P(n, r) = n! P(n, r) = n r. (n r)! n r. n+r 1 r n!

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "P(n, r) = n! P(n, r) = n r. (n r)! n r. n+r 1 r n!"

Transcript

1 Διακριτά Μαθηματικά Σύνοψη Θεωρίας Τυπολόγιο Αναστασία Κόλλια 20/11/ / 55

2 Κανόνες γινομένου και αθροίσματος Κανόνας αθροίσματος: Αν ένα γεγονός μπορεί να συμβεί κατά m τρόπους και ένα άλλο γεγονός μπορεί να συμβεί κατά n τρόπους, τότε υπάρχουν m + n τρόποι, κατά τους οποίους ένα από τα δυο γεγονότα μπορεί να συμβεί. Κανόνας γινομένου: Αν ένα γεγονός μπορεί να συμβεί κατά m τρόπους και ένα άλλο γεγονός μπορεί να συμβεί κατά n τρόπους, τότε υπάρχουν m n τρόποι, κατά τους οποίους και τα δυο γεγονότα μπορεί να συμβούν. 2 / 55

3 Στοιχειώδης Συνδυαστική- Συνδυασμοί και Διατάξεις με Επανάληψη Χωρίς επαναλήψεις στοιχείων P(n, r) = n! (n r)! C(n, r) = ( ) n r Με επαναλήψεις στοιχείων P(n, r) = n r C(n, r) = ( ) n+r 1 r n! Ομάδες μη διακεκριμένων στοιχείων q 1!q 2!...q t! 3 / 55

4 Στοιχειώδης Συνδυαστική- Διανομή Αντικειμένων σε Υποδοχές Διανομή αντικειμένων σε υποδοχές: n διακεκριμένες υποδοχές r Διαφορετικά αντικείμενα: Δε μετράει η σειρά: } n n {{... n } = n r r (n + r 1)! Μετράει η σειρά: (n 1)! r Ιδια αντικείμενα: (n + r 1)! r!(n 1)! ( ) n + r 1 = r 4 / 55

5 Στοιχειώδης Συνδυαστική- Διωνυμικοί Συντελεστές n Ανάπτυγμα διωνύμου του Νεύτωνα: (1 + x) n = C(n, r)x r n Γενικά: (s + t) n = C(n, r)s r t n r r=0 r=0 5 / 55

6 -Τύποι Γεωμετρικής Προόδου Από γεωμετρικές προόδους ισχύει: 1 + λ + λ 2 + λ λ n = 1 λn+1 1 λ ενώ για άπειρους όρους: 1 + λ + λ 2 + λ = 1, ισχύει μόνον όταν λ < 1 1 λ Η εκθετική συνάρτηση e x μπορεί να γραφεί και ως άπειρη σειρά ως: e x = 1 + x + x 2 2! + x 3 3! / 55

7 Χρήσιμες σχέσεις για τον υπολογισμό Γεννητριών Συναρτήσεων (1/3) z + z 2 + z z n = 1 zn+1 1 z n ( ) n 2 (1 + z) n = z k k k=0 n ( ) n 3 (1 + z) n = z k όπου k ( ) k=0( ) n k + n 1 = ( 1) k k k ( ) n = k n! k!(n k)! και 7 / 55

8 Χρήσιμες σχέσεις για τον υπολογισμό Γεννητριών Συναρτήσεων (2/3) Αν στις παραπάνω σχέσεις στη θέση του z χρησιμοποιείται το z ισχύει: n ( ) n n ( ) n 1 (1 z) n = ( z) k = ( 1) k z k k k k=0 k=0 n ( ) n 2 (1 z) n = ( z) k = k k=0 n ( ) k + n 1 n ( ) k + n 1 ( 1) k ( 1) k z k = z k k k k=0 k=0 8 / 55

9 Χρήσιμες σχέσεις για τον υπολογισμό Γεννητριών Συναρτήσεων (3/3) x 1 1! + x 2 2! + x 3 3! + x 4 2 e αx = r=0 α r x r r! 4! +... = x 2 2! + x 4 4! +... = ex + e x 2 4 x + x 3 3! + x 5 5! +... = ex e x 2 r=0 x r r! = ex 9 / 55

10 Εκθετικές γεννήτριες συναρτήσεις Για ΔΙΑΤΑΞΕΙΣ και όχι για ΣΥΝΔΥΑΣΜΟΥΣ χρησιμοποιείται εκθετική γεννήτρια συνάρτηση. 1 + z + z2 2! + z = ex 3! Οταν υπολογίζεται η τελική εκθετική γεννήτρια συνάρτηση, η απάντηση στο ερώτημα (με πόσους τρόπους μπορούμε να διατάξουμε n αντικείμενα όταν...) θα βρίσκεται στο συντελεστή του zn n! 10 / 55

11 Ιδιότητες γεννητριών συναρτήσεων Θεωρούμε ακολουθίες α = (α 0, α 1, α 2,..., α n,...) και β = (β 0, β 1, β 2,..., β n,... με γεννήτριες συναρτήσεις A(x) και B(x) αντίστοιχα. Ισχύουν οι ακόλουθες ιδιότητες: 1 Γραμμική ιδιότητα 2 Ιδιότητα κλίμακας 3 Ιδιότητα ολίσθησης 4 Ιδιότητα μερικών αθροισμάτων 5 Ιδιότητα συμπληρωματικών μερικών αθροισμάτων 6 Ιδιότητα παραγώγου 7 Ιδιότητα ολοκλήρωσης 8 Ιδιότητα συνέλιξης 11 / 55

12 Γραμμική ιδιότητα Η ακολουθία α = (α 0, α 1, α 2,..., α n,...) έχει γεννήτρια συνάρτηση την A(x) = α r x r. r=0 Η ακολουθία β = (β 0, β 1, β 2,..., β n,... έχει γεννήτρια συνάρτηση τη B(x) = b r x r. r=0 Εστω c, d σταθερές. Η ΓΣ της ακολουθίας c α + d β είναι η c A(x) + d B(x). 12 / 55

13 Ιδιότητα κλίμακας Η ακολουθία α = (α 0, α 1, α 2,..., α n,...) έχει γεννήτρια συνάρτηση την A(x) = α r x r. r=0 Η ΓΣ της ακολουθίας b r = λ r α r είναι η A(λx). 13 / 55

14 Ιδιότητα ολίσθησης Η ακολουθία α = (α 0, α 1, α 2,..., α n,...) έχει γεννήτρια συνάρτηση την A(x) = α r x r. r=0 Η ΓΣ της ακολουθίας: b r = 0 για r = 0,..., n 1 και b r = α r n για r = n, n + 1,... είναι η B(x) = x n A(x). 14 / 55

15 Ιδιότητα μερικών αθροισμάτων Η ακολουθία α = (α 0, α 1, α 2,..., α n,...) έχει γεννήτρια συνάρτηση την A(x) = α r x r. r=0 Η ΓΣ της ακολουθίας b k = B(x) = A(x) 1 x. k α r, k = 0, 1, 2,... είναι r=0 15 / 55

16 Ιδιότητα παραγώγου Η ακολουθία γ n = nα n έχει ΓΣ τη Γ(x) = xa (x), όπου A (x) είναι η πρώτη παράγωγος της συνάρτησης A(x). 16 / 55

17 Ιδιότητα ολοκληρώματος Η ακολουθία δ n = αn n+1 έχει ΓΣ τη (x) = 1 x x 0 A(z)dz. Η παράγουσα του z n είναι zn+1 n+1, οπότε έχουμε: (x) = 1 x A(z)dz = 1 x α n z n dz = x x 1 x n=0 0 α n n + 1 x n+1 = n=0 n=0 α n n + 1 x n 0 17 / 55

18 Ιδιότητα συνέλιξης Εστω ακολουθία α με όρους: α 0, α 1, α 2, α 3, α 4,... Εστω ακολουθία β με όρους: b 0, b 1, b 2, b 3, b 4,... Η συνέλιξή τους είναι η ακολουθία με όρους: γ 0 = α 0 b 0 γ 1 = α 0 b 1 + α 1 b 0 γ 2 = α 0 b 2 + α 1 b 1 + α 2 b 0 γ 3 = α 0 b 3 + α 1 b 2 + α 2 b 1 + α 3 b 0... ΔΗΛΑΔΗ: Συνέλιξη των ακολουθιών α και β είναι η ακολουθία d k = k r=0 α r β k r, k = 0, 1, 2,... και συμβολίζεται α β. Η ΓΣ της ακολουθίας d k είναι η D(x) = A(x)B(x), όπου A(x) είναι η ΓΣ της ακολουθίας α r και B(x) είναι η ΓΣ της ακολουθίας b r. 18 / 55

19 Σχέσεις Αναδρομήσ-Fibonacci Μορφή Σχέσης Αναδρομής: α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n Για τους αριθμούς Fibonacci συνήθως είναι α 0 = 0, α 1 = 1, ή α 0 = α 1 = / 55

20 Γραμμικές Σχέσεις Αναδρομής με σταθερούς συντελεστές Μια σχέση αναδρομής, που έχει την εξής μορφή c 0 α n + c 1 α n 1 + c 2 α n c r α n r = f (n) (1) με c 0, c 1,..., c r σταθερούς αριθμούς ονομάζεται γραμμική σχέση αναδρομής με σταθερούς συντελεστές, r-τάξης ή r-βαθμού. Αν η f (n) = 0, τότε η σχέση αναδρομής λέγεται ομογενής. Αν f (n) 0 λέγεται μη ομογενής. 20 / 55

