Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων:

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων:"

Transcript

1 Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων: Κανόνες Συσχέτισης: Μέρος Β gounaris/courses/dwdm/

2 Ευχαριστίες Οι διαφάνειες του μαθήματος σε γενικές γραμμές ακολουθούν το σύγγραμμα «Εισαγωγή στην Εξόρυξη και τις Αποθήκες Δεδομένων» Αρχικές εκδόσεις από μέρος των διαφανειών ετοιμάστηκαν από τον Δρ. Α. Νανόπουλο. Xρησιμοποιήθηκε επιπλέον υλικό από τα βιβλία «Introduction to Data Mining» των Tan, Steinbach, Kumar, και «Data Mining: Concepts and Techniques» των Jiawei Han, Micheline Kamber. 2

3 Τι θα εξετάσουμε Αλγόριθμος FP-Growth Μειονεκτήματα υποστήριξης-εμπιστοσύνης Κλειστά Maximal στοιχειοσύνολα 3

4 Είναι γρήγορος ο Apriori? Bottlenecks στην απόδοση Ο βασικός αλγόριθμος Apriori: Χρησιμοποιεί συχνά (k 1)-στοιχειοσύνολα για την παραγωγή υποψηφίων συχνών k-στοιχειοσυνόλων στοιχειοσυνόλων. Χρήση τεχνικών σαρώματος ΒΔ και ταύτισης προτύπων για τη μέτρηση της υποστήριξης των υποψηφίων συνόλων. Tο bottleneck του Apriori: δημιουργία υποψηφίων Πολύ μεγάλα υποψήφια σύνολα. Πολλαπλές σαρώσεις της ΒΔ. 4

5 Ο Αλγόριθμος FP-Growth Χρησιμοποιεί μια συμπιεσμένη αναπαράσταση της βάσης με τη μορφή ενός FP-δένδρου (FP: frequent pattern) Το δένδρο μοιάζει με προθεματικό δένδρο - prefix tree (trie). Ο αλγόριθμος κατασκευής διαβάζει μια συναλλαγή τη φορά, και απεικονίζει τη συναλλαγή σε ένα μονοπάτι του FP- δένδρου. Μερικά μονοπάτια μπορεί να επικαλύπτονται: όσο περισσότερα μονοπάτια επικαλύπτονται, τόσο καλύτερη συμπίεση. Τα συχνά στοιχειοσύνολα βρίσκονται με μια αναδρομική διαίρει-και-βασίλευε προσέγγιση. 5

6 Κατασκευή FP-δένδρου ρ (1) TID Items 1 {A,B} 2 {B,C,D} 3 {A,C,D,E} 4 {A,D,E} 5 {A,B,C} 6 {A,B,C,D} To FP-δένδρο είναι ένα προθεματικό δένδρο Άρα τα στοιχεία σε κάθε σύνολο πρέπει να ακολουθούν κάποια διάταξη, έστω τη λεξικογραφική Θα δούμε αργότερα ότι κάτι άλλο συμφέρει περισσότερο 7 {B,C} 8 {A,B,C} Αρχικά, το δένδρο είναι κενό 9 {A,B,D} 10 {B,C,E} 6

7 Κατασκευή FP-δένδρου ρ (2) TID Items 1 {A,B} Δάβ Διάβασμα TID=1: 2 {B,C,D} A:1 3 {A,C,D,E},, 4 {A,D,E} 5 {A,B,C} B:1 6 {A,B,C,D},, 7 {B,C} 8 {A,B,C} 9 {A,B,D} 10 {B,C,E} Κάθε κόμβος έχει μια ετικέτα που δείχνει πόσες συναλλαγές φτάνουν σε αυτόν, δηλαδή δή πόσα μονοπάτια καταλήγουν σε αυτόν τον κόμβο. 7

8 Κατασκευή FP-δένδρου ρ (3) TID Items 1 {A,B} Δάβ Διάβασμα TID=1: 2 {B,C,D} 3 {A,C,D,E},, 4 {A,D,E} 5 {A,B,C} 6 {A,B,C,D},C, B:1 7 {B,C} Διάβασμα TID=2: 8 {A,B,C} 9 {A,B,D} 10 {B,C,E} A:1 B:1 Κάθε κόμβος έχει μια ετικέτα που δείχνει πόσες συναλλαγές αυτόν. C:1 φτάνουν σε Επίσης, υπάρχουν δείκτες μεταξύ των κόμβων που αναφέρονται στο ίδιο στοιχείο 8

9 Κατασκευή FP-δένδρου ρ (4) TID Items 1 {A,B} Δάβ Διάβασμα TID=1, 2: 2 {B,C,D} 3 {A,C,D,E} A:1 4 {A,D,E} 5 {A,B,C} 6 {A,B,C,D} B:1 7 {B,C} 8 {A,B,C} 9 {A,B,D} Πίνακας Δεικτών 10 {B,C,E} Item Pointer A Επίσης, κρατάμε πίνακα B δεικτών για να βοηθήσουν C στον υπολογισμό των D συχνών στοιχειοσυνόλων. E B:1 C:1 9

10 Κατασκευή FP-δένδρου ρ (5) Διάβασμα TID=1, 2: TID Items 1 {A,B} 2 {B,C,D} 3 {A,C,D,E} 4 {A,D,E}, 5 {A,B,C} 6 {A,B,C,D} 7 {B,C} 8 {A,B,C} 9 {A,B,D} 10 {B,C,E} Διάβασμα TID=3 Πίνακας Δεικτών Item Pointer A B C D E B:1 A:2 C1 C:1 E:1 B:1 C:1 10

11 Κατασκευή FP-δένδρου ρ (6) Διάβασμα TID=1, 2: Διάβασμα TID=3 TID Items 1 {A,B} 2 {B,C,D} B:1 3 {A,C,D,E} 4 {A,D,E} 5 {A,B,C} Πίνακας Δεικτών 6 {A,B,C,D} Item Pointer 7 {B,C} A 8 {A,B,C} B 9 {A,B,D} C 10 {B,C,E} D E A:2 C1 C:1 E:1 B:1 C:1 11

12 Κατασκευή FP-δένδρου ρ (7) TID Items 1 {A,B} 2 {B,C,D} 3 {A,C,D,E} 4 {A,D,E} 5 {A,B,C} 6 {A,B,C,D} 7 {B,C} 8 {A,B,C} 9 {A,B,D} 10 {B,C,E} Αφού έχουν διαβαστεί όλες οι συναλλαγές... A:7 B3 B:3 B:5 C:3 C:1 ί ώ C:3 Pointer E:1 A B E1 E:1 Πίνακας Δεικτών Item C D E E:1 12

13 Μέγεθος FP-δένδρουρ Κάθε συναλλαγή αντιστοιχεί σε ένα μονοπάτι από τη ρίζα Το μέγεθος του δένδρου είναι συνήθως μικρότερο των δεδομένων, αν υπάρχουν κοινά προθέματα. Αν όλες οι συναλλαγές περιέχουν τα ίδια δεδομένα, τότε υπάρχει μόνο ένα κλαδί. Αν όλες είναι διαφορετικές, ο χώρος είναι μεγαλύτερος......γιατί αποθηκεύεται περισσότερη πληροφορία, όπως δείκτες μεταξύ των κόμβων αλλά και συχνότητες εμφάνισης. 13

14 Επιλογή προθέματος Το τελικό δένδρο, εξαρτάται από τη διάταξη: άλλη διάταξη άλλα προθέματα. (Συνήθως) μικρότερο δένδρο, αν δεν διατάσουμε τα αντικείμενα λεξικογραφικά, αλλά σύμφωνα με τη συχνότητα εμφάνισης. Αρχικά, διαβάζουμε όλα τα δεδομένα μια φορά ώστε να υπολογιστεί ο μετρητής υποστήριξης κάθε στοιχείου, και διατάσουμε τα στοιχεία με βάση αυτό (αγνοούμε όσα στοιχεία είναι μη συχνά) TID Items 1 {A,B} 2 {B,C,D} 3 {A,C,D,E} 4 {A,D,E} 5 {A,B,C}, 6 {A,B,C,D} 7 {B,C} 8 {A,B,C} 9 {A,B,D} 10 {B,C,E} TID Items 1 {Β,Α} 2 {B,C,D}, 3 {A,C,D,E} 4 {A,D,E} 5 {Β,Α,C} 6 {Β,Α,C,D} 7 {B,C} 8 {Β,Α,C} Α 9 {Β,Α,D} 10 {B,C,E} 14

15 Εύρεση συχνών στοιχειοσυνόλων Είσοδος: FP-δένδρο Έξοδος: Συχνά στοιχειοσύνολα και η υποστήριξη τους Μέθοδος Διαίρει-και-Βασίλευε: ΧωρίζουμεταστοιχειοσύνολασεαυτάπουτελειώνουνσεE, D, C, B, A Μετά αυτά που τελειώνουν σε E σε αυτά σε DE, CE, BE, AE κ.ο.κ. Αν η διάταξη είναι βάσει της συχνότητας εμφάνισης, τότε χωρίζουμε τα στοιχειοσύνολα σε αυτά που τελειώνουν στο πιο σπάνιο στοιχείο, μετά στο δεύτερο πιο σπάνιο κ.ο.κ. 15

