Κανόνες Συσχέτισης IIΙ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Κανόνες Συσχέτισης IIΙ"

Transcript

1 Κανόνες Συσχέτισης IIΙ Οι διαφάνειες στηρίζονται στο P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, 26 Σύντομη Ανακεφαλαίωση Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 2 Εξόρυξη Δεδομένων 2-2

2 Εισαγωγή Market Basket transactions (Το καλάθι της νοικοκυράς!) TID Items Bread, Milk 2 Bread, Diaper, Beer, Eggs 3 Milk, Diaper, Beer, Coke Το πρόβλημα: Δεδομένου ενός συνόλου συναλλαγών (transactions), βρες κανόνες που προβλέπουν την εμφάνιση στοιχείων (item) με βάση την εμφάνιση άλλων στοιχείων στις συναλλαγές Παραδείγματα κανόνων συσχέτισης 4 Bread, Milk, Diaper, Beer 5 Bread, Milk, Diaper, Coke {Diaper} {Beer}, {Milk, Bread} {Eggs,Coke}, {Beer, Bread} {Milk} συναλλαγή (transaction) Προώθηση προϊόντων στοιχείο (item) Τοποθέτηση προϊόντων στα ράφια Διαχείριση αποθεμάτων Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 3 Ορισμοί στοιχειοσύνολο (itemset): Ένα υποσύνολο του συνόλου των στοιχείων k στοιχειοσύνολο (k itemset): ένα στοιχειοσύνολο μεk στοιχεία support count (σ) ενός στοιχειοσυνόλου: ο αριθμός εμφανίσεων του στοιχείου Υποστήριξη (Support (s)) ενός στοιχειοσυνόλου Το ποσοστό των συναλλαγών που περιέχουν ένα στοιχειοσύνολο TID Items Bread, Milk 2 Bread, Diaper, Beer, Eggs 3 Milk, Diaper, Beer, Coke 4 Bread, Milk, Diaper, Beer 5 Bread, Milk, Diaper, Coke Συχνό Στοιχειοσύνολο (Frequent Itemset) Ένα στοιχειοσύνολο του οποίου η υποστήριξη είναι μεγαλύτερη ή ίση από κάποια τιμή κατωφλίου minsup Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 4 Εξόρυξη Δεδομένων 2-2 2

3 Κανόνας Συσχέτισης (Association Rule) Είναι μια έκφραση της μορφής X Y, όπου X και Y είναι στοιχειοσύνολα Χ Ι, Υ Ι, Χ Υ = Παράδειγμα: {Milk, Diaper} {Beer} Ορισμοί TID Items Bread, Milk 2 Bread, Diaper, Beer, Eggs 3 Milk, Diaper, Beer, Coke 4 Bread, Milk, Diaper, Beer 5 Bread, Milk, Diaper, Coke Υποστήριξη Κανόνα Support (s) Το ποσοστό των συναλλαγών που περιέχουν και το X και το Y(Χ Υ) Εμπιστοσύνη Conidence (c) Πόσεςαπότιςσυναλλαγές(ποσοστό) που περιέχουν το Χ περιέχουν και το Υ Πρόβλημα Εύρεση Κανόνων Συσχέτισης Είσοδος: Ένα σύνολο από δοσοληψίες T Έξοδος: Όλοι οι κανόνες με support minsup conidence mincon Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 5 Εξόρυξη Κανόνων Συσχέτισης Χωρισμός του προβλήματος σε δύο υπο προβλήματα:. Εύρεση όλων των συχνών στοιχειοσυνόλων (Frequent Itemset Generation) Εύρεση όλων των στοιχειοσυνόλων με υποστήριξη minsup 2. Δημιουργία Κανόνων (Rule Generation) Για κάθε (συχνό) στοιχειοσύνολο, δημιούργησε κανόνες με μεγάλη υποστήριξη, όπου κάθε κανόνας είναι μια δυαδική διαμέριση (δηλ. χωρισμός στα δύο) του συχνού στοιχειοσυνόλου Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 6 Εξόρυξη Δεδομένων 2-2 3

4 Εύρεση Συχνών Στοιχειοσυνόλων Itemset Lattice Πλέγμα Στοιχειοσυνόλων null A B C D E Όλα τα δυνατά στοιχειοσύνολα όταν έχουμε 5 στοιχεία AB AC AD AE BC BD BE CD CE DE ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE ABCD ABCE ABDE ACDE BCDE Για d στοιχεία, 2 d πιθανά στοιχειοσύνολα ABCDE Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 7 Εύρεση Συχνών Στοιχειοσυνόλων: Στρατηγική apriori Αρχή Apriori Αν ένα στοιχειοσύνολο είναι συχνό, τότε όλα τα υποσύνολα του είναι συχνά null Ήισοδύναμαανένα στοιχειοσύνολο είναι μη συχνό, όλα τα υπερσύνολα του είναι μη συχνά A B C D E AB AC AD AE BC BD BE CD CE DE βρέθηκε μη συχνό ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE ABCD ABCE ABDE ACDE BCDE ψαλιδισμένα υπερσύνολα ABCDE Support-based pruning Ψαλίδισμα με βάση την υποστήριξη Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 8 Εξόρυξη Δεδομένων 2-2 4

5 Στρατηγική apriori Γενικός Αλγόριθμος για την Εύρεση Συχνών Στοιχειοσυνόλων Έστω k = #k: μήκος στοιχειοσυνόλου Παρήγαγε τα συχνά στοιχειοσύνολα Repeat until να μην παράγονται νέα συχνά στοιχειοσύνολα. Παρήγαγε υποψήφια (k+) στοιχειοσύνολα 2. Ψαλίδισε τα υποψήφια στοιχειοσύνολα που περιέχουν μη συχνά στοιχειοσύνολα μεγέθους k 3. Υπολόγισε την υποστήριξη κάθε υποψήφιου (k+) στοιχειοσυνόλου διασχίζοντας τη βάση των συναλλαγών 4. Σβήσε τα υποψήφια στοιχειοσύνολα που δεν είναι συχνά 5. k=k + Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 9 Στρατηγική apriori: Δημιουργία Στοιχειοσυνόλων Για την παραγωγή υποψήφιων k στοιχειοσυνόλων F k x F Επέκταση κάθε συχνού (k ) στοιχειοσυνόλου με άλλα συχνά στοιχεία F k x F k Συγχώνευση δύο συχνών (k ) στοιχειοσυνόλου αν τα πρώτα k 2 στοιχεία τους είναι τα ίδια Για να αποφύγουμε τη δημιουργία του ίδιου στοιχειοσυνόλου, κρατάμε κάθε στοιχειοσύνολο (λεξικογραφικά) ταξινομημένο Ψαλίδισμα Είναι δυνατόν να γίνουν απλοί έλεγχοι αν τα παραγόμενα πιθανά στοιχειοσύνολα είναι συχνά ελέγχοντας αν τα υποσύνολα τους είναι συχνά και έτσι να αποφύγουμε να υπολογίσουμε την υποστήριξή τους Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III Εξόρυξη Δεδομένων 2-2 5

6 Στρατηγική apriori: Υπολογισμός Υποστήριξης Για κάθε νέο υποψήφιο k+ στοιχειοσύνολο, πρέπει να υπολογίσουμε την υποστήριξή του Σε κάθε βήμα k+ Για να μειώσουμε τον αριθμό των πράξεων, αποθηκεύουμε τα υποψήφια k+ στοιχειοσύνολα σε ένα δέντρο κατακερματισμού Αντί να ταιριάζουμε κάθε συναλλαγή με κάθε υποψήφιο στοιχειοσύνολο, κατακερματίζουμε όλα τα k+ στοιχειοσύνολα της συναλλαγής και για καθένα, ενημερώνουμε μόνο τους αντίστοιχους κάδους του δέντρου κατακερματισμού των συχνών στοιχειοσυνόλων Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III Αναπαράσταση Στοιχειοσυνόλων Τα στοιχειοσύνολα που παράγονται είναι πολλά, κάποια ίσως περιττά οδηγούν σε παραγωγή πολλών κανόνων Ποια να κρατήσουμε; Ψάχνουμε για αντιπροσωπευτικά συχνά στοιχειοσύνολα (δηλαδή, να μπορούμε να πάρουμε από αυτά ακριβώς όλα τα συχνά και ιδεατά να μπορούμε να υπολογίσουμε και την υποστήριξη όλων των συχνών): Maximal συχνά Κλειστά συχνά Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 2 Εξόρυξη Δεδομένων 2-2 6

7 Αναπαράσταση Στοιχειοσυνόλων Ένα στοιχειοσύνολο είναι maximal συχνό αν κανένα από τα άμεσα υπερσύνολά του δεν είναι συχνό δηλαδή είναι όλα μη συχνά Προσφέρουν μια συνοπτική αναπαράσταση των συχνών στοιχειοσυνόλων: το μικρότερο σύνολο στοιχειοσυνόλων από το οποίο μπορούμε να πάρουμε όλα τα συχνά στοιχειοσύνολα είναι τα υποσύνολά τους ΟΜΩΣ: Δεν προσφέρουν καμιά πληροφορία για την υποστήριξη τωνυποσυνόλωντους Συχνά null A B C D E AB AC AD AE BC BD BE CD CE DE ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE ABCD ABCE ABDE ACDE BCDE ABCD E Μη συχνά Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 3 Αναπαράσταση Στοιχειοσυνόλων Ένα στοιχειοσύνολο είναι κλειστό (closed) αν κανένα από τα άμεσα υπερσύνολα του δεν έχει την ίδια υποστήριξη με αυτό (δηλαδή, έχει μικρότερη υποστήριξη) Ένα στοιχειοσύνολο είναι κλειστό συχνό στοιχειοσύνολο αν είναι κλειστό και συχνό (δηλαδή, η υποστήριξη του είναι μεγαλύτερη ή ίση με minsup) Πάλι τα υποσύνολα τους μας δίνουν όλα τα συχνά υποσύνολα, τώρα όμως μπορούμε να υπολογίσουμε την υποστήριξη των υποσυνόλων τους Πως: Η υποστήριξη ενός μη κλειστού στοιχειοσυνόλου πρέπει να είναι ίση με την μεγαλύτερη υποστήριξη ανάμεσα στα υπερσύνολά του Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 4 Εξόρυξη Δεδομένων 2-2 7

