μεγάλο και βασικό λάθος, νομίζουμε ότι αυτό που λέμε σε κάποιον άλλον, αυτός το εκλαμβάνει όπως εμείς το εννοούσαμε. Νομίζουμε δηλαδή ότι ο «δέκτης» του μηνύματος το

Διαβάστε περισσότερα

ΓΕΩΔΑΙΤΙΚΗ ΑΣΤΡΟΝΟΜΙΑ

ΓΕΩΔΑΙΤΙΚΗ ΑΣΤΡΟΝΟΜΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΑΚ. ΕΤΟΣ 2006-2007 ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΚΕΝΤΡΟ ΔΟΡΥΦΟΡΩΝ ΔΙΟΝΥΣΟΥ Ηρώων Πολυτεχνείου 9, 157 80 Ζωγράφος Αθήνα Τηλ.: 210 772 2666 2668, Fax: 210 772 2670 ΓΕΩΔΑΙΤΙΚΗ

Διαβάστε περισσότερα

Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα

Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα Ασκήσεις της Ενότητας 2 : Ζωγραφίζοντας με το ΒΥΟΒ -1- α. Η χρήση της πένας Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα Υπάρχουν εντολές που μας επιτρέπουν να επιλέξουμε το χρώμα της πένας, καθώς και το

Διαβάστε περισσότερα

Οι μεγάλες εξισώσεις....όχι μόνο σωστές αλλά και ωραίες...

Οι μεγάλες εξισώσεις....όχι μόνο σωστές αλλά και ωραίες... Οι μεγάλες εξισώσεις. {...όχι μόνο σωστές αλλά και ωραίες... Ερευνητική εργασία μαθητών της Β λυκείου. E = mc 2 Στοιχεία ταυτότητας: Ε: ενέργεια (joule) m: μάζα (kg) c: ταχύτητα του φωτός στο κενό (m/s)

Διαβάστε περισσότερα

ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΚΥΡΙΑΚΗ 24/04/2016 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ (ΑΠΟΦΟΙΤΟΙ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας τον αριθμό

Διαβάστε περισσότερα

Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα.

Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα. Εισαγωγή Μετρήσεις-Σφάλματα Πολλές φορές θα έχει τύχει να ακούσουμε τη λέξη πείραμα, είτε στο μάθημα είτε σε κάποια είδηση που αφορά τη Φυσική, τη Χημεία ή τη Βιολογία. Είναι όμως γενικώς παραδεκτό ότι

Διαβάστε περισσότερα

Ερωτηματολόγιο Προγράμματος "Ασφαλώς Κυκλοφορώ" (αρχικό ερωτηματολόγιο) Για μαθητές Β - Γ Δημοτικού

Ερωτηματολόγιο Προγράμματος Ασφαλώς Κυκλοφορώ (αρχικό ερωτηματολόγιο) Για μαθητές Β - Γ Δημοτικού Ερωτηματολόγιο Προγράμματος "Ασφαλώς Κυκλοφορώ" (αρχικό ερωτηματολόγιο) Για μαθητές Β - Γ Δημοτικού Tάξη & Τμήμα:... Σχολείο:... Ημερομηνία:.../.../200... Όνομα:... Ερωτηματολόγιο Προγράμματος "Ασφαλώς

Διαβάστε περισσότερα

Q 40 th International Physics Olympiad, Merida, Mexico, 12-19 July 2009

Q 40 th International Physics Olympiad, Merida, Mexico, 12-19 July 2009 Q 40 th International Physics Olympiad, erida, exico, -9 July 009 ΘΕΩΡΗΤΙΚΟ ΠΡΟΒΛΗΜΑ No. Η ΕΞΕΛΙΞΗ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ ΓΗΣ-ΣΕΛΗΝΗΣ Οι επιστήμονες μπορούν να προσδιορίσουν την απόσταση Γης-Σελήνης, με μεγάλη

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑΤΙΚΟ ΣΧΟΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΘΕΣΣΑΛΟΝΙΚΗΣ «ΜΑΘΑΙΝΟΝΤΑΣ ΤΗΝ ΕΠΙΣTΗΜΗ ΜΕΣΑ ΑΠΟ ΤΟ ΘΕΑΤΡΟ» Σενάριο με θέμα τη σχετικότητα