16 Εύρεση συχνών στοιχειοσυνόλων με χρήση του FP-δένδρου Bottom-up διάσχιση του δένδρου. A:7 B:3 B:5 C:3 C1 C:1 D1 Πίνακας Δεικτών Item A B C D E Pointer C:3 E:1 E:1 E:1 16

17 Συχνά στοιχειοσύνολα που τελειώνουν σε E A:7 B:3 B:5 C:3 C:1 Πίνακας Δεικτών Item A B C D E Pointer C:3 E:1 E:1 E:1 17

18 Για το D A:7 B:3 B:5 C:3 C1 C:1 D1 Πίνακας Δεικτών Item A B C D E Pointer C:3 E:1 E:1 E:1 18

19 Για το C A:7 B:3 B:5 C:3 C1 C:1 D1 Πίνακας Δεικτών Item A B C D E Pointer C:3 E:1 E:1 E:1 19

20 Για το B A:7 B:3 B:5 C:3 C1 C:1 D1 Πίνακας Δεικτών Item A B C D E Pointer C:3 E:1 E:1 E:1 20

21 Για το A A:7 B:3 B:5 C:3 C1 C:1 D1 Πίνακας Δεικτών Item Pointer A B C D E C:3 E:1 E:1 E:1 21

22 Συνοπτικά ο αλγόριθμος Σε κάθε βήμα, για το επίθεμα (suffix) Χ Φάση 1 κατασκευάζουμε το προθεματικό δένδρο για το Χ και υπολογίζουμε την υποστήριξη χρησιμοποιώντας τον πίνακα Φάση 2 Αν είναι συχνό, κατασκευάζουμε το υπο-συνθήκη δένδρο για το Χ, σε βήματα επανα-υπολογισμός υποστήριξης περικοπή κόμβων με μικρή υποστήριξη περικοπή φύλλων 22

23 Προθεματικά μονοπάτια του Ε: Φάση 1 {E}, {D,E}, {C,D,E}, {A,D,Ε}, {A,C,D,E}, A:7 {C,E}, {B,C,E} A:7 B:3 B:5 C:3 C:1 Πίνακας Δεικτών Item A B C D E Pointer C:3 D1 E:1 E:1 E:1 23

24 Προθεματικά μονοπάτια του Ε: {E}, {D,E}, {C,D,E}, {A,D,Ε}, {A,C,D,E}, {C,E}, {B,C,E} Φάση 1 A:7 B:3 C1 C:1 D1 C:3 E:1 E:1 E:1 24

25 Μέτρηση η Υποστήριξης Έστω minsup = 2 A:7 B:3 Ακολουθούμε τους συνδέσμους αθροίζοντας 1+1+1=3>2 C1 D1 Οπότε {Ε} συχνό E:1 E:1 άρα προχωράμε για DE, CE, BE, AE E:1 C:3 25

26 Φάση 2 {E} συχνό άρα προχωράμε για DE, CE, BE, AE Μετατροπή των προθεματικών δένδρων σε FP-δένδρο υπό συνθήκες (conditional FP-tree) Δύο αλλαγές (1) Αλλαγή των μετρητών (2) Περικοπή A:7 B:3 C1 C:1 D1 C:3 E:1 E:1 E:1 26

27 Αλλαγή μετρητών Οι μετρητές σε κάποιους κόμβους περιλαμβάνουν A:7 δοσοληψίες που δεν έχουν το Ε A:7 B:3 C1 C:1 D1 Πχ στο B C E μετράμε και την συναλλαγή {B, C} E:1 E:1 E:1 C:3 27

28 Αλλαγή μετρητών A:7 B:3 C1 C:1 D1 C:3 E:1 E:1 E:1 28

29 Αλλαγή μετρητών A:7 B:3 C1 C:1 D1 C:1 E:1 E:1 E:1 29

30 Αλλαγή μετρητών A:7 B:1 C1 C:1 D1 C:1 E:1 E:1 E:1 30

31 Αλλαγή μετρητών A:7 B:1 C1 C:1 D1 C:1 E:1 E:1 E:1 31

32 Αλλαγή μετρητών A:7 B:1 C1 C:1 D1 C:1 E:1 E:1 E:1 32

33 Αλλαγή μετρητών Περικοπή (truncate): Σβήσε τους κόμβους του Ε A:2 B:1 C1 C:1 D1 C:1 E:1 E:1 E:1 33

34 Αλλαγή μετρητών Περικοπή (truncate): Σβήσε τους κόμβους του Ε A:2 B:1 C1 C:1 D1 C:1 E:1 E:1 E:1 34

35 Περικοπή Κάποια στοιχεία μπορεί να έχουν υποστήριξη μικρότερη της ελάχιστης A:2 (π.χ., Β). Αυτό σημαίνει ότι το Β εμφανίζεται μαζί με το E λιγότερο από minsup φορές A:2 B:1 C:11 1 C:1 Άρα Β περικοπή 35

36 Περικοπή A:2 C:1 C:

37 Αναδρομή Υπο-συνθήκη FP-δένδρο για το Ε. A:2 C:1 Ο αλγόριθμος C:11 1 επαναλαμβάνεται για το {D, E}, {C, E}, {A, E} 37

38 Φάση 1 Βρίσκουμε όλα τα μονοπάτια που A:2 περιέχουν το D (DE) A:2 C:1 C:

39 Φάση 1 Βρίσκουμε όλα τα μονοπάτια που A:2 περιέχουν το D (DE) C:

40 Υποστήριξη DE Ακολουθούμε τους συνδέσμους αθροίζοντας: 1+1=2 2 A:2 Οπότε {D, Ε} συχνό. C:

41 Φάση 2: Υπο-συνθήκη ήηδένδρο Κατασκεύασε το υπο- συνθήκη FP-δένδρο για το {D, E} A:2 1. Αλλαγή υποστήριξης 2. Περικοπές κόμβων C:

42 Φάση 2: Υπο-συνθήκη ήηδένδρο Κατασκεύασε το υπο- συνθήκη FP-δένδρο για το {D, E} A:2 1. Αλλαγή υποστήριξης: Δεν υπάρχει καμία C: Περικοπές κόμβων 42

43 Φάση 2: Υπο-συνθήκη ήηδένδρο 2. Περικοπές κόμβων A:2 C:

44 Φάση 2: Υπο-συνθήκη ήηδένδρο 2. Περικοπές κόμβων A:2 C:11 44

45 Φάση 2: Υπο-συνθήκη ήηδένδρο 2. Περικοπές κόμβων A:2 C:11 Μικρή υποστήριξη 45

46 Φάση 2: Υπο-συνθήκη ήηδένδρο Τελικό υπο-συνθήκη FPδένδρο για το {D, E} A:2 Υποστήριξη του Α είναι minsup -> {Α, D,E}συχνό Αφού μόνο ένας κόμβος απέμεινε, επιστροφή στο επόμενο υποπρόβλημα. 46

47 Αναδρομή Υπο-συνθήκη FP-δένδρο για το Ε. Ο αλγόριθμος επαναλαμβάνεται για το {D, E}, {C, E}, {A, E} A:2 C:1 C:

48 Φάση 1 Όλα τα μονοπάτια που περιέχουν το C (CE) A:2 C:1 C:

49 Φάση 1 Όλα τα μονοπάτια που περιέχουν το C (CE) A:2 C:1 C:11 49

50 Υποστήριξη CE {C, Ε} συχνό A:2 C:1 C:11 50

51 Φάση 2 Κατασκεύασε το υπο- συνθήκη FP-δένδρο για το {C, E} A:2 1. Αλλαγή υποστήριξης 2. Περικοπές κόμβων A:2 C:1 C:11 51

52 Φάση 2 Κατασκεύασε το υπο- συνθήκη FP-δένδρο για το {C, E} A:1 1. Αλλαγή υποστήριξης 2. Περικοπές κόμβων A:1 C:1 C:11 52

53 Φάση 2 Κατασκεύασε το υπο- συνθήκη FP-δένδρο για το {C, E} A:1 1. Αλλαγή υποστήριξης 2. Περικοπές κόμβων A:1 C:1 C:11 53

54 Φάση 2 2. Περικοπή Κόμβων Άρα, επιστροφή στο επόμενο υποπρόβλημα. 54

55 Αναδρομή Υπο-συνθήκη FP-δένδρο για το Ε. Ο αλγόριθμος επαναλαμβάνεται για το {D, E}, {C, E}, {A, E} A:2 C:1 C:

56 Φάση 1 Όλα τα μονοπάτια που περιέχουν το Α A:2 (AE) 56

57 Υποστήριξη ΑΕ {Α, Ε} συχνό Δε χρειάζεται να φτιάξουμε υπο-συνθήκη FP-δένδρο για το {Α, Ε} A:2 57

58 Συνολικά για το Ε Έχουμε τα εξής συχνά στοιχειοσύνολα {Ε} {D, E} {A, D, E} {C, E} {A, E} Συνεχίζουμε για το D 58

59 Συχνά στοιχειοσύνολα που λήγουν σε D A:7 B:3 B:5 C:3 C1 C:1 D1 Πίνακας Δεικτών Item Pointer A B C D E C:3 E:1 E:1 E:1 59

60 Φάση 1 Κρατάμε όλα τα προθεματικά μονοπάτια που περιέχουν το D A:7 Υποστήριξη 5>2: άρα συχνό το D Μετατροπή του C:3 προθεματικού δένδρου σε FP- δένδρο υπό συνθήκη A:7 B:3 B:5 C:3 C1 C:1 D1 60

61 Αλλαγή υποστήριξης A:7 B:3 B:5 C:3 C1 C:1 D1 C:1 61

62 Αλλαγή υποστήριξης A:7 B:3 B:2 C:3 C1 C:1 D1 C:1 62

63 Αλλαγή υποστήριξης A:4 B:3 B:2 C:3 C1 C:1 D1 C:1 63

64 Αλλαγή υποστήριξης A:4 B:3 B:2 C:1 C1 C:1 D1 C:1 64

65 Αλλαγή υποστήριξης A:4 B:1 B:2 C:1 C1 C:1 D1 C:1 65

66 Επόμενο βήμα: Περικοπή κόμβων A:4 B:1 B:2 C:1 C1 C:1 D1 C:1 66

67 Επόμενο βήμα: Περικοπή κόμβων A:4 B:1 B:2 C:1 C1 C:1 D1 C:1 Κατόπιν συνεχίζουμε για AD, BD, CD 67

68 Παρατηρήσεις Εφαρμογή τεχνικής διαίρει-και-βασίλευε. Σε κάθε αναδρομικό βήμα, λύνεται και ένα υπο-πρόβλημα: Κατασκευάζεται το προθεματικό δένδρο Υπολογίζεται η νέα υποστήριξη για τους κόμβους του Περικόπτονται οι κόμβοι με μικρή υποστήριξη Επειδή τα υποπροβλήματα είναι ξένα μεταξύ τους, δεν δημιουργούνται τα ίδια συχνά στοιχειοσύνολα δυο φορές. Ο υπολογισμός της υποστήριξης είναι αποδοτικός γίνεται ταυτόχρονα με τη δημιουργία των συχνών στοιχειοσυνόλων Η απόδοση του FP-Growth εξαρτάται από τον παράγοντα συμπίεσης του συνόλου των δεδομένων (compaction factor) Βοηθάει η ταξινόμηση αντικειμένων κατά φθίνουσα σειρά υποστήριξης. 68

69 Άλλο ένα παράδειγμα Minsup = 2 69

70 Άλλο ένα παράδειγμα 70

71 Άλλο ένα παράδειγμα Υπό Συνθήκη FP-tree f 71

72 Άλλο ένα παράδειγμα 72

73 Άλλο ένα παράδειγμα Συνδυασμός ef με κάθε υποσύνολο του dca (και το κενό): ) ef, def, cef, aef, dcef, daef, caef, dcaef Όλα με υποστήριξη ίση με 2 Δηλ. όταν μένει μόνο ένα υπο συνθήκη μονοπάτι, σταματάμε μ την αναδρομική διαδικασία. (όμοια και για όλα τα άλλα ΥΣ μονοπάτια του f) 73

74 Άλλο ένα παράδειγμα {(d:1), ( :1)} 74

75 Τι θα εξετάσουμε Αλγόριθμος FP-Growth Μειονεκτήματα υποστήριξης-εμπιστοσύνης Κλειστά Maximal στοιχειοσύνολα 75

76 Μειονεκτήματα υποστήριξης, εμπιστοσύνης Θέατρο => Κινηματογράφος (15%, 75%) P(Κινηματογράφος) = 80% > 75% 76

77 Μέτρο ενδιαφέροντος φρ Έστω ο κανόνας Α Β I A, B = P ( A B) ) P( A) P( B) Αν Ι A,B = 1: ανεξαρτησία Αν Ι AB A,B > 1: θετική συσχέτιση Αν Ι A,B < 1: αρνητική συσχέτιση 77

78 Παράδειγμα Ι = 0.15/(0.2 * 0.8) = < 1 78

79 Παράδοξο Simpson Τηλεόραση => Ραδιόφωνο (εμπ = 99/180= 55%) Όχι Τηλεόραση => Ραδιόφωνο (εμπ = 54/120 = 45%) Συσχέτιση(Τηλεόραση, Ραδιόφωνο) = 1.07 Θετική συσχέτιση μεταξύ τηλεόρασης και ραδιοφώνου 79

80 Παράδοξο Simpson ανήλικοι Τηλεόραση => Ραδιόφωνο (εμπ = 1/10= 10%) Όχι Τηλεόραση => Ραδιόφωνο δό (εμπ = 4/34 = 11.8%) Ι(Τηλεόραση, Ραδιόφωνο) =

81 Παράδοξο Simpson ενήλικοι Τηλεόραση => Ραδιόφωνο (εμπ = 98/170= 57.7%) Όχι Τηλεόραση => Ραδιόφωνο (εμπ = 50/86 = 58.1%) Ι(Τηλεόραση, Ραδιόφωνο) =

82 Τι θα εξετάσουμε Αλγόριθμος FP-Growth Μειονεκτήματα υποστήριξης-εμπιστοσύνης Κλειστά Maximal στοιχειοσύνολα 82

83 Μaximal συχνά στοιχειοσύνολα Ένα στοιχειοσύνολο είναι maximal συχνό αν κανένα από τα άμεσα υπερσύνολά του δεν είναι συχνό. Συχνά Προσφέρουν μια συνοπτική αναπαράσταση των συχνών στοιχειοσυνόλων. AB AC AD AE BC BD BE CD CE DE Είναι το μικρότερο σύνολο στοιχειοσυνόλων από το οποίο μπορούμε να πάρουμε όλα τα συχνά στοιχειοσύνολα. ΟΜΩΣ: Δεν προσφέρουν καμιά πληροφορία για την υποστήριξη των υποσυνόλων τους A B C D E ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE ABCD ABCE ABDE ACDE BCDE Μη συχνά ABCD E 83

84 Κλειστά συχνά στοιχειοσύνολα Ένα στοιχειοσύνολο είναι κλειστό (closed) αν κανένα από τα άμεσα υπερσύνολα του δεν έχει την ίδια υποστήριξη με αυτό (δηλαδή, έχει μικρότερη υποστήριξη). Ένα στοιχειοσύνολο είναι κλειστό συχνό στοιχειοσύνολο αν είναι κλειστό και συχνό (δηλαδή, η υποστήριξη του είναι μεγαλύτερη ή ίση με minsup). Πάλι τα υποσύνολα τους μας δίνουν όλα τα συχνά υποσύνολα,, τώρα όμως μπορούμε μ να υπολογίσουμε την υποστήριξη των υποσυνόλων τους. Η υποστήριξη ενός μη κλειστού στοιχειοσυνόλου πρέπει να είναι ίση με την μεγαλύτερη υποστήριξη ανάμεσα στα υπερσύνολά του. 84

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων Ενότητα 12: Κανόνες Συσχέτισης Μέρος B Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης

Διαβάστε περισσότερα

Ανάλυση Συσχέτισης IΙ

Ανάλυση Συσχέτισης IΙ Ανάλυση Συσχέτισης IΙ Οι διαφάνειες στηρίζονται στο P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, 2006 ΟΑλγόριθμοςFP-Growth Εξόρυξη Δεδομένων: Ακ. Έτος 2010-2011 ΚΑΝΟΝΕΣ

Διαβάστε περισσότερα

Ο Αλγόριθμος FP-Growth

Ο Αλγόριθμος FP-Growth Ο Αλγόριθμος FP-Growth Με λίγα λόγια: Ο αλγόριθμος χρησιμοποιεί μια συμπιεσμένη αναπαράσταση της βάσης των συναλλαγών με τη μορφή ενός FP-δέντρου Το δέντρο μοιάζει με προθεματικό δέντρο - prefix tree (trie)

Διαβάστε περισσότερα

Οι διαφάνειες στηρίζονται στο P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, 2006

Οι διαφάνειες στηρίζονται στο P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, 2006 Κανόνες Συσχέτισης Ι Οι διαφάνειες στηρίζονται στο P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, 2006 Εισαγωγή Market-Basket transactions (Το καλάθι της νοικοκυράς!)