21 Μέθοδος χαρακτηριστικής εξίσωσης Η λύση της γενικής ομογενούς είναι: α n (h) ομογενούς α n (p). και μερική λύση της μη Επομένως: ( c 0 α n (h) + α n (p) c 0 α (h) n c 0 α (p) n )+c 1 ( Η πλήρης λύση, α n = α n (h) αναδρομής. + c 1 α (h) n c r α (h) n r = 0 + c 1 α (p) n c r α (p) n r = f (n) α (h) n 1 + α(p) n 1 )+...+c r ( ) α (h) n r + α(p) n r + α n (p), ικανοποιεί τη σχέση = f (n) (2) 21 / 55

22 Εύρεση ομογενούς λύσης Αν υπάρχει μία λύση α n (h) = Ax n, όπου x ονομάζεται χαρακτηριστική ρίζα και A είναι μια σταθερά, που θα υπολογιστεί από τις αρχικές συνθήκες. Αντικαθιστώντας, η χαρακτηριστική εξίσωση της σχέσης αναδρομής είναι: c 0 Ax n + c 1 Ax n 1 + c 2 Ax n c r Ax n r = 0 c 0 x n + c 1 x n 1 + c 2 x n c r x n r = 0 (3) Τότε αποδεικνύεται ότι η γενική λύση της ομογενούς είναι: α (h) n = A 1 x n 1 + A 2 x n A r x n r Τα A 1, A 2,..., A r θα υπολογίζονται από τις αρχικές συνθήκες. 22 / 55

23 Εύρεση ομογενούς λύσης για την ακολουθία Fibonacci Η σχέση αναδρομής για τους αριθμούς Fibonacci είναι: α n+2 = α n+1 + α n ή α n = α n 1 + α n 2 23 / 55

24 Εύρεση της μερικής λύσης Μορφή f (n) Μορφή μερικής λύσης k, σταθερά C, σταθερά πολυώνυμο πολυώνυμο ίδιου βαθμού αλλά πλήρες kλ n, k, λ σταθερές cβ n, c, β σταθερές Οι σταθερές της μερικής λύσης υπολογίζονται αντικαθιστώντας την υποψήφια λύση στην μη ομογενή σχέση αναδρομής. 24 / 55

25 Μέθοδος των γεννητριών συναρτήσεων Αν είναι A(x) η γεννήτρια συνάρτηση της ακολουθίας (α 0, α 1, α 2,..., α n,...) δηλαδή A (x) = α n x n n=0 Εστω ότι ισχύει η εξής σχέση αναδρομής: c 0 α n + c 1 α n c r α n r = f (n) (4) με k r. 25 / 55

26 Λύση της τηλεσκοπικής σχέσης αναδρομής Η γενική μορφή της τηλεσκοπικής σχέσης αναδρομής είναι η εξής: T (1) = 1 Με n ακέραια δύναμη του b. T (n) = αt (n/b) + d (n) (5) 26 / 55

27 Σύνολο, υποσύνολο, γνήσιο υποσύνολο Σύνολο: συλλογή διαφορετικών αντικειμένων που καλούνται στοιχεία του συνόλου. Δε μετράει η σειρά των στοιχείων Δεν έχουν νόημα οι επαναλήψεις ίδιων στοιχείων {} = : σύνολο χωρίς στοιχεία T S: Το T είναι υποσύνολο του S δηλ., κάθε στοιχείο του T είναι και στοιχείο του S Κάθε σύνολο είναι υποσύνολο του εαυτού του. T S: Το T είναι γνήσιο υποσύνολο του S δηλ., το T είναι υποσύνολο του S και υπάρχει ένα τουλάχιστον στοιχείο στο S που δεν είναι στοιχείο του T. α S: το α είναι στοιχείο του συνόλου S S : πλήθος στοιχείων του συνόλου S Το S είναι ένα k σύνολο αν περιέχει k στοιχεία. 27 / 55

28 Ενωση, Τομή, Διαφορά, Διαμέριση Εστω δύο σύνολα A και B. A B: Ενωση των συνόλων A και B, περιέχει όλα τα στοιχεία των συνόλων A και B. {a, b, c, d} {a, d, e, j} = {a, b, c, d, e, j} A B: Τομή των συνόλων A και B, περιέχει τα κοινά στοιχεία των συνόλων A και B. {a, b, c, d} {a, d, e, j} = {a, d} A B: Διαφορά των συνόλων A και B, περιέχει τα στοιχεία του συνόλου A που δεν ανήκουν στο B. {a, b, c, d} {a, d, e, j} = {b, c} Διαμέριση ενός συνόλου είναι μια συλλογή υποσυνόλων του τέτοια ώστε κάθε στοιχείο του συνόλου να ανήκει σε ακριβώς ένα υποσύνολο. 28 / 55

29 Διατεταγμένο ζεύγος, Καρτεσιανό γινόμενο Διατεταγμένο ζεύγος (a, b) είναι μια διάταξη δύο - όχι απαραίτητα διαφορετικών - στοιχείων a και b. Τα (a, b) και (b, a) είναι δύο διαφορετικά διατεταγμένα ζεύγη. Καρτεσιανό γινόμενο δύο συνόλων S και T - S T - είναι το σύνολο όλων των διατεταγμένων ζευγών (x, y) στα οποία x S και y T, π.χ., {a, b, c} {1, 2} = {(a, 1), (a, 2), (b, 1), (b, 2), (c, 1), (c, 2)} 29 / 55

30 Δυαδική σχέση Μια Δυαδική σχέση μεταξύ των συνόλων S και T είναι ένα υποσύνολο διατεταγμένων ζευγών από το καρτεσιανό γινόμενο S T, π.χ., {(a, 1), (a, 2), (c, 2)} είναι μια δυαδική σχέση μεταξύ των συνόλων {a, b, c} και {1, 2}. Μια Δυαδική σχέση μεταξύ δύο συνόλων αναπαρίσταται με έναν πίνακα. Μια Δυαδική σχέση σε ένα σύνολο S είναι μια δυαδική σχέση μεταξύ του S και του εαυτού του, π.χ., {(a, a), (a, c), (b, a), (b, c), (c, b)} είναι μια δυαδική σχέση στο σύνολο {a, b, c} 30 / 55

31 Σχέση ισοδυναμίας Μια Δυαδική σχέση σε ένα σύνολο S καλείται Σχέση ισοδυναμίας αν ικανοποιούνται οι παρακάτω συνθήκες: 1 Κάθε στοιχείο στο σύνολο σχετίζεται με τον εαυτό του (ανακλαστική ιδιότητα) 2 Για οποιαδήποτε στοιχεία a, b του συνόλου, αν το a σχετίζεται με το b τότε και το b σχετίζεται με το a (συμμετρική ιδιότητα) 3 Για οποιαδήποτε στοιχεία a, b, c του συνόλου, αν το a σχετίζεται με το b και b σχετίζεται με το c το τότε και το a σχετίζεται με το c (μεταβατική ιδιότητα) Η δυαδική σχέση αριστερά είναι σχέση ισοδυναμίας ενώ αυτή στα δεξιά δεν είναι. 31 / 55

32 Κλάσεις ισοδυναμίας και διαμερίσεις Αν υπάρχει μία σχέση ισοδυναμίας σε ένα σύνολο S, τότε χωρίζονται τα στοιχεία του S σε κλάσεις - που καλούνται κλάσεις ισοδυναμίας - έτσι ώστε δύο στοιχεία να ανήκουν στην ίδια κλάση μόνο αν σχετίζονται μεταξύ τους. Κάθε στοιχείο ανήκει σε κάποια κλάση ισοδυναμίας αφού μπορεί να είναι σε τουλάχιστον μία κλάση από μόνο του (λόγω της ανακλαστικής ιδιότητας). Δεν υπάρχει ασάφεια σχετικά με το αν κάποιο στοιχείο ανήκει σε κάποια κλάση ισοδυναμίας (λόγω της συμμετρικής ιδιότητας) Κάθε στοιχείο δε μπορεί να ανήκει σε παραπάνω από μία κλάσεις ισοδυναμίας (λόγω της μεταβατικής ιδιότητας) 32 / 55

33 Κλάσεις ισοδυναμίας και διαμερίσεις Μια σχέση ισοδυναμίας σε ένα σύνολο ορίζει μια διαμέριση του συνόλου στην οποία τα ξένα μεταξύ τους υποσύνολα είναι οι κλάσεις ισοδυναμίας, π.χ., η διαμέριση που ορίζεται από τη σχέση ισοδυναμίας στο σύνολο {a, b, c, d, e} είναι η {{a, b}, {c, d, e}}. Δύο στοιχεία είναι ισοδύναμα αν ανήκουν στην ίδια κλάση ισοδυναμίας. 33 / 55