8 Αναπαράσταση Στοιχειοσυνόλων TID στοιχεία ABC 2 ABCD 3 BCE 4 ACDE 5 DE Maximal vs Closed Itemsets ΤIDs null A B C D E AB AC AD AE BC BD BE CD CE DE ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE 2 4 ABCD ABCE ABDE ACDE BCDE Δεν εμφανίζονται σε καμιά συναλλαγή ABCDE Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 5 Ελάχιστη υποστήριξη = 2 Αναπαράσταση Στοιχειοσυνόλων Maximal vs Closed Itemsets null Κλειστά αλλά όχι maximal A B C D E Κλειστά και maximal AB AC AD AE BC BD BE CD CE DE ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE 2 4 ABCD ABCE ABDE ACDE BCDE # Closed = 9 # Maximal = 4 ABCDE Γιαναυπολογίσουμεόλατασυχνάστοιχειοσύνολακαιτην υποστήριξη τους, ξεκινάμε από τα μεγαλύτερα κλειστά και προχωράμε Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 6 Εξόρυξη Δεδομένων 2-2 8

9 Εναλλακτικός Υπολογισμός Συχνών Στοιχειοσυνόλων Με λίγα λόγια: Αλγόριθμος FP Growth Ο αλγόριθμος χρησιμοποιεί μια συμπιεσμένη αναπαράσταση της βάσης των συναλλαγών με τη μορφή ενός FP δέντρου Το δέντρο μοιάζει με προθεματικό δέντρο preix tree (trie) Ο αλγόριθμος κατασκευής διαβάζει μια συναλλαγή τη φορά, απεικονίζει την συναλλαγή σε ένα μονοπάτι του FP δέντρου Μερικά μονοπάτια μπορεί να επικαλύπτονται: όσο περισσότερα μονοπάτια επικαλύπτονται, τόσο καλύτερη συμπίεση Μόλις κατασκευαστεί το FP δέντρο, ο αλγόριθμος χρησιμοποιεί μια αναδρομική διαίρει και βασίλευε (divide and conquer) προσέγγιση για την εξόρυξη των συχνών στοιχειοσυνόλων Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 7 Αλγόριθμος FP Growth TID Items {A,B} 2 {B,C,D} 3 {A,C,D,E} 4 {A,D,E} 5 {A,B,C} 6 {A,B,C,D} 7 {B,C} 8 {A,B,C} 9 {A,B,D} {B,C,E} Κατασκευή FP δέντρου null A:7 B:5 C: B:3 C:3 Πίνακας Δεικτών Item A B C D E Pointer C:3 E: E: E: Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 8 Εξόρυξη Δεδομένων 2-2 9

10 Αλγόριθμος FP Growth Αλγόριθμος εύρεσης συχνών στοιχειοσυνόλων Είσοδος: FP δέντρο Έξοδος: Συχνά στοιχειοσύνολα και η υποστήριξη τους Μέθοδος: Διαίρει και Βασίλευε o Χωρίζουμε τα στοιχειοσύνολα σε αυτά που τελειώνουν σε E, D, C, B, A o Μετά αυτά που τελειώνουν σε E σε αυτά σε DE, CE, BE, AE κοκ Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 9 TID Items {A,B} 2 {B,C,D} 3 {A,C,D,E} 4 {A,D,E} 5 {A,B,C} 6 {A,B,C,D} 7 {B,C} 8 {A,B,C} 9 {A,B,D} {B,C,E} Αλγόριθμος FP Growth Χρήση FP δέντρου για εύρεση συχνών στοιχειοσυνόλων null A:7 B:3 B:5 C:3 C: Header table Item Pointer A B C D E C:3 E: E: E: Πως; Bottom up traversal του δέντρου Αυτά που τελειώνουν σε E, μετά αυτά που τελειώνουν σε D, C, B και τέλος Α suix based classes (επίθεμα κατάληξη) Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 2 Εξόρυξη Δεδομένων 2-2

11 Αλγόριθμος FP Growth Συνοπτικά Σε κάθε βήμα, για το suix (επίθεμα) Χ Φάση Κατασκευάζουμε το προθεματικό δέντρο γιατοχκαιυπολογίζουμε την υποστήριξη χρησιμοποιώντας τον πίνακα Φάση 2 Αν είναι συχνό, κατασκευάζουμε το υπο συνθήκη δέντρο για το Χ, σε βήματα επανα υπολογισμός υποστήριξης περικοπή κόμβων με μικρή υποστήριξη περικοπή φύλλων Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 2 Αλγόριθμος FP Growth Φάση κατασκευή προθεματικού δέντρου Όλα τα μονοπάτια που περιέχουν το E null Προθεματικά (preix paths) Μονοπάτια A:7 B:3 B:5 C: C:3 Header table Item A B C D E Pointer C:3 E: E: E: Προθεματικά μονοπάτια του Ε: {E}, {D,E}, {C,D,E}, {A,D,Ε}, {A,C,D,E}, {C,E}, {B,C,E} Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 22 Εξόρυξη Δεδομένων 2-2

12 Αλγόριθμος FP Growth Φάση Όλα τα μονοπάτια που περιέχουν το E Προθεματικά Μονοπάτια (preix paths) null A:7 B:3 C: C:3 E: E: E: Προθεματικά μονοπάτια του Ε: {E}, {D,E}, {C,D,E}, {A,D,Ε}, {A,C,D,E}, {C,E}, {B,C,E} Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 23 Έστω minsup = 2 Βρες την υποστήριξη του {E} Πως; Ακολούθησε τους συνδέσμους αθροίζοντας ++=3>2 Οπότε {Ε} συχνό Αλγόριθμος FP Growth null A:7 B:3 C: C:3 E: E: E: {E} συχνό άρα προχωράμε για DE, CE, BE, AE Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 24 Εξόρυξη Δεδομένων 2-2 2

13 Αλγόριθμος FP Growth {E} συχνό άρα προχωράμε για DE, CE, BE, AE Φάση 2 Μετατροπή των προθεματικών δέντρων σε FP δέντρο υπό συνθήκες ή υποθετικό (conditional FP tree) Δύο αλλαγές () Αλλαγή των μετρητών (2) Περικοπή null A:7 B:3 C: C:3 E: E: E: Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 25 Αλγόριθμος FP Growth Αλλαγή μετρητών Οι μετρητές σε κάποιους κόμβους περιλαμβάνουν συναλλαγές που δεν έχουν το Ε Πχ στο null >B >C >E μετράμε και την {B, C} null A:7 B:3 C: C:3 E: E: E: Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 26 Εξόρυξη Δεδομένων 2-2 3

14 Αλγόριθμος FP Growth null A:2 B: C: C: E: E: E: Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 27 Αλγόριθμος FP Growth Περικοπή (truncate) Σβήσε τους κόμβους του Ε null A:2 B: C: C: E: E: E: Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 28 Εξόρυξη Δεδομένων 2-2 4

15 Αλγόριθμος FP-Growth Περικοπή (truncate) Σβήσε τους κόμβους του Ε null A:2 B: C: C: Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 29 Αλγόριθμος FP Growth Πιθανή περαιτέρω περικοπή Κάποια στοιχεία μπορεί να έχουν υποστήριξη μικρότερη της ελάχιστης Πχ το Β > περικοπή null A:2 B: Αυτό σημαίνει ότι το Β εμφανίζεται μαζί με το E λιγότερο από minsup φορές C: C: Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 3 Εξόρυξη Δεδομένων 2-2 5

16 Αλγόριθμος FP Growth null A:2 C: C: Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 3 Αλγόριθμος FP Growth Υπο συνθήκη FP δέντρο για το Ε Ο αλγόριθμος επαναλαμβάνεται για το {D, E}, {C, E}, {A, E} null A:2 C: C: Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 32 Εξόρυξη Δεδομένων 2-2 6

17 Αλγόριθμος FP Growth Παρατηρήσεις Η απόδοση του FP Growth εξαρτάται από τον παράγοντα συμπίεσης του συνόλου των δεδομένων (compaction actor) Αν τα τελικά δέντρα είναι «θαμνώδη» (bushy) τότε δε δουλεύει καλά, αυξάνεται ο αριθμός των υποπροβλημάτων (οι αναδρομικές κλήσεις) Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 33 Παραγωγή Κανόνων Δοθέντος ενός συχνού στοιχειοσυνόλου L, βρες όλα τα μη κενά υποσύνολα L τέτοια ώστε: ο κανόνας L να ικανοποιεί τον περιορισμό της ελάχιστης εμπιστοσύνης Η εμπιστοσύνη για τους κανόνες που παράγονται από το ίδιο στοιχειοσύνολο έχει μια αντι μονότονη ιδιότητα Για παράδειγμα L = {A,B,C,D}: c(abc D) c(ab CD) c(a BCD) Η εμπιστοσύνη είναι αντι μονότονη σε σχέση με τον αριθμό των στοιχείων στο RHS του κανόνα Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 34 Εξόρυξη Δεδομένων 2-2 7

18 Παραγωγή Κανόνων για τον Αλγόριθμο apriori Πλέγμα Κανόνων για το Στοιχειοσύνολο {Α, B, C, D} Ψαλίδισμα με βάση την εμπιστοσύνη Έστω κόμβος με μικρή εμπιστοσύνη Ψαλιδισ μένοι κανόνες ABCD=>{ } BCD=>A ACD=>B ABD=>C ABC=>D CD=>AB BD=>AC BC=>AD AD=>BC AC=>BD AB=>CD D=>ABC C=>ABD B=>ACD A=>BCD Για κάθε συχνό στοιχειοσύνολο, ξεκινάμε με έναν κανόνα που έχει μόνο k= στοιχείο στο δεξί μέρος του Υπολογίζουμε την εμπιστοσύνη Παράγουμε κανόνες με k+ στοιχεία στο δεξί μέρος και υπολογίζουμε την εμπιστοσύνη τους Σημείωση: Για τον υπολογισμό της εμπιστοσύνης δεν χρειάζεται να διαπεράσουμε τη βάση Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 35 Εκτίμηση Κανόνων Συσχέτισης Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 36 Εξόρυξη Δεδομένων 2-2 8

19 Εκτίμηση Κανόνων Συσχέτισης Παράγουν πάρα πολλούς κανόνες που συχνά είναι μη ενδιαφέροντες ή πλεονάζοντες (περιττοί) Πλεονάζοντες αν {A, B, C} {D} και {A,B} {D} έχουν την ίδια υποστήριξη & εμπιστοσύνη Μέτρα ενδιαφέροντος (interestingness) χρησιμοποιούνται για να ελαττώσουν (prune) ή να ιεραρχήσουν (rank) τα παραγόμενα πρότυπα Χρησιμοποιούνται σε διάφορα στάδια της διαδικασίας ανάκτησης γνώσης Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 37 Μέτρηση Ενδιαφέροντος Εφαρμογές της μέτρησης του ενδιαφέροντος (σε διάφορα στάδια) Μέτρα Ενδιαφέροντος Επιλεγμένα Δεδομένα Featur Featur e Featur e Featur e Featur Featur e Featur e e Featur e Featur e Featur e e Prod uct uct Prod uct Prod uct Prod uct Πρότυπα Προ-επεξεργασμένα Δεδομένα Prod uct Prod uct Prod Prod uct Prod uct Prod uct Γνώση Μετά-επεξεργασία Εξόρυξη Δεδομένα Προ-επεξεργασία Επιλογή Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 38 Εξόρυξη Δεδομένων 2-2 9