ΠΕΙΡΑΜΑΤΙΚΟ ΣΧΟΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΘΕΣΣΑΛΟΝΙΚΗΣ «ΜΑΘΑΙΝΟΝΤΑΣ ΤΗΝ ΕΠΙΣTΗΜΗ ΜΕΣΑ ΑΠΟ ΤΟ ΘΕΑΤΡΟ» Σενάριο με θέμα τη σχετικότητα ΠΡΑΞΗ 1 η : Το φαινόμενο ΠΕΙΡΑΜΑΤΙΚΟ ΣΧΟΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΘΕΣΣΑΛΟΝΙΚΗΣ «ΜΑΘΑΙΝΟΝΤΑΣ ΤΗΝ ΕΠΙΣTΗΜΗ ΜΕΣΑ ΑΠΟ ΤΟ ΘΕΑΤΡΟ» Σενάριο με θέμα τη σχετικότητα Σκηνή 1 η Ανακοίνωση ταξιδιού γνωριμία με δίδυμες Ανοίγει

Διαβάστε περισσότερα

The 38 th International Physics Olympiad Iran Theory Competition Sunday, 15 July 2007

The 38 th International Physics Olympiad Iran Theory Competition Sunday, 15 July 2007 The 38 th International Physics Olympiad Iran Theory Competition Sunday, 5 July 007 Παρακαλώ διαβάστε πρώτα τις πιο κάτω οδηγίες:. Η εξέταση διαρκεί 5 h (πέντε ώρες). Υπάρχουν τρεις ερωτήσεις και κάθε

Διαβάστε περισσότερα

Το κορίτσι με τα πορτοκάλια. Εργασία Χριστουγέννων στο μάθημα της Λογοτεχνίας. [Σεμίραμις Αμπατζόγλου] [Γ'1 Γυμνασίου]

Το κορίτσι με τα πορτοκάλια. Εργασία Χριστουγέννων στο μάθημα της Λογοτεχνίας. [Σεμίραμις Αμπατζόγλου] [Γ'1 Γυμνασίου] Το κορίτσι με τα πορτοκάλια Εργασία Χριστουγέννων στο μάθημα της Λογοτεχνίας [Σεμίραμις Αμπατζόγλου] [Γ'1 Γυμνασίου] Εργασία Χριστουγέννων στο μάθημα της Λογοτεχνίας: Σεμίραμις Αμπατζόγλου Τάξη: Γ'1 Γυμνασίου

Διαβάστε περισσότερα

ΦΩΣ ΚΑΙ ΣΚΙΑ. Πως δημιουργείτε η σκιά στη φυσική ;

ΦΩΣ ΚΑΙ ΣΚΙΑ. Πως δημιουργείτε η σκιά στη φυσική ; ΦΩΣ ΚΑΙ ΣΚΙΑ Πως δημιουργείτε η σκιά στη φυσική ; Λόγω της ευθύγραμμης διάδοσης του φωτός, όταν μεταξύ μιας φωτεινής πηγής και ενός περάσματος παρεμβάλλεται ένα αδιαφανές σώμα, δημιουργείτε στο πέρασμα

Διαβάστε περισσότερα

THE ECONOMIST ΟΜΙΛΙΑ

THE ECONOMIST ΟΜΙΛΙΑ THE ECONOMIST ΟΜΙΛΙΑ NICOLA GIAMMARIOLI MISSION CHIEF FOR GREECE, EUROPEAN STABILITY MECHANISM (ESM) TO THE 20 th ROUNDTABLE WITH THE GOVERNMENT OF GREECE EUROPE: SHAKEN AND STIRRED? GREECE: A SKILFUL

Διαβάστε περισσότερα

Συντελεστής επαναφοράς ή αποκατάστασης

Συντελεστής επαναφοράς ή αποκατάστασης Συντελεστής επαναφοράς ή αποκατάστασης (Coefficient of restitution ή bounciness) Μία έννοια εξαιρετικά σημαντική για όσους φτιάχνουν ασκήσεις στις στιγμιαίες κρούσεις (με ορμές ή/και στροφορμές για την

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ στη Φυσική

ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ στη Φυσική Α ΤΑΞΗ ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ στη Φυσική ΜΕΡΟΣ 1 : Ευθύγραμμες Κινήσεις 1. Να επαναληφθεί το τυπολόγιο όλων των κινήσεων - σελίδα 2 (ευθύγραμμων και ομαλών, ομαλά μεταβαλλόμενων) 2. Να επαναληφθούν όλες οι

Διαβάστε περισσότερα

THE ECONOMIST ΟΜΙΛΙΑ DELIA VELCULESCU. MISSION CHIEF for Greece, IMF

THE ECONOMIST ΟΜΙΛΙΑ DELIA VELCULESCU. MISSION CHIEF for Greece, IMF THE ECONOMIST ΟΜΙΛΙΑ DELIA VELCULESCU MISSION CHIEF for Greece, IMF TO THE 20 th ROUNDTABLE WITH THE GOVERNMENT OF GREECE EUROPE: SHAKEN AND STIRRED? GREECE: A SKILFUL ACORBAT? ΤΕΤΑΡΤΗ 22 ΙΟΥΝΙΟΥ 2016

Διαβάστε περισσότερα