ΟΙ ΣΤΡΑΤΗΓΙΚΕΣ ΠΡΟΣΘΕΣΗΣ ΚΑΙ ΑΦΑΙΡΕΣΗΣ ΜΕ ΑΡΙΘΜΟΥΣ ΜΕΧΡΙ ΤΟ 20

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΟΙ ΣΤΡΑΤΗΓΙΚΕΣ ΠΡΟΣΘΕΣΗΣ ΚΑΙ ΑΦΑΙΡΕΣΗΣ ΜΕ ΑΡΙΘΜΟΥΣ ΜΕΧΡΙ ΤΟ 20"

Transcript

1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΑΘΗΓΗΤΗΣ Χ. ΛΕΜΟΝΙΔΗΣ ΟΙ ΣΤΡΑΤΗΓΙΚΕΣ ΠΡΟΣΘΕΣΗΣ ΚΑΙ ΑΦΑΙΡΕΣΗΣ ΜΕ ΑΡΙΘΜΟΥΣ ΜΕΧΡΙ ΤΟ 20 Στη διδασκαλία συνήθως τα παιδιά αρχικά διδάσκονται τις πρώτες πράξεις της πρόσθεσης και της αφαίρεσης με μονοψήφιους αριθμούς και αποτέλεσμα μέχρι το 20 και στη συνέχεια μαθαίνουν πράξεις πρόσθεσης και αφαίρεσης με διψήφιους αριθμούς μέχρι το 100. Έτσι και εδώ θα διαχωρίσουμε, τις πράξεις της πρόσθεσης και της αφαίρεσης και τις στρατηγικές που χρησιμοποιούν τα παιδιά, σε πράξεις με μονοψήφιους όρους και αριθμούς μέχρι το 20 και σε πράξεις με διψήφιους αριθμούς μέχρι το 100. Οι περισσότερες έρευνες που πραγματοποιήθηκαν για να προσδιορίσουν τις διαδικασίες ή στρατηγικές που χρησιμοποιούν τα παιδιά στις προσθέσεις και αφαιρέσεις μονοψήφιων αριθμών συμφωνούν ότι οι στρατηγικές αυτές αναπτύσσονται σύμφωνα με τα παρακάτω τρία επίπεδα: 1ο επίπεδο. Στρατηγικές με υλικά ή αισθητοποίησης των αριθμών. Σε αυτό το πρώτο επίπεδο τα παιδιά έχουν ανάγκη από την αισθητοποίηση των αριθμών για να πραγματοποιήσουν τις πράξεις. Χρησιμοποιούν δηλαδή αντικείμενα ή τα δάκτυλά τους για να κατασκευάσουν ένα άμεσο μοντέλο της πράξης της πρόσθεσης ή της αφαίρεσης που τους δίνεται. Για παράδειγμα στην πρόσθεση 2+3, το παιδί βγάζει και μετράει ένα προς ένα δύο δάχτυλα, στη συνέχεια βγάζει και μετράει άλλα τρία δάχτυλα και στο τέλος μετράει, ένα προς ένα, από την αρχή όλα τα δάχτυλα που έβγαλε για να βρει το αποτέλεσμα. Αυτή τη στρατηγική την ονομάζουμε απαρίθμηση όλων ή επαναρίθμηση. Τις στρατηγικές σε αυτό το επίπεδο τις ονομάζουμε στρατηγικές με υλικά και διαχωρίσουμε εκείνες κατά τις οποίες τα παιδιά χρησιμοποιούν τα δάκτυλά τους (Δάκτυλα) από εκείνες που χρησιμοποιούν αντικείμενα (Αντικείμενα), για να μοντελοποιήσουν την πράξη. Οι στρατηγικές αυτές είναι οι πρώτες που χρησιμοποιούν τα παιδιά για να εκτελούν προσθέσεις ή αφαιρέσεις και τις συναντούμε στο νηπιαγωγείο και τις πρώτες τάξεις του δημοτικού. 2ο επίπεδο. Στρατηγικές αρίθμησης. Στο επίπεδο αυτό τα παιδιά για να υπολογίσουν τις προσθέσεις και αφαιρέσεις χρησιμοποιούν την ακολουθία των αριθμών (αριθμογραμμή) σε αντίθεση με το προηγούμενο επίπεδο κατά το οποίο απαριθμούσαν μόνο αντικείμενα. Γιαυτόν τον λόγο τις στρατηγικές αυτές τις ονομάζουμε στρατηγικές αρίθμησης. Για παράδειγμα, στην πρόσθεση 2+5, τα παιδιά μπορεί να αριθμήσουν ένα προς ένα τόσα βήματα όσα δείχνουν οι αριθμοί της πράξης ξεκινώντας από τον πρώτο αριθμό 1, 2, 3, 4, 5, 6, 7 (Αρίθμηση από τον πρώτο όρο). Υπάρχουν και άλλες στρατηγικές αρίθμησης τις οποίες παρουσιάζουμε λεπτομερώς παρακάτω.

2 3ο επίπεδο. Στρατηγικές ανάκλησης ή κατασκευαστικές στρατηγικές. Στο επίπεδο αυτό τα παιδιά ανακαλούν από τη μνήμη τους γνωστά αριθμητικά γεγονότα και τα επεξεργάζονται νοερά για να υπολογίσουν κάποια άλλα. Για παράδειγμα, την πρόσθεση 5+6, κάποια παιδιά μπορεί να την υπολογίσουν ως εξής: 5+5+1=11, ανακάλεσαν από την μνήμη τους τα γνωστά αριθμητικά γεγονότα: 6=5+1 και 5+5=10. Στο επίπεδο αυτό διακρίνουμε δύο υποπεριπτώσεις στρατηγικών: Στρατηγικές άμεσης ανάκλησης, κατά τις οποίες το παιδί σε μια πράξη, για παράδειγμα 3+3, γνωρίζει το αποτέλεσμα απέξω. Γνωρίζει, δηλαδή, την πράξη και το αποτέλεσμά της και την ανακαλεί αμέσως από τη μνήμη μακράς διάρκειας. Έχουμε, επίσης, τις κατασκευαστικές στρατηγικές ή παραγωγής πράξεων κατά τις οποίες το παιδί, για να βρει το αποτέλεσμα μιας πράξης, ανακαλεί από τη μνήμη του γνωστά αριθμητικά γεγονότα και με αυτά κατασκευάζει την απάντηση. Ο διαχωρισμός αυτός των τριών επιπέδων δεν είναι απόλυτος. Μπορεί να υπάρχουν στρατηγικές που συνδυάζουν συμπεριφορές από δύο διαφορετικά επίπεδα. για παράδειγμα, διαδικασίες υπολογισμού με δάκτυλα, κατά τις οποίες το παιδί υπολογίζει το αποτέλεσμα (3 ο επίπεδο), αλλά το επιβεβαιώνει χρησιμοποιώντας τα δάχτυλά του (2 ο επίπεδο). Στην συνέχεια θα παρουσιάσουμε παραδείγματα από τις στρατηγικές πρόσθεσης και αφαίρεσης και στα τρία επίπεδα και θα τις αναλύσουμε περισσότερο. 1 ο ΕΠΙΠΕΔΟ: ΣΤΡΑΤΗΓΙΚΕΣ ΜΕ ΥΛΙΚΑ Η ΑΙΣΘΗΤΟΠΟΙΗΣΗΣ ΤΩΝ ΑΡΙΘΜΩΝ ΠΡΟΣΘΕΣΗ Απαρίθμηση όλων: είναι μια από τις πρώτες στρατηγικές που χρησιμοποιούν τα παιδιά για την πρόσθεση και μάλιστα πολλές φορές την χρησιμοποιούν αυθόρμητα. Στη στρατηγική αυτή τα παιδιά έχουν την ανάγκη να αισθητοποιήσουν τους δύο όρους της πρόσθεσης με τα δάχτυλα ή με αντικείμενα. Για παράδειγμα, στο πρόβλημα "ο Αντρέας έχει 3 κάρτες. Ο Κώστας έχει 2 κάρτες περισσότερες από τον Αντρέα. Πόσες κάρτες έχει ο Κώστας;" ο μαθητής με τα δάχτυλά του ή με φυσικά αντικείμενα μετράει και κατασκευάζει δύο σύνολα που το πρώτο αντιστοιχεί στο 3 και το δεύτερο στο 2. Στη συνέχεια μετράει και τα δύο σύνολα μαζί (5) και δίνει την απάντηση. ΑΦΑΙΡΕΣΗ Διαχωρισμός από: εδώ το παιδί κατασκευάζει το μειωτέο χρησιμοποιώντας αντικείμενα ή τα δάκτυλά του, στη συνέχεια διαχωρίζει από αυτά τον μικρότερο όρο δηλαδή τον αφαιρετέο και μετά απαριθμεί όσα στοιχεία μένουν για να δώσει την απάντηση. Θα εξετάσουμε πώς εφαρμόζονται οι διάφορες στρατηγικές της αφαίρεσης στο εξής πρόβλημα: "Ο Αντρέας έχει 3 κάρτες. Ο Κώστας έχει 5 κάρτες. Πόσες κάρτες περισσότερες έχει ο Κώστας από τον Αντρέα;"