20 Αποτίμηση Κανόνων Συσχέτισης Γενικά: αντικειμενικά (objective) και υποκειμενικά (subjective) μέτρα ενδιαφέροντος Ας δούμε πρώτα μερικά αντικειμενικά κριτήρια: Στην αρχική διατύπωση του προβλήματος της εξόρυξης κανόνων συσχέτισης χρησιμοποιήθηκαν ως μέτρα μόνο η υποστήριξη και η εμπιστοσύνη Γενικά συνήθως βασίζονται σε μετρήσεις της συχνότητας εμφάνισης που δίνονται μέσω ενός πίνακα contingency (συνάφειας) Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 39 Μέτρηση Ενδιαφέροντος: Αντικειμενικά Μέτρα Contingency table (πίνακας συνάφειας/πίνακας ενδεχομένων) Μέτρηση συχνότητας εμφάνισης X X Y Y o+ + T + + : support o X and Y : support o X and Y : support o X and Y : support o X and Y πόσο συχνά εμφανίζεται το Χ και το Υ (support count) + μετρητής υποστήριξης (support count) του Υ Χρησιμοποιείται για τον ορισμό διαφόρων μέτρων Έστω ένας κανόνας, X Y, η πληροφορία που χρειάζεται για τον υπολογισμό της εμπιστοσύνης και της υποστήριξης του κανόνα μπορεί να υπολογιστεί από τον contingency table Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 4 Εξόρυξη Δεδομένων 2-2 2

21 Μειονεκτήματα της Εμπιστοσύνης Μέτρηση Ενδιαφέροντος Μεγάλες τιμές υποστήριξης μπορεί να «διώξουν» ενδιαφέροντες κανόνες. Τι γίνεται με την εμπιστοσύνη; Tea Tea Coee Coee Ποια είναι μια καλή τιμή για την εμπιστοσύνη; Ενδιαφερόμαστε για τη σχέση μεταξύ αυτών που πίνουν καφέ και αυτών που πίνουν τσάι Κανόνας Συσχέτισης: Tea Coee Εμπιστοσύνη = P(Coee Tea) =.75 Ενώ ο κανόνας έχει υψηλή εμπιστοσύνη, ο κανόνας είναι παραπλανητικός P(Coee Tea) =.9375 P(Coee) =.9 Αγνοεί την υποστήριξη του RHS (στην περίπτωση μας του coee) Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 4 Μέτρηση Ενδιαφέροντος Εξαιτίας τέτοιων προβλημάτων της υποστήριξης/εμπιστοσύνης, έχουν προταθεί πολλά αντικειμενικά μέτρα για τη μέτρηση του ενδιαφέροντος των κανόνων, που στηρίζονται κυρίως στην έννοια της στατιστικής ανεξαρτησίας Ας δούμε ένα παράδειγμα Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 42 Εξόρυξη Δεδομένων 2-2 2

22 Μέτρα βασισμένα στη Στατιστική Στατιστική Ανεξαρτησία Πληθυσμός σπουδαστών 6 σπουδαστές ξέρουν κολύμπι (S) 7 σπουδαστές ξέρουν ποδήλατο (B) 42 σπουδαστές ξέρουν κολύμπι και ποδήλατο (S, B) P(S B) = 42/ =.42 P(S) P(B) =.6.7 =.42 P(S B) = P(S) P(B) => Στατιστική ανεξαρτησία P(S B) > P(S) P(B) => Positively correlated (θετική συσχέτιση) P(S B) < P(S) P(B) => Negatively correlated (αρνητική συσχέτιση) Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 43 Μέτρα βασισμένα στη Στατιστική Μέτρα που λαμβάνουν υπ όψιν τους τη στατιστική εξάρτηση Για τη συσχέτιση: Χ Υ P( Y X ) Lit = = P( Y ) + P( X, Y ) T Interest = = P( X ) P( Y ) + =, Στατιστική ανεξαρτησία >, θετική συσχέτιση + <, αρνητική συσχέτιση PS = P( X, Y ) P( X ) P( Y ) P( X, Y ) P( X ) P( Y ) φ coeicient = = P( X )[ P( X )] P( Y )[ P( Y )] Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 44 Εξόρυξη Δεδομένων

23 Μέτρα βασισμένα στη Στατιστική Παράδειγμα: Lit/Interest Coee Coee Tea Tea Κανόνας συσχέτιση: Tea Coee Εμπιστοσύνη= P(Coee Tea) =.75 αλλά P(Coee) =.9 Interest =.5/(.9*.2)=.8333 (<, άρα αρνητικά συσχετιζόμενα) Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 45 Μέτρα βασισμένα στη Στατιστική Μειονεκτήματα του Lit & Interest X X Y Y X X Y 9 9 Y 9..9 I = = I = =. (.)(.) (.9)(.9) Μεγαλύτερο αν και σπάνια εμφανίζονται μαζί c = / =. s = c (conidence εμπιστοσύνη) s (support υποστήριξη) c = 9/ =.9 s = Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 46 Εξόρυξη Δεδομένων

24 Μέτρα βασισμένα στη Στατιστική φ Coeicient φ coeicient = P( X, Y ) P( X ) P( Y ) = P( X )[ P( X )] P( Y )[ P( Y )] Κανονικοποιημένη τιμή μεταξύ του και Δυαδική εκδοχή του Pearson s coeicient : στατιστική ανεξαρτησία : τέλεια αρνητική συσχέτιση : τέλεια θετική συσχέτιση Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 47 Μέτρα βασισμένα στη Στατιστική φ Coeicient X X Y 6 7 Y X X Y 2 3 Y φ = =.5238 φ Coeicient ίδιος και για τους δύο πίνακες φ = =.5238 Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 48 Εξόρυξη Δεδομένων

25 Μέτρα βασισμένα στη Στατιστική φ-coeicient φ coeicient = P( X, Y ) P( X ) P( Y ) = P( X )[ P( X )] P( Y )[ P( Y )] Είναι κατάλληλο για μη συμμετρικές (η απουσία και η παρουσία μετρούν το ίδιο) Λόγω κανονικοποίησης, αγνοεί το μέγεθος του δείγματος Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 49 Μέτρα βασισμένα στη Στατιστική IS-measure s( X, Y ) IS ( X, Y ) = = = s( X ) s( Y ) + + I( X, Y ) s( x, Y ) είναι το συνημίτονο αν θεωρηθούν δυαδικές μεταβλητές γεωμετρικόςμέσοςτηςεμπιστοσύνηςτουχ Υ καιυ Χ Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 5 Εξόρυξη Δεδομένων

26 Στη βιβλιογραφία έχουν προταθεί πολλά μέτρα ανάλογα με την εφαρμογή Με ποια κριτήρια θα επιλέξουμε ένα καλό μέτρο; Πως έναν Aprioristyle support based pruning επηρεάζει αυτά τα μέτρα; Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 5 Αποτίμηση Κανόνων Συσχέτισης Σύγκριση Μέτρων παραδείγματα contingency πινάκων: Ιεράρχηση των πινάκων με βάση τα διάφορα μέτρα ( ο πιο ενδιαφέρον, ο λιγότερο ενδιαφέρον): Example E E E E E E E E E E Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 52 Εξόρυξη Δεδομένων

27 Αποτίμηση Κανόνων Συσχέτισης ΙδιότητεςενόςΚαλούΜέτρου Piatetsky Shapiro: 3 γενικές ιδιότητες που πρέπει να ικανοποιεί ένα καλό μέτρο M: M(A, B) = αν τα Α και Β είναι στατιστικά ανεξάρτητα M(A, B) να αυξάνει μονότονα με το P(A,B) όταν τα P(A) και P(B) παραμένουν αμετάβλητα M(A, B) μειώνεται μονότονα με το P(A) [ή τοp(b)] όταν τα P(A,B) και P(B) [ή P(A)] παραμένουν αμετάβλητα Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 53 Ιδιότητες Μέτρων Αποτίμησης Αλλαγή Διάταξης Μεταβλητών (variable permutation) B B A p q A r s A A B p r B q s Ισχύει M(A, B) = M(B, A)? Γενικά συμμετρικά μέτρα για στοιχειοσύνολα και μη συμμετρικά για κανόνες Συμμετρικά (symmetric) μέτρα: support (υποστήριξη), lit, collective strength, cosine, Jaccard, κλπ Μη συμμετρικά (asymmetric) μέτρα: conidence (εμπιστοσύνη), conviction, Laplace, J measure, κλπ Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 54 Εξόρυξη Δεδομένων

28 Ιδιότητες Μέτρων Αποτίμησης Κλιμάκωση Γραμμής/Στήλης (Row/Column Scaling) Παράδειγμα Βαθμός Φύλο (Mosteller, 968): κ 3 Male κ 4 Female Male Female κ κ 2 High Low High Low Mosteller: Η συσχέτιση πρέπει να είναι ανεξάρτητη από το σχετικό αριθμό αγοριών κοριτσιών στο δείγμα 2x x Invariant under the row/column scaling operation αν Μ(Τ) = Μ(Τ ) όπου Τ o πίνακας contingency με μετρητές συχνότητας [, ; ; ] και Τ o πίνακας contingency με μετρητές συχνότητας [κ κ 3, κ 2 κ 3 ; κ κ 4 ; κ 2 κ 4 ] όπου κ, κ 2, κ 3, κ 4 θετικές σταθερές Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 55 Ιδιότητες Μέτρων Αποτίμησης Αντιστροφή (Inversion Operation) A B C D E F Συναλλαγή. Συναλλαγή N (a) (b) (c) Invariant under the inversion operation αν η τιμή της παραμένει η ίδια αν ανταλλάξουμε τις τιμές και και τις τιμές και Χρήσιμο για συμμετρικές μεταβλητές πχ φ το ίδιο για Α,ΒκαιC,D αλλά μικρότερο για Ε,F Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 56 Εξόρυξη Δεδομένων

29 Ιδιότητες Μέτρων Αποτίμησης Null Addition (προσθήκη μη σχετιζόμενων στοιχείων) B B A p q A r s B B A p q A r s + k Δεν επηρεάζονται από την αύξηση του όταν οι άλλες τιμές παραμένουν αμετάβλητες Invariant measures: support, cosine, Jaccard, κλπ Non invariant measures: correlation, Gini, mutual inormation, odds ratio, κλπ Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 57 Αποτίμηση Κανόνων Συσχέτισης Παράδοξο του Simpson Students Buy HDTV Yes No Buy Exercise Machine Yes No Buy HDTV Yes No Buy Exercise Machine Yes No c({hdtv=yes} {EM=Yes})=/=% c({hdtv=no} {EM=Yes})=4/34=.8% c({hdtv=yes} {EM=Yes})=99/8=55% c({hdtv=no} {EM=Yes})=54/2=45% Working adults c({htvs=yes} {EM=Yes})=98/7=57.7% c({htvs=no} {EM=Yes})=5/86=58.% Buy HDTV Yes No Buy Exercise Machine Yes 98 No Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 58 Εξόρυξη Δεδομένων