34 Μεταθέσεις Μετάθεση, Σύνολο μεταθέσεων G Η μετάθεση που αντιστοιχεί κάθε στοιχείο στον εαυτό του, αφήνει δηλ. τα στοιχεία ως έχουν, λέγεται ταυτοτική. Δυαδική σχέση επαγόμενη από σύνολο μεταθέσεων G είναι σχέση ισοδυναμίας 34 / 55

35 Μεταθέσεις Δίνεται σύνολο S = {a, b,...} και ένα σύνολο μεταθέσεων G για τα στοιχεία του S Μια Δυαδική σχέση στο S είναι δυαδική σχέση επαγόμενη από το G όταν ένα στοιχείο a σχετίζεται με ένα στοιχείο b αν και μόνον αν υπάρχει μετάθεση στο G που απεικονίζει το a στο b. ( abcd Εστω G = { abcd ) ( abcd, bacd ) ( abcd, abdc ) ( abcd, badc ) }. Η Δυαδική σχέση σε ένα σύνολο που επάγεται από σύνολο μεταθέσεων G είναι σχέση ισοδυναμίας. 35 / 55

36 Θεώρημα Burnside (1/2) Ζητούμενο: μέτρηση διαφορετικών μορφών ενός συνόλου (αντικειμένου) όταν αναδιατάσσονται τα στοιχεία (μέρη) του. Παρατήρηση: πλήθος κλάσεων ισοδυναμίας = πλήθος διαφορετικών μεταθέσεων Διατύπωση: Το πλήθος των κλάσεων ισοδυναμίας στις οποίες διαμερίζεται ένα σύνολο S από τη σχέση ισοδυναμίας που επάγεται από ένα σύνολο μεταθέσεων G 1 του S είναι: ψ(π) G π G 36 / 55

37 Θεώρημα Burnside (2/2) Εφαρμογή: Δίνεται ένα σύνολο S. 1 Βρίσκεται (εκτός αν δίνεται) το σύνολο μεταθέσεων G. 2 Σε κάθε μετάθεση στο G βρίσκεται το πλήθος των στοιχείων που δεν αλλάζουν. 3 Αθροίζονται για όλες τις μεταθέσεις και διαιρούνται με το άθροισμα με το πλήθος των μεταθέσεων G. 37 / 55

38 Κλάσεις ισοδυναμίας συναρτήσεων Εστω D και R σύνολα και G σύνολο μεταθέσεων των στοιχείων του D. Ορίζεται η εξής διμελή σχέση στο σύνολο των συναρτήσεων από το D στο R: f 1, f 2 σχετίζονται αν f 1 (d) = f 2 (π(d)), d D που είναι σχέση ισοδυναμίας. Επομένως, οι συναρτήσεις από D R χωρίζονται σε κλάσεις ισοδυναμίας, που καλούνται πρότυπα (patterns): αντιστοιχούν σε διαφορετικούς τρόπους να μοιράσω D αντικείμενα σε R κουτιά όταν η ισοδυναμία μεταξύ των μοιρασμάτων καθορίζεται από το G. 38 / 55

39 Ανάθεση βαρών στα στοιχεία του R (1/4) Ανατίθενται βάρη (που μπορεί να είναι αριθμοί ή σύμβολα) στα στοιχεία του R. r 1 + r 2 + r 3 σημαίνει ότι κάποιο στοιχείο του D μπορεί να πάρει βάρος r 1 ή r 2 ή r 3. Αν υπάρχουν 2 στοιχεία με βάρος u και 1 στοιχείο με βάρος v στο R σημαίνει ότι κάποιο στοιχείο του D μπορεί να διαλέξει στοιχεία τύπου u ή τύπου v. Χοντρικά, με αυτόν τον τρόπο γενικεύεται η έννοια των γεννητριών συναρτήσεων. 39 / 55

40 Ανάθεση βαρών στα στοιχεία του R (2/4) Το βάρος μιας συνάρτησης f : D R είναι το γινόμενο των βαρών των εικόνων των στοιχείων του D στο R: w(f (d)). d D Το βάρος ενός συνόλου συναρτήσεων από D R είναι το άθροισμα των βαρών τους. Άρα: το βάρος μιας συνάρτησης δείχνει πώς (τον τρόπο) D αντικείμενα ρίχνονται σε R κουτιά. Το βάρος ενός συνόλου συναρτήσεων δείχνει τους τρόπους (το πλήθος των τρόπων) που κατανέμονοται τα αντικείμενα. Συναρτήσεις στην ίδια κλάση ισοδυναμίας έχουν το ίδιο βάρος που καλείται βάρος προτύπου, δηλ. βάρος της κλάσης ισοδυναμίας. (Φυσικά, μπορεί συναρτήσεις με το ίδιο βάρος να μην ανήκουν στην ίδια κλάση ισοδυναμίας) 40 / 55

41 Ανάθεση βαρών στα στοιχεία του R (3/4) Στόχος: Εύρεση του βάρος όλων των κλάσεων ισοδυναμίας ( abcdef συναρτήσεων από D R Μια μετάθεση π.χ., π = cedabf ). Τα στοιχεία a c, c d, d a σχηματίζουν κύκλο, οπότε {a, c, d} είναι ένας κύκλος στην π με μήκος 3, δηλ. με 3 στοιχεία. Άλλος κύκλος: b e, e b, {e, b} είναι ένας κύκλος στην π με μήκος 2. x πλήθος βάρος : για την π έχουμε x 1 3, x 1 2 Με έναν τέτοιο συμβολισμό πόσοι κύκλοι υπάρχουν σε μια μετάθεση π με μίαν αναπαράσταση δομής κύκλου της π 41 / 55

42 Ανάθεση βαρών στα στοιχεία του R (4/4) Δεδομένου ενός συνόλου μεταθέσεων G ορίζεται ο δείκτης κύκλου P G του G σαν το άθροισμα των κυκλικών αναπαραστάσεων των μεταθέσεων του G διά το πλήθος x b 1 1 x b x b k k των μεταθέσεων του G: P G = π G G 42 / 55

43 Θεώρημα Pólya Δεδομένα: σύνολα D, R, συναρτήσεις f : D R, σύνολο μεταθέσεων G, βάρη στοιχείων του R. Ζητούμενο: το συνολικό βάρος των κλάσεων ισοδυναμίας των συναρτήσεων f. Διατύπωση: Ο κατάλογος των κλάσεων ισοδυναμίας των συναρτήσεων με πεδίο ορισμού D και σύνολο τιμών R είναι ) P G ( r R w(r), [w(r)] 2,..., r R r R[w(r)] k,... δηλαδή ο κατάλογος των προτύπων προκύπτει αντικαθιστώντας το x 1 με w(r), το x 2 με r R r R[w(r)] 2,..., το x k με r R[w(r)] k,... στην έκφραση του δείκτη κύκλων P G 43 / 55

44 Θεώρημα Pólya-Μεθοδολογία Δεδομένα: σύνολα D, R, συναρτήσεις f : D R, σύνολο μεταθέσεων G, βάρη στοιχείων του R. Ζητούμενο: το συνολικό βάρος των κλάσεων ισοδυναμίας των συναρτήσεων f. Εφαρμογή: 1 Βρίσκω κύκλους στα π G 2 Φτιάχνω το P G 3 Σε κάθε όρο του P G αντικαθιστώ το x 1 με w(r 1 ) + w(r 2 ) +..., r i R x 2 με w 2 (r 1 ) + w 2 (r 2 ) +..., r i R κοκ 44 / 55

45 Γενικευμένη μορφή θεωρήματος Pólya (1/2) Δεδομένα: σύνολα D, R, συναρτήσεις f : D R, σύνολο μεταθέσεων G για τα στοιχεία του D, σύνολο μεταθέσεων H για τα στοιχεία του R, βάρη στοιχείων του R. Ζητούμενο: το συνολικό βάρος των κλάσεων ισοδυναμίας των συναρτήσεων f. Διατύπωση: Ο κατάλογος των κλάσεων ισοδυναμίας των συναρτήσεων με πεδίο ορισμού D και σύνολο τιμών R είναι 1 1 ψ[(π, τ) ], όπου ψ[(π, τ) ] είναι το πλήθος G H π G;τ H των συναρτήσεων για τις οποίες ισχύει τf (d) = f [π(d)] για κάθε στοιχείο d D 45 / 55

46 Γενικευμένη μορφή θεωρήματος Pólya (2/2) Εφαρμογή: Το πλήθος των κλάσεων ισοδυναμίας συναρτήσεων από το D στο R είναι η τιμή της έκφρασης P G (( z 1 ) b 1, ( z 2 ) b 2, ( z 3 ) b 3,...) P H [e c 1(z 1 +z 2 +z ), e 2c 2(z 2 +z 4 +z ), e 3c 3(z 3 +z 6 +z ),...] για z 1 = z 2 = z 3 =... = 0, με b i κύκλους μεγέθους i στο G και c i κύκλους μεγέθους i στο H. 46 / 55