Διαβάστε περισσότερα

Κανόνες Συσχέτισης IΙ

Κανόνες Συσχέτισης IΙ Κανόνες Συσχέτισης IΙ Οι διαφάνειες στηρίζονται στο P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, 26 Σύντομη Ανακεφαλαίωση Εξόρυξη Δεδομένων: Ακ. Έτος 28-29 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ

Διαβάστε περισσότερα

Οι διαφάνειες στηρίζονται στο P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, 2006

Οι διαφάνειες στηρίζονται στο P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, 2006 Ανάλυση Συσχέτισης Ι Οι διαφάνειες στηρίζονται στο P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, 2006 Εισαγωγή Market Basket transactions (Το καλάθι της νοικοκυράς!)

Διαβάστε περισσότερα

Κανόνες Συσχέτισης IIΙ

Κανόνες Συσχέτισης IIΙ Κανόνες Συσχέτισης IIΙ Οι διαφάνειες στηρίζονται στο P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, 26 Σύντομη Ανακεφαλαίωση Εξόρυξη Δεδομένων: Ακ. Έτος 2-2 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ

Διαβάστε περισσότερα

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων Ενότητα 11: Κανόνες Συσχέτισης Μέρος Α Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης

Διαβάστε περισσότερα

Κεφάλαιο 7: Εξόρυξη Συχνών Στοιχειοσυνόλων και Κανόνων Συσχέτισης

Κεφάλαιο 7: Εξόρυξη Συχνών Στοιχειοσυνόλων και Κανόνων Συσχέτισης Κεφάλαιο 7: Εξόρυξη Συχνών Στοιχειοσυνόλων και Κανόνων Συσχέτισης Σύνοψη Ο βασικός στόχος αυτού του κεφαλαίου είναι η εισαγωγή σε θέματα που αφορούν στην εξόρυξη συχνών στοιχειοσυνόλων και κανόνων συσχέτισης.

Διαβάστε περισσότερα

Κανόνες Συσχέτισης IΙ Σύντομη Ανακεφαλαίωση

Κανόνες Συσχέτισης IΙ Σύντομη Ανακεφαλαίωση Κανόνες Συσχέτισης IΙ Σύντομη Ανακεφαλαίωση Οι διαφάνειες στηρίζονται στο P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to ata Mining», ddison Wesley, 26 Εξόρυξη Δεδομένων: Ακ. Έτος 27-28 ΚΑΝΟΝΕΣ ΣΥΣΧΕΤΙΣΗΣ

Διαβάστε περισσότερα

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων:

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων: Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων: Oμαδοποίηση: Μέρος Α http://delab.csd.auth.gr/~gounaris/courses/dwdm/ gounaris/courses/dwdm/ Ευχαριστίες Οι διαφάνειες του μαθήματος σε γενικές γραμμές ακολουθούν

Διαβάστε περισσότερα

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων:

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων: Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων: Oμαδοποίηση: Μέρος Δ http://delab.csd.auth.gr/~gounaris/courses/dwdm/ gounaris/courses/dwdm/ Ευχαριστίες Οι διαφάνειες του μαθήματος σε γενικές γραμμές ακολουθούν

Διαβάστε περισσότερα

!! " &' ': " /.., c #$% & - & ' ()",..., * +,.. * ' + * - - * ()",...(.

!!  &' ':  /.., c #$% & - & ' (),..., * +,.. * ' + * - - * (),...(. ..,.. 00 !!.6 7 " 57 +: #$% & - & ' ()",..., * +,.. * ' + * - - * ()",.....(. 8.. &' ': " /..,... :, 00. c. " *+ ' * ' * +' * - * «/'» ' - &, $%' * *& 300.65 «, + *'». 3000400- -00 3-00.6, 006 3 4.!"#"$

Διαβάστε περισσότερα

Data mining Εξόρυξη εδοµένων. o Association rules mining o Classification o Clustering o Text Mining o Web Mining

Data mining Εξόρυξη εδοµένων. o Association rules mining o Classification o Clustering o Text Mining o Web Mining Data mining Εξόρυξη εδοµένων o Association rules mining o Classification o Clustering o Text Mining o Web Mining ιάγραµµα της παρουσίασης Association rule Frequent itemset mining Γνωστοί Αλγόριθµοι Βελτιώσεις

Διαβάστε περισσότερα

Κανόνες Συσχέτισης IΙ Σύντομη Ανακεφαλαίωση

Κανόνες Συσχέτισης IΙ Σύντομη Ανακεφαλαίωση Κανόνες Συσχέτισης IΙ Σύντομη Ανακεφαλαίωση Οι διαφάνειες στηρίζονται στο P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to ata Mining», ddison Wesley, 2006 Εξόρυξη Δεδομένων: Ακ. Έτος 2006-2007 ΚΑΝΟΝΕΣ

Διαβάστε περισσότερα

Κανόνες Συσχέτισης Ι. Εισαγωγή. Εισαγωγή. Ορισμοί. Ορισμοί. Ορισμοί. Market-Basket transactions (Το καλάθι της νοικοκυράς!)

Κανόνες Συσχέτισης Ι. Εισαγωγή. Εισαγωγή. Ορισμοί. Ορισμοί. Ορισμοί. Market-Basket transactions (Το καλάθι της νοικοκυράς!) Εισαγωγή Κανόνες Συσχέτισης Ι Οι διαφάνειες στηρίζονται στο P.-N. Tan, M.Steinbach, V. Kumar, «Introdion to Data Mining», Addison Wesley, 26 Market-Basket transactions (Το καλάθι της νοικοκυράς!) TID Items

Διαβάστε περισσότερα

Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής. Εξόρυξη Γνώσης από εδοµένα (Data Mining) Εξόρυξη Κανόνων Συσχετίσεων. Γιάννης Θεοδωρίδης

Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής. Εξόρυξη Γνώσης από εδοµένα (Data Mining) Εξόρυξη Κανόνων Συσχετίσεων. Γιάννης Θεοδωρίδης Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής Εξόρυξη Γνώσης από εδοµένα (Data Mining) Εξόρυξη Κανόνων Συσχετίσεων Γιάννης Θεοδωρίδης Οµάδα ιαχείρισης εδοµένων Εργαστήριο Πληροφοριακών Συστηµάτων http://isl.cs.unipi.gr/db

Διαβάστε περισσότερα

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων:

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων: Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων: Oμαδοποίηση: Μέρος Γ http://delab.csd.auth.gr/~gounaris/courses/dwdm/ gounaris/courses/dwdm/ Ευχαριστίες Οι διαφάνειες του μαθήματος σε γενικές γραμμές ακολουθούν

Διαβάστε περισσότερα

ΗΥ360 Αρχεία και Βάσεις εδοµένων ιδάσκων:. Πλεξουσάκης

ΗΥ360 Αρχεία και Βάσεις εδοµένων ιδάσκων:. Πλεξουσάκης ΗΥ360 Αρχεία και Βάσεις εδοµένων ιδάσκων:. Πλεξουσάκης Συναρτησιακές Εξαρτήσεις Αξιώµατα Armstrong Ελάχιστη κάλυψη Φροντιστήριο 1 Συναρτησιακές Εξαρτήσεις Οι Συναρτησιακές εξαρτήσεις είναι περιορισµοί

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Διαίρει και Βασίλευε Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Διαίρει και Βασίλευε Divide and Conquer Η τεχνική διαίρει και βασίλευε αναφέρεται

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #7: Ελάχιστα Επικαλυπτικά Δένδρα, Αλγόριθμος Kruskal, Δομές Union-Find Άσκηση # 0 5 0 0 0

Διαβάστε περισσότερα

Μελετάμε την περίπτωση όπου αποθηκεύουμε ένα (δυναμικό) σύνολο στοιχειών. Ένα στοιχείο γράφεται ως, όπου κάθε.