30 Αποτίμηση Κανόνων Συσχέτισης Buy HDTV Yes No Παράδοξο του Simpson Yes 99 a+p 54 c+r 53 Buy Exercise Machine No c({hdtv=yes} {EM=Yes})=99/8=55% c({hdtv=no} {EM=Yes})=54/2=45% 8 b+q 2 d+s 3 Students Buy HDTV Yes No Working adults c({hdtv=yes} {EM=Yes})=/=% c({hdtvs=no} {EM=Yes})=4/34=.8% Buy HDTV Yes α 4 c 5 Buy Exercise Machine No b 34 d 44 c({hdtv=yes} {EM=Yes})=98/7=57.7% c({hdtv=no} {EM=Yes})=5/86=58.% Buy Exercise Machine a/b < c/d p/q < r/s δεν συνεπάγεται ότι (a+p)/(b+q) < (c+r)/(d+s)! Yes No Yes 98 p 5 r 48 No q 86 s 256 Είναι σημαντικό πως θα γίνει διαχωρισμός (stratiication) των δεδομένων Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 59 Υποκειμενικά Μέτρα Ενδιαφέροντος Αντικειμενικά Μέτρα: Ιεραρχούν τα αποτελέσματα με βάση στατιστικά στοιχεία που υπολογίζονται από τα δεδομένα πχ., 2 μετρήσεις συσχέτισης (support, conidence, Laplace, Gini, mutual inormation, Jaccard, etc). Υποκειμενικά Μέτρα: Ιεράρχηση των προτύπων με βάση την ερμηνεία του χρήστη Ένα πρότυπο είναι υποκειμενικά ενδιαφέρον αν είναι σε αντίθεση με αυτό που αναμένει ο χρήστης (Silberschatz & Tuzhilin) Ένα πρότυπο είναι υποκειμενικά ενδιαφέρον αν μπορεί να χρησιμοποιηθεί (Silberschatz & Tuzhilin) Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 6 Εξόρυξη Δεδομένων 2-2 3

31 Υποκειμενικά Μέτρα Ενδιαφέροντος Interestingness (ενδιαφέρον)via Unexpectedness (μη αναμονή) + Pattern expected to be requent - Pattern expected to be inrequent Pattern ound to be requent Pattern ound to be inrequent Expected Patterns Unexpected Patterns Χρειάζεται να μοντελοποιήσουμε τι αναμένει ο χρήστης (domain knowledge) Χρειάζεται να συνδυάσουμε το τι αναμένεται από τους χρήστες με το τι δίνουν τα δεδομένα (δηλαδή τα πρότυπα που παίρνουμε evidence) Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 6 Οπτικοποίηση: Απλός Γράφος Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 62 Εξόρυξη Δεδομένων 2-2 3

32 Οπτικοποίηση: Γράφος Κανόνων Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 63 Οπτικοποίηση: (SGI/MineSet 3.) Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 64 Εξόρυξη Δεδομένων

33 Επίδραση της «Λοξής Κατανομής» της Υποστήριξης Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 65 Κατανομή Υποστήριξης Η απόδοση των αλγορίθμων εξαρτάται από τα δεδομένα εισόδου, πχ ο apriori από τον αριθμό των στοιχείων, το πλάτος των δοσοληψιών, ο FP Growth από την τομή (κοινά στοιχεία) των δοσοληψιών Επίσης, από την τιμή της ελάχιστης υποστήριξης (minsup). Πως θα προσδιοριστεί μια κατάλληλη τιμή για το minsup; Αν η τιμή είναι πολύ υψηλή, μπορεί να χαθούν στοιχειοσύνολα που περιέχουν ενδιαφέροντα σπάνια στοιχεία (πχ ακριβά προϊόντα) Αν η τιμή είναι πολύ χαμηλή, οι μέθοδοι γίνονται ακριβοί γιατί ο αριθμός των υποψήφιων στοιχειοσυνόλων είναι πολύ μεγάλος και ο αριθμός των συχνών στοιχειοσυνόλων γίνεται πολύ μεγάλος Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 66 Εξόρυξη Δεδομένων

34 Κατανομή Υποστήριξης Επιπρόσθετα, η χρήση μόνο μίας ελάχιστης υποστήριξης μπορεί να μην αρκεί Για πολλά πραγματικά δεδομένα η κατανομή της υποστήριξης δεν είναι ομοιόμορφη (skewed support distribution) Κατανομή υποστήριξης γιαδεδομέναλιανικών πωλήσεων Τα περισσότερα στοιχεία έχουν μικρή ή μέτρια υποστήριξη και μόνο λίγα έχουν μεγάλη υποστήριξη Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 67 Κατανομή Υποστήριξης Ομάδα G G2 G3 Υποστήριξη <% % 9% >9% Αριθμός στοιχείων Πως θα βρούμε κανόνες με «σπάνια» αλλά ενδιαφέροντα στοιχεία; Πολύ μικρή υποστήριξη; πολυπλοκότητα (πολλά υποψήφια στοιχειοσύνολα + πολλά συχνά στοιχειοσύνολα άρα και κανόνες) παράξενοι κανόνες μεταξύ G και G3 (χαβιάρι και γάλα) πχ support =.5 > 8,847 συχνά ζεύγη (από τα οποία μεικτά (διασταυρωμένης υποστήριξης το 93%) Cross support patterns (υποδείγματα διασταυρωμένης υποστήριξης) ανάμιξη στοιχείων πολύ συχνών με στοιχεία που είναι σπάνια! min{s(i ), s(i 2 ),, s(i k )}/max{s(i ), s(i 2 ),, s(i k )} Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 68 Εξόρυξη Δεδομένων

35 Κατανομή Υποστήριξης 3 25 υποστήριξη {p, q, r} s = 4/3 {p, q} s = 4/3 {p, r} s = 4/3 {q, r} s = 5/3 εμπιστοσύνη {p, q, r} {p, q} p q, c = 4/25 q p c = 4/5 {p, r} 4/3 {q, r} q r c = 5/5 r q c = 5/5 Υπάρχει ένας κανόνας με μικρή εμπιστοσύνη ο εντοπισμός του δηλώνει ότι πρόκειται για crosssupport Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 69 Κατανομή Υποστήριξης Cross support patterns ανάμιξη στοιχείων πολύ συχνών με στοιχεία που είναι σπάνια! min{s(i ), s(i 2 ),, s(i k )}/max{s(i ), s(i 2 ),, s(i k )} Πως να απαλλαγούμε Να θεωρήσουμε τον κανόνα με τη μικρότερη δυνατή εμπιστοσύνη ανάμεσα στους κανόνες με στοιχεία από το {i, i 2,, i k } Ποιος είναι αυτός ένα στοιχείο στο LHS ποιο στοιχείο: αυτό με τη μεγαλύτερη υποστήριξη! h c = s{i, i 2,, i k }/max k {s(i), s(i2),, s(ik)} Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 7 Εξόρυξη Δεδομένων

36 Κανόνων Συσχέτισης Πολλαπλών Επιπέδων Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 7 Κανόνες Συσχέτισης Πολλών Επιπέδων Food Electronics Bread Milk Computers Home Wheat White Skim 2% Desktop Laptop Accessory TV DVD Foremost Kemps Printer Scanner Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 72 Εξόρυξη Δεδομένων

37 Κανόνες Συσχέτισης Πολλών Επιπέδων Γιατί είναι χρήσιμοι; Οι κανόνες στα χαμηλότερα επίπεδα δεν έχουν αρκετή υποστήριξη σε κανένα στοιχειοσύνολο Οι κανόνες στα χαμηλότερα επίπεδα είναι πάρα πολύ συγκεκριμένοι και στα υψηλότερα επίπεδα πολύ γενικοί! π.χ., skim milk white bread, 2% milk wheat bread, skim milk wheat bread, κλπ. είναι ενδεικτικοί της συσχέτισης μεταξύ γάλατος και ψωμιού Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 73 Κανόνες Συσχέτισης Πολλών Επιπέδων Προσέγγιση : Επέκταση κάθε συναλλαγής με στοιχεία από τα υψηλότερα επίπεδα της ιεραρχίας Αρχική Συναλλαγή: {skim milk, wheat bread} ΕπαυξημένηΣυναλλαγή:{skim milk, wheat bread, milk, bread, ood} Θέματα: Τα στοιχεία στα υψηλότερα επίπεδα θα εμφανίζονται πολύ συχνά, μεγάλους μετρητές υποστήριξης μικρή υποστήριξη, θαοδηγούσεσεπολλάσυχνάστοιχειοσύνολααπότα υψηλότερα επίπεδα Αύξηση της διάστασης των δεδομένων Πλεονάζοντες κανόνες Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 74 Εξόρυξη Δεδομένων

38 Κανόνες Συσχέτισης Πολλών Επιπέδων Πως τροποποιούνται η υποστήριξη και η εμπιστοσύνη στην ιεραρχία; Αν X ο γονέας των X and X2, τότε σ(x) σ(x) + σ(x2) Αν σ(x Y) minsup, και X γονέας του X, Y γονέας του Y τότε σ(x Y) minsup, σ(x Y) minsup σ(x Y) minsup Αν con(x Y) mincon, τότε con(x Y) mincon Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 75 Κανόνες Συσχέτισης Πολλών Επιπέδων Προσέγγιση 2: Δημιούργησε συχνά στοιχειοσύνολα πρώτα για τα υψηλότερα επίπεδα Μετά, δημιούργησε στοιχειοσύνολα για τοαμέσωςεπόμενοεπίπεδοκοκ Θέματα: I/O απαιτήσεις αυξάνουν, γιατί απαιτούνται πολλαπλά περάσματα Μπορεί να χαθούν συσχετίσεις ανάμεσα στα επίπεδα Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ III 76 Εξόρυξη Δεδομένων

Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής. Εξόρυξη Γνώσης από εδοµένα (Data Mining) Εξόρυξη Κανόνων Συσχετίσεων. Γιάννης Θεοδωρίδης

Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής. Εξόρυξη Γνώσης από εδοµένα (Data Mining) Εξόρυξη Κανόνων Συσχετίσεων. Γιάννης Θεοδωρίδης Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής Εξόρυξη Γνώσης από εδοµένα (Data Mining) Εξόρυξη Κανόνων Συσχετίσεων Γιάννης Θεοδωρίδης Οµάδα ιαχείρισης εδοµένων Εργαστήριο Πληροφοριακών Συστηµάτων http://isl.cs.unipi.gr/db

Διαβάστε περισσότερα

Υπερπροσαρμογή (Overfitting) (1)