47 Εγκλεισμός - Αποκλεισμός Εστω S σύνολο με πληθικό αριθμό N, S = N c 1, c 2, c 3,...c t : συλλογή από συνθήκες που ικανοποιούνται από στοιχεία του S Κάποια στοιχεία στοιχεία του S μπορεί να ικανοποιούν παραπάνω από μία συνθήκες και άλλα καμία N(c i ), 1 i t: πλήθος στοιχείων του S που ικανοποιούν τη συνθήκη c i N(c i ), 1 i t: πλήθος στοιχείων του S που δεν ικανοποιούν τη συνθήκη c i N(c i ) + N(c i ) = N = S N(c i c j ), i, j {1, 2,..., t}, i j: πλήθος στοιχείων του S που ικανοποιούν και τις δύο συνθήκες c i, c j N(c i c j ), i, j {1, 2,..., t}, i j: πλήθος στοιχείων του S που δεν ικανοποιούν καμία από τις δύο συνθήκες c i, c j N(c i c j ) = N N(c i ) N(c j ) + N(c i c j ) 47 / 55

48 Εστω S σύνολο με πληθικό αριθμό N, S = N c 1, c 2, c 3,...c t : συλλογή από συνθήκες που ικανοποιούνται από μερικά ή από όλα τα στοιχεία του S Το πλήθος των στοιχείων του S που δεν ικανοποιούν καμία από τις συνθήκες είναι: N = N(c 1 c 2... c t ) = N N(c 1 ) N(c 2 )... N(c t ) + N(c 1 c 2 ) + N(c 1 c 3 ) N(c 1 c t ) + N(c 2 c 3 ) +...N(c t 1 c t ) N(c 1 c 2 c 3 ) N(c 1 c 2 c 4 )... N(c 1 c 2 c t ) N(c 1 c 3 c 4 )... N(c 1 c 3 c t ) N(c t 2 c t 1 c t ) ( 1) t N(c 1 c 2 c 3...c t ) = N N(c i ) + N(c i c j ) N(c i c j c k ) + 1 i t 1 i<j t... + ( 1) t N(c 1 c 2 c 3...c t ) 1 i<j<k t 48 / 55

49 Συμπέρασμα της Αρχής Εγκλεισμού-Αποκλεισμού Συμπέρασμα: το πλήθος των στοιχείων του S που ικανοποιούν τουλάχιστον μία από τις συνθήκες είναι N N 49 / 55

50 Ο γενικός τύπος Δίνει το πλήθος των αντικειμένων που έχουν m από r ιδιότητες, m = 0, 1, 2, 3,..., r. s i : πλήθος αντικειμένων που πληρούν i από τις r ιδιότητες. e i : πλήθος αντικειμένων που πληρούν ακριβώς i από τις r ιδιότητες, δηλ., πληρούν i από τις r ιδιότητες και δεν πληρούν τις υπόλοιπες r i. 50 / 55

51 Γενικός τύπος αρχής Εγκλεισμού-Αποκλεισμού (1/3) Αναλυτικά: s 0 = N s 1 = N(a 1 ) + N(a 2 ) N(a r ) = N(a i ) i s 2 = N(a 1 a 2 ) + N(a 1 a 3 ) N(a r 1 a r ) = N(a i a j ) i,j:i j s 3 = N(a 1 a 2 a 3 ) + N(a 1 a 2 a 4 ) N(a r 2 a r 1 a r ) = N(a i a j a k ) i,j,k:i j k... s r = N(a 1 a 2...a r ) 51 / 55

52 Γενικός τύπος αρχής Εγκλεισμού-Αποκλεισμού (2/3) Αναλυτικά: e 0 = N(a 1 a 2...a r ) e 1 = N(a 1 a 2...a r ) + N(a 1 a 2 a 3...a r ) N(a 1 a 2...a r ) e 2 = N(a 1 a 2 a 3...a r + N(a 1 a 2 a 3...a r )) e 3 = N(a 1 a 2 a 3...a r ) + N(a 1 a 2 a 3 a 4...a r ) N(a 1 a 2 a 3...a r 2 a r 1 a r )... e r = N(a 1 a 2...a r ) Προφανώς, e 0 = s 0 s 1 + s 2 s ( 1) r s r 52 / 55

53 Γενικός τύπος αρχής Εγκλεισμού-Αποκλεισμού (3/3) ( ) ( ) ( ) m + 1 m + 2 r e m = s m s m+1 + s m+2...+( 1) r m 1 2 r m Η απόδειξη βασίζεται στα εξής: Αντικείμενο που έχει λιγότερες από m ιδιότητες δε συμπεριλαμβάνεται στο e m και δε συνεισφέρει στην έκφραση στο δεξί μέρος της ισότητας. Αντικείμενο που έχει ακριβώς m ιδιότητες συμπεριλαμβάνεται στο e m και συνεισφέρει 1 στην έκφραση στο δεξί μέρος της ισότητας αφού μετριέται μία φορά στο s m και δε μετριέται στους όρους s m+1, s m+2,...s r. Αντικείμενο που έχει m + j ιδιότητες δε συμπεριλαμβάνεται στο e m και συνεισφέρει ( m+j m ) στον όρο sm, ( m+j m+1) στον όρο s m+1,..., ( m+j) στον όρο sm+j που συνολικά ισούται με / 55 s r

54 Αναζητείται η τιμή της έκφρασης: ( m + j m ) ( m + 1 Παρατηρείται ότι: = ( m + k k (m + j)! m!k!(j k)! 1 )( ) ( )( ) m + j m + 2 m + j +... m m + 2 ( )( ) m + j m + j + ( 1) j j m + j )( ) m + j = m + k = (m + j)! m!j! (m + k)! (m + j)! m!k! (m + k)!(j k)! ( )( ) j! m + j j k!(j k)! = m k 54 / 55

55 Οπότε: ( m + j m ( m + j = m ) )[( ) j 0 ( m + j m ( ) j + 1 )( ) j + 1 ( m + j m )( ) j 2 + ( 1) j ( m + j m... )( ) j j ( ) ( )] j j... + ( 1) j = 0 2 j 55 / 55

O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n

O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n Η ύλη συνοπτικά... Στοιχειώδης συνδυαστική Γεννήτριες συναρτήσεις Σχέσεις αναδρομής Θεωρία Μέτρησης Polyá Αρχή Εγκλεισμού - Αποκλεισμού Σχέσεις Αναδρομής Γραμμικές Σχέσεις Αναδρομής με σταθερούς συντελεστές

Διαβάστε περισσότερα

Γεννήτριες Συναρτήσεις

Γεννήτριες Συναρτήσεις Γεννήτριες Συναρτήσεις ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναπαράσταση Ακολουθιών Ακολουθία:

Διαβάστε περισσότερα

Γεννήτριες Συναρτήσεις

Γεννήτριες Συναρτήσεις Γεννήτριες Συναρτήσεις ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναπαράσταση Ακολουθιών Ακολουθία:

Διαβάστε περισσότερα

(Γραμμικές) Αναδρομικές Σχέσεις

(Γραμμικές) Αναδρομικές Σχέσεις (Γραμμικές) Αναδρομικές Σχέσεις ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναδρομικές Σχέσεις Αναπαράσταση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5 ΓΕΝΝΗΤΡΙΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ 5 ΓΕΝΝΗΤΡΙΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΚΕΦΑΛΑΙΟ 5 ΓΕΝΝΗΤΡΙΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Εισαγωγή Οι γεννήτριες συναρτήσεις είναι ένα από τα ισχυρά εργαλεία για μια ενοποιημένη αντιμετώπιση πολλών κατηγοριών προβλημάτων απαρίθμησης Ο Lplce έθεσε πρώτος τις

Διαβάστε περισσότερα

P(n, r) = n r. (n r)! n r. n+r 1

P(n, r) = n r. (n r)! n r. n+r 1 Διακριτά Μαθηματικά Φροντιστήριο Στοιχειώδης Συνδυαστική ΙΙ 1 / 15 Επανάληψη Κανόνας Αθροίσματος Κανόνας Γινομένου Χωρίς επαναλήψεις στοιχείων P(n, r) = n! (n r)! C(n, r) = ( ) n r Με επαναλήψεις στοιχείων

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 5: Αναδρομικές σχέσεις - Υπολογισμός Αθροισμάτων Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 8: Σχέσεις - Πράξεις Δομές Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ.