Μελετάμε την περίπτωση όπου αποθηκεύουμε ένα (δυναμικό) σύνολο στοιχειών. Ένα στοιχείο γράφεται ως, όπου κάθε. Ψηφιακά Δένδρα Μελετάμε την περίπτωση όπου αποθηκεύουμε ένα (δυναμικό) σύνολο στοιχειών τα οποία είναι ακολουθίες συμβάλλων από ένα πεπερασμένο αλφάβητο Ένα στοιχείο γράφεται ως, όπου κάθε. Μπορούμε να

Διαβάστε περισσότερα

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Συνδυαστική Λογική / Κυκλώματα (Μέρος B) Διδάσκουσα: Μαρία Κ Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Βελτιστοποίηση

Διαβάστε περισσότερα

Κλείσιμο Συνόλου Γνωρισμάτων

Κλείσιμο Συνόλου Γνωρισμάτων Κλείσιμο Συνόλου Γνωρισμάτων Ο υπολογισμός του κλεισίματος ενός συνόλου από ΣΕ μας δίνει τα σύνολα όλων των γνωρισμάτων τα οποία προσδιορίζονται συναρτησιακά από άλλα σύνολα γνωρισμάτων Ο υπολογισμός αυτός

Διαβάστε περισσότερα

Θέματα Εφαρμογών Βάσεων Δεδομένων: Ιδιωτικότητα Δεδομένων

Θέματα Εφαρμογών Βάσεων Δεδομένων: Ιδιωτικότητα Δεδομένων Θέματα Εφαρμογών Βάσεων Δεδομένων: Ιδιωτικότητα Δεδομένων 3. Δυναμικός Προγραμματισμός Ζαγορίσιος Παναγώτης Παπαοικονόμου Χριστίνα Δυναμικός Προγραμματισμός Μέθοδος επίλυσης σύνθετων προβλημάτων. Όπως

Διαβάστε περισσότερα

Αρχεία και Βάσεις Δεδομένων

Αρχεία και Βάσεις Δεδομένων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αρχεία και Βάσεις Δεδομένων Διάλεξη 13η: Κλείσιμο Συνόλου Γνωρισμάτων - Ελάχιστη κάλυψη - Αποσύνθεση - Συναρτησιακές Εξαρτήσεις Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης

Διαβάστε περισσότερα

Αλγόριθμοι Εξόρυξης δεδομένων για χειρισμό πολλαπλών υποστηρίξεων και αρνητικών συσχετίσεων

Αλγόριθμοι Εξόρυξης δεδομένων για χειρισμό πολλαπλών υποστηρίξεων και αρνητικών συσχετίσεων ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ : «ΕΠΙΣΤΗΜΗ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ» ΤΙΤΛΟΣ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ : Αλγόριθμοι Εξόρυξης δεδομένων

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Συμβολοσειρές. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Συμβολοσειρές. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Συμβολοσειρές Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Συμβολοσειρές Συμβολοσειρές και προβλήματα που αφορούν συμβολοσειρές εμφανίζονται τόσο συχνά που

Διαβάστε περισσότερα

Δένδρα Αναζήτησης Πολλαπλής Διακλάδωσης

Δένδρα Αναζήτησης Πολλαπλής Διακλάδωσης Δένδρα Αναζήτησης Πολλαπλής Διακλάδωσης Δένδρα στα οποία κάθε κόμβος μπορεί να αποθηκεύει ένα ή περισσότερα κλειδιά. Κόμβος με d διακλαδώσεις : k 1 k 2 k 3 k 4 d-1 διατεταγμένα κλειδιά d διατεταγμένα παιδιά

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 20 Huffman codes 1 / 12 Κωδικοποίηση σταθερού μήκους Αν χρησιμοποιηθεί κωδικοποίηση σταθερού μήκους δηλαδή

Διαβάστε περισσότερα

Ερώτημα 1. Μας δίνεται μια συλλογή από k ακολοθίες, k >=2 και αναζητούμε το πρότυπο Ρ, μεγέθους n.

Ερώτημα 1. Μας δίνεται μια συλλογή από k ακολοθίες, k >=2 και αναζητούμε το πρότυπο Ρ, μεγέθους n. Πρώτο Σύνολο Ασκήσεων 2014-2015 Κατερίνα Ποντζόλκοβα, 5405 Αθανασία Ζαχαριά, 5295 Ερώτημα 1 Μας δίνεται μια συλλογή από k ακολοθίες, k >=2 και αναζητούμε το πρότυπο Ρ, μεγέθους n. Ο αλγόριθμος εύρεσης

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Εξόρυξη και διαχείριση κανόνων συσχέτισης με χρήση τεχνικών Ανάκτησης Πληροφορίας ΘΕΟΔΩΡΟΣ Θ. ΒΑΡΣΑΜΗΣ

Διαβάστε περισσότερα

ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ (συνέχεια)

ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ (συνέχεια) ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ (συνέχεια) Πολλαπλασιασμός: μπορούμε καλύτερα; Διαισθητικά, επειδή ο πολλαπλασιασμός φαίνεται να απαιτεί άθροιση περίπου n πολλαπλασίων μιας από τις εισόδους, και δεδομένου ότι κάθε πρόσθεση

Διαβάστε περισσότερα

ΔΙΑΣΧΙΣΗ ΓΡΑΦΗΜΑΤΩΝ 1

ΔΙΑΣΧΙΣΗ ΓΡΑΦΗΜΑΤΩΝ 1 ΔΙΑΣΧΙΣΗ ΓΡΑΦΗΜΑΤΩΝ 1 Θέματα μελέτης Πρόβλημα αναζήτησης σε γραφήματα Αναζήτηση κατά βάθος (Depth-first search DFS) Αναζήτηση κατά πλάτος (Breadth-first search BFS) 2 Γράφημα (graph) Αναπαράσταση συνόλου

Διαβάστε περισσότερα

Πολλαπλασιασμός: αλγόριθμος

Πολλαπλασιασμός: αλγόριθμος ΟΛΛΑΛΑΣΙΑΣΜΟΣ ολλαπλασιασμός: αλγόριθμος Για να πολλαπλασιάσουμε δύο αριθμούς x και κατασκευάζουμε έναν πίνακα από ενδιάμεσα αθροίσματα, κάθε ένα από τα οποία προκύπτει ως γινόμενο του x με ένα ψηφίο του

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #: Εύρεση Ελαχίστων Μονοπατιών σε Γραφήματα που Περιλαμβάνουν και Αρνητικά Βάρη: Αλγόριθμος

Διαβάστε περισσότερα

ΔΥΑΔΙΚΗ ΑΝΑΖΗΤΗΣΗ & ΤΑΞΙΝΟΜΗΣΗ ΜΕ ΣΥΓΧΩΝΕΥΣΗ

ΔΥΑΔΙΚΗ ΑΝΑΖΗΤΗΣΗ & ΤΑΞΙΝΟΜΗΣΗ ΜΕ ΣΥΓΧΩΝΕΥΣΗ ΔΥΑΔΙΚΗ ΑΝΑΖΗΤΗΣΗ & ΤΑΞΙΝΟΜΗΣΗ ΜΕ ΣΥΓΧΩΝΕΥΣΗ (ΑΛΓΟΡΙΘΜΟΙ, Sanjoy Dasgupta, Christos Papadimitriou, Umesh Vazirani, σελ. 55-62 ΣΧΕΔΙΑΣΜΟΣ ΑΛΓΟΡΙΘΜΩΝ, Jon Kleinberg, Eva Tardos, Κεφάλαιο 5) Δυαδική αναζήτηση

Διαβάστε περισσότερα

Αρχεία και Βάσεις Δεδομένων

Αρχεία και Βάσεις Δεδομένων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αρχεία και Βάσεις Δεδομένων Διάλεξη 12η: Συναρτησιακές Εξαρτήσεις - Αξιώματα Armstrong Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Συναρτησιακές Εξαρτήσεις

Διαβάστε περισσότερα

Το Πρόβλημα του Περιοδεύοντος Πωλητή - The Travelling Salesman Problem

Το Πρόβλημα του Περιοδεύοντος Πωλητή - The Travelling Salesman Problem Το Πρόβλημα του Περιοδεύοντος Πωλητή - The Travelling Salesman Problem Έλενα Ρόκου Μεταδιδακτορική Ερευνήτρια ΕΜΠ Κηρυττόπουλος Κωνσταντίνος Επ. Καθηγητής ΕΜΠ Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΓΕΩΜΕΤΡΙΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΓΕΩΜΕΤΡΙΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ 212-213 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΓΕΩΜΕΤΡΙΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Θέμα 1 ο Α. Να αποδείξετε ότι κάθε σημείο της διχοτόμου μιας γωνίας ισαπέχει

Διαβάστε περισσότερα

Αρχεία και Βάσεις Δεδομένων Φροντιστήριο Κανονικές Μορφές

Αρχεία και Βάσεις Δεδομένων Φροντιστήριο Κανονικές Μορφές ΗΥ-360 Αρχεία και Βάσεις Δεδομένων Φροντιστήριο Κανονικές Μορφές 1 Κλειστότητα Συναρτησιακών Eξαρτήσεων: Πώς συμβολίζεται: F + Τι σημαίνει : Το ΣΥΝΟΛΟ των Σ.Ε. που μπορούν να παραχθούν από ένα σύνολο εξαρτήσεων

Διαβάστε περισσότερα

Βάσεις Δεδομένων Συναρτησιακές Εξαρτήσεις (Functional Dependencies) Σχεδιασμός Βάσεων Δεδομένων και Κανονικοποίηση

Βάσεις Δεδομένων Συναρτησιακές Εξαρτήσεις (Functional Dependencies) Σχεδιασμός Βάσεων Δεδομένων και Κανονικοποίηση Βάσεις Δεδομένων Συναρτησιακές Εξαρτήσεις (Functional Dependencies) Σχεδιασμός Βάσεων Δεδομένων και Κανονικοποίηση Φροντιστήριο 6ο 26-1-2009 ΘΕΩΡΙΑ Συναρτησιακές-Λειτουργικές εξαρτήσεις Κανόνες συμπερασμού