Υπερπροσαρμογή (Overfitting) (1) Αλγόριθμος C4.5 Αποφυγή υπερπροσαρμογής (overfitting) Reduced error pruning Rule post-pruning Χειρισμός χαρακτηριστικών συνεχών τιμών Επιλογή κατάλληλης μετρικής για την επιλογή των χαρακτηριστικών διάσπασης

Διαβάστε περισσότερα

ΗΥ360 Αρχεία και Βάσεις εδοµένων ιδάσκων:. Πλεξουσάκης

ΗΥ360 Αρχεία και Βάσεις εδοµένων ιδάσκων:. Πλεξουσάκης ΗΥ360 Αρχεία και Βάσεις εδοµένων ιδάσκων:. Πλεξουσάκης Συναρτησιακές Εξαρτήσεις Αξιώµατα Armstrong Ελάχιστη κάλυψη Φροντιστήριο 1 Συναρτησιακές Εξαρτήσεις Οι Συναρτησιακές εξαρτήσεις είναι περιορισµοί

Διαβάστε περισσότερα

Αλγοριθμικές Τεχνικές. Brute Force. Διαίρει και Βασίλευε. Παράδειγμα MergeSort. Παράδειγμα. Τεχνικές Σχεδιασμού Αλγορίθμων

Αλγοριθμικές Τεχνικές. Brute Force. Διαίρει και Βασίλευε. Παράδειγμα MergeSort. Παράδειγμα. Τεχνικές Σχεδιασμού Αλγορίθμων Τεχνικές Σχεδιασμού Αλγορίθμων Αλγοριθμικές Τεχνικές Παύλος Εφραιμίδης, Λέκτορας http://pericles.ee.duth.gr Ορισμένες γενικές αρχές για τον σχεδιασμό αλγορίθμων είναι: Διαίρει και Βασίλευε (Divide and

Διαβάστε περισσότερα

Συσταδοποίηση Ι. Τι είναι συσταδοποίηση. Εφαρμογές. Εφαρμογές. Εισαγωγή Θέματα που θα μας απασχολήσουν σήμερα. Πότε μια συσταδοποίηση είναι καλή;

Συσταδοποίηση Ι. Τι είναι συσταδοποίηση. Εφαρμογές. Εφαρμογές. Εισαγωγή Θέματα που θα μας απασχολήσουν σήμερα. Πότε μια συσταδοποίηση είναι καλή; Τι είναι συσταδοποίηση Εύρεση συστάδων αντικειμένων έτσι ώστε τα αντικείμενα σε κάθε ομάδα να είναι όμοια (ή να σχετίζονται) και διαφορετικά (ή μη σχετιζόμενα) από τα αντικείμενα των άλλων ομάδων Συσταδοποίηση

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #7: Ελάχιστα Επικαλυπτικά Δένδρα, Αλγόριθμος Kruskal, Δομές Union-Find Άσκηση # 0 5 0 0 0

Διαβάστε περισσότερα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα Δύο κύριοι τρόποι παρουσίασης δεδομένων Παράδειγμα Με πίνακες Με διαγράμματα Ονομαστικά δεδομένα Εδώ τα περιγραφικά μέτρα (μέσος, διάμεσος κλπ ) δεν έχουν νόημα Πήραμε ένα δείγμα από 25 άτομα και τα ρωτήσαμε

Διαβάστε περισσότερα

Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες

Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες Πινάκες συνάφειας εξερεύνηση σχέσεων μεταξύ τυχαίων μεταβλητών. Είναι λογικό λοιπόν, στην ανάλυση των κατηγορικών δεδομένων να μας ενδιαφέρει η σχέση μεταξύ δύο ή περισσότερων κατηγορικών μεταβλητών. Έστω

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα

Θεωρία Υπολογισμού και Πολυπλοκότητα Θεωρία Υπολογισμού και Πολυπλοκότητα Κεφάλαιο 1. Μαθηματικό Υπόβαθρο 23, 26 Ιανουαρίου 2007 Δρ. Παπαδοπούλου Βίκη 1 1.1. Σύνολα Ορισμός : Σύνολο μια συλλογή από αντικείμενα Στοιχεία: Μέλη συνόλου Τα στοιχεία

Διαβάστε περισσότερα

Σ ΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΕΡΜΗΝΕΙΑ ΑΠΟΤΕΛΕΣΜΑΤΩΝ

Σ ΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΕΡΜΗΝΕΙΑ ΑΠΟΤΕΛΕΣΜΑΤΩΝ Σ ΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΕΡΜΗΝΕΙΑ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Μ ΑΪΟΥ 2002 2004 Δ ΕΥΤΕΡΟ ΜΕΡΟΣ Π ΕΡΙΛΗΨΗ: Η μελέτη αυτή έχει σκοπό να παρουσιάσει και να ερμηνεύσει τα ευρήματα που προέκυψαν από τη στατιστική

Διαβάστε περισσότερα

«Αφιερωμένο στους γονείς μου Νικογιάννη και Ευγενία, στα αδέρφια μου Διονύση και Μπέσσυ αλλά και σε όσους ήταν μαζί μου αυτά τα χρόνια...

«Αφιερωμένο στους γονείς μου Νικογιάννη και Ευγενία, στα αδέρφια μου Διονύση και Μπέσσυ αλλά και σε όσους ήταν μαζί μου αυτά τα χρόνια... ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΠΛΗΡΟΦΟΡΙΚΗΣ Διδακτορική Διατριβή Εφαρμογή Τεχνικών Data Mining σε Συστήματα Ηλεκτρονικού Εμπορίου Κουρής Ν. Γιάννης ΠΑΤΡΑ

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 20 Huffman codes 1 / 12 Κωδικοποίηση σταθερού μήκους Αν χρησιμοποιηθεί κωδικοποίηση σταθερού μήκους δηλαδή

Διαβάστε περισσότερα

Σχέσεις. Διμελής Σχέση. ΣτοΊδιοΣύνολο. Αναπαράσταση

Σχέσεις. Διμελής Σχέση. ΣτοΊδιοΣύνολο. Αναπαράσταση Διμελής Σχέση Σχέσεις Διδάσκοντες: Φ. Αφράτη, Δ. Επιμέλεια διαφανειών: Δ. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διατεταγμένο ζεύγος (α, β): Δύο αντικείμενα

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΕΝΝΟΙΑ ΠΙΘΑΝΟΤΗΤΑΣ Μαθηματική περιγραφή συστημάτων με αβεβαιότητα Παραδείγματα από την οργάνωση παραγωγής Διάρκεια παραγωγής προϊόντων

Διαβάστε περισσότερα

Εισαγωγή στην Κανονική Κατανομή. Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη

Εισαγωγή στην Κανονική Κατανομή. Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη Εισαγωγή στην Κανονική Κατανομή Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη Ένα πρόβλημα Πρόβλημα: Ένας μαθητής είχε επίδοση στο τεστ Μαθηματικών 18 και στο τεστ

Διαβάστε περισσότερα

Μάθηση και Γενίκευση. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων

Μάθηση και Γενίκευση. Τεχνητά Νευρωνικά Δίκτυα (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων Μάθηση και Γενίκευση Το Πολυεπίπεδο Perceptron (MultiLayer Perceptron (MLP)) Έστω σύνολο εκπαίδευσης D={(x n,t n )}, n=1,,n. x n =(x n1,, x nd ) T, t n =(t n1,, t np ) T Θα πρέπει το MLP να έχει d νευρώνες

Διαβάστε περισσότερα

Περιεχόμενα. Περιεχόμενα

Περιεχόμενα. Περιεχόμενα Περιεχόμενα xv Περιεχόμενα 1 Αρχές της Java... 1 1.1 Προκαταρκτικά: Κλάσεις, Τύποι και Αντικείμενα... 2 1.1.1 Βασικοί Τύποι... 5 1.1.2 Αντικείμενα... 7 1.1.3 Τύποι Enum... 14 1.2 Μέθοδοι... 15 1.3 Εκφράσεις...

Διαβάστε περισσότερα

ΔΥΑΔΙΚΗ ΑΝΑΖΗΤΗΣΗ & ΤΑΞΙΝΟΜΗΣΗ ΜΕ ΣΥΓΧΩΝΕΥΣΗ

ΔΥΑΔΙΚΗ ΑΝΑΖΗΤΗΣΗ & ΤΑΞΙΝΟΜΗΣΗ ΜΕ ΣΥΓΧΩΝΕΥΣΗ ΔΥΑΔΙΚΗ ΑΝΑΖΗΤΗΣΗ & ΤΑΞΙΝΟΜΗΣΗ ΜΕ ΣΥΓΧΩΝΕΥΣΗ (ΑΛΓΟΡΙΘΜΟΙ, Sanjoy Dasgupta, Christos Papadimitriou, Umesh Vazirani, σελ. 55-62 ΣΧΕΔΙΑΣΜΟΣ ΑΛΓΟΡΙΘΜΩΝ, Jon Kleinberg, Eva Tardos, Κεφάλαιο 5) Δυαδική αναζήτηση

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 4: Εισαγωγή / Σύνολα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 4: Εισαγωγή / Σύνολα Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 4: Εισαγωγή / Σύνολα Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες

Διαβάστε περισσότερα

ΟΚΙΜΑΣΙΕΣ χ 2 (CHI-SQUARE)

ΟΚΙΜΑΣΙΕΣ χ 2 (CHI-SQUARE) ΔΟΚΙΜΑΣΙΕΣ χ (CI-SQUARE) ΟΚΙΜΑΣΙΕΣ χ (CI-SQUARE). Εισαγωγή Οι στατιστικές δοκιμασίες που μελετήσαμε μέχρι τώρα ονομάζονται παραμετρικές (paramtrc) διότι χαρακτηρίζονται από υποθέσεις σχετικές είτε για

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #: Εύρεση Ελαχίστων Μονοπατιών σε Γραφήματα που Περιλαμβάνουν και Αρνητικά Βάρη: Αλγόριθμος

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ. Διπλωματική Εργασία Μεταπτυχιακού Διπλώματος Ειδίκευσης

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ. Διπλωματική Εργασία Μεταπτυχιακού Διπλώματος Ειδίκευσης ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Διπλωματική Εργασία Μεταπτυχιακού Διπλώματος Ειδίκευσης «Σχεδίαση και υλοποίηση έξυπνου συστήματος ανάλυσης

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Απαρίθμηση: μεταθέσεις και συνδυασμοί

Διακριτά Μαθηματικά. Απαρίθμηση: μεταθέσεις και συνδυασμοί Διακριτά Μαθηματικά Απαρίθμηση: μεταθέσεις και συνδυασμοί Μεταθέσεις (permutations) Μετάθεση διακεκριμένων στοιχείων ενός συνόλου = Ανακάτεμα κάποιων ή όλων των στοιχείων του συνόλου S={1,2,3} Μεταθέσεις