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ. Παραδείγματα Απαρίθμησης Γνωστό: P (M 2 M τρόποι επιλογής υποσυνόλου του M Τεχνικές Απαρίθμησης Πχ M {A, B, C} P (M 2 3 8 #(Υποσυνόλων με 2 στοιχεία ( 3 2 3 #(Διατεταγμένων υποσυνόλων με 2 στοιχεία 3 2

Διαβάστε περισσότερα

β) 3 n < n!, n > 6 i i! = (n + 1)! 1, n 1 i=1

β) 3 n < n!, n > 6 i i! = (n + 1)! 1, n 1 i=1 Κεφάλαιο 2: Στοιχεία Λογικής - Μέθοδοι Απόδειξης 1. Να αποδειχθεί ότι οι λογικοί τύποι: (p ( (( p) q))) (p q) και p είναι λογικά ισοδύναμοι. Θέλουμε να αποδείξουμε ότι: (p ( (( p) q))) (p q) p, ή με άλλα

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 3: Σύνολα Συνδυαστική Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής

Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής D ολοκλήρωση ρητών συναρτήσεων Το θέμα μας στην ενότητα αυτή είναι η ολοκλήρωση ρητών συναρτήσεων. Ας θυμηθούμε πρώτα ποιες συναρτήσεις ονομάζονται ρητές. Ορισμός: Μία συνάρτηση ονομάζεται ρητή όταν μπορεί

Διαβάστε περισσότερα

Σύνολα, Σχέσεις, Συναρτήσεις

Σύνολα, Σχέσεις, Συναρτήσεις Κεφάλαιο 2 Σύνολα, Σχέσεις, Συναρτήσεις Τα σύνολα, οι σχέσεις και οι συναρτήσεις χρησιμοποιούνται ευρύτατα σε κάθε είδους μαθηματικές αναπαραστάσεις και μοντελοποιήσεις. Στη θεωρία υπολογισμού χρησιμεύουν,

Διαβάστε περισσότερα

Τι είναι σύνολο; Ο ορισμός αυτός είναι σύμφωνος με τη διαισθητική μας κατανόηση για το τι είναι σύνολο

Τι είναι σύνολο; Ο ορισμός αυτός είναι σύμφωνος με τη διαισθητική μας κατανόηση για το τι είναι σύνολο ΣΥΝΟΛΑ Τι είναι σύνολο; Ένας ορισμός «Μια συλλογή αντικειμένων διακεκριμένων και πλήρως καθορισμένων που λαμβάνονται από τον κόσμο είτε της εμπειρίας μας είτε της σκέψης μας» (Cantor, 19 ος αιώνας) Ο ορισμός

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα

Θεωρία Υπολογισμού και Πολυπλοκότητα Θεωρία Υπολογισμού και Πολυπλοκότητα Κεφάλαιο 1. Μαθηματικό Υπόβαθρο 23, 26 Ιανουαρίου 2007 Δρ. Παπαδοπούλου Βίκη 1 1.1. Σύνολα Ορισμός : Σύνολο μια συλλογή από αντικείμενα Στοιχεία: Μέλη συνόλου Τα στοιχεία

Διαβάστε περισσότερα

Διατάξεις με επανάληψη: Με πόσους τρόπους μπορώ να διατάξω r από n αντικείμενα όταν επιτρέπονται επαναληπτικές εμφανίσεις των αντικειμένων; Στην αρχή

Διατάξεις με επανάληψη: Με πόσους τρόπους μπορώ να διατάξω r από n αντικείμενα όταν επιτρέπονται επαναληπτικές εμφανίσεις των αντικειμένων; Στην αρχή Στοιχειώδης συνδυαστική Συνδυασμοί και διατάξεις με επανάληψη Διατάξεις με επανάληψη: Με πόσους τρόπους μπορώ να διατάξω r από n αντικείμενα όταν επιτρέπονται επαναληπτικές εμφανίσεις των αντικειμένων;

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Απαρίθμηση: Διωνυμικοί συντελεστές

Διακριτά Μαθηματικά. Απαρίθμηση: Διωνυμικοί συντελεστές Διακριτά Μαθηματικά Απαρίθμηση: Διωνυμικοί συντελεστές Συνδυασμοί Το πλήθος των συνδυασμών r από n στοιχεία, C(n,r) συμβολίζεται και ως Ο αριθμός αυτός λέγεται και διωνυμικός συντελεστής Οι αριθμοί αυτοί

Διαβάστε περισσότερα

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac Σημειώσεις μαθήματος Μ1212 Γραμμική Άλγεβρα ΙΙ Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Κεφάλαιο 1 Διανυσματικοί Χώροι Στο εισαγωγικό μάθημα Γραμμικής Άλγεβρας ξεκινήσαμε μελετώντας

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ - - ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ3 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 009-0 ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ - - ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΥΝΟΨΗΣ

Διαβάστε περισσότερα

Μεταθέσεις και πίνακες μεταθέσεων

Μεταθέσεις και πίνακες μεταθέσεων Παράρτημα Α Μεταθέσεις και πίνακες μεταθέσεων Το παρόν παράρτημα βασίζεται στις σελίδες 671 8 του βιβλίου: Γ. Χ. Ψαλτάκης, Κβαντικά Συστήματα Πολλών Σωματιδίων (Πανεπιστημιακές Εκδόσεις Κρήτης, Ηράκλειο,

Διαβάστε περισσότερα

Συνδυαστική Απαρίθμηση

Συνδυαστική Απαρίθμηση Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων «πειράματος» ή «γεγονότος» (με συνδυαστικά επιχειρήματα). «Πείραμα» ή «γεγονός»: διαδικασία με συγκεκριμένο (πεπερασμένο) σύνολο παρατηρήσιμων

Διαβάστε περισσότερα

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΙΣΑΓΩΓΗ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ. ΤΙ ΕΙΝΑΙ ΤΑ ΜΑΘΗΜΑΤΙΚΑ; Η επιστήμη των αριθμών Βασανιστήριο για τους μαθητές και φοιτητές Τέχνη για τους μαθηματικούς ΜΑΘΗΜΑΤΙΚΑ Α Εξάμηνο ΙΩΑΝΝΗΣ

Διαβάστε περισσότερα

Μαθηματική Ανάλυση Ι

Μαθηματική Ανάλυση Ι Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Μαθηματική Ανάλυση Ι Ενότητα 1: Σύνολα, Πραγματικοί αριθμοί Επίκ. Καθηγητής Θ. Ζυγκιρίδης e-mail: tzygiridis@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Διαβάστε περισσότερα

ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2016 Λύσεις ασκήσεων προόδου

ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2016 Λύσεις ασκήσεων προόδου ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 016 Λύσεις ασκήσεων προόδου Θέμα 1: [16 μονάδες] [8] Έστω ότι μας δίνουν τα παρακάτω δεδομένα: Εάν αυτό το πρόγραμμα ΗΥ είναι αποδοτικό, τότε εκτελείται γρήγορα.

Διαβάστε περισσότερα

Μη γράφετε στο πίσω μέρος της σελίδας

Μη γράφετε στο πίσω μέρος της σελίδας Διακριτά Μαθηματικά Εξέταση Σεπτέμβριος 2014 Σελ. 1 από 5 Στη σελίδα αυτή γράψτε μόνο τα στοιχεία σας. Γράψτε τις απαντήσεις σας στις επόμενες σελίδες, κάτω από τις αντίστοιχες ερωτήσεις. Στις απαντήσεις

Διαβάστε περισσότερα

Διακριτά Μαθηματικά Φροντιστήριο Στοιχειώδης Συνδυαστική-Θέματα & Ασκήσεις 03/11/ / 13

Διακριτά Μαθηματικά Φροντιστήριο Στοιχειώδης Συνδυαστική-Θέματα & Ασκήσεις 03/11/ / 13 Διακριτά Μαθηματικά Φροντιστήριο Στοιχειώδης Συνδυαστική-Θέματα & Ασκήσεις 03/11/2016 1 / 13 Επανάληψη Κανόνας Αθροίσματος Κανόνας Γινομένου Χωρίς επαναλήψεις στοιχείων P(n, r) = n! (n r)! C(n, r) = (

Διαβάστε περισσότερα

ΠΛΗ 20, 1 η ΟΣΣ (Συνδυαστική)

ΠΛΗ 20, 1 η ΟΣΣ (Συνδυαστική) ΠΛΗ 20, 1 η ΟΣΣ (Συνδυαστική) Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο Οργανωτικά Ζητήματα Επικοινωνία: Επίλυση αποριών, οδηγίες,..., και λοιπά

Διαβάστε περισσότερα

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ 1 Συναρτήσεις Όταν αναφερόμαστε σε μια συνάρτηση, ουσιαστικά αναφερόμαστε σε μια σχέση ή εξάρτηση. Στα μαθηματικά που θα μας απασχολήσουν, με απλά λόγια, η σχέση

Διαβάστε περισσότερα

Τα διανύσματα xy, R είναι κάθετα αν και μόνο αν x y 0. Για το εσωτερικό γινόμενο των διανυσμάτων. Το ορθογώνιο συμπλήρωμα ενός υπόχωρου

Τα διανύσματα xy, R είναι κάθετα αν και μόνο αν x y 0. Για το εσωτερικό γινόμενο των διανυσμάτων. Το ορθογώνιο συμπλήρωμα ενός υπόχωρου ΤΥΠΟΛΟΓΙΟ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ Ο ανάστροφος πίνακας του [ j ] σημειώνεται με [ j ] (δηλαδή οι γραμμές γίνονται στήλες αντίστροφα Ιδιότητες: ( ( B B ( R ( B B Ο αντίστροφος ενός τετραγωνικού πίνακα [ j ]

Διαβάστε περισσότερα

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου wwwaskisopolisgr έκδοση 5-6 wwwaskisopolisgr ΣΥΝΑΡΤΗΣΕΙΣ 5 Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Διανυσματικοί Χώροι Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Διανυσματικός Χώρος επί του F Αλγεβρική δομή που αποτελείται

Διαβάστε περισσότερα

Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών

Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 1 Εισαγωγη : Πραξεις επι Συνολων και Σωµατα Αριθµων

Διαβάστε περισσότερα

Ασκήσεις2 8. ; Αληθεύει ότι το (1, 0, 1, 2) είναι ιδιοδιάνυσμα της f ; b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα της γραμμικής απεικόνισης 3 3

Ασκήσεις2 8. ; Αληθεύει ότι το (1, 0, 1, 2) είναι ιδιοδιάνυσμα της f ; b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα της γραμμικής απεικόνισης 3 3 Ασκήσεις 8 Ασκήσεις Ιδιοτιμές και ιδιοδιανύσματα Βασικά σημεία Ορισμός ιδιοτιμων και ιδιοδιανυσμάτων, υπολογισμός τους Σε διακεκριμένες ιδιοτιμές αντιστοιχούν γραμμικά ανεξάρτητα ιδιοδιανύσματα Αν ΑΧ=λΧ,

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Ιδιοτιμές - Ιδιοδιανύσματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Χαρακτηριστικά Ποσά Τετράγωνου Πίνακα (Ιδιοτιμές Ιδιοδιανύσματα)

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΜΕΡΟΣ 5: ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΥΠΟΧΩΡΟΙ ΓΡΑΜΜΙΚΗ ΑΝΕΞΑΡΤΗΣΙΑ ΒΑΣΕΙΣ & ΔΙΑΣΤΑΣΗ Δ.Χ. ΣΗΜΕΙΩΣΕΙΣ

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Σύνολα Συναρτήσεις και Σχέσεις Γραφήματα Λέξεις και Γλώσσες Αποδείξεις ΕΠΛ 211 Θεωρία

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 7: Σχέσεις και Συναρτήσεις

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 7: Σχέσεις και Συναρτήσεις Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 7: Σχέσεις και Συναρτήσεις Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Διαβάστε περισσότερα

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση)

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση) TETY Εφαρμοσμένα Μαθηματικά Ενότητα ΙΙ: Γραμμική Άλγεβρα Ύλη: Διανυσματικοί χώροι και διανύσματα, μετασχηματισμοί διανυσμάτων, τελεστές και πίνακες, ιδιοδιανύσματα και ιδιοτιμές πινάκων, επίλυση γραμμικών

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (Α ΜΕΡΟΣ: ΣΥΝΑΡΤΗΣΕΙΣ) Επιμέλεια: Καραγιάννης Ιωάννης, Σχολικός Σύμβουλος Μαθηματικών

Διαβάστε περισσότερα

a. a + b = 3. b. a διαιρεί τ ο b. c. a - b = 0. d. ΜΚΔ(a, b) = 1. e. ΕΚΠ(a, b) = 6.

a. a + b = 3. b. a διαιρεί τ ο b. c. a - b = 0. d. ΜΚΔ(a, b) = 1. e. ΕΚΠ(a, b) = 6. ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο 2016 4 η Σειρά Ασκήσεων - Λύσεις Άσκηση 4.1 [1 μονάδα] Βρείτε όλα τα διατεταγμένα ζεύγη στη σχέση R από το Α={0,1,2,3} στο Β={0,1,2,3,4} όπου (a,b) R αν και μόνο

Διαβάστε περισσότερα

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Προτεινοµενες Ασκησεις - Φυλλαδιο 1

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Προτεινοµενες Ασκησεις - Φυλλαδιο 1 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Προτεινοµενες Ασκησεις - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 25 Φεβρουαβρίου

Διαβάστε περισσότερα

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: :

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: : Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Τι λέμε συνάρτηση με πεδίο ορισμού το σύνολο ; Έστω ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το μία διαδικασία (κανόνα), με την

Διαβάστε περισσότερα

0 + a = a + 0 = a, a k, a + ( a) = ( a) + a = 0, 1 a = a 1 = a, a k, a a 1 = a 1 a = 1,

0 + a = a + 0 = a, a k, a + ( a) = ( a) + a = 0, 1 a = a 1 = a, a k, a a 1 = a 1 a = 1, I ΠΙΝΑΚΕΣ 11 Σώμα 111 Ορισμός: Ενα σύνολο k εφοδιασμένο με δύο πράξεις + και ονομάζεται σώμα αν ικανοποιούνται οι παρακάτω ιδιότητες: (Α (α (Προσεταιριστική ιδιότητα της πρόσθεσης (a + b + c = a + (b +

Διαβάστε περισσότερα

ΑΛΕΞΑΝΔΡΑ ΠΟΥΛΟΠΟΥΛΟΥ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ SUDOKU

ΑΛΕΞΑΝΔΡΑ ΠΟΥΛΟΠΟΥΛΟΥ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ SUDOKU ΑΛΕΞΑΝΔΡΑ ΠΟΥΛΟΠΟΥΛΟΥ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ SUDOKU ΔΟΜΗ ΠΑΡΟΥΣΙΑΣΗΣ Ιστορική αναδρομή του Sudoku Μαθηματικό περιεχόμενο Συμμετρίες της λύσης Ενδιαφέροντα δεδομένα ΙΣΤΟΡΙΚΗ ΑΝΑΔΡΟΜΗ Αρχικό όνομα Number Place

Διαβάστε περισσότερα

Όταν η s n δεν συγκλίνει λέμε ότι η σειρά αποκλίνει.

Όταν η s n δεν συγκλίνει λέμε ότι η σειρά αποκλίνει. Όταν η s δεν συγκλίνει λέμε ότι η σειρά αποκλίνει. Παρατήρηση: Το αντίστροφο του προηγουμένου θεωρήματος δεν ισχύει. Παράδειγμα η σειρά με νιοστό όρο α = +-. Τότε lim α =0. Όμως s =α +α + +α = - + 3- +...+

Διαβάστε περισσότερα

Ε Μέχρι 18 Μαΐου 2015.

Ε Μέχρι 18 Μαΐου 2015. Ε Μέχρι 18 Μαΐου 2015. 1 Αντικείμενα: δακτύλιοι Fraleigh, 4.1. Ορισμός έννοιας «δακτυλίου». Χαρακτηρισμοί δακτυλίων και στοιχείων αυτών: Δακτύλιος R Στοιχεία δακτυλίου R / (= δεν έχει μηδενοδιαιρέτες άρα

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος 6/6/06 Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) 0 Δίνεται ο πίνακας A =. Nα υπολογίσετε την βαθμίδα του και να βρείτε τη διάσταση και από μία βάση α) του μηδενοχώρου

Διαβάστε περισσότερα

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C Κεφάλαιο 1 Εισαγωγικές έννοιες Στο κεφάλαιο αυτό θα αναφερθούμε σε ορισμένες έννοιες, οι οποίες ίσως δεν έχουν άμεση σχέση με τους διανυσματικούς χώρους, όμως θα χρησιμοποιηθούν αρκετά κατά τη μελέτη τόσο

Διαβάστε περισσότερα

4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ

4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ 14 4 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ Ας υποθέσουμε ότι θέλουμε να βρούμε το πηλίκο και το υπόλοιπο της διαίρεσης του με τον Σύμφωνα με το γνωστό αλγόριθμο της διαίρεσης, το πηλίκο θα είναι ένας ακέραιος κ, τέτοιος,

Διαβάστε περισσότερα

ιδασκοντες: x R y x y Q x y Q = x z Q = x z y z Q := x + Q Τετάρτη 10 Οκτωβρίου 2012

ιδασκοντες: x R y x y Q x y Q = x z Q = x z y z Q := x + Q Τετάρτη 10 Οκτωβρίου 2012 ιδασκοντες: Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 1 Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 10 Οκτωβρίου 2012 Ασκηση 1.

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος 3

Περιεχόμενα. Πρόλογος 3 Πρόλογος Η Γραμμική Άλγεβρα είναι ένα σημαντικό συστατικό στο πρόγραμμα σπουδών, όχι μόνο των Μαθηματικών, αλλά και άλλων τμημάτων, όπως είναι το τμήμα Φυσικής, Χημείας, των τμημάτων του Πολυτεχνείου,

Διαβάστε περισσότερα

Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα)

Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα) Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα) Πείραμα: διαδικασία που παράγει πεπερασμένο σύνολο αποτελεσμάτων Πληθικός αριθμός συνόλου

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΙΝΑΚΩΝ. Ορισμός 1: Ένας πίνακας Α με m γραμμές και n στήλες,

ΘΕΩΡΙΑ ΠΙΝΑΚΩΝ. Ορισμός 1: Ένας πίνακας Α με m γραμμές και n στήλες, ΘΕΩΡΙΑ ΠΙΝΑΚΩΝ Ορισμός 1: Ένας πίνακας Α με m γραμμές και n στήλες, παριστάνεται με την εξής ορθογώνια διάταξη: α11 α12 α1n α21 α22 α2n A = αm1 αm2 αmn Ορισμός 2: Δύο πίνακες Α και Β είναι ίσοι, και γράφουμε

Διαβάστε περισσότερα

Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων

Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων 6 Απριλίου 2009 1 Συνδυαστική Η ϐασική αρχή µέτρησης µας λέει ότι αν σε ένα πείραµα που γίνεται σε δύο ϕάσεις και στο οποίο υπάρχουν n δυνατά αποτελέσµατα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Σημειώσεις Ανάλυσης Ι (ανανεωμένο στις 5 Δεκεμβρίου 2012)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Σημειώσεις Ανάλυσης Ι (ανανεωμένο στις 5 Δεκεμβρίου 2012) ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Σημειώσεις Ανάλυσης Ι (ανανεωμένο στις 5 Δεκεμβρίου 2012) Τμήμα Θ. Αποστολάτου & Π. Ιωάννου 1 Σειρές O Ζήνων ο Ελεάτης (490-430 π.χ.) στη προσπάθειά του να υποστηρίξει

Διαβάστε περισσότερα

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» - 6/2/2014 Διάρκεια Εξέτασης: 2 ώρες και 50 λεπτά Ομάδα Α

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» - 6/2/2014 Διάρκεια Εξέτασης: 2 ώρες και 50 λεπτά Ομάδα Α ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» - 6/2/2014 Διάρκεια Εξέτασης: 2 ώρες και 50 λεπτά Ομάδα Α 1. (2.5 μονάδες) Ο κ. Ζούπας παρέλαβε μία μυστηριώδη τσάντα από το ταχυδρομείο. Όταν

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,...

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,... KΕΦΑΛΑΙΟ ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ Βασικές έννοιες διαιρετότητας Θα συµβολίζουµε µε, τα σύνολα των φυσικών αριθµών και των ακεραίων αντιστοίχως: {,,3,,, } { 0,,,,, } = = ± ± ± Ορισµός Ένας φυσικός αριθµός

Διαβάστε περισσότερα

8. Πολλαπλές μερικές παράγωγοι

8. Πολλαπλές μερικές παράγωγοι 94 8 Πολλαπλές μερικές παράγωγοι Οι μερικές παράγωγοι,,, αν υπάρχουν, μιας συνάρτησης : U R R ( U ανοικτό είναι αυτές συναρτήσεις από το U στο R, επομένως μπορεί να ορισθεί για αυτές η έννοια της μερικής

Διαβάστε περισσότερα

Α Δ Ι Θ Θ Α Ε Ι Μ : https://sites.google.com/site/maths4edu/home/algdom114

Α Δ Ι Θ Θ Α Ε Ι Μ :  https://sites.google.com/site/maths4edu/home/algdom114 Α Δ Ι Θ Θ Α Ε 2013-2014 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html, https://sites.google.com/site/maths4edu/home/algdom114 12 Μαρτίου 2014 19:26

Διαβάστε περισσότερα

= 7. Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις

= 7. Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις 1. Εισαγωγή Δίνεται η συνάρτηση μεταφοράς = = 1 + 6 + 11 + 6 = + 6 + 11 + 6 =. 2 Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις L = 0 # και L $ % &'

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός Μέθοδος Simplex

Γραμμικός Προγραμματισμός Μέθοδος Simplex ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραμμικός Προγραμματισμός Μέθοδος Simplex Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Πρότυπη Μορφή ΓΠ 2. Πινακοποίηση

Διαβάστε περισσότερα

Από το Γυμνάσιο στο Λύκειο Δειγματικός χώρος Ενδεχόμενα Εύρεση δειγματικού χώρου... 46

Από το Γυμνάσιο στο Λύκειο Δειγματικός χώρος Ενδεχόμενα Εύρεση δειγματικού χώρου... 46 ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11 2. Σύνολα..............................................................

Διαβάστε περισσότερα

Γεννήτριες Συναρτήσεις

Γεννήτριες Συναρτήσεις 3 Γεννήτριες Συναρτήσεις Περιεχόμενα Κεφαλαίου 3. Κανονικές Γεννήτριες Συναρτήσεις............ 80 3. Πράξεις σε Γεννήτριες Συναρτήσεις............ 8 3.3 Ακολουθία Fibonacci..................... 83 3.4

Διαβάστε περισσότερα

, ο αριθμός στον οποίο αντιστοιχεί ο 2 καλείται δεύτερος όρος της ακολουθίας και τον συμβολίζουμε συνήθως με

, ο αριθμός στον οποίο αντιστοιχεί ο 2 καλείται δεύτερος όρος της ακολουθίας και τον συμβολίζουμε συνήθως με 5. ΑΚΟΛΟΥΘΙΕΣ Γενικά ακολουθία πραγματικών αριθμών είναι μια αντιστοίχιση των φυσικών αριθμών,,,...,ν,... στους πραγματικούς αριθμούς. Ο αριθμός στον οποίο αντιστοιχεί ο καλείται πρώτος όρος της ακολουθίας

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες...

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες... Περιεχόμενα Πρόλογος... 5 Κεφάλαιο Βασικές αριθμητικές πράξεις... 5. Τέσσερις πράξεις... 5. Σύστημα πραγματικών αριθμών... 5. Γραφική αναπαράσταση πραγματικών αριθμών... 6.4 Οι ιδιότητες της πρόσθεσης

Διαβάστε περισσότερα

y[n] 5y[n 1] + 6y[n 2] = 2x[n 1] (1) y h [n] = y h [n] = A 1 (2) n + A 2 (3) n (4) h[n] = 0, n < 0 (5) h[n] 5h[n 1] + 6h[n 2] = 2δ[n 1] (6)

y[n] 5y[n 1] + 6y[n 2] = 2x[n 1] (1) y h [n] = y h [n] = A 1 (2) n + A 2 (3) n (4) h[n] = 0, n < 0 (5) h[n] 5h[n 1] + 6h[n 2] = 2δ[n 1] (6) Ασκήσεις σε Σήματα Συστήματα Διακριτού Χρόνου Επιμέλεια: Γιώργος Π. Καφεντζης Δρ. Επιστήμης Η/Υ Πανεπιστημίου Κρήτης Δρ. Επεξεργασίας Σήματος Πανεπιστημίου Rennes 1 9 Οκτωβρίου 015 1. Ενα αιτιατό ΓΧΑ σύστημα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ ΚΕΦΑΛΑΙΟ ΔΙΑΤΑΞΕΙΣ ΜΕΤΑΘΕΣΕΙΣ ΣΥΝΔΥΑΣΜΟΙ Εισαγωγή. Οι σχηματισμοί που προκύπτουν με την επιλογή ενός συγκεκριμένου αριθμού στοιχείων από το ίδιο σύνολο καλούνται διατάξεις αν μας ενδιαφέρει η σειρά καταγραφή

Διαβάστε περισσότερα

Copyright: Ψωμόπουλος Ευάγγελος, Eκδόσεις Zήτη, Γ έκδοση: Μάρτιος 2012, Θεσσαλονίκη

Copyright: Ψωμόπουλος Ευάγγελος, Eκδόσεις Zήτη, Γ έκδοση: Μάρτιος 2012, Θεσσαλονίκη Kάθε γνήσιο αντίτυπο φέρει την υπογραφή του συγγραφέα ISBN 978-960-456-314-2 Copyright: Ψωμόπουλος Ευάγγελος, Eκδόσεις Zήτη, Γ έκδοση: Μάρτιος 2012, Θεσσαλονίκη Tο παρόν έργο πνευματικής ιδιοκτησίας προστατεύεται

Διαβάστε περισσότερα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα Σελίδα από 58 Κεφάλαιο 9 Ιδιοτιμές και Ιδιοδιανύσματα 9. Ορισμοί... 9. Ιδιότητες... 9. Θεώρημα Cayley-Hamlto...9 9.. Εφαρμογές του Θεωρήματος Cayley-Hamlto... 9.4 Ελάχιστο Πολυώνυμο...40 Ασκήσεις του Κεφαλαίου

Διαβάστε περισσότερα

1.2 Συντεταγμένες στο Επίπεδο

1.2 Συντεταγμένες στο Επίπεδο 1 Συντεταγμένες στο Επίπεδο Τι εννοούμε με την έννοια άξονας; ΑΠΑΝΤΗΣΗ Πάνω σε μια ευθεία επιλέγουμε δύο σημεία και Ι έτσι ώστε το διάνυσμα OI να έχει μέτρο 1 και να βρίσκεται στην ημιευθεία O Λέμε τότε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα

ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα Στο κεφάλαιο αυτό εισάγουµε την έννοια του τανυστικού γινοµένου προτύπων. Θα είµαστε συνοπτικοί καθώς αναπτύσσουµε µόνο εκείνες τις στοιχειώδεις προτάσεις που θα βρουν εφαρµογές

Διαβάστε περισσότερα

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ.ptetragono.gr Σελίδα. ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Να βρεθεί το μέτρο των μιγαδικών :..... 0 0. 5 5 6.. 0 0. 5. 5 5 0 0 0 0 0 0 0 0 ΜΕΘΟΔΟΛΟΓΙΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ Αν τότε. Αν χρειαστεί

Διαβάστε περισσότερα

Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ.

Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ. Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ. Σάλαρης Πολλές φορές μας δίνεται να λύσουμε ένα πρόβλημα που από την πρώτη

Διαβάστε περισσότερα

Θα ξέρεις τι λέγεται γραμμική εξίσωση με δύο αγνώστους. Λέγεται κάθε εξίσωση της μορφής αχ +βψ =γ. Θα ξέρεις τι είναι το σύστημα εξισώσεων

Θα ξέρεις τι λέγεται γραμμική εξίσωση με δύο αγνώστους. Λέγεται κάθε εξίσωση της μορφής αχ +βψ =γ. Θα ξέρεις τι είναι το σύστημα εξισώσεων 1. Θα ξέρεις τι λέγεται γραμμική εξίσωση με δύο αγνώστους. Λέγεται κάθε εξίσωση της μορφής αχ +βψ =γ. Θα ξέρεις τι είναι το σύστημα εξισώσεων Είναι ομάδα από δύο ή περισσότερες εξισώσεις των οποίων ζητάμε

Διαβάστε περισσότερα

Εισαγωγή στην Ανάλυση Αλγορίθμων

Εισαγωγή στην Ανάλυση Αλγορίθμων Εισαγωγή στην Ανάλυση Αλγορίθμων (4) Μεθοδολογία αναδρομικών σχέσεων (Ι) Με επανάληψη της αναδρομής Έστω όπου r και a είναι σταθερές. Βρίσκουμε τη σχέση που εκφράζει την T(n) συναρτήσει της T(n-) την T(n)

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Το 1ο Θέμα στις πανελλαδικές εξετάσεις

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Το 1ο Θέμα στις πανελλαδικές εξετάσεις Επιμέλεια Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Το ο Θέμα στις πανελλαδικές εξετάσεις Ερωτήσεις+Απαντήσεις

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών Αριθμητικά σύνολα Ιδιότητες Περισσότερες ιδιότητες...

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών Αριθμητικά σύνολα Ιδιότητες Περισσότερες ιδιότητες... Περιεχόμενα Πρόλογος 5 Κεφάλαιο Βασικές αριθμητικές πράξεις 5 Τέσσερις πράξεις 5 Σύστημα πραγματικών αριθμών 5 Γραφική αναπαράσταση πραγματικών αριθμών 6 Οι ιδιότητες της πρόσθεσης και του πολλαπλασιασμού

Διαβάστε περισσότερα

4.6 Η ΓΡΑΜΜΙΚΗ ΔΙΟΦΑΝΤΙΚΗ ΕΞΙΣΩΣΗ

4.6 Η ΓΡΑΜΜΙΚΗ ΔΙΟΦΑΝΤΙΚΗ ΕΞΙΣΩΣΗ 174 46 Η ΓΡΑΜΜΙΚΗ ΔΙΟΦΑΝΤΙΚΗ ΕΞΙΣΩΣΗ Εισαγωγή Ένα από τα αρχαιότερα προβλήματα της Θεωρίας Αριθμών είναι η αναζήτηση των ακέραιων αριθμών που ικανοποιούν κάποιες δεδομένες σχέσεις Με σύγχρονη ορολογία

Διαβάστε περισσότερα

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 ) Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι

Διαβάστε περισσότερα

1 Η εναλλάσσουσα ομάδα

1 Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Όπως είδαμε η συνάρτηση g : S { } είναι ένας επιμορφισμός ομάδων. Ο πυρήνας Ke g {σ S / g σ } του επιμορφισμού συμβολίζεται με A περιέχει όλες τις άρτιες μεταθέσεις

Διαβάστε περισσότερα

Φροντιστήριο #8 Ασκήσεις σε Γράφους 24/5/2016

Φροντιστήριο #8 Ασκήσεις σε Γράφους 24/5/2016 Φροντιστήριο #8 Ασκήσεις σε Γράφους 24/5/2016 Άσκηση 8.1: Στο παρακάτω σχήμα φαίνονται δέκα λατινικοί χαρακτήρες (A, F, K, M, R, S, T, V, X και Z) με τη μορφή γράφων. Ποιοι από αυτούς είναι ισομορφικοί;

Διαβάστε περισσότερα

Dunamoseirèc A. N. Giannakìpouloc, Tm ma Statistik c OPA

Dunamoseirèc A. N. Giannakìpouloc, Tm ma Statistik c OPA Dunamoseirèc A. N. Giannakìpouloc, Tm ma Statistik c OPA Eisagwg Οι δυναμοσειρές είναι μια πολύ ενδιαφέρουσα κατηγορία σειρών. Βρίσκουν πολύ σημαντικές εφαρμογές στον ορισμό συναρτήσεων καθώς και σε διάφορες

Διαβάστε περισσότερα

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης 1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης Στη συγκεκριμένη ενότητα εξετάζουμε θέματα σχετικά με την αριθμητική πεπερασμένης ακρίβειας που χρησιμοποιούν οι σημερινοί υπολογιστές και τα

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 11: Αριθμητική υπολοίπων-δυνάμεις Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ 118 ερωτήσεις θεωρίας με απάντηση 34 416 ασκήσεις για λύση ερωτήσεις κατανόησης λυμένα παραδείγματα 0 συνδυαστικά θέματα εξετάσεων Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Εισαγωγική ενότητα Το λεξιλόγιο

Διαβάστε περισσότερα

Διακριτά Μαθηματικά Συνδυαστική

Διακριτά Μαθηματικά Συνδυαστική Διακριτά Μαθηματικά Γεώργιος Χρ. Μακρής http://users.sch.gr/gmakris 7 Αυγούστου 2012 Η είναι ένα κομμάτι των Μαθηματικών που επικεντρώνεται στη "μέτρηση" του πλήθους των αντικειμένων ενός συνόλου. Η ασχολείται

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές Λύσεις ΕΡΓΑΣΙΑ η (Ηµεροµηνία Αποστολής στον Φοιτητή: Οκτωβρίου 005) Η Άσκηση στην εργασία αυτή είναι

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού

ΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΈΝΝΟΙΑ ΜΙΓΑΔΙΚΟΥ ΓΕΩΜΕΤΡΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΓΑΔΙΚΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΣΥΖΥΓΕΙΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΥΝΑΜΕΙΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΑΡΙΘΜΟΥ ΚΑΙ ΤΟΥ i ΙΔΙΟΤΗΤΕΣ

Διαβάστε περισσότερα

Συνδυαστική Απαρίθμηση

Συνδυαστική Απαρίθμηση Παραδείγματα Συνδυαστική Απαρίθμηση Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο n θρανία στη σειρά

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

Ξέρουμε ότι: Συνάρτηση-απεικόνιση με πεδίο ορισμού ένα σύνολο Α και πεδίο τιμών ένα σύνολο Β είναι κάθε μονοσήμαντη απεικόνιση f του Α στο Β.

Ξέρουμε ότι: Συνάρτηση-απεικόνιση με πεδίο ορισμού ένα σύνολο Α και πεδίο τιμών ένα σύνολο Β είναι κάθε μονοσήμαντη απεικόνιση f του Α στο Β. Η έννοια της ακολουθίας Ξέρουμε ότι: Συνάρτηση-απεικόνιση με πεδίο ορισμού ένα σύνολο Α και πεδίο τιμών ένα σύνολο Β είναι κάθε μονοσήμαντη απεικόνιση f του Α στο Β. Δηλαδή: f : A B Η ακολουθία είναι συνάρτηση.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8: Εφαρµογή: Το θεώρηµα του Burnside

ΚΕΦΑΛΑΙΟ 8: Εφαρµογή: Το θεώρηµα του Burnside ΚΕΦΑΛΑΙΟ 8: Εφαρµογή: Το θεώρηµα του Bursde Θα αποδείξουµε εδώ ότι κάθε οµάδα τάξης a q b (, q πρώτοι) είναι επιλύσιµη. Το θεώρηµα αυτό αποδείχτηκε από τον Bursde το 904 ο οποίος χρησιµοποίησε τη νέα τότε

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα

Διακριτά Μαθηματικά. Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα Διακριτά Μαθηματικά Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα Συνδυαστική ανάλυση μελέτη της διάταξης αντικειμένων 17 ος αιώνας: συνδυαστικά ερωτήματα για τη μελέτη τυχερών παιχνιδιών Απαρίθμηση:

Διαβάστε περισσότερα

Βασικές έννοιες από τη Θεωρία Συνόλων και τον Προτασιακό Λογισμό

Βασικές έννοιες από τη Θεωρία Συνόλων και τον Προτασιακό Λογισμό Κεφάλαιο 1 Βασικές έννοιες από τη Θεωρία Συνόλων και τον Προτασιακό Λογισμό Κύριες βιβλιογραφικές αναφορές για αυτό το Κεφάλαιο είναι οι Kamke 1950, Halmos 1960 και C. L. Liu and C. Liu 1985. 1.1 Εισαγωγή

Διαβάστε περισσότερα

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ Συνδυαστική ρ. Κωνσταντίνος Κυρίτσης Μακράς Στοάς 7 & Εθνικής Αντιστάσεως Πειραιάς 185 31 10 Μαρτίου 2009 Περίληψη Οι παρούσες σηµειώσεις αποτελούν µια σύντοµη εισαγωγή στην Συνδυαστική. Το ϕυλλάδιο διατίθεται

Διαβάστε περισσότερα

ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2016 Τελική Εξέταση Ιουνίου - Τετάρτη, 15/06/2016 Λύσεις Θεμάτων

ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2016 Τελική Εξέταση Ιουνίου - Τετάρτη, 15/06/2016 Λύσεις Θεμάτων ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2016 Τελική Εξέταση Ιουνίου - Τετάρτη, 15/06/2016 Λύσεις Θεμάτων Θέμα 1: [14 μονάδες] 1. [5] Έστω Y(x): «Το αντικείμενο x είναι ηλεκτρονικός υπολογιστής», Φ(y):

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY)

ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY) ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY) 3.1 ΘΕΩΡΙΑ-ΤΥΠΟΛΟΓΙΟ-ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ Συνάρτηση, ή απεικόνιση όπως ονομάζεται διαφορετικά, είναι μια αντιστοίχιση μεταξύ δύο συνόλων,

Διαβάστε περισσότερα