3 Εδώ το παιδί χρησιμοποιώντας αντικείμενα ή τα δάκτυλά του, μετράει και κατασκευάζει ένα σύνολο που αντιστοιχεί στο μεγαλύτερο αριθμό του προβλήματος, το μειωτέο (5), μετά μετράει και αποσύρει τόσα αντικείμενα όσα δείχνει ο μικρότερος αριθμός (2). Στο τέλος μετράει τα αντικείμενα που μένουν (2) που είναι το αποτέλεσμα της αφαίρεσης. Διαχωρισμός μέχρι: η στρατηγική αυτή είναι παρόμοια με την προηγούμενη στρατηγική Διαχωρισμός από με τη διαφορά ότι εδώ διαχωρίζονται από το μεγάλο αρχικό σύνολο τόσα στοιχεία ώστε αυτά που θα μείνουν να είναι ίσα με το μικρότερο όρο που δίνεται στο πρόβλημα. Απαριθμώντας τον αριθμό των αντικειμένων που διαχωρίστηκαν έχουμε την απάντηση. Στο συγκεκριμένο πρόβλημα, το παιδί κατασκευάζει ένα σύνολο που αντιστοιχεί στο μεγαλύτερο αριθμό (5) και μετά αποσύρει αντικείμενα μέχρι να μείνουν τόσα όσα δείχνει ο μικρότερος αριθμός (3). Η απάντηση βρίσκεται με την απαρίθμηση των αντικειμένων που αποσύρθηκαν (2). ΠΡΟΣΘΕΣΗ 2 ο ΕΠΙΠΕΔΟ: ΣΤΡΑΤΗΓΙΚΕΣ ΑΡΙΘΜΗΣΗΣ. Στις στρατηγικές αρίθμησης της πρόσθεσης μπορούμε να διαχωρίσουμε δύο μεγάλες κατηγορίες στρατηγικών: τις στρατηγικές αρίθμησης όλων και τις στρατηγικές αρίθμησης από. Στις στρατηγικές αρίθμησης όλων αριθμούνται ένα ένα όλα τα βήματα των όρων της πράξης, π.χ. στην πρόσθεση 3+5, ένας μαθητής μπορεί να απαντήσει: 1, 2, 3,, 4, 5, 6, 7, 8. Στις στρατηγικές αρίθμησης από γίνεται συντόμευση των βημάτων της αρίθμησης, ένας μαθητής στην παραπάνω πρόσθεση απαντά (3), 4, 5, 6, 7, 8. Ξεκινά δηλαδή με δεδομένο τον πληθάριθμο του πρώτου όρου και ανεβαίνει τόσα βήματα όσα δείχνει ο δεύτερος όρος. Παρατηρούμε ότι οι στρατηγικές αρίθμησης από είναι πιο προχωρημένες από τις στρατηγικές αρίθμησης όλων. Στις στρατηγικές αρίθμησης από μπορούμε να διαχωρίσουμε δύο κατηγορίες: τις στρατηγικές αρίθμησης από τον πρώτο και τις στρατηγικές αρίθμησης από τον μεγαλύτερο. Στις στρατηγικές αρίθμησης από τον μεγαλύτερο όταν ο δεύτερος όρος της πρόσθεσης είναι μεγαλύτερος από τον πρώτο π.χ. 2+7, εφαρμόζεται άτυπα η αντιμεταθετική ιδιότητα της πρόσθεσης και με αυτόν τον τρόπο γίνεται οικονομία βημάτων. Στην πρόσθεση 2+7 εφαρμόζονται οι παρακάτω στρατηγικές: Αρίθμηση όλων αρχίζοντας από τον πρώτο: Γίνεται αρίθμηση του πρώτου αριθμού (2) αρχίζοντας από το 1 "1, 2" και συνεχίζεται αυτή η ευθεία αρίθμηση μέχρι την αρίθμηση και του δεύτερου αριθμού (7) "3, 4, 5, 6, 7, 8, 9". Η απάντηση είναι ο τελευταίος αριθμός (9) αυτής της αρίθμησης. Αρίθμηση όλων αρχίζοντας από το μεγαλύτερο: Εφαρμόζεται άτυπα η αντιμεταθετική ιδιότητα, δηλαδή αντί να υπολογίσουν το 2+7 υπολογίζουν το 7+2. Αριθμούν όλα τα βήματα και των δύο αριθμών. Αριθμούν μέχρι το μεγαλύτερο αριθμό (7) αρχίζοντας από το 1 "1, 2, 3, 4, 5, 6, 7" και συνεχίζουν αυτή την ευθεία

4 αρίθμηση μέχρι την αρίθμηση και του μικρότερου αριθμού (2) "8, 9". Η απάντηση είναι ο τελευταίος αριθμός (9) αυτής της αρίθμησης. Αρίθμηση από τον πρώτο: Εδώ γίνεται οικονομία βημάτων τα παιδία αριθμούν αρχίζοντας από τον πληθάριθμο του πρώτου προσθετέου. Στο παράδειγμά μας, το παιδί θα πει " 2 (παύση)" και θα μετρήσει "3, 4, 5, 6, 7, 8, 9" Η απάντηση είναι 9. Αρίθμηση από το μεγαλύτερο: Όπως στην προηγούμενη στρατηγική και εδώ γίνεται οικονομία βημάτων και μάλιστα τα παιδία αρχίζουν να αριθμούν από τον πληθάριθμο του μεγαλύτερου προσθετέου. Με αυτόν τον τρόπο εφαρμόζεται άτυπα η αντιμεταθετική ιδιότητα. Στο παράδειγμα, το παιδί θα μετρήσει "7 (παύση), 8, 9" Η απάντηση είναι 9. ΑΦΑΙΡΕΣΗ Στην αφαίρεση 7-3 εφαρμόζονται οι παρακάτω στρατηγικές: Αντίστροφη αρίθμηση από: στα πλαίσια της στρατηγικής αυτής τα παιδιά πραγματοποιούν αντίστροφη αρίθμηση αρχίζοντας από το μεγαλύτερο από τους δύο όρους της αφαίρεσης. Τα βήματα της αντίστροφης αρίθμησης είναι τόσα όσος είναι ο μικρότερος όρος. Ο τελευταίος αριθμός που προφέρεται σ'αυτήν την αντίστροφη αρίθμηση είναι η απάντηση. Στο παράδειγμα, τα παιδία αριθμούν αντίστροφα αρχίζοντας από το 7 και κατεβαίνουν 3 αριθμολέξεις "(7), 6, 5, 4". Ο τελευταίος αριθμός στην αρίθμηση αυτή (4), είναι η απάντηση. Αντίστροφη αρίθμηση μέχρι: εδώ πραγματοποιείται αντίστροφη αρίθμηση ξεκινώντας από το μεγαλύτερο από τους δύο όρους μέχρι να φτάσουμε στον αριθμό που εκφράζει το μικρότερο όρο. Αριθμώντας τα βήματα αυτής της αρίθμησης βρίσκεται η απάντηση. Στο παράδειγμα, τα παιδιά αριθμούν αντίστροφα αρχίζοντας από το 7 και συνεχίζουν μέχρι να φτάσουν στο μικρότερο αριθμό 3 "(7), 6, 5, 4, 3". Η απάντηση είναι ο αριθμός των βημάτων που αριθμήθηκαν (4). Πρόσθεση: εδώ, οι μαθητές εκτελούν πρόσθεση αντί για αφαίρεση. Ξεκινούν από τον μικρότερο όρο της αφαίρεσης (3) και αριθμούν ευθέως μέχρι να φτάσουν το μεγαλύτερο αριθμό (7) "(3), 4, 5, 6, 7". Μετρώντας τα βήματα που έκαναν σ'αυτή την αρίθμηση έχουν την απάντηση (4). Η χρήση των δακτύλων Στις παραπάνω στρατηγικές της πρόσθεσης και της αφαίρεσης, κατά τη διάρκεια της αρίθμησης, τα παιδιά για να σταματήσουν θα πρέπει να καταγράφουν τον αριθμό των βημάτων που εκτελούν. Η καταγραφή αυτή των βημάτων γίνεται πολύ συχνά με τη χρησιμοποίηση των δακτύλων του χεριού. Εδώ, η χρήση των δακτύλων είναι διαφορετική από αυτήν του προηγούμενου επιπέδου στρατηγικών (1 ο επίπεδο). Στην περίπτωση αυτή το παιδί δε χρησιμοποιεί τα δάκτυλά του για να αναπαραστήσει τις δύο συλλογές των αντικειμένων αλλά για να ελέγξει την εξέλιξη της αρίθμησης και να μην ξεπεράσει το αποτέλεσμα όταν το φτάσει. Χρησιμοποιεί δηλαδή τα δάκτυλά του ως μέσο καταγραφής των βημάτων που εκτελεί στην αρίθμηση. Ενώ στο πρώτο

5 επίπεδο χρησιμοποιεί τα δάκτυλά για να αναπαραστήσει, να αισθητοποιήσει τους όρους της πρόσθεσης. Στις στρατηγικές αυτές η χρήση των δακτύλων γίνεται απαραίτητη γιατί τα παιδιά όταν αριθμούν χρειάζονται ένα μέσο για να απαριθμούν τα βήματα αυτής της αρίθμησης. Για παράδειγμα, στην αφαίρεση 7-3 με τη στρατηγική της αντίστροφης αρίθμησης από τα παιδία θα πρέπει να αριθμήσουν αντίστροφα από το 7 και να κατέβουν 3 αριθμολέξεις "(7), 6, 5, 4". Δηλαδή ενώ απαγγέλουν τους αριθμούς "6, 5, 4" ταυτόχρονα θα πρέπει με κάποιο μέσο να μετρούν από το ένα μέχρι το τρία για να ξέρουν πότε να σταματήσουν. 3 ο ΕΠΙΠΕΔΟ: ΣΤΡΑΤΗΓΙΚΕΣ ΑΝΑΚΛΗΣΗΣ Ή ΚΑΤΑΣΚΕΥΑΣΤΙΚΕΣ ΣΤΡΑΤΗΓΙΚΕΣ Στρατηγική Παράδειγμα 1 Κοντά στα διπλά 3 ο επίπεδο: Στρατηγικές ανάκλησης ή κατασκευαστικές στρατηγικές Πρόσθεση 7+6=13 7+6=6+6+1 ή Υπολογίζουν με βάση τα διπλά αθροίσματα 2 Χρήση του =10+3. Αναλύουν τους προσθετέους με βάση το 5. 3 Υπέρβαση της δεκάδας ή Πέρασμα από το 10 4 Αντιστάθμιση (Compensation) 5 Εξισορρόπηση (Leveling) 1 Χρήση των διπλών 2 Κοντά στα διπλά 3 Υπέρβαση της δεκάδας ή Πέρασμα από το 10 4 Αφαίρεση ως αντίστροφη της πρόσθεσης =10, 10+6=16. Προσθέτουν στο μεγαλύτερο όρο μέχρι να φτάσουν στο 10 και μετά προσθέτουν και τα υπόλοιπα του δεύτερου όρου =10, 10+5=15, 15-1=14. Συμπληρώνουν τον ένα όρο ώστε να γίνει εύκολα η πρόσθεση και μετά αφαιρούν αυτό το συμπλήρωμα από το αποτέλεσμα =14. Προσθέτουν στον ένα όρο και αφαιρούν από τον άλλο τον ίδιο αριθμό ώστε να καταλήξουν σε ένα γνωστό άθροισμα. Αφαίρεση 14-7=7 7+7=14 Υπολογίζουν με βάση την αντίστροφη πρόσθεση που είναι άθροισμα διπλών (ν+ν) 9-5=4 10-5=5, 5-1=4. Υπολογίζουν με βάση την αφαίρεση των διπλών (2ν-ν) =10, 10-4=6. Αφαιρούν από τον μεγαλύτερο όρο μέχρι να φτάσουν στο 10 και μετά αφαιρούν και τα υπόλοιπα του δεύτερου όρου. 7-4=3 4+3=7. Χρησιμοποιούν την αντίστροφη πρόσθεση για να βρουν τη διαφορά. Στρατηγικές ανάκλησης ή κατασκευαστικές αφαίρεσης (3 ο επίπεδο) στρατηγικές πρόσθεσης και

6 Η ΣΤΡΑΤΗΓΙΚΗ ΥΠΕΡΒΑΣΗ ΤΗΣ ΔΕΚΑΔΑΣ Ή ΠΕΡΑΣΜΑ ΑΠΟ ΤΟ 10 Όπως ήδη αναφέραμε παραπάνω η στρατηγική της υπέρβασης της δεκάδας είναι μια από τις πιο γνωστές στρατηγικές που διδάσκονται από την Α τάξη του Δημοτικού Σχολείου. Είναι όμως μια στρατηγική που κατά γενική ομολογία δημιουργεί δυσκολίες σε αρκετούς μαθητές. Για τη διδασκαλία της στρατηγικής αυτής απαιτείται γνώση, προσοχή και λεπτοί χειρισμοί από την πλευρά του εκπαιδευτικού για να μην υπάρχουν παρενέργειες στους μαθητές. Στη συνέχεια θα προσπαθήσουμε να αναλύσουμε τις διαδικασίες που συνθέτουν τη στρατηγική αυτή και τους λόγους που την καθιστούν δύσκολη για κάποιους μαθητές. Μια πρώτη επισήμανση που πρέπει να κάνουμε είναι ότι η στρατηγική αυτή του περάσματος από το 10, ανήκει στο 3 ο επίπεδο δηλαδή, είναι κατασκευαστική στρατηγική. Αυτό σημαίνει ότι οι μαθητές έχουν φτάσει σε ένα επίπεδο τέτοιο που έχουν μάθει και έχουν αποθηκεύσει στη μνήμη μακράς διάρκειας αριθμητικά γεγονότα όπως τα συμπληρώματα του 10, αθροίσματα της μορφής 10+ν κτλ. Άρα μια πρώτη επισήμανση που μπορούμε να κάνουμε είναι ότι δεν πρέπει να βιαζόμαστε στο να διδάξουμε αυτή τη στρατηγική. Οι μαθητές θα πρέπει να είναι ώριμοι, δηλαδή να έχουν αποθηκεύσει στη μνήμη τους αρκετά αριθμητικά γεγονότα και να είναι ικανοί να τα ανακαλούν στη βραχύχρονη μνήμη τους και να υπολογίζουν με αυτά. Αυτό το επίπεδο καταχτιέται συνήθως προς το τέλος της Α τάξης. Αλλά ας δούμε λεπτομερώς ποιες πράξεις χρειάζονται και πως πραγματοποιείται αυτή η στρατηγική του περάσματος από το 10. Για παράδειγμα, ένας μαθητής έχει να εκτελέσει την πρόσθεση 7+4 με τη στρατηγική του περάσματος από το 10. Τι θα πρέπει να κάνει ο μαθητής; Να αναλύσει το 4 σε άθροισμα 4=3+1, τέτοιο ώστε ο ένας όρος να προστίθεται στο 7 και να δίνει άθροισμα 10. Να σκεφτεί τις προσθέσεις 7+3=10 και 10+1=11. Δηλαδή να γνωρίζει και να έχει αποθηκευμένα στη μνήμη μακράς διάρκειας τρία αριθμητικά γεγονότα, το 4=3+1, το 7+3=10 και το 10+1=11. Αυτά τα τρία αριθμητικά γεγονότα να τα ανασύρει στη βραχύχρονη μνήμη να τα επεξεργαστεί και να κατασκευάσει την απάντηση. Αυτή λοιπόν η διαδικασία της ανάσυρσης από τη μνήμη και η ταυτόχρονη επεξεργασία των τριών αριθμητικών γεγονότων στη βραχύχρονη μνήμη δεν είναι εύκολη για όλους τους μαθητές. Για όλους τους μαθητές αρχικά, αλλά και για πολλούς μετέπειτα, χρειάζεται υποστήριξη από υλικά ή από αναπαραστάσεις για να πραγματοποιηθεί αυτή η απαιτητική νοητική δραστηριότητα. Το ερώτημα που τίθεται είναι: πιο υλικό μέσο ή αναπαράσταση είναι η καταλληλότερη για να υποστηρίξει τους μαθητές στη στρατηγική του περάσματος από το 10; Η διδασκαλία της στρατηγικής του περάσματος από το 10 Όπως αναφέραμε παραπάνω η στρατηγική του περάσματος από τη δεκάδα για την πρόσθεση και την αφαίρεση είναι δύσκολη για τους μαθητές για να την εκτελούν νοερά χωρίς τη χρήση εποπτικού υλικού. Για αυτό το λόγο είναι καλό να παρουσιάζεται στους μαθητές αρχικά με τη χρήση εποπτικού υλικού (σειρά από χάντρες ή αριθμητήριο) και την αριθμογραμμή. Επίσης είναι καλύτερα να παρουσιαστεί προς το τέλος της Α τάξης και όχι το νωρίς όπως παρουσιάζεται στο βιβλίο. Αυτό θα το διευκρινίσουμε περισσότερο όταν παρουσιάσουμε πιο λεπτομερώς το πρόγραμμα της παρέμβασης στη τάξη.

7 Εικόνα 1: Παρουσίαση της στρατηγικής του περάσματος από το 10 με σειρά από χάντρες και αριθμογραμμή Βλέπουμε στην παραπάνω εικόνα πως μπορούμε να παρουσιάζουμε την στρατηγική του περάσματος από το δέκα ταυτόχρονα με υλικά (την σειρά από χάντρες ή το αριθμητήριο) και την αριθμογραμμή. Στην αρχή μπορούμε να χρησιμοποιούμε τη βαθμολογημένη αριθμητική γραμμή και στη συνέχεια την κενή αριθμητική γραμμή. Η κενή αριθμητική γραμμή είναι ένα πολύ καλό εποπτικό μέσο το οποίο μπορεί να υποστηρίζει τους μαθητές στην πραγματοποίηση αυτής της στρατηγικής. Οι μαθητές έχουν εποπτεία των βημάτων της πράξης που εκτελείται αλλά και του μεγέθους και της σχέσης των αριθμών επάνω στην αριθμογραμμή. Επίσης ο μαθητής για να υποστηρίζει την πραγματοποίηση της στρατηγικής μπορεί να σχεδιάζει την αριθμογραμμή, όποτε θέλει πολύ εύκολα.

ΘΕΜΑ ΕΡΓΑΣΙΑΣ: ΠΕΙΡΑΜΑΤΙΣΜΟΣ ΜΕ ΜΑΘΗΤΗ ΔΗΜΟΤΙΚΟΥ ΚΑΙ ΕΞΑΓΩΓΗ ΣΥΜΠΕΡΑΣΜΑΤΩΝ

ΘΕΜΑ ΕΡΓΑΣΙΑΣ: ΠΕΙΡΑΜΑΤΙΣΜΟΣ ΜΕ ΜΑΘΗΤΗ ΔΗΜΟΤΙΚΟΥ ΚΑΙ ΕΞΑΓΩΓΗ ΣΥΜΠΕΡΑΣΜΑΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΜΑΘΗΜΑ: Υ404 ΔΙΔΑΚΤΙΚΗ ΜΑΘΗΜΑΤΙΚΩΝ ( Β ΦΑΣΗ ΔΙ.ΜΕ.Π.Α.) ΔΙΔΑΣΚΩΝ: ΛΕΜΟΝΙΔΗΣ ΧΑΡΑΛΑΜΠΟΣ ΕΠΙΜΕΛΕΙΑ ΕΡΓΑΣΙΑΣ: ΜΑΛΕΓΑΝΕΑ

Διαβάστε περισσότερα

Αριθμογραμμή πατώματος (Number line floor mat) Έπειτα, περάσαμε σταδιακά στις αριθμογραμμές του πίνακα.

Αριθμογραμμή πατώματος (Number line floor mat) Έπειτα, περάσαμε σταδιακά στις αριθμογραμμές του πίνακα. Χρήση της αριθμογραμμής σε πράξεις πρόσθεσης και αφαίρεσης. Πιο συγκεκριμένα, αρχικά σε προσθέσεις με μονοψήφιους αριθμούς και αποτέλεσμα μέχρι το 10 και έπειτα με αποτέλεσμα μέχρι το 20 και σε αφαιρέσεις.

Διαβάστε περισσότερα

ΓΙΑΤΙ ΚΑΙ ΠΩΣ ΧΡΗΣΙΜΟΠΟΙΟΥΝ ΟΙ ΜΑΘΗΤΕΣ ΤΑ ΔΑΚΤΥΛΑ ΤΟΥΣ ΣΤΗΝ ΕΚΤΕΛΕΣΗ ΑΠΛΩΝ 1 ΠΡΟΣΘΕΣΕΩΝ ΚΑΙ ΑΦΑΙΡΕΣΕΩΝ

ΓΙΑΤΙ ΚΑΙ ΠΩΣ ΧΡΗΣΙΜΟΠΟΙΟΥΝ ΟΙ ΜΑΘΗΤΕΣ ΤΑ ΔΑΚΤΥΛΑ ΤΟΥΣ ΣΤΗΝ ΕΚΤΕΛΕΣΗ ΑΠΛΩΝ 1 ΠΡΟΣΘΕΣΕΩΝ ΚΑΙ ΑΦΑΙΡΕΣΕΩΝ Το παρακάτω άρθρο δημοσιεύτηκε στο περιοδικό Διάσταση το 1994. Η πλήρης αναφορά είναι η εξής: Χ. Λεμονίδης (1994). Γιατί και πώς χρησιμοποιούν οι μαθητές τα δάκτυλά τους στην εκτέλεση απλών προσθέσεων

Διαβάστε περισσότερα

Χαράλαμπος Λεμονίδης Παιδαγωγικό Τμήμα Δ.Ε., Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, 53100 Φλώρινα 1. ΕΙΣΑΓΩΓΗ

Χαράλαμπος Λεμονίδης Παιδαγωγικό Τμήμα Δ.Ε., Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, 53100 Φλώρινα 1. ΕΙΣΑΓΩΓΗ Το παρακάτω άρθρο δημοσιεύτηκε στα Πρακτικά 1 ης Διημερίδας του Πανεπιστημίου Κρήτης στη Διδακτική των Μαθηματικών το 1998. Η πλήρης αναφορά είναι η εξής: Χ. Λεμονίδης (1998). που χρησιμοποιούν οι μαθητές

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ ΝΟΕΡΟΙ ΥΠΟΛΟΓΙΣΜΟΙ ΛΟΓΑΡΕΖΩ ΜΕ ΤO TΖΙΜΙΔΙ Μ. ΚΕΦΑΛΑΙΟ 1: Γενικά θεωρητικά θέματα των νοερών υπολογισμών

ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ ΝΟΕΡΟΙ ΥΠΟΛΟΓΙΣΜΟΙ ΛΟΓΑΡΕΖΩ ΜΕ ΤO TΖΙΜΙΔΙ Μ. ΚΕΦΑΛΑΙΟ 1: Γενικά θεωρητικά θέματα των νοερών υπολογισμών ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ ΝΟΕΡΟΙ ΥΠΟΛΟΓΙΣΜΟΙ ΛΟΓΑΡΕΖΩ ΜΕ ΤO TΖΙΜΙΔΙ Μ Εισαγωγή ΚΕΦΑΛΑΙΟ 1: Γενικά θεωρητικά θέματα των νοερών υπολογισμών 1.1.: Η θέση των νοερών υπολογισμών στο σύγχρονο διδακτικό

Διαβάστε περισσότερα

Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Α+Β Δημοτικού

Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Α+Β Δημοτικού Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων 2016-2017 Τάξεις Α+Β Δημοτικού Περιεχόμενα Στόχοι Πηγή Υλικού 1.1 Αριθμοί 1-1000 Γραφή, Ανάγνωση, Απαγγελία, Απαρίθμηση, Σύγκριση, Συμπλήρωση (κατά αύξουσα

Διαβάστε περισσότερα

ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΑΡΙΘΜΩΝ ΜΕΧΡΙ ΤΟ

ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΑΡΙΘΜΩΝ ΜΕΧΡΙ ΤΟ ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΑΡΙΘΜΩΝ ΜΕΧΡΙ ΤΟ 10 Η ενότητα 7 περιλαμβάνει την ανάλυση και τη σύνθεση των αριθμών μέχρι το 10, στρατηγικές πρόσθεσης/αφαίρεσης και επίλυση προβλημάτων πρόσθεσης και αφαίρεσης. ΔΕΙΚΤΕΣ

Διαβάστε περισσότερα

(Υ404) ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ-Β ΦΑΣΗ ΔΙ.ΜΕ.ΠΑ. Άσκηση Αξιολόγησης στους νοερούς υπολογισμούς

(Υ404) ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ-Β ΦΑΣΗ ΔΙ.ΜΕ.ΠΑ. Άσκηση Αξιολόγησης στους νοερούς υπολογισμούς ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΟΛΗ ΦΛΩΡΙΝΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ (Υ404) ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ-Β ΦΑΣΗ ΔΙ.ΜΕ.ΠΑ Άσκηση Αξιολόγησης στους νοερούς υπολογισμούς Εξεταζόμενο

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 4 ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ ΑΦΑΙΡΕΣΗ ΜΕ ΧΑΛΑΣΜΑ ΔΕΚΑΔΑΣ

ΕΝΟΤΗΤΑ 4 ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ ΑΦΑΙΡΕΣΗ ΜΕ ΧΑΛΑΣΜΑ ΔΕΚΑΔΑΣ ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ ΑΦΑΙΡΕΣΗ ΜΕ ΧΑΛΑΣΜΑ ΔΕΚΑΔΑΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Υπολογισμοί και εκτίμηση Αρ2.11 Αναπαριστούν καταστάσεις πρόσθεσης, αφαίρεσης, πολλαπλασιασμού, τέλειας και ατελούς διαίρεσης,

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1 ΠΡΑΞΕΙΣ ΑΡΙΘΜΩΝ ΜΕΧΡΙ ΤΟ 100 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 1000 ΑΙΣΘΗΤΟΠΟΙΗΣΗ ΑΡΙΘΜΩΝ ΜΕΧΡΙ ΤΟ

ΕΝΟΤΗΤΑ 1 ΠΡΑΞΕΙΣ ΑΡΙΘΜΩΝ ΜΕΧΡΙ ΤΟ 100 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 1000 ΑΙΣΘΗΤΟΠΟΙΗΣΗ ΑΡΙΘΜΩΝ ΜΕΧΡΙ ΤΟ ΠΡΑΞΕΙΣ ΑΡΙΘΜΩΝ ΜΕΧΡΙ ΤΟ 100 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 1000 ΑΙΣΘΗΤΟΠΟΙΗΣΗ ΑΡΙΘΜΩΝ ΜΕΧΡΙ ΤΟ 10 000 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ2.8 Αναγνωρίζουν και ορίζουν τους άρτιους, τους περιττούς,

Διαβάστε περισσότερα

Κατηγοριοποίηση των στρατηγικών σε πολυψήφιους πολλαπλασιασμούς και διαιρέσεις

Κατηγοριοποίηση των στρατηγικών σε πολυψήφιους πολλαπλασιασμούς και διαιρέσεις Κατηγοριοποίηση των στρατηγικών σε πολυψήφιους πολλαπλασιασμούς και διαιρέσεις Στις ενότητες 4.1.3 και 4.1.4. παρουσιάσαμε την κατηγοριοποίηση των στρατηγικών της προπαίδειας και στην ενότητα 4.2.2. την

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α Β ΦΑΣΗ: ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α Β ΦΑΣΗ: ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α Β ΦΑΣΗ: ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Φοιτητής: Παύλου Νικόλαος, Α.Ε.Μ: 2245, Ε Εξάμηνο Σχολείο: 1 ο Πειραματικό

Διαβάστε περισσότερα

ΑΤΥΠΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ

ΑΤΥΠΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ ΑΤΥΠΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ 1. Ταξινόμηση αντικειμένων ως προς τα χαρακτηριστικά τους Βάλε μαζί σε έναν κύκλο τα λουλούδια με το ίδιο χρώμα και το ίδιο όνομα. Κοίταξε προσεκτικά την εικόνα και απάντησε: Πόσα

Διαβάστε περισσότερα

Αριθμητικά Συστήματα

Αριθμητικά Συστήματα Αριθμητικά Συστήματα Σε οποιοδήποτε αριθμητικό σύστημα, με βάση τον αριθμό Β, ένας ακέραιος αριθμός με πλήθος ψηφίων ν, εκφράζεται ως ακολούθως: α ν-1 α ν-2 α 1 α 0 = α ν-1 Β ν-1 + α ν-2 Β ν-2 + + α 1

Διαβάστε περισσότερα

Αρβανιτίδης Θεόδωρος, - Μαθηματικά Ε

Αρβανιτίδης Θεόδωρος,  - Μαθηματικά Ε Πρόσθεση Φυσικών Αριθμών Μάθημα 5 ο Για να προσθέσω φυσικούς αριθμούς πρέπει να προσθέσω τις μονάδες των αριθμών αυτών, μετά τις δεκάδες των αριθμών, μετά τις εκατοντάδες κλπ. Η πρόσθεση φυσικών αριθμών

Διαβάστε περισσότερα

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί;

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; Πράξεις με πραγματικούς αριθμούς Βασικές ασκήσεις Βασική θεωρία Ρητοί και άρρητοι αριθμοί. α) Ποιοι αριθμοί ονομάζονται: iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; iv) άρρητοι; v) πραγματικοί; β) Να βρείτε

Διαβάστε περισσότερα

3. Παρατηρώ παρακάτω πώς σχηματίζονται οι αριθμοί από το 1 έως το 10: 5 + 1 4 + 1. Κάνω τις ασκήσεις

3. Παρατηρώ παρακάτω πώς σχηματίζονται οι αριθμοί από το 1 έως το 10: 5 + 1 4 + 1. Κάνω τις ασκήσεις 3. Παρατηρώ παρακάτω πώς σχηματίζονται οι αριθμοί από το 1 έως το 10: 9 + 1 7 + 1 8 + 1 + 1 3 + 1 4 + 1 5 + 1 6 + 1 1 + 1 0 + 1 0 1 3 4 5 6 7 8 9 10 Κάνω τις ασκήσεις 1. Γράφω με τη σειρά μέσα στα κυκλάκια

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 12 ΠΡΑΞΕΙΣ ΜΕΧΡΙ ΤΟ 20

ΕΝΟΤΗΤΑ 12 ΠΡΑΞΕΙΣ ΜΕΧΡΙ ΤΟ 20 ΠΡΑΞΕΙΣ ΜΕΧΡΙ ΤΟ 20 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ 1.6 Συνθέτουν και αναλύουν αριθμούς μέχρι το 100 με βάση την αξία θέσης ψηφίου, χρησιμοποιώντας αντικείμενα, εικόνες, και σύμβολα. Αρ

Διαβάστε περισσότερα

ΔΙΔΑΣΚΑΛΙΑ ΓΝΩΣΤΙΚΗΣ ΣΤΡΑΤΗΓΙΚΗΣ ΓΙΑ ΤΗΝ ΚΑΤΑΝΟΗΣΗ Δρ. Ζαφειριάδης Κυριάκος Οι ικανοί αναγνώστες χρησιμοποιούν πολλές στρατηγικές (συνδυάζουν την

ΔΙΔΑΣΚΑΛΙΑ ΓΝΩΣΤΙΚΗΣ ΣΤΡΑΤΗΓΙΚΗΣ ΓΙΑ ΤΗΝ ΚΑΤΑΝΟΗΣΗ Δρ. Ζαφειριάδης Κυριάκος Οι ικανοί αναγνώστες χρησιμοποιούν πολλές στρατηγικές (συνδυάζουν την 1 ΔΙΔΑΣΚΑΛΙΑ ΓΝΩΣΤΙΚΗΣ ΣΤΡΑΤΗΓΙΚΗΣ ΓΙΑ ΤΗΝ ΚΑΤΑΝΟΗΣΗ Δρ. Ζαφειριάδης Κυριάκος Οι ικανοί αναγνώστες χρησιμοποιούν πολλές στρατηγικές (συνδυάζουν την παλαιότερη γνώση τους, σημειώνουν λεπτομέρειες, παρακολουθούν

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 9 ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 100. Απαγγέλλουν, διαβάζουν, γράφουν και αναγνωρίζουν ποσότητες αριθμών μέχρι το 100. Αρ1.2

ΕΝΟΤΗΤΑ 9 ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 100. Απαγγέλλουν, διαβάζουν, γράφουν και αναγνωρίζουν ποσότητες αριθμών μέχρι το 100. Αρ1.2 ΕΝΟΤΗΤΑ 9 ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 100 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ1.1 Απαγγέλλουν, διαβάζουν, γράφουν και αναγνωρίζουν ποσότητες αριθμών μέχρι το 100. Αρ1.2 Συγκρίνουν και διατάσσουν τους φυσικούς

Διαβάστε περισσότερα

Μαθηματικά A Δημοτικού. Πέτρος Κλιάπης Σεπτέμβρης 2007

Μαθηματικά A Δημοτικού. Πέτρος Κλιάπης Σεπτέμβρης 2007 Μαθηματικά A Δημοτικού Πέτρος Κλιάπης Σεπτέμβρης 2007 Το σύγχρονο μαθησιακό περιβάλλον των Μαθηματικών Ενεργή συμμετοχή των παιδιών Μάθηση μέσα από δραστηριότητες Κατανόηση ΌΧΙ απομνημόνευση Αξιοποίηση

Διαβάστε περισσότερα

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών 2 Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Προσθετέοι 18+17=35 α Προσθετέοι + β = γ Άθοι ρ σμα Άθοι ρ σμα 13 + 17 = 17 + 13 Πρόσθεση φυσικών αριθμών Πρόσθεση είναι η πράξη με την οποία από

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών

Εισαγωγή στην επιστήμη των υπολογιστών Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 3ο Αναπαράσταση Αριθμών www.di.uoa.gr/~organosi 1 Δεκαδικό και Δυαδικό Δεκαδικό σύστημα 2 3 Δεκαδικό και Δυαδικό Δυαδικό Σύστημα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α. Β ΦΑΣΗ ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α. Β ΦΑΣΗ ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α. Β ΦΑΣΗ ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΗΜΕΡΟΜΗΝΙΑ ΔΙΔΑΣΚΑΛΙΑΣ: 13/1/2009 ΣΧΟΛΕΙΟ: 2ο Πειραματικό Δημοτικό Σχολείο

Διαβάστε περισσότερα

Μαθηματικά της Φύσης και της Ζωής

Μαθηματικά της Φύσης και της Ζωής Μαθηματικά της Φύσης και της Ζωής Τάξη: ΣΤ Η γάτα και το ποντίκι 1. Ένα ποντίκι βρίσκεται πάνω σε έναν τοίχο ύψους 2 μέτρων και κάτω στο έδαφος, περιμένοντας το, βρίσκεται μια γάτα. Κατά τη διάρκεια της