Διαβάστε περισσότερα

Αλγόριθμοι Ταξινόμησης Bubble Sort Quick Sort. Αντρέας Δημοσθένους Καθηγητής Πληροφορικής Ολυμπιάδα 2012

Αλγόριθμοι Ταξινόμησης Bubble Sort Quick Sort. Αντρέας Δημοσθένους Καθηγητής Πληροφορικής Ολυμπιάδα 2012 Αλγόριθμοι Ταξινόμησης Bubble Sort Quick Sort Αντρέας Δημοσθένους Καθηγητής Πληροφορικής Ολυμπιάδα 2012 3 5 1 Ταξινόμηση - Sorting Πίνακας Α 1 3 5 5 3 1 Ταξινόμηση (Φθίνουσα) Χωρίς Ταξινόμηση Ταξινόμηση

Διαβάστε περισσότερα

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων Ενότητα 7: Ομαδοποίηση Μέρος Α Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

1 Εισαγωγή στις Συνδυαστικές Δημοπρασίες - Combinatorial Auctions

1 Εισαγωγή στις Συνδυαστικές Δημοπρασίες - Combinatorial Auctions ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015 Συμπληρωματικές σημειώσεις για τον μηχανισμό VCG 1 Εισαγωγή στις Συνδυαστικές

Διαβάστε περισσότερα

Αποθήκες εδοµένων και Εξόρυξη Γνώσης (Data Warehousing & Data Mining)

Αποθήκες εδοµένων και Εξόρυξη Γνώσης (Data Warehousing & Data Mining) Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής Αποθήκες εδοµένων και Εξόρυξη Γνώσης (Data Warehousing & Data Mining) Εξόρυξη Χρονικής Γνώσης (temporal data mining) Γιάννης Θεοδωρίδης, Νίκος Πελέκης Οµάδα ιαχείρισης

Διαβάστε περισσότερα

Ενδεικτικές ασκήσεις ΔΙΠ 50

Ενδεικτικές ασκήσεις ΔΙΠ 50 Ενδεικτικές ασκήσεις ΔΙΠ 50 Άσκηση 1 (άσκηση 1 1 ης εργασίας 2009-10) Σε ένα ράφι μιας βιβλιοθήκης τοποθετούνται με τυχαία σειρά 11 διαφορετικά βιβλία τεσσάρων θεματικών ενοτήτων. Πιο συγκεκριμένα, υπάρχουν

Διαβάστε περισσότερα

Δυναμικά Πολυεπίπεδα Ευρετήρια (Β-δένδρα) Μ.Χατζόπουλος 1

Δυναμικά Πολυεπίπεδα Ευρετήρια (Β-δένδρα) Μ.Χατζόπουλος 1 Δυναμικά Πολυεπίπεδα Ευρετήρια (Β-δένδρα) Μ.Χατζόπουλος 1 Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ.Χατζόπουλος 2 Δένδρο αναζήτησης είναι ένας ειδικός τύπος δένδρου που χρησιμοποιείται για να καθοδηγήσει την αναζήτηση μιας

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 6. Πιθανότητες

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 6. Πιθανότητες ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (3)

Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (3) Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (3) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Μη Ασυμφραστικές Γλώσσες (2.3) Λήμμα Άντλησης για Ασυμφραστικές Γλώσσες Παραδείγματα

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Εισαγωγή στους Αλγορίθμους Ενότητα 5η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Η Μέθοδος «Διαίρει & Βασίλευε» Η Μέθοδος

Διαβάστε περισσότερα

Γενική Ανταγωνιστική Ισορροπία και Αποτελεσματικές κατά Pareto Κατανομές σε Ανταλλακτική Οικονομία

Γενική Ανταγωνιστική Ισορροπία και Αποτελεσματικές κατά Pareto Κατανομές σε Ανταλλακτική Οικονομία Γενική Ανταγωνιστική Ισορροπία και Αποτελεσματικές κατά Pareto Κατανομές σε Ανταλλακτική Οικονομία Βασικές Υποθέσεις (i) Οι αγορές όλων των αγαθών είναι τέλεια ανταγωνιστικές. Οι καταναλωτές και οι επιχειρήσεις

Διαβάστε περισσότερα

http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584

http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584 Επιμέλεια: xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΕΚΦΩΝΗΣΕΙΣ ΤΕΥΧΟΣ 5ο ΑΣΚΗΣΕΙΣ 401-500 Αφιερωμένο σε κάθε μαθητή που ασχολείται ή πρόκειται να ασχοληθεί με Μαθηματικούς διαγωνισμούς

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Συμβολοσειρές. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Συμβολοσειρές. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Συμβολοσειρές Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Συμβολοσειρές Συμβολοσειρές και προβλήματα που αφορούν συμβολοσειρές εμφανίζονται τόσο συχνά που

Διαβάστε περισσότερα

Digital Image Processing

Digital Image Processing Digital Image Processing Intensity Transformations Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 2008. Image Enhancement: είναι

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 10β: Αλγόριθμοι Γραφημάτων-Γραφήματα- Αναπαράσταση Γραφημάτων- Διερεύνηση Πρώτα σε Πλάτος (BFS) Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το

Διαβάστε περισσότερα

Κωδικοποίηση Πηγής. Δρ. Α. Πολίτης

Κωδικοποίηση Πηγής. Δρ. Α. Πολίτης Κωδικοποίηση Πηγής Coder Decoder Μεταξύ πομπού και καναλιού παρεμβάλλεται ο κωδικοποιητής (coder). Έργο του: η αντικατάσταση των συμβόλων πληροφορίας της πηγής με εναλλακτικά σύμβολα ή λέξεις. Κωδικοποίηση

Διαβάστε περισσότερα

Σ Τ Α Τ Ι Σ Τ Ι Κ Η 2. 1. Β Α Σ Ι Κ Ε Σ Ε Ν Ν Ο Ι Ε Σ.

Σ Τ Α Τ Ι Σ Τ Ι Κ Η 2. 1. Β Α Σ Ι Κ Ε Σ Ε Ν Ν Ο Ι Ε Σ. Σ Τ Α Τ Ι Σ Τ Ι Κ Η Στατιστική έρευνα : Πρόκειται για ένα σύνολο αρχών και μεθοδολογιών με αντικείμενο : 1) το σχεδιασμό της διαδικασίας συλλογής δεδομένων. Κλάδος της στατιστικής που ασχολείται : Σχεδιασμός

Διαβάστε περισσότερα

Δέντρα Απόφασης (Decision(

Δέντρα Απόφασης (Decision( Δέντρα Απόφασης (Decision( Trees) Το μοντέλο που δημιουργείται είναι ένα δέντρο Χρήση της τεχνικής «διαίρει και βασίλευε» για διαίρεση του χώρου αναζήτησης σε υποσύνολα (ορθογώνιες περιοχές) Ένα παράδειγμα

Διαβάστε περισσότερα

H ΑΝΑΛΥΣΗ ΣΥΣΧΕΤΙΣΗΣ (PEARSON s r)

H ΑΝΑΛΥΣΗ ΣΥΣΧΕΤΙΣΗΣ (PEARSON s r) 5 H ΑΝΑΛΥΣΗ ΣΥΣΧΕΤΙΣΗΣ (PEARSON s r) Περίληψη Σκοπός του κεφαλαίου είναι η εφαρμογή της ανάλυσης συσχέτισης (Pearson r) μέσω του PASW. H ανάλυση συσχέτισης Pearson r χρησιμοποιείται για να εξεταστεί η

Διαβάστε περισσότερα

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος xi 1 Αντικείμενα των Πιθανοτήτων και της Στατιστικής 1 1.1 Πιθανοτικά Πρότυπα και Αντικείμενο των Πιθανοτήτων, 1 1.2 Αντικείμενο της Στατιστικής, 3 1.3 Ο Ρόλος των Πιθανοτήτων

Διαβάστε περισσότερα

Απαλλακτική Εργασία Γραφικά & Εικονική Πραγματικότητα. Παπαπαύλου Χρήστος ΑΜ: 6609

Απαλλακτική Εργασία Γραφικά & Εικονική Πραγματικότητα. Παπαπαύλου Χρήστος ΑΜ: 6609 Απαλλακτική Εργασία Γραφικά & Εικονική Πραγματικότητα Παπαπαύλου Χρήστος ΑΜ: 6609 Αναπαράσταση μοντέλου Το 3D μοντέλο το αποθηκεύουμε στην μνήμη με τις εξής δομές δεδομένων: Λίστα κορυφών Λίστα τριγώνων

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα Ανάλυση Διασποράς Έστω ότι μας δίνονται δείγματα που προέρχονται από άγνωστους πληθυσμούς. Πόσο διαφέρουν οι μέσες τιμές τους; Με άλλα λόγια: πόσο πιθανό είναι να προέρχονται από πληθυσμούς με την ίδια

Διαβάστε περισσότερα

7ο ΕΡΓΑΣΤΗΡΙΟ AAAABBBBAAAAABBBBBBCCCCCCCCCCCCCCBBABAAAABBBBBBCCCCD

7ο ΕΡΓΑΣΤΗΡΙΟ AAAABBBBAAAAABBBBBBCCCCCCCCCCCCCCBBABAAAABBBBBBCCCCD ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΛΑΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2010 11 Ιστοσελίδα μαθήματος: http://eclass.teilam.gr/di288 1 Συμπίεση

Διαβάστε περισσότερα

Τεχνικές Μείωσης Διαστάσεων. Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας

Τεχνικές Μείωσης Διαστάσεων. Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας Τεχνικές Μείωσης Διαστάσεων Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας 1 Εισαγωγή Το μεγαλύτερο μέρος των δεδομένων που καλούμαστε να επεξεργαστούμε είναι πολυδιάστατα.

Διαβάστε περισσότερα

Για να ελέγξουµε αν η κατανοµή µιας µεταβλητής είναι συµβατή µε την κανονική εφαρµόζουµε το test Kolmogorov-Smirnov.