Διαβάστε περισσότερα

A Fast Mining Algorithm for Frequent Essential Itemsets

A Fast Mining Algorithm for Frequent Essential Itemsets 40 6 Vol.40 No.6 Computer Engineering 2014 6 June 2014 1000 3428(2014)06 0120 05 A TP18 ( 230009) FMEP Rymon MEP 2 30 Rymon A Fast Mining Algorithm for Frequent Essential Itemsets TIAN Wei-dong, JI Yun

Διαβάστε περισσότερα

Αλγόριθμοι Ταξινόμησης Bubble Sort Quick Sort. Αντρέας Δημοσθένους Καθηγητής Πληροφορικής Ολυμπιάδα 2012

Αλγόριθμοι Ταξινόμησης Bubble Sort Quick Sort. Αντρέας Δημοσθένους Καθηγητής Πληροφορικής Ολυμπιάδα 2012 Αλγόριθμοι Ταξινόμησης Bubble Sort Quick Sort Αντρέας Δημοσθένους Καθηγητής Πληροφορικής Ολυμπιάδα 2012 3 5 1 Ταξινόμηση - Sorting Πίνακας Α 1 3 5 5 3 1 Ταξινόμηση (Φθίνουσα) Χωρίς Ταξινόμηση Ταξινόμηση

Διαβάστε περισσότερα

Συμπίεση χωρίς Απώλειες

Συμπίεση χωρίς Απώλειες Συμπίεση χωρίς Απώλειες Στόχοι της συμπίεσης δεδομένων: Μείωση του απαιτούμενου χώρου αποθήκευσης των δεδομένων. Περιορισμός της απαιτούμενης χωρητικότητας διαύλου επικοινωνίας για την μετάδοση. μείωση

Διαβάστε περισσότερα

ΕΞΟΡΥΞΗ ΔΕΔΟΜΕΝΩΝ. Εισαγωγή

ΕΞΟΡΥΞΗ ΔΕΔΟΜΕΝΩΝ. Εισαγωγή ΕΞΟΡΥΞΗ ΔΕΔΟΜΕΝΩΝ Εισαγωγή Συστάσεις Ι Ποιός είμαι εγώ: Email: tsap@cs.uoi.gr Γραφείο: Β.3 Προτιμώμενες ώρες γραφείου: 11:00-18:00 Ενδιαφέροντα Web mining, Social networks, User Generated Content Mobile

Διαβάστε περισσότερα

Διαδικασιακός Προγραμματισμός

Διαδικασιακός Προγραμματισμός Τμήμα ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ Διαδικασιακός Προγραμματισμός Διάλεξη 12 η Αναζήτηση/Ταξινόμηση Πίνακα Οι διαλέξεις βασίζονται στο βιβλίο των Τσελίκη και Τσελίκα C: Από τη Θεωρία στην

Διαβάστε περισσότερα

Διαίρει και Βασίλευε. πρόβλημα μεγέθους Ν. διάσπαση. πρόβλημα μεγέθους k. πρόβλημα μεγέθους Ν-k

Διαίρει και Βασίλευε. πρόβλημα μεγέθους Ν. διάσπαση. πρόβλημα μεγέθους k. πρόβλημα μεγέθους Ν-k Διαίρει και Βασίλευε πρόβλημα μεγέθους Ν διάσπαση πρόβλημα μεγέθους k πρόβλημα μεγέθους Ν-k Διαίρει και Βασίλευε πρόβλημα μεγέθους Ν διάσπαση επιλύουμε αναδρομικά τα υποπροβλήματα πρόβλημα μεγέθους k πρόβλημα

Διαβάστε περισσότερα

Κωδικοποίηση Πηγής. Δρ. Α. Πολίτης

Κωδικοποίηση Πηγής. Δρ. Α. Πολίτης Κωδικοποίηση Πηγής Coder Decoder Μεταξύ πομπού και καναλιού παρεμβάλλεται ο κωδικοποιητής (coder). Έργο του: η αντικατάσταση των συμβόλων πληροφορίας της πηγής με εναλλακτικά σύμβολα ή λέξεις. Κωδικοποίηση

Διαβάστε περισσότερα

Σχεδίαση Β.Δ. (Database Design)

Σχεδίαση Β.Δ. (Database Design) Σχεδίαση Β.Δ. (Database Design) Η σχεδίαση ενός σχήματος μιας Β.Δ. βασίζεται σε μεγάλο βαθμό στη διαίσθηση του σχεδιαστή σχετικά με τον κόσμο που θέλει να αναπαραστήσει. Η εννοιολογική σχεδίαση υπαρκτών

Διαβάστε περισσότερα

Graph Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Καούρη Γεωργία Μήτσου Βασιλική

Graph Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Καούρη Γεωργία Μήτσου Βασιλική Graph Algorithms Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Καούρη Γεωργία Μήτσου Βασιλική Περιεχόμενα minimum weight spanning tree connected components transitive closure shortest paths

Διαβάστε περισσότερα

Αναδρομικοί Αλγόριθμοι

Αναδρομικοί Αλγόριθμοι Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας ένα ή περισσότερα στιγμιότυπα του ίδιου προβλήματος. Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας

Διαβάστε περισσότερα

C D C D C D C D A B

C D C D C D C D A B Απλοποίηση µέσω Πίνακα Karnaugh: Παράδειγµα - 2 Στον παρακάτω πίνακα έχει ήδη γίνει το «βήμα- 1». Επομένως: Βήμα 2: Δεν υπάρχουν απομονωμένα κελιά. Βήμα 3: Στο ζεύγος (3,7) το κελί 3 γειτνιάζει μόνο με

Διαβάστε περισσότερα

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή Ισορροπημένα Δένδρα Μπορούμε να επιτύχουμε για κάθε λειτουργία; χρόνο εκτέλεσης Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή μετά από Περιστροφές x αριστερή περιστροφή από το x y α β y

Διαβάστε περισσότερα

7ο ΕΡΓΑΣΤΗΡΙΟ AAAABBBBAAAAABBBBBBCCCCCCCCCCCCCCBBABAAAABBBBBBCCCCD

7ο ΕΡΓΑΣΤΗΡΙΟ AAAABBBBAAAAABBBBBBCCCCCCCCCCCCCCBBABAAAABBBBBBCCCCD ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΛΑΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2010 11 Ιστοσελίδα μαθήματος: http://eclass.teilam.gr/di288 1 Συμπίεση

Διαβάστε περισσότερα

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Με τον όρο μη γραμμικές εξισώσεις εννοούμε εξισώσεις της μορφής: f( ) 0 που προέρχονται από συναρτήσεις f () που είναι μη γραμμικές ως προς. Περιέχουν δηλαδή

Διαβάστε περισσότερα

Δυναμικός Προγραμματισμός

Δυναμικός Προγραμματισμός Τρίγωνο του Pascal Δυναμικός Προγραμματισμός Διωνυμικοί συντελεστές Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο

Διαβάστε περισσότερα

Αναζήτηση στους γράφους. - Αναζήτηση η κατά βάθος Συνεκτικές Συνιστώσες - Αλγόριθμος εύρεσης συνεκτικών συνιστωσών

Αναζήτηση στους γράφους. - Αναζήτηση η κατά βάθος Συνεκτικές Συνιστώσες - Αλγόριθμος εύρεσης συνεκτικών συνιστωσών Αναζήτηση στους γράφους Βασικός αλγόριθμος λό - Αναζήτηση κατά πλάτος - Αναζήτηση η κατά βάθος Συνεκτικές Συνιστώσες - Αλγόριθμος εύρεσης συνεκτικών συνιστωσών Διάσχιση (αναζήτηση ) στους γράφους Φεύγοντας

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2014 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2014 1 / 42 Αριθμητικές Μέθοδοι

Διαβάστε περισσότερα

Τι είναι αλγόριθμος; Υποπρογράμματα (υποαλγόριθμοι) Βασικές αλγοριθμικές δομές

Τι είναι αλγόριθμος; Υποπρογράμματα (υποαλγόριθμοι) Βασικές αλγοριθμικές δομές Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16 Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Τι είναι

Διαβάστε περισσότερα

ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ

ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΤΥΠΟΛΟΓΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΘΗΝΑ ΟΚΤΩΒΡΙΟΣ 2012 1 ΤΥΠΟΛΟΓΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗ ΔΕΟ 13 ΚΟΣΤΗ TC = FC + VC ή TC = AC* SOS TC ATC = Το μέσο κόστος ισούται με το

Διαβάστε περισσότερα

Περιεχόμενα. Περιεχόμενα

Περιεχόμενα. Περιεχόμενα Περιεχόμενα xv Περιεχόμενα 1 Αρχές της Java... 1 1.1 Προκαταρκτικά: Κλάσεις, Τύποι και Αντικείμενα... 2 1.1.1 Βασικοί Τύποι... 5 1.1.2 Αντικείμενα... 7 1.1.3 Τύποι Enum... 14 1.2 Μέθοδοι... 15 1.3 Εκφράσεις...