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ-Β ΦΑΣΗ ΘΕΜΑ ΔΙΔΑΣΚΑΛΙΑΣ: ΣΤΡΑΤΗΓΙΚΕΣ ΔΙΑΧΕΙΡΙΣΗΣ ΑΡΙΘΜΩΝ-19 ο ΚΕΦΑΛΑΙΟ ΣΧΟΛΕΙΟ: 2 ο ΠΕΙΡΑΜΑΤΙΚΟ ΦΛΩΡΙΝΑΣ

Διαβάστε περισσότερα

ΟΙ ΑΡΧΕΣ ΓΙΑ ΤΗ ΔΙΔΑΣΚΑΛΙΑ ΚΑΙ Ο ΕΚΣΥΓΧΡΟΝΙΣΜΟΣ ΤΩΝ ΑΡΙΘΜΗΤΙΚΩΝ ΕΝΝΟΙΩΝ ΣΤΑ ΝΕΑ ΒΙΒΛΙΑ ΤΗΣ Α ΤΑΞΗΣ ΤΟΥ ΔΗΜΟΤΙΚΟΥ ΣΧΟΛΕΙΟΥ

ΟΙ ΑΡΧΕΣ ΓΙΑ ΤΗ ΔΙΔΑΣΚΑΛΙΑ ΚΑΙ Ο ΕΚΣΥΓΧΡΟΝΙΣΜΟΣ ΤΩΝ ΑΡΙΘΜΗΤΙΚΩΝ ΕΝΝΟΙΩΝ ΣΤΑ ΝΕΑ ΒΙΒΛΙΑ ΤΗΣ Α ΤΑΞΗΣ ΤΟΥ ΔΗΜΟΤΙΚΟΥ ΣΧΟΛΕΙΟΥ Λεμονίδης Χ. (2006). Οι αρχές για τη διδασκαλία και ο εκσυγχρονισμός των αριθμητικών εννοιών στα νέα βιβλία της Α τάξης του δημοτικού σχολείου. Γέφυρες, 30:30-39. ΟΙ ΑΡΧΕΣ ΓΙΑ ΤΗ ΔΙΔΑΣΚΑΛΙΑ ΚΑΙ Ο ΕΚΣΥΓΧΡΟΝΙΣΜΟΣ

Διαβάστε περισσότερα

Επιμόρφωση Εκπαιδευτικών Α Τάξης Δημοτικού. Νοέμβρης 2012 1/11/2012. Φιλοσοφία διδασκαλίας. What you learn reflects how you learned it.

Επιμόρφωση Εκπαιδευτικών Α Τάξης Δημοτικού. Νοέμβρης 2012 1/11/2012. Φιλοσοφία διδασκαλίας. What you learn reflects how you learned it. Επιμόρφωση Εκπαιδευτικών Α Τάξης Δημοτικού Νοέμβρης 2012 Χρύσω Αθανασίου (Σύμβουλος Μαθηματικών ) Ελένη Δεληγιάννη (Συγγραφική Ομάδα) Άντρη Μάρκου (Σύμβουλος Μαθηματικών) Ελένη Μιχαηλίδου (Σύμβουλος Μαθηματικών)

Διαβάστε περισσότερα

Έρευνα στις γνώσεις των νηπίων σχετικά με τις αριθμητικές έννοιες. Εισαγωγή

Έρευνα στις γνώσεις των νηπίων σχετικά με τις αριθμητικές έννοιες. Εισαγωγή Το παρακάτω κείμενο δημοσιεύτηκε στο συλλογικό τόμο με τίτλο «Η έρευνα στην προσχολική εκπαίδευση» το 2002. Η πλήρης αναφορά είναι η εξής: Λεμονίδης Χ., Χατζηλιαμή Μ. (2002). Έρευνα στις γνώσεις των νηπίων

Διαβάστε περισσότερα

Τα συμπτώματα που προειδοποιούν για τυχόν μαθησιακές δυσκολίες στην αριθμητική είναι τα εξής:

Τα συμπτώματα που προειδοποιούν για τυχόν μαθησιακές δυσκολίες στην αριθμητική είναι τα εξής: ...δεν σημαίνει χαμηλή νοημοσύνη Ονομάζεται δυσαριθμησία και είναι η μαθησιακή δυσκολία στα μαθηματικά. Τα παιδιά που παρουσιάζουν δυσκολίες στα μαθηματικά, δε σημαίνει πως έχουν χαμηλή νοημοσύνη. Της

Διαβάστε περισσότερα

Αποτελέσματα ερευνών σε πολυψήφιους πολλαπλασιασμούς και διαιρέσεις της σχολής των Μαθηματικών της Φύσης και της Ζωής

Αποτελέσματα ερευνών σε πολυψήφιους πολλαπλασιασμούς και διαιρέσεις της σχολής των Μαθηματικών της Φύσης και της Ζωής 4.3. ΠΟΛΥΨΗΦΙΟΙ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΙ ΚΑΙ ΔΙΑΙΡΕΣΕΙΣ 4.3.. Αποτελέσματα ερευνών σε πολυψήφιους πολλαπλασιασμούς και διαιρέσεις της σχολής των Μαθηματικών της Φύσης και της Ζωής Παρουσίαση δεδομένων από το αρχικό

Διαβάστε περισσότερα

Α.2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ

Α.2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ ΚΕΦΑΛΑΙΟ Ο ΚΛΑΣΜΑΤΑ Α.. Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΣΥΓΚΡΙΣΗ ΚΛΑΣΜΑΤΟΣ ΜΕ ΤΟ Αν ο αριθμητής ενός κλάσματος είναι μεγαλύτερος από τον παρανομαστή, τότε το κλάσμα είναι μεγαλύτερο από το. Αν ο αριθμητής

Διαβάστε περισσότερα

Αθροιστές. Ημιαθροιστής

Αθροιστές. Ημιαθροιστής Αθροιστές Η πιο βασική αριθμητική πράξη είναι η πρόσθεση. Για την πρόσθεση δύο δυαδικών ψηφίων υπάρχουν τέσσερις δυνατές περιπτώσεις: +=, +=, +=, +=. Οι τρεις πρώτες πράξεις δημιουργούν ένα άθροισμα που

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Πανεπιστήμιο Δυτικής Μακεδονίας Παιδαγωγική Σχολή Φλώρινας Τμήμα Δημοτικής Εκπαίδευσης ΔΙΙΔΑΣΚΑΛΙΙΑ ΣΤΗ Β ΔΗΜΟΤΙΙΚΟΥ Αριιθμοίί μέχριι το 200 Διδακτική των Μαθηματικών (ΔΙ.ΜΕ.Π.Α. β Φάση) Ακαδημαϊκό έτος

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Α ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Α ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Α ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ Δείκτες Επιτυχίας ΑΡΙΘΜΟΙ ΚΑΙ ΠΡΑΞΕΙΣ Δείκτες Επάρκειας ΑΡΙΘΜΟΙ & ΠΡΑΞΕΙΣ Επίπεδο Δραστηριοτήτων Μαθηματικές Πρακτικές Αρ1.1 Απαγγέλλουν, διαβάζουν, γράφουν

Διαβάστε περισσότερα

Σχέδιο Μαθήματος - "Ευθεία Απόδειξη"

Σχέδιο Μαθήματος - Ευθεία Απόδειξη Σχέδιο Μαθήματος - "Ευθεία Απόδειξη" ΤΑΞΗ: Α Λυκείου Μάθημα: Άλγεβρα Τίτλος Ενότητας: Μέθοδοι Απόδειξης - Ευθεία απόδειξη Ώρες Διδασκαλίας: 1. Σκοποί Να κατανοήσουν οι μαθητές την διαδικασία της ευθείας

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 10 ΠΡΟΣΘΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΜΟΤΙΒΟ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ 6

ΕΝΟΤΗΤΑ 10 ΠΡΟΣΘΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΜΟΤΙΒΟ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ 6 ΠΡΟΣΘΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΜΟΤΙΒΟ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ 6 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ1.7 Αναπαριστούν εναδικά κλάσματα ( 1, 1, 1, 1, 1 ) ενός συνόλου ή μιας επιφάνειας, 2 3 4 6 8 χρησιμοποιώντας

Διαβάστε περισσότερα

Οι φυσικοί αριθμοί. Παράδειγμα

Οι φυσικοί αριθμοί. Παράδειγμα Οι φυσικοί αριθμοί Φυσικοί Αριθμοί Είναι οι αριθμοί με τους οποίους δηλώνουμε πλήθος ή σειρά. Για παράδειγμα, φυσικοί αριθμοί είναι οι: 0, 1,, 3,..., 99, 100,...,999, 1000, 0... Χωρίζουμε τους Φυσικούς

Διαβάστε περισσότερα

Δυαδικη παρασταση αριθμων και συμβολων

Δυαδικη παρασταση αριθμων και συμβολων Δυαδικη παρασταση αριθμων και συμβολων Ενα αριθμητικο συστημα χαρακτηριζεται απο την βαση r και τα συμβολα a i που παιρνουν τις τιμες 0,1,...,r-1. (a n,,a 1,a 0. a -1,a -2,,a -m ) r = =a n r n + +a 1 r+a

Διαβάστε περισσότερα

Μάθημα: Σύγχρονα Θέματα Διδακτικής Μαθηματικών Διδάσκων: κ. Λεμονίδης

Μάθημα: Σύγχρονα Θέματα Διδακτικής Μαθηματικών Διδάσκων: κ. Λεμονίδης Πανεπιστήμιο Δυτικής Μακεδονίας Παιδαγωγική Σχολή Φλώρινας Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης Πρόγραμμα Μεταπτυχιακών Σπουδών Κατεύθυνση: «Θετικές Επιστήμες και Νέες Τεχνολογίες» Μάθημα: Σύγχρονα

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 6. Μονοψήφια διαίρεση Προβλήματα αναλογίας

ΕΝΟΤΗΤΑ 6. Μονοψήφια διαίρεση Προβλήματα αναλογίας Μονοψήφια διαίρεση Προβλήματα αναλογίας ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Υπολογισμοί και εκτίμηση Αρ2.13 Αναπτύσσουν και εφαρμόζουν αλγόριθμους της πρόσθεσης, της αφαίρεσης, του πολλαπλασιασμού με τριψήφιους

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 4 ΕΤΟΣ-ΔΕΚΑΕΤΙΑ-ΑΙΩΝΑΣ ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 10 000 ΛΥΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΠΡΟΒΛΗΜΑΤΟΣ

ΕΝΟΤΗΤΑ 4 ΕΤΟΣ-ΔΕΚΑΕΤΙΑ-ΑΙΩΝΑΣ ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 10 000 ΛΥΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΠΡΟΒΛΗΜΑΤΟΣ ΕΤΟΣ-ΔΕΚΑΕΤΙΑ-ΑΙΩΝΑΣ ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 10 000 ΛΥΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΠΡΟΒΛΗΜΑΤΟΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ2.1 Απαγγέλουν, διαβάζουν, γράφουν και αναγνωρίζουν ποσότητες αριθμών

Διαβάστε περισσότερα

Χριστουγεννιάτικο παιχνίδι απαρίθμησης και πρόσθεσης με ζάρια

Χριστουγεννιάτικο παιχνίδι απαρίθμησης και πρόσθεσης με ζάρια Χριστουγεννιάτικο παιχνίδι απαρίθμησης και πρόσθεσης με ζάρια Η δραστηριότητα που θα περιγραφεί παρακάτω, σχετίζεται με την απαρίθμηση μιας συλλογής αντικειμένων καθώς και την πράξη της πρόσθεσης. Ο όρος

Διαβάστε περισσότερα

ΟΙ ΣΤΡΑΤΗΓΙΚΕΣ ΠΡΟΣΘΕΣΗΣ ΚΑΙ ΑΦΑΙΡΕΣΗΣ ΜΕ ΑΡΙΘΜΟΥΣ ΑΠΟ ΤΟ 20 ΜΕΧΡΙ ΤΟ 100

ΟΙ ΣΤΡΑΤΗΓΙΚΕΣ ΠΡΟΣΘΕΣΗΣ ΚΑΙ ΑΦΑΙΡΕΣΗΣ ΜΕ ΑΡΙΘΜΟΥΣ ΑΠΟ ΤΟ 20 ΜΕΧΡΙ ΤΟ 100 ΟΙ ΣΤΡΑΤΗΓΙΚΕΣ ΠΡΟΣΘΕΣΗΣ ΚΑΙ ΑΦΑΙΡΕΣΗΣ ΜΕ ΑΡΙΘΜΟΥΣ ΑΠΟ ΤΟ 20 ΜΕΧΡΙ ΤΟ 100 Τα τελευταία είκοσι χρόνια στη βιβλιογραφία της έρευνας για τη διδασκαλία των μαθηματικών παρουσιάστηκαν πολλές προσπάθειες οργάνωσης

Διαβάστε περισσότερα

Πάρεδρος ε.θ του Τμήματος Επιμόρφωσης και Αξιολόγησης του Παιδαγωγικού Ινστιτούτου

Πάρεδρος ε.θ του Τμήματος Επιμόρφωσης και Αξιολόγησης του Παιδαγωγικού Ινστιτούτου Κασιμάτη Αικατερίνη Πάρεδρος ε.θ του Τμήματος Επιμόρφωσης και Αξιολόγησης του Παιδαγωγικού Ινστιτούτου H έννοια του αριθμού Θεωρητικό Πλαίσιο Στην ικανότητα του παιδιού για αρίθμηση στηρίζεται η ανάπτυξη

Διαβάστε περισσότερα

Νοέμβρης Επιμόρφωση Εκπαιδευτικών Β Τάξης Δημοτικού 1/11/2012. Φιλοσοφία διδασκαλίας. What you learn reflects how you learned it.

Νοέμβρης Επιμόρφωση Εκπαιδευτικών Β Τάξης Δημοτικού 1/11/2012. Φιλοσοφία διδασκαλίας. What you learn reflects how you learned it. Επιμόρφωση Εκπαιδευτικών Β Τάξης Δημοτικού Νοέμβρης 2012 Χρύσω Αθανασίου (Σύμβουλος Μαθηματικών ) Ελένη Δεληγιάννη (Συγγραφική Ομάδα) Άντρη Μάρκου (Σύμβουλος Μαθηματικών) Ελένη Μιχαηλίδου (Σύμβουλος Μαθηματικών)

Διαβάστε περισσότερα

ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ

ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Μαθηματικά (Άλγεβρα - Γεωμετρία) Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α, Β ΤΑΞΕΙΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α ΤΑΞΗ ΕΣΠΕΡΙΝΟΥ ΕΠΑΛ ΚΕΝΤΡΙΚΗ

Διαβάστε περισσότερα

Β ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ

Β ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ 1 Β ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ ΕΝΟΤΗΤΑ 1 ΑΡΙΘΜΟΙ ΚΑΙ ΠΡΑΞΕΙΣ ΜΕΧΡΙ ΤΟ 20 2 ΠΕΡΙΕΧΟΜΕΝΟ ΕΝΟΤΗΤΑΣ -Αριθμοί μέχρι το 20. -Αξία θέσης ψηφίου - Έννοια δεκάδας και μονάδας. -Πρόσθεση

Διαβάστε περισσότερα

a -j a 5 a 4 a 3 a 2 a 1 a 0, a -1 a -2 a -3

a -j a 5 a 4 a 3 a 2 a 1 a 0, a -1 a -2 a -3 ΑΣΚΗΣΗ 5 ΑΘΡΟΙΣΤΕΣ - ΑΦΑΙΡΕΤΕΣ 5.1. ΣΚΟΠΟΣ Η πραγματοποίηση της αριθμητικής πρόσθεσης και αφαίρεσης με λογικά κυκλώματα. 5.2. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΗΣΗΣ: Κάθε σύστημα αρίθμησης χαρακτηρίζεται

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 3 ο, Τμήμα Α Ο πυρήνας των μαθηματικών είναι οι τρόποι με τους οποίους μπορούμε να συλλογιζόμαστε στα μαθηματικά. Τρόποι απόδειξης Επαγωγικός συλλογισμός (inductive)

Διαβάστε περισσότερα

A ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ

A ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ 1 A ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ 2 ΕΝΟΤΗΤΑ 1 ΚΑΝΩ ΟΜΑΔΕΣ, ΜΟΤΙΒΑ, ΑΝΤΙΣΤΟΙΧΙΣΗ ΠΕΡΙΕΧΟΜΕΝΟ ΕΝΟΤΗΤΑΣ -Ομαδοποίηση αντικειμένων με διαφορετικούς τρόπους. -Εντοπισμός ομοιοτήτων και

Διαβάστε περισσότερα

Φεβρουάριος 2013. Επιμόρφωση Εκπαιδευτικών Β Τάξης Δημοτικού 21/2/2013 Β ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ

Φεβρουάριος 2013. Επιμόρφωση Εκπαιδευτικών Β Τάξης Δημοτικού 21/2/2013 Β ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ Επιμόρφωση Εκπαιδευτικών Β Τάξης Δημοτικού Φεβρουάριος 2013 2 Β ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ ΕΝΟΤΗΤΑ 7 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ 3 ΠΕΡΙΕΧΟΜΕΝΟ ΕΝΟΤΗΤΑΣ

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Α ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Α ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Α ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ A ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ Δείκτες Επιτυχίας ΑΡΙΘΜΟΙ ΚΑΙ ΠΡΑΞΕΙΣ Δείκτες Επάρκειας ΑΡΙΘΜΟΙ & ΠΡΑΞΕΙΣ Επίπεδο Δραστηριοτήτων Μαθηματικές Πρακτικές

Διαβάστε περισσότερα

ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΠΡΩΤΩΝ ΑΡΙΘΜΗΤΙΚΩΝ ΕΝΝΟΙΩΝ

ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΠΡΩΤΩΝ ΑΡΙΘΜΗΤΙΚΩΝ ΕΝΝΟΙΩΝ 1 Το παρακάτω άρθρο δημοσιεύτηκε στο περιοδικό Ερευνητική διάσταση της Διδακτικής των Μαθηματικών το 1998. Η πλήρης αναφορά είναι η εξής: Χ. Λεμονίδης (1998). Διδασκαλία των πρώτων αριθμητικών εννοιών.

Διαβάστε περισσότερα

ΣΤ ΤΑΞΗΣ ΔΗΜΟΤΙΚΟΥ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ ΓΙΑ ΜΑΘΗΤΕΣ. Σάββατο, 8 Ιουνίου 2013

ΣΤ ΤΑΞΗΣ ΔΗΜΟΤΙΚΟΥ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ ΓΙΑ ΜΑΘΗΤΕΣ. Σάββατο, 8 Ιουνίου 2013 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Διεύθυνση: Προξένου Κορομηλά 51 Τ.Κ. 54622, Θεσσαλονίκη Τηλέφωνο και Fax 2310 285377 e-mail: emethes@otenet.gr http://www.emethes.gr ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ

Διαβάστε περισσότερα

ΔΙΜΕΠΑ Πρακτική Άσκηση Μαθηματικών Β' Φάση. Εργασία πειραματισμού με μαθητή

ΔΙΜΕΠΑ Πρακτική Άσκηση Μαθηματικών Β' Φάση. Εργασία πειραματισμού με μαθητή ΔΙΜΕΠΑ Πρακτική Άσκηση Μαθηματικών Β' Φάση Εργασία πειραματισμού με μαθητή Διδάσκων: Χαράλαμπος Λεμονίδης Φοιτήτρια: Χατζή Κυριακή- Ιωάννα ΑΕΜ: 3659 Εξάμηνο: ΣΤ Περιεχόμενα 1. Εισαγωγή... 2. Περιγραφή

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1 ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 1000

ΕΝΟΤΗΤΑ 1 ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 1000 ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 1000 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ2.1 Απαγγέλουν, διαβάζουν, γράφουν και αναγνωρίζουν ποσότητες αριθμών μέχρι το 10 000. Αρ2.2 Συγκρίνουν και διατάσσουν τους φυσικούς

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 3 ΑΡΙΘΜΟΙ 6-10. Συγκρίνουν και διατάσσουν τους φυσικούς αριθμούς μέχρι το 100.

ΕΝΟΤΗΤΑ 3 ΑΡΙΘΜΟΙ 6-10. Συγκρίνουν και διατάσσουν τους φυσικούς αριθμούς μέχρι το 100. ΕΝΟΤΗΤΑ 3 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών ΑΡΙΘΜΟΙ 6-10 Αρ1.1 Απαγγέλλουν, διαβάζουν, γράφουν και αναγνωρίζουν ποσότητες αριθμών μέχρι το 100. Αρ1.2 Συγκρίνουν και διατάσσουν τους φυσικούς

Διαβάστε περισσότερα

Δυαδικό Σύστημα Αρίθμησης

Δυαδικό Σύστημα Αρίθμησης Δυαδικό Σύστημα Αρίθμησης Το δυαδικό σύστημα αρίθμησης χρησιμοποιεί δύο ψηφία. Το 0 και το 1. Τα ψηφία ενός αριθμού στο δυαδικό σύστημα αρίθμησης αντιστοιχίζονται σε δυνάμεις του 2. Μονάδες, δυάδες, τετράδες,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5. Κύκλος Ζωής Εφαρμογών ΕΝΟΤΗΤΑ 2. Εφαρμογές Πληροφορικής. Διδακτικές ενότητες 5.1 Πρόβλημα και υπολογιστής 5.2 Ανάπτυξη εφαρμογών

ΚΕΦΑΛΑΙΟ 5. Κύκλος Ζωής Εφαρμογών ΕΝΟΤΗΤΑ 2. Εφαρμογές Πληροφορικής. Διδακτικές ενότητες 5.1 Πρόβλημα και υπολογιστής 5.2 Ανάπτυξη εφαρμογών 44 Διδακτικές ενότητες 5.1 Πρόβλημα και υπολογιστής 5.2 Ανάπτυξη εφαρμογών Διδακτικοί στόχοι Σκοπός του κεφαλαίου είναι οι μαθητές να κατανοήσουν τα βήματα που ακολουθούνται κατά την ανάπτυξη μιας εφαρμογής.

Διαβάστε περισσότερα

2.1 Ποιον αριθμό δείχνει ο διπλανός άβακας;

2.1 Ποιον αριθμό δείχνει ο διπλανός άβακας; 2. ºÙÈ Óˆ ÚÈıÌÔ Ì ÚÈ ÙÔ 100 Î È ÙÔ Û ÁÎÚ Óˆ ΜΑΘΑΙΝΩ ΠΩΣ ΝΑ ΛΥΝΩ ΑΣΚΗΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΑ Ú Êˆ Ó Ó ÚÈıÌfi Ì ËÊ Î È ÌÂ Ï ÍÂÈ 2.1 Ποιον αριθμό δείχνει ο διπλανός άβακας; ΛΥΣΗ Στη ράβδο του άβακα που δείχνει

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Πίνακας περιεχομένων Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ... 2 Κεφάλαιο 2 ο - ΤΑ ΚΛΑΣΜΑΤΑ... 6 Κεφάλαιο 3 ο - ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ... 10 ΣΩΤΗΡΟΠΟΥΛΟΣ ΝΙΚΟΣ 1 Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ

Διαβάστε περισσότερα

Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Ε+ΣΤ Δημοτικού

Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Ε+ΣΤ Δημοτικού Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων 2016-2017 Τάξεις Ε+ΣΤ Δημοτικού Περιεχόμενα Στόχοι Πηγή Υλικού 3.1 Αριθμοί Οι μαθητές πρέπει: Σχολικά βιβλία Ε και ΣΤ Φυσικοί, Δεκαδικοί, μετρήσεις Να μπορούν

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών Εισαγωγή στην Επιστήμη των Υπολογιστών Ενότητα 2: Αποθήκευση Δεδομένων, 2ΔΩ Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Θεόδωρος Τσιλιγκιρίδης Μαθησιακοί Στόχοι Η Ενότητα 2 διαπραγματεύεται θέματα

Διαβάστε περισσότερα

Όλοι οι ακέραιοι αριθμοί από το 0 και μετά λέγονται φυσικοί αριθμοί π.χ.

Όλοι οι ακέραιοι αριθμοί από το 0 και μετά λέγονται φυσικοί αριθμοί π.χ. 1. Οι φυσικοί αριθμοί. Όλοι οι ακέραιοι αριθμοί από το 0 και μετά λέγονται φυσικοί αριθμοί π.χ. 0, 1,2,3,4,5,6,7,8,9, 10,..., 100,..., 1.000,..., 10.0000,10.001,..., 100.000, 100.001, 100.002,..., 200.000,...,

Διαβάστε περισσότερα

Διδακτική της Πληροφορικής ΙΙ

Διδακτική της Πληροφορικής ΙΙ Διδακτική της Πληροφορικής ΙΙ Ομάδα Γ Βότσης Ευστάθιος Γιαζιτσής Παντελής Σπαής Αλέξανδρος Τάτσης Γεώργιος Προβλήματα που αντιμετωπίζουν οι αρχάριοι προγραμματιστές Εισαγωγή Προβλήματα Δυσκολίες Διδακτικό

Διαβάστε περισσότερα

Πρόσθεση και αφαίρεση κλασμάτων

Πρόσθεση και αφαίρεση κλασμάτων Πρόσθεση και αφαίρεση κλασμάτων TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Γνωρίζω μέχρι τώρα Στην πρόσθεση, οι προσθετέοι και το άθροισμα είναι ομοειδείς αριθμοί. Π.χ 8 κεράσια + 6 κεράσια = κεράσια

Διαβάστε περισσότερα

1. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ

1. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΔΑΜΑΝΤΙΟΣ ΣΧΟΛΗ ΤΑΞΗ Δ ΟΝΟΜΑ α. Αντιμεταθετική ιδιότητα 1. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Π Ρ Ο Σ Θ Ε Σ Η Α. ΙΔΙΟΤΗΤΕΣ ΤΗΣ ΠΡΟΣΘΕΣΗΣ 8 + 7 = 15 ή 7 + 8 = 15 346 ή 517 ή 82 + 517 + 82 + 346 82 346 517 945 945

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗΣ Θέμα Διδασκαλίας Προβλήματα με πρόσθεση και αφαίρεση κλασμάτων (Κεφάλαιο 23 ο ) Σχολείο: 2 ο

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 14 ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 100 ΠΡΑΞΕΙΣ ΜΕ ΠΟΛΛΑΠΛΑΣΙΑ ΤΟΥ 10 ΚΑΙ ΕΝΤΟΣ ΤΗΣ ΔΕΚΑΔΑΣ

ΕΝΟΤΗΤΑ 14 ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 100 ΠΡΑΞΕΙΣ ΜΕ ΠΟΛΛΑΠΛΑΣΙΑ ΤΟΥ 10 ΚΑΙ ΕΝΤΟΣ ΤΗΣ ΔΕΚΑΔΑΣ ΕΝΟΤΗΤΑ 14 ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 100 ΠΡΑΞΕΙΣ ΜΕ ΠΟΛΛΑΠΛΑΣΙΑ ΤΟΥ 10 ΚΑΙ ΕΝΤΟΣ ΤΗΣ ΔΕΚΑΔΑΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ1.1 Απαγγέλλουν, διαβάζουν, γράφουν και αναγνωρίζουν ποσότητες αριθμών

Διαβάστε περισσότερα

Λογισμικό: Μαθηματικά Α ΣΤ Δημοτικού Κατηγορία αναπηρίας: Κώφωση Βαρηκοΐα Μάθημα: Μαθηματικά Τάξη/εις: Α Στ Δημοτικού

Λογισμικό: Μαθηματικά Α ΣΤ Δημοτικού Κατηγορία αναπηρίας: Κώφωση Βαρηκοΐα Μάθημα: Μαθηματικά Τάξη/εις: Α Στ Δημοτικού Λογισμικό: Μαθηματικά Α ΣΤ Δημοτικού Κατηγορία αναπηρίας: Κώφωση Βαρηκοΐα Μάθημα: Μαθηματικά Τάξη/εις: Α Στ Δημοτικού Παρουσίαση Λογισμικού: Κατερίνα Αραμπατζή Προμηθευτής: Postscriptum Advanced Communication

Διαβάστε περισσότερα

ΠΡΟΦΟΡΙΚΗ ΑΡΙΘΜΗΣΗ: ΜΙΑ ΒΑΣΙΚΗ ΚΑΙ ΧΡΗΣΙΜΗ ΓΝΩΣΗ ΠΟΥ Η ΔΙΔΑΣΚΑΛΙΑ ΤΗΝ ΑΓΝΟΕΙ. Εισαγωγή

ΠΡΟΦΟΡΙΚΗ ΑΡΙΘΜΗΣΗ: ΜΙΑ ΒΑΣΙΚΗ ΚΑΙ ΧΡΗΣΙΜΗ ΓΝΩΣΗ ΠΟΥ Η ΔΙΔΑΣΚΑΛΙΑ ΤΗΝ ΑΓΝΟΕΙ. Εισαγωγή Το παρακάτω άρθρο δημοσιεύτηκε στο περιοδικό Διάσταση το 1994. Η πλήρης αναφορά είναι η εξής: Α. Γαγάτσης, Χ. Λεμονίδης (1994). Προφορική αρίθμηση: Μια βασική και χρήσιμη γνώση που η διδασκαλία την αγνοεί.

Διαβάστε περισσότερα

Τμήμα Οικιακής Οικονομίας και Οικολογίας. Αναπαράσταση Αριθμών

Τμήμα Οικιακής Οικονομίας και Οικολογίας. Αναπαράσταση Αριθμών Αναπαράσταση Αριθμών Δεκαδικό και Δυαδικό Δεκαδικό σύστημα Δεκαδικό και Δυαδικό Μετατροπή Για τη μετατροπή ενός αριθμού από το δυαδικό σύστημα στο δεκαδικό, πολλαπλασιάζουμε κάθε δυαδικό ψηφίο του αριθμού

Διαβάστε περισσότερα

1.2 ΠΡΟΣΘΕΣΗ ΑΦΑΙΡΕΣΗ ΚΑΙ

1.2 ΠΡΟΣΘΕΣΗ ΑΦΑΙΡΕΣΗ ΚΑΙ 1 1.2 ΠΡΟΣΘΕΣΗ ΑΦΑΙΡΕΣΗ ΚΑΙ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΘΕΩΡΙΑ 1. Πρόσθεση : Είναι µία πράξη, µε την οποία όταν µας δώσουν δύο φυσικούς αριθµούς α και β βρίσκουµε έναν τρίτο αριθµό γ που τον συµβολίζουµε

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 7 ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 10 000

ΕΝΟΤΗΤΑ 7 ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 10 000 ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 10 000 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ2.1 Απαγγέλουν, διαβάζουν, γράφουν και αναγνωρίζουν ποσότητες αριθμών μέχρι το. Αρ2.2 Συγκρίνουν και διατάσσουν τους φυσικούς αριθμούς

Διαβάστε περισσότερα

ΘΕΩΡΊΕς ΜΆΘΗΣΗς ΚΑΙ ΜΑΘΗΜΑΤΙΚΆ

ΘΕΩΡΊΕς ΜΆΘΗΣΗς ΚΑΙ ΜΑΘΗΜΑΤΙΚΆ ΘΕΩΡΊΕς ΜΆΘΗΣΗς ΚΑΙ ΜΑΘΗΜΑΤΙΚΆ ΔΟΜΕΣ Δομή Ομάδας Σύνολο Α και μια πράξη η πράξη είναι κλειστή ισχύει η προσεταιριστική ιδότητα υπάρχει ουδέτερο στοιχείο υπάρχει αντίστροφο στοιχείο ισχύει η αντιμεταθετική

Διαβάστε περισσότερα

Γεωμετρία, Αριθμοί και Μέτρηση

Γεωμετρία, Αριθμοί και Μέτρηση 1. Εισαγωγή Γεωμετρία, Αριθμοί και Μέτρηση Μαθαίνω Γεωμετρία και Μετρώ Παίζω με τους αριθμούς Βρίσκω τα πολλαπλάσια Το εκπαιδευτικό λογισμικό «Γεωμετρία, Αριθμοί και Μέτρηση» δίνει τη δυνατότητα στα παιδιά

Διαβάστε περισσότερα

Μαθηματική Εκπαίδευση στην Προσχολική και Πρώτη Σχολική Ηλικία

Μαθηματική Εκπαίδευση στην Προσχολική και Πρώτη Σχολική Ηλικία Παιδαγωγικό Τµήµα Νηπιαγωγών Μαθηματική Εκπαίδευση στην Προσχολική και Πρώτη Σχολική Ηλικία Προμαθηματικές Έννοιες και η διδακτική τους Διδάσκων: Κωνσταντίνος Π. Χρήστου προµαθηµατικές? τι είναι; γιατί

Διαβάστε περισσότερα

Μαθηματικά Β Δημοτικού. Πέτρος Κλιάπης

Μαθηματικά Β Δημοτικού. Πέτρος Κλιάπης Μαθηματικά Β Δημοτικού Πέτρος Κλιάπης Ο μαθητής σε μια σύγχρονη τάξη μαθηματικών: Δεν αντιμετωπίζεται ως αποδέκτης μαθηματικών πληροφοριών, αλλά κατασκευάζει δυναμικά τη μαθηματική γνώση μέσα από κατάλληλα

Διαβάστε περισσότερα

! Εάν ο αριθμός διαθέτει περισσότερα bits, χρησιμοποιούμε μεγαλύτερες δυνάμεις του 2. ! Προσοχή στη θέση του περισσότερο σημαντικού bit!

! Εάν ο αριθμός διαθέτει περισσότερα bits, χρησιμοποιούμε μεγαλύτερες δυνάμεις του 2. ! Προσοχή στη θέση του περισσότερο σημαντικού bit! Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (αριθμητικές ) http://di.ionio.gr/~mistral/tp/csintro/ Αριθμοί Πράξεις με δυαδικούς αριθμούς

Διαβάστε περισσότερα

Μαθηματικά Γ Δημοτικού. Πέτρος Κλιάπης

Μαθηματικά Γ Δημοτικού. Πέτρος Κλιάπης Μαθηματικά Γ Δημοτικού Πέτρος Κλιάπης Το σύγχρονο μαθησιακό περιβάλλον των Μαθηματικών Ενεργή συμμετοχή των παιδιών Μάθηση μέσα από δραστηριότητες Κατανόηση ΌΧΙ απομνημόνευση Αξιοποίηση της προϋπάρχουσας

Διαβάστε περισσότερα

Math. Mathematics Μαθηματικά. Φυσικές Επιστήμες. Εφαρμοσμένη Μηχανική

Math. Mathematics Μαθηματικά. Φυσικές Επιστήμες. Εφαρμοσμένη Μηχανική Math Science, Technology, Engineering Φυσικές Επιστήμες Τεχνολογία Εφαρμοσμένη Μηχανική Mathematics Μαθηματικά STEM EDUCATION Κατεχάκη 52, 115 25 Αθήνα Τηλ. 210 6777285 e-mail: info@stem.edu.gr www.stem.edu.gr

Διαβάστε περισσότερα

Τμήμα Οικιακής Οικονομίας και Οικολογίας. Αναπαράσταση Αριθμών

Τμήμα Οικιακής Οικονομίας και Οικολογίας. Αναπαράσταση Αριθμών Αναπαράσταση Αριθμών Δεκαδικό και Δυαδικό Δεκαδικό σύστημα Δεκαδικό και Δυαδικό Μετατροπή Για τη μετατροπή ενός αριθμού από το δυαδικό σύστημα στο δεκαδικό, πολλαπλασιάζουμε κάθε δυαδικό ψηφίο του αριθμού

Διαβάστε περισσότερα

Προτεινόμενη δομή σχεδίου μαθήματος για τα Μαθηματικά

Προτεινόμενη δομή σχεδίου μαθήματος για τα Μαθηματικά Καργιωτάκης Γιώργος, Μπελίτσου Νατάσσα Προτεινόμενη δομή σχεδίου μαθήματος για τα Μαθηματικά στις τάξεις Β, Δ και Ε (μιας διδακτικής ώρας). ΣΤΟΧΟΣ ΒΗΜΑΤΑ ΥΛΙΚΟ- ΧΡΟΝΟΣ ΕΝΕΡΓΕΙΕΣ Αρχική αξιολόγηση επιπέδου

Διαβάστε περισσότερα

4 ο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΓΕΝΙΚΟΣ ΣΚΟΠΟΣ :

4 ο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΓΕΝΙΚΟΣ ΣΚΟΠΟΣ : 4 ο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΓΕΝΙΚΟΣ ΣΚΟΠΟΣ : Σκοπός του συγκεκριμένου φύλλου εργασίας είναι ο μαθητής να εξοικειωθεί με τις συναρτήσεις, τις αριθμητικές πράξεις καθώς και την επισήμανση κελιών υπό όρους με στόχο

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ B ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ B ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ B ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ ΑΡΙΘΜΟΙ ΚΑΙ ΠΡΑΞΕΙΣ ΑΡΙΘΜΟΙ & ΠΡΑΞΕΙΣ Δείκτες Επιτυχίας Επίπεδο Δραστηριοτήτων Δείκτες Επάρκειας Μαθηματικές Πρακτικές Αρ1.1 Απαγγέλλουν, διαβάζουν, γράφουν

Διαβάστε περισσότερα

Μονώνυμα. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Μονώνυμα. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Μονώνυμα Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Πράξεις με μονώνυμα Ενότητα 2 η Πράξεις με μονώνυμα και πολυώνυμα Σκοπός Ο σκοπός της 2 ης ενότητας είναι να μάθουν

Διαβάστε περισσότερα

Öýëëá åñãáóßáò ãéá ôá ÌáèçìáôéêÜ

Öýëëá åñãáóßáò ãéá ôá ÌáèçìáôéêÜ ΕΥΑΓΓΕΛIΑ ΔΕΣYΠΡΗ Öýëëá åñãáóßáò ãéá ôá ÌáèçìáôéêÜ A Äçìïôéêïý ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ Τα εκπαιδευτικά μου βιβλία / Δημοτικό / Μαθηματικά Ευαγγελία Δεσύπρη Φύλλα εργασίας για τα Μαθηματικά Ά Δημοτικού Υπεύθυνη

Διαβάστε περισσότερα

Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Πληροφορική Ι. Μάθημα 4 ο Πράξεις με bits. Δρ.

Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Πληροφορική Ι. Μάθημα 4 ο Πράξεις με bits. Δρ. Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας Πληροφορική Ι Μάθημα 4 ο Πράξεις με bits Δρ. Γκόγκος Χρήστος Κατηγορίες πράξεων με bits Πράξεις με δυαδικά ψηφία Αριθμητικές πράξεις

Διαβάστε περισσότερα

ΘΕΜΕΛΙΩΔΕΙΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΑΡΙΘΜΟΙ ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ

ΘΕΜΕΛΙΩΔΕΙΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΑΡΙΘΜΟΙ ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΕΛΙΩΔΕΙΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΑΡΙΘΜΟΙ ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Αριθμητικά συστήματα 123, 231, 312 Τι σημαίνουν; Τι δίνει αξία σε κάθε ίδιο ψηφίο; Ποια είναι η αξία του κάθε ψηφίου; Αριθμητικά

Διαβάστε περισσότερα

Μαθηματικά της Φύσης και της Ζωής

Μαθηματικά της Φύσης και της Ζωής Μαθηματικά της Φύσης και της Ζωής Τάξη:Ε Ονοματεπώνυμο:.. Σχολείο: Το ημερολόγιο Ο Πέτρος ζήτησε από το φίλο του Χρήστο να διαλέξει 4 αριθμούς από το διπλανό ημερολόγιο που να σχηματίζουν τετράγωνο (για

Διαβάστε περισσότερα

ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ

ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Y404. ΔΙΜΕΠΑ: ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗ ΕΡΓΑΣΙΑ ΠΕΙΡΑΜΑΤΙΣΜΟΥ ΜΕ ΜΑΘΗΤΗ ΔΙΔΑΣΚΩΝ: ΧΑΡΑΛΑΜΠΟΣ ΛΕΜΟΝΙΔΗΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΔΗΜΗΤΡΙΑΔΗΣ ΗΡΑΚΛΗΣ ΑΕΜ: 3734 Περιεχόμενα

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 11 ΠΕΝΤΑΨΗΦΙΟΙ ΚΑΙ ΕΞΑΨΗΦΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ ΑΚΕΡΑΙΩΝ ΑΡΙΘΜΩΝ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ

ΕΝΟΤΗΤΑ 11 ΠΕΝΤΑΨΗΦΙΟΙ ΚΑΙ ΕΞΑΨΗΦΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ ΑΚΕΡΑΙΩΝ ΑΡΙΘΜΩΝ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΠΕΝΤΑΨΗΦΙΟΙ ΚΑΙ ΕΞΑΨΗΦΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ ΑΚΕΡΑΙΩΝ ΑΡΙΘΜΩΝ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών ΑΡ2.5 Αναπαριστούν, συγκρίνουν και σειροθετούν ομώνυμα κλάσματα

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά ΣT Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά ΣT Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Γρήγορα τεστ Μαθηματικά ΣT Δημοτικού 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΡΗΓΟΡΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ - ΣΤ Δημοτικού No 1 Γιάννης Ζαχαρόπουλος Διόρθωση: Αντωνία Κιλεσσοπούλου 201, Εκδόσεις Κυριάκος

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΚΑΙ ΔΙΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 20

ΕΝΟΤΗΤΑ 3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΚΑΙ ΔΙΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 20 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΚΑΙ ΔΙΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 20 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ2.9 Αναγνωρίζουν και ονομάζουν τους όρους: άθροισμα, διαφορά, γινόμενο, πηλίκο, μειωτέος, αφαιρετέος, προσθετέος,

Διαβάστε περισσότερα

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Στους πραγματικούς αριθμούς ορίστηκαν οι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» ΚΕΦΑΛΑΙΟ 1 Ο : Εξισώσεις - Ανισώσεις 1 1.1 Η ΕΝΝΟΙΑ ΤΗΣ ΜΕΤΑΒΛΗΤΗΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΟΡΙΣΜΟΙ Μεταβλητή

Διαβάστε περισσότερα

Κατασκευή Μαθησιακών Στόχων και Κριτηρίων Επιτυχίας: Αξιολόγηση για Μάθηση στην Πράξη

Κατασκευή Μαθησιακών Στόχων και Κριτηρίων Επιτυχίας: Αξιολόγηση για Μάθηση στην Πράξη Κατασκευή Μαθησιακών Στόχων και Κριτηρίων Επιτυχίας: Αξιολόγηση για Μάθηση στην Πράξη Μαργαρίτα Χριστοφορίδου 25 Απριλίου 2015 ΕΚΠΑΙΔΕΥΤΙΚΗ ΗΜΕΡΙΔΑ «ΑΞΙΟΛΟΓΗΣΗ ΤΟΥ ΜΑΘΗΤΗ- ΣΥΓΧΡΟΝΕΣ ΤΑΣΕΙΣ-ΠΡΑΚΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ»

Διαβάστε περισσότερα

Αριθμητικά Συστήματα Κώδικες

Αριθμητικά Συστήματα Κώδικες Αριθμητικά Συστήματα Κώδικες 1.1 Εισαγωγή Κεφάλαιο 1 Ένα αριθμητικό σύστημα ορίζει ένα σύνολο τιμών που χρησιμοποιούνται για την αναπαράσταση μίας ποσότητας. Ποσοτικοποιώντας τιμές και αντικείμενα και

Διαβάστε περισσότερα