Για να ελέγξουµε αν η κατανοµή µιας µεταβλητής είναι συµβατή µε την κανονική εφαρµόζουµε το test Kolmogorov-Smirnov. A. ΈΛΕΓΧΟΣ ΚΑΝΟΝΙΚΟΤΗΤΑΣ A 1. Έλεγχος κανονικότητας Kolmogorov-Smirnov. Για να ελέγξουµε αν η κατανοµή µιας µεταβλητής είναι συµβατή µε την κανονική εφαρµόζουµε το test Kolmogorov-Smirnov. Μηδενική υπόθεση:

Διαβάστε περισσότερα

Εισαγωγή στη Στατιστική

Εισαγωγή στη Στατιστική Εισαγωγή στη Στατιστική Μετεκπαιδευτικό Σεμινάριο στην ΨΥΧΟΚΟΙΝΩΝΙΚΗ ΑΠΟΚΑΤΑΣΤΑΣΗ ΨΥΧΟΚΟΙΝΩΝΙΚΕΣ ΘΕΡΑΠΕΥΤΙΚΕΣ ΠΡΟΣΕΓΓΙΣΕΙΣ Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ 3.1 Τυχαίοι αριθμοί Στην προσομοίωση διακριτών γεγονότων γίνεται χρήση ακολουθίας τυχαίων αριθμών στις περιπτώσεις που απαιτείται η δημιουργία στοχαστικών

Διαβάστε περισσότερα

3.4.2 Ο Συντελεστής Συσχέτισης τ Του Kendall

3.4.2 Ο Συντελεστής Συσχέτισης τ Του Kendall 3..2 Ο Συντελεστής Συσχέτισης τ Του Kendall Ο συντελεστής συχέτισης τ του Kendall μοιάζει με τον συντελεστή ρ του Spearman ως προς το ότι υπολογίζεται με βάση την τάξη μεγέθους των παρατηρήσεων και όχι

Διαβάστε περισσότερα

Διαδικασιακός Προγραμματισμός

Διαδικασιακός Προγραμματισμός Τμήμα ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ Διαδικασιακός Προγραμματισμός Διάλεξη 12 η Αναζήτηση/Ταξινόμηση Πίνακα Οι διαλέξεις βασίζονται στο βιβλίο των Τσελίκη και Τσελίκα C: Από τη Θεωρία στην

Διαβάστε περισσότερα

Επιδημιολογία 3 ΣΧΕΔΙΑΣΜΟΣ ΜΕΛΕΤΩΝ. Ροβίθης Μ. 2006

Επιδημιολογία 3 ΣΧΕΔΙΑΣΜΟΣ ΜΕΛΕΤΩΝ. Ροβίθης Μ. 2006 Επιδημιολογία 3 ΣΧΕΔΙΑΣΜΟΣ ΜΕΛΕΤΩΝ Ροβίθης Μ. 2006 1 Τα στάδια της επιδημιολογικής έρευνας ταξινομούνται με μια λογική σειρά στην οποία κάθε φάση εξαρτάται από την προηγούμενη. Μια εκτεταμένη λίστα είναι

Διαβάστε περισσότερα

Στόχος µαθήµατος: Παράδειγµα 1: µελέτη ασθενών-µαρτύρων ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ

Στόχος µαθήµατος: Παράδειγµα 1: µελέτη ασθενών-µαρτύρων ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 2006-2007, 3ο εξάµηνο ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ ΜΑΘΗΜΑ 5 ΕΡΓΑΣΤΗΡΙΟ 1 ΜΕΤΡΑ ΚΙΝ ΥΝΟΥ & ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ ΜΕ ΤΗΝ ΧΡΗΣΗ SPSS

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/ Τεχνητή Νοημοσύνη 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία: Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Πρόβλημα 1 Το πρώτο πρόβλημα λύνεται με τη μέθοδο του Δυναμικού Προγραμματισμού. Για να το λύσουμε με Δυναμικό Προγραμματισμό

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων 1 Μάθημα του A Εξαμήνου

Στατιστική Επιχειρήσεων 1 Μάθημα του A Εξαμήνου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ Τμήμα Λογιστικής & Χρηματοοικονομικής Στατιστική Επιχειρήσεων 1 Μάθημα του A Εξαμήνου Περιεχόμενα-Ύλη του Μαθήματος Περιγραφική Στατιστική: Είδη δεδομένων, Μετασχηματισμοί,

Διαβάστε περισσότερα

Μαθηματικά των Υπολογιστών και των Αποφάσεων Τεχνητή Νοημοσύνη 1η Σειρά Ασκήσεων

Μαθηματικά των Υπολογιστών και των Αποφάσεων Τεχνητή Νοημοσύνη 1η Σειρά Ασκήσεων Π Π Τ Μ Τ Μ Η/Υ Π Δ Μ Π Μαθηματικά των Υπολογιστών και των Αποφάσεων Τεχνητή Νοημοσύνη 1η Σειρά Ασκήσεων Φοιτητής: Ν. Χασιώτης (AM: 0000) Καθηγητής: Ι. Χατζηλυγερούδης 22 Οκτωβρίου 2010 ΑΣΚΗΣΗ 1. Δίνεται

Διαβάστε περισσότερα

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ 1ΗΣ ΣΕΛΙΔΑΣ ΘΕΜΑ Α ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Γ' ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 26 ΑΠΡΙΛΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ

Διαβάστε περισσότερα

Αρχεία και Βάσεις Δεδομένων Φροντιστήριο Κανονικές Μορφές

Αρχεία και Βάσεις Δεδομένων Φροντιστήριο Κανονικές Μορφές ΗΥ-360 Αρχεία και Βάσεις Δεδομένων Φροντιστήριο Κανονικές Μορφές 1 Κλειστότητα Συναρτησιακών Eξαρτήσεων: Πώς συμβολίζεται: F + Τι σημαίνει : Το ΣΥΝΟΛΟ των Σ.Ε. που μπορούν να παραχθούν από ένα σύνολο εξαρτήσεων

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών

Εισαγωγή στην επιστήμη των υπολογιστών Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 3ο Αναπαράσταση Αριθμών www.di.uoa.gr/~organosi 1 Δεκαδικό και Δυαδικό Δεκαδικό σύστημα 2 3 Δεκαδικό και Δυαδικό Δυαδικό Σύστημα

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ

ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ 2o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ: ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδες Μαθήματος: users.auth.gr/gvasil

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 3: Αριθμητικά Περιγραφικά Μέτρα Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ

Διαβάστε περισσότερα

Μοντέλο Οντοτήτων-Συσχετίσεων

Μοντέλο Οντοτήτων-Συσχετίσεων Μοντέλο Οντοτήτων-Συσχετίσεων 1 Εισαγωγή Σχεδιασμός μιας εφαρμογής ΒΔ: Βήματα 1. Συλλογή και Ανάλυση Απαιτήσεων (requirement analysis) Τι δεδομένα θα αποθηκευτούν, ποιες εφαρμογές θα κτιστούν πάνω στα

Διαβάστε περισσότερα

Έλεγχος Ταυτοχρονισμού

Έλεγχος Ταυτοχρονισμού Έλεγχος Ταυτοχρονισμού Κεφάλαιο 17 Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke Ελληνική Μετάφραση: Γεώργιος Ευαγγελίδης 1 Συγκρουσιακώς Σειριοποιήσιμα Χρονοπρογράμματα Δυο χρονοπρογράμματα

Διαβάστε περισσότερα

Α/Α ΗΛΙΚΙΑ ΦΥΛΟ ΕΠΙΔΟΣΗ ΕΚΠΑΙΔΕΥΣΗ Α/Α ΗΛΙΚΙΑ ΦΥΛΟ ΕΠΙΔΟΣΗ ΕΚΠΑΙΔΕΥΣΗ

Α/Α ΗΛΙΚΙΑ ΦΥΛΟ ΕΠΙΔΟΣΗ ΕΚΠΑΙΔΕΥΣΗ Α/Α ΗΛΙΚΙΑ ΦΥΛΟ ΕΠΙΔΟΣΗ ΕΚΠΑΙΔΕΥΣΗ Στον πίνακα που ακολουθεί δίδονται οι επιδόσεις 30 ατόμων σε ένα ψυχομετρικό test, που προσήλθαν ως υποψήφιοι για πρόσληψη σε τραπεζικό οργανισμό. Οι επιδόσεις αυτές συνοδεύονται και από το φύλο κάθε ατόμου,

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 3 ο

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 3 ο 3.07 Να γραφεί αλγόριθμος που θα δημιουργεί πίνακα 100 θέσεων στον οποίο τα περιττά στοιχεία του θα έχουν την τιμή 1 και τα άρτια την τιμή 0. ΛΥΣΗ Θα δημιουργήσω άσκηση βάση κάποιων κριτηρίων. Δηλ. δεν

Διαβάστε περισσότερα

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 12: Δέντρα ΙΙ -Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Δυαδικά Δένδρα - Δυαδικά Δένδρα Αναζήτησης(ΔΔΑ) - Εύρεση Τυχαίου, Μέγιστου, Μικρότερου στοιχείου - Εισαγωγή

Διαβάστε περισσότερα

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Με τον όρο μη γραμμικές εξισώσεις εννοούμε εξισώσεις της μορφής: f( ) 0 που προέρχονται από συναρτήσεις f () που είναι μη γραμμικές ως προς. Περιέχουν δηλαδή

Διαβάστε περισσότερα

Δ Ι Α Γ Ω Ν Ι Σ Μ Α Σ Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Γ Ε Ν Ι Κ Η Σ Π Α Ι Δ Ε Ι Α Σ. οι τιμές μιας μεταβλητής Χ ενός δείγματος πλήθους ν με k.

Δ Ι Α Γ Ω Ν Ι Σ Μ Α Σ Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Γ Ε Ν Ι Κ Η Σ Π Α Ι Δ Ε Ι Α Σ. οι τιμές μιας μεταβλητής Χ ενός δείγματος πλήθους ν με k. Δ Ι Α Γ Ω Ν Ι Σ Μ Α Σ Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Γ Ε Ν Ι Κ Η Σ Π Α Ι Δ Ε Ι Α Σ ΘΕΜΑ Α A Να αποδείξετε ότι η συνάρτηση () είναι παραγωγίσιμη στο R με () Α Έστω k οι τιμές μιας μεταβλητής Χ ενός δείγματος πλήθους

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 4 Αριθμητικές Μέθοδοι Περιγραφικής Στατιστικής

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 4 Αριθμητικές Μέθοδοι Περιγραφικής Στατιστικής ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

Ηλεκτροτεχνία Ηλεκτρικές Εγκαταστάσεις. τρεις πηγές τάσης.