Διαβάστε περισσότερα

http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584

http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584 Επιμέλεια: xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΕΚΦΩΝΗΣΕΙΣ ΤΕΥΧΟΣ 5ο ΑΣΚΗΣΕΙΣ 401-500 Αφιερωμένο σε κάθε μαθητή που ασχολείται ή πρόκειται να ασχοληθεί με Μαθηματικούς διαγωνισμούς

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Απαρίθμηση: μεταθέσεις και συνδυασμοί

Διακριτά Μαθηματικά. Απαρίθμηση: μεταθέσεις και συνδυασμοί Διακριτά Μαθηματικά Απαρίθμηση: μεταθέσεις και συνδυασμοί Μεταθέσεις (permutations) Μετάθεση διακεκριμένων στοιχείων ενός συνόλου = Ανακάτεμα κάποιων ή όλων των στοιχείων του συνόλου S={1,2,3} Μεταθέσεις

Διαβάστε περισσότερα

Αλγοριθμικές Τεχνικές. Brute Force. Διαίρει και Βασίλευε. Παράδειγμα MergeSort. Παράδειγμα. Τεχνικές Σχεδιασμού Αλγορίθμων

Αλγοριθμικές Τεχνικές. Brute Force. Διαίρει και Βασίλευε. Παράδειγμα MergeSort. Παράδειγμα. Τεχνικές Σχεδιασμού Αλγορίθμων Τεχνικές Σχεδιασμού Αλγορίθμων Αλγοριθμικές Τεχνικές Παύλος Εφραιμίδης, Λέκτορας http://pericles.ee.duth.gr Ορισμένες γενικές αρχές για τον σχεδιασμό αλγορίθμων είναι: Διαίρει και Βασίλευε (Divide and

Διαβάστε περισσότερα

Πληρότητα της μεθόδου επίλυσης

Πληρότητα της μεθόδου επίλυσης Πληρότητα της μεθόδου επίλυσης Λήμμα: Αν κάθε μέλος ενός συνόλου όρων περιέχει ένα αρνητικό γράμμα, τότε το σύνολο είναι ικανοποιήσιμο. Άρα για να είναι μη-ικανοποιήσιμο, θα πρέπει να περιέχει τουλάχιστον

Διαβάστε περισσότερα

Ελίνα Μακρή

Ελίνα Μακρή Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,

Διαβάστε περισσότερα

Θεωρία τησ Πληροφορίασ (Θ) ΔΙΔΑΚΩΝ: Δρ. Αναςτάςιοσ Πολίτησ

Θεωρία τησ Πληροφορίασ (Θ) ΔΙΔΑΚΩΝ: Δρ. Αναςτάςιοσ Πολίτησ Θεωρία τησ Πληροφορίασ (Θ) Ενότητα 3: Κωδικοποίηςη Πηγήσ ΔΙΔΑΚΩΝ: Δρ. Αναςτάςιοσ Πολίτησ ΧΟΛΗ ΣΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΣΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΣΕ Άδειεσ Χρήςησ Σο παρόν εκπαιδευτικό υλικό υπόκειται ςε

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2015 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2015 1 / 47 Αριθμητικές Μέθοδοι

Διαβάστε περισσότερα

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find)

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find) Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη (Union-Find) ΗΥ240 - Παναγιώτα Φατούρου 1 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης Έστω ότι S 1,, S k είναι ξένα υποσύνολα ενός συνόλου U, δηλαδή

Διαβάστε περισσότερα

Δ Ι Π Λ Ω Μ ΑΤ Ι Κ Η Ε Ρ ΓΑ Σ Ι Α

Δ Ι Π Λ Ω Μ ΑΤ Ι Κ Η Ε Ρ ΓΑ Σ Ι Α Α Ρ Ι Σ Τ Ο Τ Ε Λ Ε Ι Ο Π Α Ν Ε Π Ι Σ Τ Η Μ Ι Ο Θ Ε Σ Σ Α Λ Ο Ν Ι Κ Η Σ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Δ Ι Π Λ Ω Μ ΑΤ Ι Κ Η Ε Ρ ΓΑ Σ Ι Α ΠΑΡΑΓΩΓΗ ΚΑΙ ΟΠΤΙΚΟΠΟΙΗΣΗ ΚΑΝΟΝΩΝ ΣΥΣΧΕΤΙΣΗΣ ΓΙΑ ΔΕΔΟΜΕΝΑ

Διαβάστε περισσότερα

Αλγοριθμικές Τεχνικές

Αλγοριθμικές Τεχνικές Αλγοριθμικές Τεχνικές Παύλος Εφραιμίδης, Λέκτορας http://pericles.ee.duth.gr Αλγοριθμικές Τεχνικές 1 Τεχνικές Σχεδιασμού Αλγορίθμων Ορισμένες γενικές αρχές για τον σχεδιασμό αλγορίθμων είναι: Διαίρει και

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Η έννοια του συνδυαστικού

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/ Τεχνητή Νοημοσύνη 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία: Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

(Γραμμικές) Αναδρομικές Σχέσεις

(Γραμμικές) Αναδρομικές Σχέσεις (Γραμμικές) Αναδρομικές Σχέσεις ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναδρομικές Σχέσεις Αναπαράσταση

Διαβάστε περισσότερα

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Ταξινόµηση Mergesort Κεφάλαιο 8. Ε. Μαρκάκης Επίκουρος Καθηγητής

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Ταξινόµηση Mergesort Κεφάλαιο 8. Ε. Μαρκάκης Επίκουρος Καθηγητής ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Ταξινόµηση Mergesort Κεφάλαιο 8 Ε. Μαρκάκης Επίκουρος Καθηγητής Περίληψη Ταξινόµηση µε συγχώνευση Αλγόριθµος Mergesort Διµερής συγχώνευση Αφηρηµένη επιτόπου συγχώνευση Αναλυτική ταξινόµηση

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών. Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι

Εισαγωγή στην επιστήμη των υπολογιστών. Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι Εισαγωγή στην επιστήμη των υπολογιστών Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι 1 Έννοια Ανεπίσημα, ένας αλγόριθμος είναι μια βήμα προς βήμα μέθοδος για την επίλυση ενός προβλήματος ή την διεκπεραίωση

Διαβάστε περισσότερα

Συνδυαστική Απαρίθμηση

Συνδυαστική Απαρίθμηση Παραδείγματα Συνδυαστική Απαρίθμηση Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο n θρανία στη σειρά

Διαβάστε περισσότερα

Εισαγωγή στην Ανάλυση Αλγορίθμων

Εισαγωγή στην Ανάλυση Αλγορίθμων Εισαγωγή στην Ανάλυση Αλγορίθμων (4) Μεθοδολογία αναδρομικών σχέσεων (Ι) Με επανάληψη της αναδρομής Έστω όπου r και a είναι σταθερές. Βρίσκουμε τη σχέση που εκφράζει την T(n) συναρτήσει της T(n-) την T(n)

Διαβάστε περισσότερα

Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα:

Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: υναµικός Προγραµµατισµός Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Σχεδιασµός αλγορίθµων µε υναµικό Προγραµµατισµό Το πρόβληµα του πολλαπλασιασµού πινάκων ΕΠΛ 3 Αλγόριθµοι και Πολυπλοκότητα 3- υναµικός

Διαβάστε περισσότερα

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find)

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find) Ενότητα 9 (Union-Find) ΗΥ240 - Παναγιώτα Φατούρου 1 Έστω ότι S 1,, S k είναι ξένα υποσύνολα ενός συνόλου U, δηλαδή ισχύει ότι S i S j =, για κάθε i,j µε i j και S 1 S k = U. Λειτουργίες q MakeSet(X): επιστρέφει

Διαβάστε περισσότερα

Εργαστήριο Τεχνολογίας Πολυμέσων & Γραφικών, Τ.Ε.Π Π.Μ, Μάθημα: Γραφικά με Η/Υ

Εργαστήριο Τεχνολογίας Πολυμέσων & Γραφικών, Τ.Ε.Π Π.Μ, Μάθημα: Γραφικά με Η/Υ ΓΡΑΦΙΚΑ Γέμισμα ΑΛΓΟΡΙΘΜΟΙ ΓΕΜΙΣΜΑΤΟΣ Για τις πλεγματικές οθόνες υπάρχουν: Αλγόριθμοι γεμίσματος:, που στηρίζονται στη συνάφεια των pixels του εσωτερικού ενός πολυγώνου Αλγόριθμοι σάρωσης: που στηρίζονται

Διαβάστε περισσότερα

Εισαγωγή στους Αλγόριθµους Σεπτέµβριος Εξεταστές: Χ. Ζαρολιάγκης, Θ. Παπαθεοδώρου

Εισαγωγή στους Αλγόριθµους Σεπτέµβριος Εξεταστές: Χ. Ζαρολιάγκης, Θ. Παπαθεοδώρου Ονοµατεπώνυµο: Εισαγωγή στους Αλγόριθµους Σεπτέµβριος Εξεταστές: Χ. Ζαρολιάγκης, Θ. Παπαθεοδώρου Α.Μ.: Έτος: ιάρκεια Εξέτασης: ώρες ο Θέµα ( µονάδα) i) ίνεται το διάνυσµα A µε N 8 στοιχεία. Να υπολογιστεί

Διαβάστε περισσότερα

Σύγχρονη Φυσική 1, Διάλεξη 12, Τμήμα Φυσικής, Παν/μιο Ιωαννίνων Διαγράμματα Minkowski

Σύγχρονη Φυσική 1, Διάλεξη 12, Τμήμα Φυσικής, Παν/μιο Ιωαννίνων Διαγράμματα Minkowski 1 Διαγράμματα Minkowski Σκοποί της διάλεξης 12: Να εισάγει τα διαγράμματα Minkowski. 18.1.2012 Να περιγράψει την ιδέα του ταυτοχρονισμού στην θεωρία της σχετικότητας με μεθόδους γεωμετρίας. Να εισάγει

Διαβάστε περισσότερα

Εισαγωγή στους Η/Υ. Ενότητα 2α: Χάρτης Karnaugh (Βοηθητικό υλικό)

Εισαγωγή στους Η/Υ. Ενότητα 2α: Χάρτης Karnaugh (Βοηθητικό υλικό) Εισαγωγή στους Η/Υ Ενότητα 2α: (Βοηθητικό υλικό) Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Σκοποί ενότητας Κατανόηση της χρήσης του Χάρτη Karnaugh 2 Περιεχόμενα

Διαβάστε περισσότερα

Θεωρία τησ Πληροφορίασ (Θ) ΔΙΔΑΚΩΝ: Δρ. Αναςτάςιοσ Πολίτησ

Θεωρία τησ Πληροφορίασ (Θ) ΔΙΔΑΚΩΝ: Δρ. Αναςτάςιοσ Πολίτησ Θεωρία τησ Πληροφορίασ (Θ) Ενότητα 4: Συμπίεςη χωρίσ Απώλειεσ ΔΙΔΑΚΩΝ: Δρ. Αναςτάςιοσ Πολίτησ ΧΟΛΗ ΣΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΣΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΣΕ Άδειεσ Χρήςησ Σο παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Κωδικοποίηση Πηγής. Η λειτουργία ενός συστήματος επικοινωνίας (γενικό διάγραμμα):

Κωδικοποίηση Πηγής. Η λειτουργία ενός συστήματος επικοινωνίας (γενικό διάγραμμα): Κωδικοποίηση Πηγής Η λειτουργία ενός συστήματος επικοινωνίας (γενικό διάγραμμα): Coder Decoder Μεταξύ πομπού-καναλιού παρεμβάλλεται ο κωδικοποιητής (coder). Έργο του: η αντικατάσταση των συμβόλων πληροφορίας

Διαβάστε περισσότερα

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 12: Δέντρα ΙΙ -Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Δυαδικά Δένδρα - Δυαδικά Δένδρα Αναζήτησης(ΔΔΑ) - Εύρεση Τυχαίου, Μέγιστου, Μικρότερου στοιχείου - Εισαγωγή

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 6η Διάλεξη

Θεωρία Γραφημάτων 6η Διάλεξη Θεωρία Γραφημάτων 6η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 6η Διάλεξη

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 Για τις ερωτήσεις 1-4 θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι;

ΑΣΚΗΣΗ 1 Για τις ερωτήσεις 1-4 θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι; ΘΕΜΑΤΑ ΔΕΝΔΡΩΝ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΠΛΗ0 ΑΣΚΗΣΗ Για τις ερωτήσεις - θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι; Β Ε Α 6 Δ 5 9 8 0 Γ 7 Ζ Η. Σ/Λ Δυο από τα συνδετικά

Διαβάστε περισσότερα

«Αφιερωμένο στους γονείς μου Νικογιάννη και Ευγενία, στα αδέρφια μου Διονύση και Μπέσσυ αλλά και σε όσους ήταν μαζί μου αυτά τα χρόνια...

«Αφιερωμένο στους γονείς μου Νικογιάννη και Ευγενία, στα αδέρφια μου Διονύση και Μπέσσυ αλλά και σε όσους ήταν μαζί μου αυτά τα χρόνια... ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΠΛΗΡΟΦΟΡΙΚΗΣ Διδακτορική Διατριβή Εφαρμογή Τεχνικών Data Mining σε Συστήματα Ηλεκτρονικού Εμπορίου Κουρής Ν. Γιάννης ΠΑΤΡΑ

Διαβάστε περισσότερα

Κλασσικά Βιβλία Αναφοράς

Κλασσικά Βιβλία Αναφοράς Εξόρυξη Δεδομένων Κλασσικά Βιβλία Αναφοράς Data Mining-Concepts and Techniques-Han and K, Morgan Kaufmann, 2001 Principles of Data Mining-Hand, Manila and Smyth. MIT Press, 2001. The Elements of Statistical

Διαβάστε περισσότερα

Βάσεις εδοµένων. Συναρτησιακές Εξαρτήσεις (Functional Dependencies) Σχεδιασµός Βάσεων εδοµένων και. Κανονικοποίηση.

Βάσεις εδοµένων. Συναρτησιακές Εξαρτήσεις (Functional Dependencies) Σχεδιασµός Βάσεων εδοµένων και. Κανονικοποίηση. Βάσεις εδοµένων Συναρτησιακές Εξαρτήσεις (Functional Dependencies) Σχεδιασµός Βάσεων εδοµένων και Κανονικοποίηση Φροντιστήριο 9ο 17-12-2009 ΘΕΩΡΙΑ Συναρτησιακές-Λειτουργικές εξαρτήσεις Κανόνες συµπερασµού

Διαβάστε περισσότερα

{ } { / αρτιος 10} ΣΥΝΟΛΑ. N, σύνολο των φυσικών αριθμών, { 1, 2, 3, }

{ } { / αρτιος 10} ΣΥΝΟΛΑ. N, σύνολο των φυσικών αριθμών, { 1, 2, 3, } ΣΥΝΟΛΑ Ένα σύνολο είναι µία συλλογή διακεκριµένων αντικειµένων, τα δε αντικείµενά του οµάζονται στοιχεία του συνόλου. Γράφουµε S { a, b, } =, όταν θέλουμε να δηλώσουµε ότι το σύνολο που ονοµάζεται είναι

Διαβάστε περισσότερα

Εισαγωγή στους Αλγόριθμους

Εισαγωγή στους Αλγόριθμους Εισαγωγή στους Αλγόριθμους Εύη Παπαϊωάννου Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών Σκοποί ενότητας Παρουσίαση και μελέτη αλγορίθμων

Διαβάστε περισσότερα

Διάλεξη 11: Δέντρα Ι Εισαγωγή σε Δενδρικές Δομές Δεδομένων

Διάλεξη 11: Δέντρα Ι Εισαγωγή σε Δενδρικές Δομές Δεδομένων Διάλεξη 11: Δέντρα Ι Εισαγωγή σε Δενδρικές Δομές Δεδομένων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή σε δενδρικές δομές δεδομένων, Ορισμοί και πράξεις Αναπαράσταση δενδρικών δομών

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Βιοπληροφορική. Ενότητα 10: Κατασκευή φυλογενετικών δέντρων

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Βιοπληροφορική. Ενότητα 10: Κατασκευή φυλογενετικών δέντρων Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Βιοπληροφορική Ενότητα 10: Κατασκευή φυλογενετικών δέντρων Αν. καθηγητής Αγγελίδης Παντελής e-mail: paggelidis@uowm.gr ΕΕΔΙΠ Μπέλλου Σοφία e-mail: sbellou@uowm.gr

Διαβάστε περισσότερα

Επαναληπτικές μέθοδοι

Επαναληπτικές μέθοδοι Επαναληπτικές μέθοδοι Η μέθοδος της διχοτόμησης και η μέθοδος Regula Fals που αναφέραμε αξιοποιούσαν το κριτήριο του Bolzano, πραγματοποιώντας διαδοχικές υποδιαιρέσεις του διαστήματος [α, b] στο οποίο,

Διαβάστε περισσότερα

Ταξινόμηση. 1. Γρήγορη ταξινόμηση 2. Ταξινόμηση με Συγχώνευση. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη

Ταξινόμηση. 1. Γρήγορη ταξινόμηση 2. Ταξινόμηση με Συγχώνευση. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Ταξινόμηση. Γρήγορη ταξινόμηση. Ταξινόμηση με Συγχώνευση Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Γρήγορη Ταξινόμηση Η γρήγορη ταξινόμηση qucksort), που αλλιώς ονομάζεται και ταξινόμηση µε διαμερισμό

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 6α: Αναζήτηση Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό

Διαβάστε περισσότερα