Ηλεκτροτεχνία Ηλεκτρικές Εγκαταστάσεις. τρεις πηγές τάσης. Πολυφασικά Συστήματα Ηλεκτρικής Ενέργειας Ένα μονοφασικό σύστημα ηλεκτρικής ενέργειας δεν είναι η βέλτιστη λύση τροφοδότησης, επειδή όπως φαίνεται στο παρακάτω σχήμα η κυματομορφή του αφήνει μεγάλα κενά

Διαβάστε περισσότερα

Βιοστατιστική ΒΙΟ-309

Βιοστατιστική ΒΙΟ-309 Βιοστατιστική ΒΙΟ-309 Χειμερινό Εξάμηνο Ακαδ. Έτος 2015-2016 Ντίνα Λύκα lika@biology.uoc.gr 1. Εισαγωγή Εισαγωγικές έννοιες Μεταβλητότητα : ύπαρξη διαφορών μεταξύ ομοειδών μετρήσεων Μεταβλητή: ένα χαρακτηριστικό

Διαβάστε περισσότερα

ΕΞΟΡΥΞΗ Ε ΟΜΕΝΩΝ. Εισαγωγή

ΕΞΟΡΥΞΗ Ε ΟΜΕΝΩΝ. Εισαγωγή ΕΞΟΡΥΞΗ Ε ΟΜΕΝΩΝ Εισαγωγή Εισαγωγή Τεράστιος όγκος διαθέσιμων δεδομένων χρειαζόμαστε μεθόδουςγιανατααναλύσουμε Τι είναι η Εξόρυξη Δεδομένων (με δυο λόγια) Αποδοτικές τεχνικές για να αναλύσουμε πολύ μεγάλες

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Η έννοια του συνδυαστικού

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Ροή Δικτύου Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Μοντελοποίηση Δικτύων Μεταφοράς Τα γραφήματα χρησιμοποιούνται συχνά για την μοντελοποίηση

Διαβάστε περισσότερα

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για τους Μέσους - Εξαρτημένα Δείγματα (Paired samples t-test) Το κριτήριο Paired samples t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε

Διαβάστε περισσότερα

Συναρτησιακές Εξαρτήσεις

Συναρτησιακές Εξαρτήσεις Συναρτησιακές Εξαρτήσεις Βάσεις Δεδομένων 2009-2010 Ευαγγελία Πιτουρά 1 Εισαγωγή Θεωρία για το πότε ένας σχεδιασμός είναι «καλός» Η θεωρία βασίζεται στις Συναρτησιακές Εξαρτήσεις (Functional Dependencies)

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 19 Hashing - Κατακερματισμός 1 / 23 Πίνακες απευθείας πρόσβασης (Direct Access Tables) Οι πίνακες απευθείας

Διαβάστε περισσότερα

Kruskal-Wallis H... 176

Kruskal-Wallis H... 176 Περιεχόμενα KΕΦΑΛΑΙΟ 1: Περιγραφή, παρουσίαση και σύνοψη δεδομένων................. 15 1.1 Τύποι μεταβλητών..................................................... 16 1.2 Κλίμακες μέτρησης....................................................

Διαβάστε περισσότερα

Δισδιάστατη ανάλυση. Για παράδειγμα, έστω ότι 11 άτομα δήλωσαν ότι είναι άγαμοι (Α), 26 έγγαμοι (Ε), 12 χήροι (Χ) και 9 διαζευγμένοι (Δ).

Δισδιάστατη ανάλυση. Για παράδειγμα, έστω ότι 11 άτομα δήλωσαν ότι είναι άγαμοι (Α), 26 έγγαμοι (Ε), 12 χήροι (Χ) και 9 διαζευγμένοι (Δ). Δισδιάστατη ανάλυση Πίνακες διπλής εισόδου Σε πολλές περιπτώσεις μελετάμε περισσότερες από μία μεταβλητές ταυτόχρονα. Π.χ. μία έρευνα που έγινε σε ένα δείγμα 58 ατόμων περιείχε τις ερωτήσεις «ποια είναι

Διαβάστε περισσότερα

Ουρά Προτεραιότητας (priority queue)

Ουρά Προτεραιότητας (priority queue) Ουρά Προτεραιότητας (priority queue) Δομή δεδομένων που υποστηρίζει δύο βασικές λειτουργίες : Εισαγωγή στοιχείου με δεδομένο κλειδί. Επιστροφή ενός στοιχείου με μέγιστο (ή ελάχιστο) κλειδί και διαγραφή

Διαβάστε περισσότερα

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21 ΚΕΦΑΛΑΙΟ 21 Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ (Power of a Test) Όπως είδαμε προηγουμένως, στον Στατιστικό Έλεγχο Υποθέσεων, ορίζουμε δύο είδη πιθανών λαθών (κινδύνων) που μπορεί να συμβούν όταν παίρνουμε αποφάσεις

Διαβάστε περισσότερα

II. Συναρτήσεις. math-gr

II. Συναρτήσεις. math-gr II Συναρτήσεις Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ Α Βασικές Έννοιες Ορισμός: Έστω Α ένα υποσύνολο του συνόλου των πραγματικών αριθμών R Ονομάζουμε πραγματική

Διαβάστε περισσότερα

DIP_06 Συμπίεση εικόνας - JPEG. ΤΕΙ Κρήτης

DIP_06 Συμπίεση εικόνας - JPEG. ΤΕΙ Κρήτης DIP_06 Συμπίεση εικόνας - JPEG ΤΕΙ Κρήτης Συμπίεση εικόνας Το μέγεθος μιας εικόνας είναι πολύ μεγάλο π.χ. Εικόνα μεγέθους Α4 δημιουργημένη από ένα σαρωτή με 300 pixels ανά ίντσα και με χρήση του RGB μοντέλου

Διαβάστε περισσότερα

Κρυπτογραφία. Κεφάλαιο 4 Αλγόριθμοι Δημοσίου Κλειδιού (ή ασύμμετροι αλγόριθμοι)

Κρυπτογραφία. Κεφάλαιο 4 Αλγόριθμοι Δημοσίου Κλειδιού (ή ασύμμετροι αλγόριθμοι) Κρυπτογραφία Κεφάλαιο 4 Αλγόριθμοι Δημοσίου Κλειδιού (ή ασύμμετροι αλγόριθμοι) Κρυπτοσυστήματα Δημοσίου κλειδιού Αποστολέας P Encryption C Decryption P Παραλήπτης Προτάθηκαν το 1976 Κάθε συμμετέχων στο

Διαβάστε περισσότερα

6.2 Ο ΜΟΝΟΠΛΕΥΡΟΣ ΕΛΕΓΧΟΣ SMIRNOV ΓΙΑ k ΑΝΕΞΑΡΤΗΤΑ ΔΕΙΓΜΑΤΑ

6.2 Ο ΜΟΝΟΠΛΕΥΡΟΣ ΕΛΕΓΧΟΣ SMIRNOV ΓΙΑ k ΑΝΕΞΑΡΤΗΤΑ ΔΕΙΓΜΑΤΑ 6.2 Ο ΜΟΝΟΠΛΕΥΡΟΣ ΕΛΕΓΧΟΣ SMIRNOV ΓΙΑ k ΑΝΕΞΑΡΤΗΤΑ ΔΕΙΓΜΑΤΑ Ο έλεγχος της ενότητας αυτής αποτελεί μία επέκταση του μονόπλευρου ελέγχου Smirnov στην περίπτωση περισσοτέρων από δύο δειγμάτων. Ο έλεγχος αυτός

Διαβάστε περισσότερα

Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων ΣΗΜΜΥ - Ε.Μ.Π.

Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων ΣΗΜΜΥ - Ε.Μ.Π. Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων CO.RE.LAB. ΣΗΜΜΥ - Ε.Μ.Π. Άσκηση 1 η : Παιχνίδι επιλογής ακμών Έχουμε ένα ακυκλικό κατευθυνόμενο γράφο, μια αρχική κορυφή και δυο παίκτες. Οι παίκτες διαδοχικά

Διαβάστε περισσότερα

ΔΕΟ13(ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΛΙΟΥ )

ΔΕΟ13(ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΛΙΟΥ ) ΔΕΟ13(ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΛΙΟΥ ) ΑΣΚΗΣΗ 1 Μια εταιρεία ταχυμεταφορών διατηρεί μια αποθήκη εισερχομένων. Τα δέματα φθάνουν με βάση τη διαδικασία Poion με μέσο ρυθμό 40 δέματα ανά ώρα. Ένας υπάλληλος

Διαβάστε περισσότερα

ΆΣΚΗΣΗ 1 Η διάμεσος τιμή της ηλικίας των Ελλήνων το 1990 ήταν 30 έτη. Το 2001, η διάμεσος τιμή ήταν 33,1 (Πηγή:Ε.Σ.Υ.Ε.).

ΆΣΚΗΣΗ 1 Η διάμεσος τιμή της ηλικίας των Ελλήνων το 1990 ήταν 30 έτη. Το 2001, η διάμεσος τιμή ήταν 33,1 (Πηγή:Ε.Σ.Υ.Ε.). ΛΥΜΕΝΕΣ ΣΚΗΣΕΙΣ ΆΣΚΗΣΗ 1 Η διάμεσος τιμή της ηλικίας των Ελλήνων το 1990 ήταν 30 έτη. Το 2001, η διάμεσος τιμή ήταν 33,1 (Πηγή:Ε.Σ.Υ.Ε.). a. Τι μπορεί να συνέβη όταν η διάμεσος αυξήθηκε; Το γεγονός ότι

Διαβάστε περισσότερα

O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n

O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n Η ύλη συνοπτικά... Στοιχειώδης συνδυαστική Γεννήτριες συναρτήσεις Σχέσεις αναδρομής Θεωρία Μέτρησης Polyá Αρχή Εγκλεισμού - Αποκλεισμού Σχέσεις Αναδρομής Γραμμικές Σχέσεις Αναδρομής με σταθερούς συντελεστές

Διαβάστε περισσότερα

Παράλληλοι Αλγόριθμοι: Ανάλυση Εικόνας και Υπολογιστική Γεωμετρία. Πέτρος Ποτίκας CoReLab 4/5/2006

Παράλληλοι Αλγόριθμοι: Ανάλυση Εικόνας και Υπολογιστική Γεωμετρία. Πέτρος Ποτίκας CoReLab 4/5/2006 Παράλληλοι Αλγόριθμοι: Ανάλυση Εικόνας και Υπολογιστική Γεωμετρία Πέτρος Ποτίκας CoReLab 4/5/2006 Επισκόπηση Ετικέτες σε συνιστώσες (Component labelling) Hough μετασχηματισμοί (transforms) Πλησιέστερος

Διαβάστε περισσότερα

Τεχνικές Έρευνας. Εισήγηση 10 η Κατασκευή Ερωτηματολογίων

Τεχνικές Έρευνας. Εισήγηση 10 η Κατασκευή Ερωτηματολογίων Τεχνικές Έρευνας Ε. Ζέτου Ε εξάμηνο 2010-2011 Εισήγηση 10 η Κατασκευή Ερωτηματολογίων ΣΚΟΠΟΣ Η συγκεκριμένη εισήγηση έχει σαν σκοπό να δώσει τις απαραίτητες γνώσεις στο/στη φοιτητή/τρια για τον τρόπο διεξαγωγής

Διαβάστε περισσότερα

Δρομολόγηση Και Πολύχρωματισμός. Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026

Δρομολόγηση Και Πολύχρωματισμός. Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026 Δρομολόγηση Και Πολύχρωματισμός Μονοπατιών Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026 Εισαγωγή. Το πρόβλημα με το οποίο θα ασχοληθούμε εδώ είναι γνωστό σαν: Δρομολόγηση και Πολύ-χρωματισμός Διαδρομών (Routing

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 1: Εισαγωγή- Χαρακτηριστικά Παραδείγματα Αλγορίθμων Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα