Θεωρία Υπολογισμού και Πολυπλοκότητα

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Θεωρία Υπολογισμού και Πολυπλοκότητα"

Transcript

1 Θεωρία Υπολογισμού και Πολυπλοκότητα Κεφάλαιο 1. Μαθηματικό Υπόβαθρο 23, 26 Ιανουαρίου 2007 Δρ. Παπαδοπούλου Βίκη 1

2 1.1. Σύνολα Ορισμός : Σύνολο μια συλλογή από αντικείμενα Στοιχεία: Μέλη συνόλου Τα στοιχεία είναι μεταξύ τους διαφορετικά Τα στοιχεία ενός συνόλου μπορεί να είναι και τα ίδια σύνολα Πχ. Α ={1, 13, 7} 1 A Πως αναπαριστούμε ένα σύνολο? Συστηματικά: Β={3, 13, 25} Κατηγορηματικά: Ικανές και αναγκαίες συνθήκες για τα στοιχεία που ανήκουν στο σύνολο Γ ={x: x είναι μήνας του καλοκαιριού} 2

3 Πράξεις Συνόλων Ορισμός: Μία πράξη στο σύνολο U παίρνει είσοδο μια ακολουθία από στοιχεία του συνόλου U καιεπιστρέφειωςέξοδο κάποιο στοιχείο. Μονομερής: η είσοδός της περιλαμβάνει 1 στοιχείο του U Διμερής: η είσοδός της 2 στοιχεία του U n-μερής η είσοδός της περιλαμβάνει n στοιχεία του U Η έξοδος μπορεί να ανήκει ή να μην ανήκει U Πχ. Α={2, 4, 6, }, {2,4,10 } A, {4,10,100} A {2,4,10} {4,10,100}={4,10} {2}*{4}={8} A 3

4 Πράξεις Συνόλων Αν η έξοδος της πράξης ανήκει πάντοτε το σύνολο U είναι κλειστό κάτω από την πράξη. Παράδειγμα Πχ. Α={2, 4, 6, }, 2 * 4 = 8, η πράξη πολλαπλασιασμού (*) είναι κλειστή στο σύνολο Α. 4

5 Υποσύνολα, Κενό Σύνολο Το σύνολο A είναι υποσύνολο του συνόλου B, A B, αν κάθε στοιχείο του A είναι και στοιχείο του B. = Α εγκλείεται στο Β Ιδιότητες Εγκλεισμού: Ανακλαστική: A A Αντισυμμετρική: Αν A B και B A, A = B Μεταβατική: AνείναιA B και B C, A C Α είναι γνήσιο υποσύνολο του Β αν A B και Α B A και B είναι συγκρίσιμα αν είτε A B είτε B A 5

6 Υποσύνολα, Κενό Σύνολο Το σύνολο χωρίς στοιχεία = κενό σύνολο, U ={το σύνολο που περιέχει όλα τα δυνατά σύνολα} Συμπλήρωμα ενός συνόλου Α, Ā = τα στοιχεία εκτός του Α Πχ. Α= {οι θετικοί αριθμοί}, Ā = {όλοι οι αριθμοί εκτός τους θετικούς} Δυναμοσύνολο του Α, P(A) = όλαταδυνατάυποσύνολατουα P(A) =2 A Παράδειγμα A ={,, } P(A) ={ { }, { }, { },{, }, {, }, {, }, {, }, {,, } }. 6

7 Υποσύνολα, Κενό Σύνολο Το σύνολο Π A 2 A είναι μία διαμέριση του συνόλου A αν 1. Π A 2. Τα μέλη του Π A είναι ξένα μεταξύ τους. 3. Η ένωση των μελών του Π A είναι το σύνολο A. Παράδειγμα. A ={,,, } Το Π A ={{, }, { }, { }} είναι διαμέριση του A Το Π A ={{, }, {, }} δεν είναι διαμέριση του A 7

8 Πράξεις σε Σύνολα A B = { x x A ή x B} U A Β U = A Β A B = { x x A και x B} U A Β U = A Β A B A \ B = { x x A και x B} U U A Β = A \ B A Β 8

9 Πράξεις σε Σύνολα Παρατηρείστε: B \ A= B Ā Ā =U \A Συμμετρική διαφορά των A και B, A M B = (A\B) (Β\Α) περιέχειταστοιχείαπουανήκουνσεέναακριβώςαπόταδύοσύνολα Π.χ. { 1, 2, 3, 4 } M{ 2, 4, 6, 7 } = { 1, 3, 6, 7 } Παρατηρείστε: 9

10 Πράξεις σε Σύνολα Νόμοι Αντιμετάθεσης A B = B A, Α B = B A Νόμοι Προσεταιρισμού Α (B C) = (A B) C, A (B C) = (A B) C, U είναι απορροφητικό στοιχείο για την πράξη της ένωσης, είναι ουδέτερο στοιχείο για την πράξη της τομής Τα σύνολα Α και Β είναι ξένα εάν Α B =. 10

11 Σύνθετες Πράξεις: Ταυτότητες 11

12 Καρτεσιανό Γινόμενο Όταν η σειρά των στοιχείων {a,b}είναι σημαντική Διατεταγμένο ζεύγος ha,bi Καρτεσιανό Γινόμενο του Α B ={ha,bi a A και b Β } = Όλα τα δυνατά διατεταγμένα ζεύγη ha,bi, a A και b Β Π.χ. Α={1, 2, 3}, B={11, 22, 33} Α B = {h1,11i, h1,22i, h1,33i, h2,11i, h2,22i, h2,33i, h3,11i, h3,22i, h3,33i} 12

13 Αριθμοί και Σύνολα Αριθμών Z : σύνολο ακεραίων αριθμών = θετικοί ακέραιοι, αρνητικοί ακέραιοι και το μηδέν N : σύνολο φυσικών αριθμών = μόνο θετικοί ακέραιοι και το μηδέν Q : σύνολο ρητών αριθμών = { x : υπάρχουν ακέραιοι αριθμοί m και n τέτοιοι ώστε x =m/n} Π.χ. το π=3.14 ΔΕΝ είναι ρητός < : σύνολο πραγματικών (Real) αριθμών = ρητοί και άρρητοι αριθμοί Z + = θετικοί ακέραιοι Z =? N =? 13

14 1.1.Ασκήσεις 3. Αποδείξτε ότι 14

15 1.1. Ασκήσεις 12. Αποδείξτε ότι: 15

16 1.1. Ασκήσεις Ψευδής (αντιπαράδειγμα) ή Αληθής? 1. Το σύνολο των περιττών ακεραίων είναι κλειστό κάτω από τη διαίρεση. 2. Tο σύνολο των αρτίων ακεραίων είναι κλειστό κάτω από τον πολλαπλασιασμό. 3. Tο σύνολο των αρτίων ακεραίων είναι κλειστό κάτω από τη διαίρεση. 4. Tο σύνολο των θετικών ακεραίων είναι κλειστό κάτω από τη διαίρεση. 5. Το σύνολο των αρνητικών ακεραίων είναι κλειστό κάτω από την αφαίρεση. 6. Το σύνολο των αρνητικών ακεραίων είναι κλειστό κάτω από τον πολλαπλασιασμό. 16

17 1.1. Ασκήσεις Αναδρομικός ορισμός για το σύνολο όλων των ακεραίων που διαιρούνται με το 7: 17

18 1.1. Ερωτήσεις? 18

19 1.2. Σχέσεις και Συναρτήσεις Ορισμός : Θεωρούμε αυθαίρετο σύνολο S. Για οποιοδήποτε ακέραιο n 2, μια n-αδική σχέση R πάνω στο σύνολο S είναι ένα υποσύνολο του Καρτεσιανού γινομένου S L S. n φορές Π.χ. Δυαδική σχέση: Μικρότερο από (στο σύνολο S) S ={1, 4, 6, 8} 4 S, 8 S 4 Μικρότερο από 8 δηλώνει ότι h4,8i Μικρότερο από 19

20 1.2.2 Δυαδικές Σχέσεις R A A είναι ανακλαστική αν ha, ai R για κάθε στοιχείο a R Π.χ. R= ίσο, ha, ai ίσο R A A είναι συμμετρική αν hb, ai R τότε hb,ai R Π.χ. R= συνομιλώ, Α={, } αν h, i συνομιλώ h, i συνομιλώ R A A είναι αντισυμμετρική αν hb, ai R τότε hb,ai R Π.χ. R= πατέρας, αν h, i πατέρας h, i πατέρας 20

21 1.2.2 Δυαδικές Σχέσεις R A A είναι μεταβατική αν όταν ha,bi R και hb,ci R τότε ha,ci R Π.χ. R= γηραιότερος από, αν h, i γηραιότερος από και αν h, i γηραιότερος από και h, i γηραιότερος από 21

22 1.2.2 Δυαδικές Σχέσεις : Σχέση Ισοδυναμίας Ορισμός: Σχέση Ισοδυναμίας είναι μια σχέση R A A ανακλαστική, συμμετρική και μεταβατική Ορισμός: Σε μια σχέση ισοδυναμίας R A A, για κάθε στοιχείο a A, η κλάση Ισοδυναμίας που αντιστοιχεί στο a, [a] R, ή [a] R = { b h a, bi R} [a] R = { b h b, ai R} (συμμετρία) Σύνολο όλων των κλάσεων ισοδυναμίας της R Π R = { [a] R a A} 22

23 1.2.2 Δυαδικές Σχέσεις : Κλάσεις Ισοδυναμίας Πρόταση 1.1. Θεωρούμε σχέση ισοδυναμίας R πάνω σε αυθαίρετο σύνολο A. Τότε, οι κλάσεις ισοδυναμίας της σχέσης R διαμερίζουν το σύνολο A. ΔείχνουμεότιόλαταστοιχείατουΠ R (κλάσεις ισοδυναμίας της R) είναι μη κενά, μεταξύ τους ξένα και η ένωση τους καλύπτει όλο το σύνολο A. 23

24 Συναρτήσεις Ορισμός: Μία συνάρτηση f: A B συσχετίζει στοιχεία ενός συνόλου Α με στοιχεία ενός συνόλου Β ώστε κάθε στοιχείο του Α συσχετίζεται με ένα ακριβώς στοιχείο του Β Η f είναι μια δυαδική σχέση R A B τέτοιο ώστε ha, bi R f(a) = b, όπου a A, b B Παράδειγμα Α: πεδίο ορισμού συνάρτησης f (Α) = { f(a) a A }: πεδίο τιμών συνάρτησης 24

25 Συναρτήσεις Ορισμός: Μια συνάρτηση f: A B είναι Ένα-προς-ένα Συνάρτηση αν για οποιαδήποτε δύο διακεκριμένα στοιχεία a Α, b B, f(a) f(b). Για δύο συναρτήσεις f: A B και g: B C, η σύνθεση f g των συναρτήσεων f και g είναι η συνάρτηση f g: A C : f g (x) = f ( g(a) ) για κάθε a A Π.χ. g(a) : κάτοχος σκύλου a, f(b) : ηλικία ανθρώπου, f g = f( g(a) ) : ηλικία κατόχου του σκύλου a 25

26 Συναρτήσεις Ορισμός: Μια συνάρτηση f: A B είναι Επί αν για κάθε b Β, υπάρχει ένα στοιχείο a A τέτοιο ώστε f(a)=b. Oρισμός: Μια συνάρτηση f: A B είναι αμφιμονοσήμαντη αντιστοιχία μεταξύ των A και B εάν είναι ένα-προς-ένα και επί. Παράδειγμα. 26

27 1.3. Πεπερασμένα και Άπειρα Σύνολα Δύο σύνολα A και B καλούνται ισοπλήθη αν υπάρχει μια αμφιμονοσήμαντη (ένα-προς-ένα και επί) αντιστοιχία μεταξύ τους. Παράδειγμα. Άρτιοι θετικοί={ 2, 4, 6, L } και Περιττοί θετικοί ={ 1, 3, 5, L } είναι ισοπλήθη: η συνάρτηση f(x) = x-1 που απεικονίζει το Άρτιοι θετικοί Περιττοί θετικοί. Φυσικοί αριθμοί: N = { 0, 1, 2, L} και { 0, 2, 4, L } είναι ισοπλήθη: συνάρτηση g(x) = 2x. 27

28 1.3. Πεπερασμένα και Άπειρα Σύνολα Ένα σύνολο A είναι πεπερασμένο αν υπάρχει κάποιος φυσικός αριθμός n 0 τέτοιος ώστε το σύνολο A είναι ισοπληθές με το σύνολο {1, L, n}. 1 ο στοιχείο του Α, 2 ο στοιχείο του Α,, n-στο στοιχείο του Α. Πχ. Α={πλευρές ενός τετραγώνου} 28

29 1.3. Πεπερασμένα και Άπειρα Σύνολα Ένα σύνολο είναι απείρως αριθμήσιμο αν αυτό είναι ισοπληθές με το σύνολο των φυσικών αριθμών N = { 0, 1, 2, L}. Π.χ. Τοσύνολοτωνάρτιωνθετικώνακέραιων{2,4,6, L}. 1 ο στοιχείο του Α, 2 ο στοιχείο του Α,. Ένα σύνολο είναι αριθμήσιμο αν αυτό είναι απείρως αριθμήσιμο ή πεπερασμένο. Πχ. Α={πλευρές ενός τετραγώνου} Π.χ. Το σύνολο των άρτιων θετικών ακέραιων {2,4,6, L}. Ένα σύνολο καλείται άπειρο αν αυτό δεν είναι πεπερασμένο. Πχ. Το σύνολο των φυσικών αριθμών N = {0, 1, 2, L}. Πχ. Το σύνολο των άρρητων αριθμών. (όχι αριθμήσιμο) Παρατηρείστε: Ένα απείρως αριθμήσιμο σύνολο είναι άπειρο. 29

30 1.3. Πεπερασμένα και Άπειρα Σύνολα Ένα άπειρο σύνολο δεν είναι απαραίτητα απείρως αριθμήσιμο. Αν Α ένα άπειρο σύνολο, Α B, B: απείρως αριθμήσιμο A =? απείρως αριθμήσιμο Αν S 0, S 1, L μιασυλλογήαπόαριθμήσιμασύνολα ηένωση i S =? i είναι αριθμήσιμο σύνολο. 30

31 1.4. Μαθηματικές Αποδείξεις Ευθείς Απόδειξη: υποθέτει την ισχύ της υπόθεσης και χρησιμοποιεί την υπόθεση για να δείξει κατ' ευθείαν την ισχύ του συμπεράσματος. Παράδειγμα. Αποδείξτε ότι για οποιουσδήποτε περιττούς ακεραίους a και b, οακέραιοςab είναι επίσης περιττός. Απόδειξη. a = 2x + 1 και b = 2y + 1. ab= (2x+1)(2y+1)=4xy + 2x + 2y + 1= 2 (2xy + x + y)

32 1.4. Μαθηματικές Αποδείξεις Απόδειξη Ύπαρξης: Αποδεικνύουν την ύπαρξη ενός αντικειμένου με τις επιθυμητές ιδιότητες. Κατασκευαστικές: προσδιορίζουν μία ακολουθία από βήματα η οποία κατασκευάζει το ζητούμενο αντικείμενο. Μη Κατασκευαστικές αποδείξεις: τέτοιες αποδείξεις πείθουν για την ύπαρξη του αντικειμένου με τις ζητούμενες ιδιότητες χωρίς να το προσδιορίζουν. 32

33 1.4. Μαθηματικές Αποδείξεις: Απόδειξη Ύπαρξης Παράδειγμα (Απόδειξη Ύπαρξης) Αποδείξτεότιγιακάθεάρτιοακέραιοn > 2, υπάρχει 3-κανονικός γράφος με n κορυφές. (Κατασκευαστική) n=4 n=6 33

34 1.4. Μαθηματικές Αποδείξεις: Απόδειξη με Αντίφαση Απόδειξη με Αντίφαση: υποθέτουμε ότι το θεώρημα δεν ισχύει και δείχνουμε στη συνέχεια ότι η υπόθεση οδηγεί σε μία λανθασμένη συνέπεια. Παράδειγμα. Αποδείξτε ότι σεκάθεγράφομεn κορυφές και n-1 ακμές υπάρχει μια κορυφή με βαθμό 2 (2 γειτονικές κορυφές). Υποθέτω ότι όλες οι κορυφές έχουν βαθμό 1 αντίφαση. 34

35 1.4. Μαθηματικές Αποδείξεις: Απόδειξη με Επαγωγή Απόδειξη με Επαγωγή: Επαγωγή στους ακεραίους Αρχή της Μαθηματικής Επαγωγής (Ασθενής Μορφή): Έστω μαθηματική πρόταση Π(n), n: θετικός ακέραιος, που ικανοποιεί: Η Π(1) είναι αληθής. Για οποιοδήποτε ακέραιο n 1, αν η Π(n) είναι αληθής, η Π(n+1) είναι αληθής. ηπρότασηπ(n) είναι αληθής για κάθε θετικό ακέραιο n. 35

36 1.4. Μαθηματικές Αποδείξεις: Απόδειξη με Επαγωγή Η Αρχή της Μαθηματικής Επαγωγής χωρίζεται σε 3 μέρη: 1. Βάση: Εκεί εξετάζεται (και αποδεικνύεται) Π(1). 2. Επαγωγική Υπόθεση: Υποθέτουμε ότι η Π(n) είναι αληθής για αυθαίρετο θετικό ακέραιο n. 3. Επαγωγικό Βήμα: Στηριζόμενοι στην επαγωγική υπόθεση, αποδεικνύουμε ότι η Π(n+1) είναι αληθής. ηπρότασηπ(n) είναι αληθής για κάθε θετικό ακέραιο n. 36

37 Απόδειξη με Επαγωγή: Παράδειγμα Αποδείξτε την πρόταση: P(n)= για κάθε ακέραιο n 1, ο αριθμόςφ(n) = 4 2n n+1 είναι διαιρετός του 7. Βάση: φ(1) = = = 91 = 7 13 είναι πολλαπλάσιο του 7. ηπρότασηp(1) είναι αληθής. Επαγωγική υπόθεση: Υποθέτουμε ότι για κάποιο ακέραιο n 1, ο αριθμός φ(n) είναι διαιρετός διά του 7. Επαγωγικό βήμα: Θα αποδείξουμε ότι ο αριθμός φ(n+1) είναι διαιρετός διά του 7. φ (n+1) = 4 2 (n+1) (n+1)+1 = πράξεις.. =7 4 2n (4 2n n+1 ) = 7 4 2n φ(n) Αφού ο αριθμός φ(n) είναι διαιρετός του n φ(n) = φ(n+1) είναι διαιρετός του 7. 37

38 Απόδειξη με Επαγωγή: (Ισχυρή Μορφή) Απόδειξη με Επαγωγή: Επαγωγή στους ακεραίους Αρχή της Μαθηματικής Επαγωγής (Ισχυρή Μορφή): Έστω μαθηματική πρόταση Π(n), n: θετικός ακέραιος, που ικανοποιεί: Η Π(1) είναι αληθής. Για κάθε ακέραιο n>1, αν η Π(k) είναι αληθής για κάθε ακέραιο k, όπου 1 k < n, η Π(n) είναι αληθής. ηπρότασηπ(n) είναι αληθής για κάθε θετικό ακέραιο n. 38

39 Απόδειξη με Επαγωγή: Παράδειγμα Αποδείξτε ότι για κάθε πεπερασμένο σύνολο A, 2 A =2 A. 39

40 Δομική Επαγωγή Δομική Επαγωγή: Επαγωγή πάνω στην ίδια την Δομή Παράδειγμα. Αποδείξτε ότι το σύνολο των πρώτων αριθμών είναι άπειρο. Απόδειξη. Υποθέτουμε, ότι το σύνολο των πρώτων αριθμών είναι πεπερασμένο: Primes = {a 1, a 2, L, a n } για κάποιο φυσικό αριθμό n > 1. Ορίζω a = a 1 a 2 L a n + 1, α a 1, a 2, L, a n Αν a είναι πρώτος, τότε το ζητούμενο δείχθηκε. Ας υποθέσουμε λοιπόν ότι ο a είναι σύνθετος. Έστω δ > 1 ένας διαιρέτης του a(ο δ είναι πρώτος αριθμός). Θα δείξουμε ότι ο δ είναι διάφορος από τους αριθμούς a 1, a 2, L, a n Υποθέτουμε ότι ο δ =a i για κάποιο a i {a 1, a 2, L, a n } δ διαιρεί το γινόμενο a 1 a 2 L a n. Αφού ο δ διαιρεί και τον a δ θα διαιρεί και τη διαφορά a - a 1 a 2 L a n = 1 δ 1 Αντίφαση. 40

41 1.5. Διαγωνοποίηση Η Αρχή της Διαγωνοποίησης: Έστω μια δυαδική σχέση σε ένα σύνολο Α και D το διαγώνιο σύνολο για την R: D={a A και (a,a) R}. Για κάθε a A και R a ={b: b A και (a,b) R}. Τότε, το D είναι διαφορετικό από όλα τα R a. Πχ. R a ={ b }, R b ={ b,c }, R c ={c} Το D διαφέρει από την 1η γραμμή του πίνακα στην 1η θέση, στην 2 η γραμμή στην 2 η θέση κ.ο.κ. 41

42 1.5. Διαγωνοποίηση Χρήση: όταν θέλουμε να δείξουμε ότι κάτι δεν υπάρχει. Πχ. Δύο σύνολα δεν είναι ισοπληθή. Θεώρημα. Το σύνολο των συναρτήσεων G : N { 0, 1 } δεν είναι αριθμήσιμο. Υποθέτουμε ότι το G είναι αριθμήσιμο υπάρχει μια αμφιμονοσήμαντη αντιστοιχία f : N G η οποία απαριθμεί τις συναρτήσεις στο G : g 0, g 1, g 2 L Ορίζουμε μία νέα συνάρτηση g: N { 0, 1 } ως εξής: Για κάθε n 0, g(n) = 1 - g n (n) g G Αφού η συνάρτηση f: N G είναι αμφιμονοσήμαντη αντιστοιχία Υπάρχει φυσικός αριθμός n τέτοιος ώστε g = g n. g(n) = g n (n). Από την κατασκευή της συνάρτησης g: g(n) g n (n) Αντίφαση. 42

43 1.5. Διαγωνοποίηση: Παράδειγμα Θεώρημα Cantor. Το σύνολο 2 N είναι μη αριθμήσιμο. Απόδειξη. (με εις άτοπο απαγωγής) Υποθέτουμε ότι το 2 N είναι (απείρως) αριθμήσιμο υπάρχει μια αμφιμονοσήμαντη αντιστοιχία f : N 2 N 2 N ={ S 0, S 1, S 2 L}, όπου S i =f(i) Έστω το D= { i N i S i } (διαγώνιο σύνολο) D: ένα σύνολο φυσικών αριθμών D= S k Διαγώνιος ερώτηση: k S k? k S k : k D Αφού D= S k k S k : k D Αφού D= S k k S k, Αντίφαση k S k, Αντίφαση Άρα το 2 N είναι μη αριθμήσιμο 43

44 1.6. Η Αρχή του Περιστερώνα Θεώρημα. Θεωρούμε σύνολο από n αντικείμενα το οποίο διαμερίζουμε σε m κλάσεις, όπου n, m > 0. κάποια κλάση από τις m κλάσεις περιέχει τουλάχιστον d n/me αντικείμενα. Απόδειξη:? Με αντίφαση Εφαρμογές. Με οποιοδήποτε τρόπο και να τοποθετήσουμε n περιστέρια σε m φωλιές, υπάρχει πάντα μία τουλάχιστον φωλιά με τουλάχιστον d n/me περιστέρια. Π.χ. n= 3, m= 4 υπάρχει μια φωλιά με τουλάχιστον d3/4e=1 περιστέρια. Π.χ. n= 4, m= 3 υπάρχει μια φωλιά με τουλάχιστον d4/3e=2 περιστέρια. Σε κάθε ομάδα από 13 άτομα τουλάχιστον 2 άτομα γεννήθηκαν τον ίδιο μήνα. 44

45 Ερωτήσεις ; 45

46 Επόμενη Διάλεξη Γλώσσες και Συναρτήσεις 46

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 1: Μαθηματικό Υπόβαθρο

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 1: Μαθηματικό Υπόβαθρο ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 1: Μαθηματικό Υπόβαθρο Τι θα κάνουμε σήμερα Εισαγωγικά (0.1) Σύνολα (0.2.1, 0.2.2) Συναρτήσεις & Σχέσεις (;;) (0.2.3) 1 Περιοχές που θα μελετήσουμε

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Σύνολα Συναρτήσεις και Σχέσεις Γραφήματα Λέξεις και Γλώσσες Αποδείξεις ΕΠΛ 211 Θεωρία

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 2: Μαθηματικό Υπόβαθρο

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 2: Μαθηματικό Υπόβαθρο ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 2: Μαθηματικό Υπόβαθρο Τι θα κάνουμε σήμερα Συναρτήσεις & Σχέσεις (0.2.3) Γράφοι (Γραφήματα) (0.2.4) Λέξεις και Γλώσσες (0.2.5) Αποδείξεις (0.3) 1

Διαβάστε περισσότερα

f(t) = (1 t)a + tb. f(n) =

f(t) = (1 t)a + tb. f(n) = Παράρτημα Αʹ Αριθμήσιμα και υπεραριθμήσιμα σύνολα Αʹ1 Ισοπληθικά σύνολα Ορισμός Αʹ11 (ισοπληθικότητα) Εστω A, B δύο μη κενά σύνολα Τα A, B λέγονται ισοπληθικά αν υπάρχει μια συνάρτηση f : A B, η οποία

Διαβάστε περισσότερα

ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2018 Τελική Εξέταση Ιουνίου Λύσεις

ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2018 Τελική Εξέταση Ιουνίου Λύσεις ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 018 Τελική Εξέταση Ιουνίου Λύσεις Προσοχή: Οι παρακάτω λύσεις είναι ενδεικτικές, μπορεί να υπάρχουν και άλλες που επίσης να είναι σωστές. Θέμα 1: [16 μονάδες]

Διαβάστε περισσότερα

β) 3 n < n!, n > 6 i i! = (n + 1)! 1, n 1 i=1

β) 3 n < n!, n > 6 i i! = (n + 1)! 1, n 1 i=1 Κεφάλαιο 2: Στοιχεία Λογικής - Μέθοδοι Απόδειξης 1. Να αποδειχθεί ότι οι λογικοί τύποι: (p ( (( p) q))) (p q) και p είναι λογικά ισοδύναμοι. Θέλουμε να αποδείξουμε ότι: (p ( (( p) q))) (p q) p, ή με άλλα

Διαβάστε περισσότερα

ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2016 Λύσεις ασκήσεων προόδου

ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2016 Λύσεις ασκήσεων προόδου ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 016 Λύσεις ασκήσεων προόδου Θέμα 1: [16 μονάδες] [8] Έστω ότι μας δίνουν τα παρακάτω δεδομένα: Εάν αυτό το πρόγραμμα ΗΥ είναι αποδοτικό, τότε εκτελείται γρήγορα.

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 8: Σχέσεις - Πράξεις Δομές Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

(β ) ((X c Y ) (X c Y c )) c

(β ) ((X c Y ) (X c Y c )) c Λύσεις Ασκήσεων στα Θεμέλια των Μαθηματικών II Ρωμανός-Διογένης Μαλικιώσης Παρασκευή, 29 Οκτωβρίου 2010 Άσκηση 1. Απλοποιήστε τις ακόλουθες εκφράσεις (α ) (D c F ) c (D F ) (β ) ((X c Y ) (X c Y c )) c

Διαβάστε περισσότερα

Φροντιστήριο #5 Ασκήσεις σε Συναρτήσεις Αρχή του Περιστερώνα 23/04/2015

Φροντιστήριο #5 Ασκήσεις σε Συναρτήσεις Αρχή του Περιστερώνα 23/04/2015 Φροντιστήριο #5 Ασκήσεις σε Συναρτήσεις Αρχή του Περιστερώνα 23/04/2015 Άσκηση Φ5.1: (α) Έστω οι συναρτήσεις διάγραμμα. f : A B, : g B C και h: C D που ορίζονται στο παρακάτω Υπολογίστε την συνάρτηση h

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 4: Εισαγωγή / Σύνολα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 4: Εισαγωγή / Σύνολα Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 4: Εισαγωγή / Σύνολα Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες

Διαβάστε περισσότερα

LÔseic Ask sewn sta Jemèlia twn Majhmatik n I

LÔseic Ask sewn sta Jemèlia twn Majhmatik n I LÔseic Ask sewn sta Jemèlia twn Majhmatik n I Rwmanìc-Diogènhc Maliki shc Tetˆrth, 6 OktwbrÐou 2010 Άσκηση 1. Για τυχόντα σύνολα A, B, C, D, να δειχθεί ότι (α ) A (B \ C) = ((A B) \ C) (A C). (β ) (A \

Διαβάστε περισσότερα

ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2019 Λύσεις ασκήσεων προόδου

ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2019 Λύσεις ασκήσεων προόδου ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2019 Λύσεις ασκήσεων προόδου Θέμα 1: a. Δείξτε κατά πόσον η πρόταση ((p q) r) ((p q) (q r)) αποτελεί ή όχι ταυτολογία. Κάποιος ιδιόρρυθμος δικαστής ρωτήθηκε κατά

Διαβάστε περισσότερα

i) Για να δείξουμε την επιθυμητή ισότητα, δείχνουμε πως A B {A x : x B} και πως {A x : x B} A B. Για τον πρώτο εγκλεισμό, έστω a A B, δηλάδη a A και a

i) Για να δείξουμε την επιθυμητή ισότητα, δείχνουμε πως A B {A x : x B} και πως {A x : x B} A B. Για τον πρώτο εγκλεισμό, έστω a A B, δηλάδη a A και a Θεωρία Συνόλων Χειμερινό Εξάμηνο 2016 2017 Λύσεις 1. Άσκηση 1.9 (σελ. 17), από τις σημειώσεις του Σκανδάλη. Εστω A, B δεδομένα σύνολα. Θα χρησιμοποιήσουμε τα αξιώματα αλλά αναφερόμενοι, αποκλειστικά, είτε

Διαβάστε περισσότερα

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Μαθηματική Επαγωγή ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Τεχνικές Απόδειξης Εξαντλητική

Διαβάστε περισσότερα

Σύνολα, Σχέσεις, Συναρτήσεις

Σύνολα, Σχέσεις, Συναρτήσεις Κεφάλαιο 2 Σύνολα, Σχέσεις, Συναρτήσεις Τα σύνολα, οι σχέσεις και οι συναρτήσεις χρησιμοποιούνται ευρύτατα σε κάθε είδους μαθηματικές αναπαραστάσεις και μοντελοποιήσεις. Στη θεωρία υπολογισμού χρησιμεύουν,

Διαβάστε περισσότερα

Διδάσκοντες: Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Διδάσκοντες: Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχέσεις Διδάσκοντες: Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διμελής Σχέση Διατεταγμένο ζεύγος (α, β):

Διαβάστε περισσότερα

Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης. Οταν το πρόβλημα έχει πεπερασμ

Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης. Οταν το πρόβλημα έχει πεπερασμ Μαθηματικά Πληροφορικής 4ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης.

Διαβάστε περισσότερα

ιµελής Σχέση ιατεταγµένο ζεύγος (α, β): ύο αντικείµενα (όχι κατ ανάγκη διαφορετικά) σε καθορισµένη σειρά. Γενίκευση: διατεταγµένη τριάδα (α, β, γ), δι

ιµελής Σχέση ιατεταγµένο ζεύγος (α, β): ύο αντικείµενα (όχι κατ ανάγκη διαφορετικά) σε καθορισµένη σειρά. Γενίκευση: διατεταγµένη τριάδα (α, β, γ), δι Σχέσεις ιδάσκοντες: Φ. Αφράτη, Σ. Ζάχος,. Σούλιου Επιµέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιµελής Σχέση ιατεταγµένο ζεύγος (α, β):

Διαβάστε περισσότερα

Μαθηματική Επαγωγή. Τεχνικές Απόδειξης. Αποδείξεις Ύπαρξης. Μαθηματική Επαγωγή

Μαθηματική Επαγωγή. Τεχνικές Απόδειξης. Αποδείξεις Ύπαρξης. Μαθηματική Επαγωγή Μαθηματική Επαγωγή Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Τεχνικές Απόδειξης Εξαντλητική

Διαβάστε περισσότερα

Θεωρία Υπολογισμού Άρτιοι ΑΜ. Διδάσκων: Σταύρος Κολλιόπουλος. eclass.di.uoa.gr. Περιγραφή μαθήματος

Θεωρία Υπολογισμού Άρτιοι ΑΜ. Διδάσκων: Σταύρος Κολλιόπουλος. eclass.di.uoa.gr. Περιγραφή μαθήματος Περιγραφή μαθήματος Θεωρία Υπολογισμού Άρτιοι ΑΜ Σκοπός του μαθήματος είναι η εισαγωγή στη Θεωρία Υπολογισμού και στη Θεωρία Υπολογιστικής Πολυπλοκότητας (Θεωρία Αλγορίθμων). Διδάσκων: Σταύρος Κολλιόπουλος

Διαβάστε περισσότερα

Θεωρία Υπολογισμού Αρτιοι ΑΜ Διδάσκων: Σταύρος Κολλιόπουλος eclass.di.uoa.gr

Θεωρία Υπολογισμού Αρτιοι ΑΜ Διδάσκων: Σταύρος Κολλιόπουλος eclass.di.uoa.gr Θεωρία Υπολογισμού Άρτιοι ΑΜ Διδάσκων: Σταύρος Κολλιόπουλος eclass.di.uoa.gr Περιγραφή μαθήματος Σκοπός του μαθήματος είναι η εισαγωγή στη Θεωρία Υπολογισμού και στη Θεωρία Υπολογιστικής Πολυπλοκότητας

Διαβάστε περισσότερα

[(W V c ) (W c V c )] c \ W = [(W V c ) (W c V c )] c \ W = [(W V c ) c (W c V c ) c ] \ W = [(W c W ) V ] \ W

[(W V c ) (W c V c )] c \ W = [(W V c ) (W c V c )] c \ W = [(W V c ) c (W c V c ) c ] \ W = [(W c W ) V ] \ W ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ιανουάριος 2012 Τμήμα Μαθηματικών Διδάσκων: Χρήστος Κουρουνιώτης Μ1124 ΘΕΜΕΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Παρατηρήσεις 1. Διαβάστε προσεκτικά τα θέματα πριν αρχίσετε να απαντάτε. Οι απαντήσεις

Διαβάστε περισσότερα

m + s + q r + n + q p + s + n, P Q R P Q P R Q R F G

m + s + q r + n + q p + s + n, P Q R P Q P R Q R F G Λύσεις Θεμάτων Θεμελίων των Μαθηματικών 1. Εστω A, B, C τυχόντα σύνολα. Να δειχθεί ότι A (B C) (A B) (A C). Απόδειξη. Εστω x τυχαίο στοιχείο του A (B C). Εξ ορισμού, το x ανήκει σε ακριβώς ένα από τα A,

Διαβάστε περισσότερα

Θεωρία Υπολογισµού και Πολυπλοκότητα

Θεωρία Υπολογισµού και Πολυπλοκότητα Θεωρία Υπολογισµού και Πολυπλοκότητα Κεφάλαιο 3. Γλώσσες και Συναρτήσεις 30 Ιανουαρίου 2007 ρ. Παπαδοπούλου Βίκη 1 3.1.1. Αλφάβητο Πως υλοποιούµε σεέναυπολογιστήένααλγόριθµοήµια σχέση; Αλφάβητο ή Γλώσσα

Διαβάστε περισσότερα

ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2016 Τελική Εξέταση Ιουνίου - Τετάρτη, 15/06/2016 Λύσεις Θεμάτων

ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2016 Τελική Εξέταση Ιουνίου - Τετάρτη, 15/06/2016 Λύσεις Θεμάτων ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2016 Τελική Εξέταση Ιουνίου - Τετάρτη, 15/06/2016 Λύσεις Θεμάτων Θέμα 1: [14 μονάδες] 1. [5] Έστω Y(x): «Το αντικείμενο x είναι ηλεκτρονικός υπολογιστής», Φ(y):

Διαβάστε περισσότερα

Μαθηματική Ανάλυση Ι

Μαθηματική Ανάλυση Ι Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Μαθηματική Ανάλυση Ι Ενότητα 1: Σύνολα, Πραγματικοί αριθμοί Επίκ. Καθηγητής Θ. Ζυγκιρίδης e-mail: tzygiridis@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Διαβάστε περισσότερα

Σχέσεις. ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Σχέσεις. ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχέσεις ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιμελής Σχέση ιατεταγμένο ζεύγος (α, β): ύο αντικείμενα

Διαβάστε περισσότερα

2 n N: 0, 1,..., n A n + 1 A

2 n N: 0, 1,..., n A n + 1 A Θεωρία Υπολογισμού Ενότητα 5: Τεχνικές απόδειξης & Κλειστότητα Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 3: Σύνολα Συνδυαστική Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4 1 2

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4 1 2 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4 1 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Πέµπτη 27 εκεµβρίου 2012 Ασκηση

Διαβάστε περισσότερα

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις ΕΠΛ2: Θεωρία Υπολογισμού και Πολυπλοκότητα Σειρά Προβλημάτων Λύσεις Άσκηση Να βρείτε το σφάλμα στην πιο κάτω απόδειξη. Ισχυρισμός: Όλα τα βιβλία που έχουν γραφτεί στη Θεωρία Υπολογισμού έχουν τον ίδιο

Διαβάστε περισσότερα

Σχέσεις. Διμελής Σχέση. ΣτοΊδιοΣύνολο. Αναπαράσταση

Σχέσεις. Διμελής Σχέση. ΣτοΊδιοΣύνολο. Αναπαράσταση Διμελής Σχέση Σχέσεις Διδάσκοντες: Φ. Αφράτη, Δ. Επιμέλεια διαφανειών: Δ. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διατεταγμένο ζεύγος (α, β): Δύο αντικείμενα

Διαβάστε περισσότερα

Τι είναι σύνολο; Ο ορισμός αυτός είναι σύμφωνος με τη διαισθητική μας κατανόηση για το τι είναι σύνολο

Τι είναι σύνολο; Ο ορισμός αυτός είναι σύμφωνος με τη διαισθητική μας κατανόηση για το τι είναι σύνολο ΣΥΝΟΛΑ Τι είναι σύνολο; Ένας ορισμός «Μια συλλογή αντικειμένων διακεκριμένων και πλήρως καθορισμένων που λαμβάνονται από τον κόσμο είτε της εμπειρίας μας είτε της σκέψης μας» (Cantor, 19 ος αιώνας) Ο ορισμός

Διαβάστε περισσότερα

(ii) X P(X). (iii) X X. (iii) = (i):

(ii) X P(X). (iii) X X. (iii) = (i): Θεωρία Συνόλων Χειμερινό Εξάμηνο 2016 2017 Λύσεις 1. Δείξτε ότι ισχύουν τα ακόλουθα: (i) ω / ω (με άλλα λόγια, το ω δεν είναι φυσικός αριθμός). (ii) Για κάθε n ω, ισχύει ω / n. (iii) Για κάθε n ω, το n

Διαβάστε περισσότερα

, για κάθε n N. και P είναι αριθμήσιμα.

, για κάθε n N. και P είναι αριθμήσιμα. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΔΙΑΚΡΙΤA ΜΑΘΗΜΑΤΙΚΑ Διδάσκοντες: Δ.Φωτάκης Θ. Σούλιου η Γραπτή Εργασία Ημ/νια παράδοσης 5/4/8 Θέμα (Διαδικασίες Απαρίθμησης.

Διαβάστε περισσότερα

a = a a Z n. a = a mod n.

a = a a Z n. a = a mod n. Αλγεβρα Ι Χειμερινο Εξαμηνο 2017 18 Διάλεξη 1 Ενότητα 1. Πράξεις: Πράξεις στο σύνολο S, ο πίνακας της πράξης, αντιμεταθετικές πράξεις. Προσεταιριστικές πράξεις, το στοιχείο a 1 a 2 a n. Η πράξη «σύνθεση

Διαβάστε περισσότερα

n ίδια n διαφορετικά n n 0 n n n 1 n n n n 0 4

n ίδια n διαφορετικά n n 0 n n n 1 n n n n 0 4 Διακριτά Μαθηματικά Ι Επαναληπτικό Μάθημα 1 Συνδυαστική 2 Μεταξύ 2n αντικειμένων, τα n είναι ίδια. Βρείτε τον αριθμό των επιλογών n αντικειμένων από αυτά τα 2n αντικείμενα. Μεταξύ 3n + 1 αντικειμένων τα

Διαβάστε περισσότερα

Π(n) : 1 + a + + a n = an+1 1 a 1. a 1. + a k+1 = ak+2 1

Π(n) : 1 + a + + a n = an+1 1 a 1. a 1. + a k+1 = ak+2 1 Διακριτά Μαθηματικά [Rosen, κεφ. 5] Γιάννης Εμίρης Τμήμα Πληροφορικής & Τηλεπικοινωνιών, ΕΚΠΑ Νοέμβριος 2018 Επαγωγή και Αναδρομή [Rosen, κεφ. 5] Μαθηματική επαγωγή [Rosen 5.1] Μέθοδος απόδειξης μιας μαθηματικής

Διαβάστε περισσότερα

a. a + b = 3. b. a διαιρεί τ ο b. c. a - b = 0. d. ΜΚΔ(a, b) = 1. e. ΕΚΠ(a, b) = 6.

a. a + b = 3. b. a διαιρεί τ ο b. c. a - b = 0. d. ΜΚΔ(a, b) = 1. e. ΕΚΠ(a, b) = 6. ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο 2016 4 η Σειρά Ασκήσεων - Λύσεις Άσκηση 4.1 [1 μονάδα] Βρείτε όλα τα διατεταγμένα ζεύγη στη σχέση R από το Α={0,1,2,3} στο Β={0,1,2,3,4} όπου (a,b) R αν και μόνο

Διαβάστε περισσότερα

Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης. Οταν το πρόβλημα έχει πεπερασμ

Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης. Οταν το πρόβλημα έχει πεπερασμ Μαθηματικά Πληροφορικής 2ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης.

Διαβάστε περισσότερα

Μορφές αποδείξεων. Μαθηματικά Πληροφορικής 2ο Μάθημα. Μορφές αποδείξεων (συνέχεια) Εξαντλητική μέθοδος

Μορφές αποδείξεων. Μαθηματικά Πληροφορικής 2ο Μάθημα. Μορφές αποδείξεων (συνέχεια) Εξαντλητική μέθοδος Μορφές αποδείξεων Μαθηματικά Πληροφορικής ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης.

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 7 Φεβρουαρίου 03 Ασκηση. είξτε ότι

Διαβάστε περισσότερα

Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας.

Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας. Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας. 1. Κάθε πολυώνυμο ανάγωγο επί του Z είναι ανάγωγο επί του Q. Σωστό. 2. Κάθε πολυώνυμο ανάγωγο επί του Q είναι ανάγωγο επί

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος 3

Περιεχόμενα. Πρόλογος 3 Πρόλογος Τα πρώτα μαθήματα, σχεδόν σε όλους τους κλάδους των μαθηματικών, περιέχουν, ή θεωρούν γνωστές, εισαγωγικές έννοιες που αφορούν σύνολα, συναρτήσεις, σχέσεις ισοδυναμίας, αλγεβρικές δομές, κλπ.

Διαβάστε περισσότερα

1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή

1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή KΕΦΑΛΑΙΟ ΤΟ ΣΥΝΟΛΟ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ιατεταγµένα σώµατα-αξίωµα πληρότητας Ένα σύνολο Σ καλείται διατεταγµένο σώµα όταν στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι

Διαβάστε περισσότερα

B = {x A : f(x) = 1}.

B = {x A : f(x) = 1}. Θεωρία Συνόλων Χειμερινό Εξάμηνο 016 017 Λύσεις 1. Χρησιμοποιώντας την Αρχή του Περιστερώνα για τους φυσικούς αριθμούς, δείξτε ότι για κάθε πεπερασμένο σύνολο A και για κάθε f : A A, αν η f είναι 1-1 τότε

Διαβάστε περισσότερα

Α Δ Ι Θ Θ Α Ε Ι Μ : https://sites.google.com/site/maths4edu/home/algdom114

Α Δ Ι Θ Θ Α Ε Ι Μ :  https://sites.google.com/site/maths4edu/home/algdom114 Α Δ Ι Θ Θ Α Ε 2013-2014 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html, https://sites.google.com/site/maths4edu/home/algdom114 12 Μαρτίου 2014 19:26

Διαβάστε περισσότερα

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac Σημειώσεις μαθήματος Μ1212 Γραμμική Άλγεβρα ΙΙ Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Κεφάλαιο 1 Διανυσματικοί Χώροι Στο εισαγωγικό μάθημα Γραμμικής Άλγεβρας ξεκινήσαμε μελετώντας

Διαβάστε περισσότερα

bca = e. H 1j = G 2 H 5j = {f G j : f(0) = 1}

bca = e. H 1j = G 2 H 5j = {f G j : f(0) = 1} Αλγεβρα Ι, Χειμερινο Εξαμηνο 2017 18 Ασκησεις που συζητηθηκαν στο φροντιστηριο Το [Α] συμβολίζει το φυλλάδιο ασκήσεων που θα βρείτε στην ιστοσελίδα του μαθήματος επιλέγοντας «Άλλες Ασκήσεις». 1. Πόσες

Διαβάστε περισσότερα

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΙΣΑΓΩΓΗ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ. ΤΙ ΕΙΝΑΙ ΤΑ ΜΑΘΗΜΑΤΙΚΑ; Η επιστήμη των αριθμών Βασανιστήριο για τους μαθητές και φοιτητές Τέχνη για τους μαθηματικούς ΜΑΘΗΜΑΤΙΚΑ Α Εξάμηνο ΙΩΑΝΝΗΣ

Διαβάστε περισσότερα

ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2017 Τελική Εξέταση Ιουνίου - Τετάρτη, 14/06/2017 ΛΥΣΕΙΣ

ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2017 Τελική Εξέταση Ιουνίου - Τετάρτη, 14/06/2017 ΛΥΣΕΙΣ ΗΥ8: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 07 Τελική Εξέταση Ιουνίου - Τετάρτη, 4/06/07 ΛΥΣΕΙΣ Σημείωση: Οι παρακάτω λύσεις είναι ενδεικτικές. Ενδεχομένως, υπάρχουν και άλλοι σωστοί τρόποι επίλυσης. Θέμα

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων

K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Στοιχεία προτασιακής λογικής Περιεχόμενα

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 3

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 3 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 3 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 31 Μαρτίου 2017 Υπενθυµίζουµε

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3 ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 13 Μαρτίου 2013 Ασκηση 1. Αφού ϐρείτε την

Διαβάστε περισσότερα

Φροντιστήριο #5 Ασκήσεις σε Συναρτήσεις Αρχή του Περιστερώνα 14/4/2016

Φροντιστήριο #5 Ασκήσεις σε Συναρτήσεις Αρχή του Περιστερώνα 14/4/2016 ΜΕΡΟΣ Α: ΣΥΝΑΡΤΗΣΕΙΣ Φροντιστήριο #5 Ασκήσεις σε Συναρτήσεις Αρχή του Περιστερώνα 14/4/2016 Άσκηση Φ5.1: (α) Έστω οι συναρτήσεις f : A B, g : B διάγραμμα. C και h : C Dπου ορίζονται στο παρακάτω Υπολογίστε

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Προτεινοµενες Ασκησεις - Φυλλαδιο 1

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Προτεινοµενες Ασκησεις - Φυλλαδιο 1 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Προτεινοµενες Ασκησεις - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 25 Φεβρουαβρίου

Διαβάστε περισσότερα

4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ

4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ 14 4 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ Ας υποθέσουμε ότι θέλουμε να βρούμε το πηλίκο και το υπόλοιπο της διαίρεσης του με τον Σύμφωνα με το γνωστό αλγόριθμο της διαίρεσης, το πηλίκο θα είναι ένας ακέραιος κ, τέτοιος,

Διαβάστε περισσότερα

ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο η Σειρά Ασκήσεων - Λύσεις

ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο η Σειρά Ασκήσεων - Λύσεις ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο 2018 3 η Σειρά Ασκήσεων - Λύσεις Άσκηση 3.1 [1 μονάδα] Έστω Α={1,2,3,{1,3},4,{5,6}}. Ποιες από τις παρακάτω προτάσεις είναι σωστές και ποιες λάθος; i. {5,6} Α vi.

Διαβάστε περισσότερα

> ln 1 + ln ln n = ln(1 2 3 n) = ln(n!).

> ln 1 + ln ln n = ln(1 2 3 n) = ln(n!). η Διάλεξη: Άρρητοι αριθμοί Το σύνολο Q των ρητών αριθμών είναι το Q = { m n : m Z, n N}. αριθμός που δεν είναι ρητός λέγεται άρρητος. Ενας πραγματικός Ασκηση: Αποδείξτε ότι το άθροισμα και το γινόμενο

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 7: Σχέσεις και Συναρτήσεις

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 7: Σχέσεις και Συναρτήσεις Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 7: Σχέσεις και Συναρτήσεις Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Διαβάστε περισσότερα

ιδασκοντες: x R y x y Q x y Q = x z Q = x z y z Q := x + Q Τετάρτη 10 Οκτωβρίου 2012

ιδασκοντες: x R y x y Q x y Q = x z Q = x z y z Q := x + Q Τετάρτη 10 Οκτωβρίου 2012 ιδασκοντες: Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 1 Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 10 Οκτωβρίου 2012 Ασκηση 1.

Διαβάστε περισσότερα

b. Για κάθε θετικό ακέραιο m και για κάθε A. , υπάρχουν άπειρα το πλήθος πολυώνυμα ( x) [ x] m και ( A) 0.

b. Για κάθε θετικό ακέραιο m και για κάθε A. , υπάρχουν άπειρα το πλήθος πολυώνυμα ( x) [ x] m και ( A) 0. Ασκήσεις4 46 Ασκήσεις 4 Τριγωνίσιμες γραμμικές απεικονίσεις, Θεώρημα των Cayley-Hamilton Βασικά σημεία Ορισμός τριγωνίσιμου πίνακα, ορισμός τριγωνίσιμης γραμμικής απεικόνισης Κριτήριο τριγωνισιμότητας

Διαβάστε περισσότερα

Πόσες από αυτές τις σκακιέρες είναι αλήθεια διαφορετικές;

Πόσες από αυτές τις σκακιέρες είναι αλήθεια διαφορετικές; Η ύλη συνοπτικά... Στοιχειώδης συνδυαστική Γεννήτριες συναρτήσεις Σχέσεις αναδρομής Θεωρία Μέτρησης Polyá Αρχή Εγκλεισμού - Αποκλεισμού Πόσες από αυτές τις σκακιέρες είναι αλήθεια διαφορετικές; Αυτές οι

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει το κεφάλαιο της θεωρίας αριθμών θα πρέπει να είναι σε θέση:

Ο μαθητής που έχει μελετήσει το κεφάλαιο της θεωρίας αριθμών θα πρέπει να είναι σε θέση: Ο μαθητής που έχει μελετήσει το κεφάλαιο της θεωρίας αριθμών θα πρέπει να είναι σε θέση: Να γνωρίζει: την αποδεικτική μέθοδο της μαθηματικής επαγωγής για την οποία πρέπει να γίνει κατανοητό ότι η αλήθεια

Διαβάστε περισσότερα

of Mathematics των I.Stewart και D.Tall, Oxford University Press.

of Mathematics των I.Stewart και D.Tall, Oxford University Press. Σημειώσεις του Μαθήματος ΜΕΜ 103 Θεμέλια των Μαθηματικών Βασισμένες στο βιβλίο των I.Stewart και D.Tall Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2018 Εισαγωγή Αρχίζοντας τη μελέτη των

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ;

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ; ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ( ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ) ΠΑΡΑΤΗΡΗΣΗ : Το κεφάλαιο αυτό περιέχει πολλά θέματα που είναι επανάληψη εννοιών που διδάχθηκαν στο Γυμνάσιο γι αυτό σ αυτές δεν θα επεκταθώ αναλυτικά

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 4: Διατάξεις Μεταθέσεις Συνδυασμοί Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα.

τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα. Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Τµηµα Μαθηµατικων Εισαγωγή στην Αλγεβρα Τελική Εξέταση 15 Φεβρουαρίου 2017 1. (Οµάδα Α) Εστω η ακολουθία Fibonacci F 1 = 1, F 2 = 1 και F n = F n 1 + F n 2, για n

Διαβάστε περισσότερα

Α Δ Ι. Παρασκευή 29 Νοεμβρίου 2013 & K =

Α Δ Ι. Παρασκευή 29 Νοεμβρίου 2013 & K = Α Δ Ι Α - Φ 5 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 29 Νοεμβρίου 2013 Ασκηση

Διαβάστε περισσότερα

P(n, r) = n! P(n, r) = n r. (n r)! n r. n+r 1 r n!

P(n, r) = n! P(n, r) = n r. (n r)! n r. n+r 1 r n! Διακριτά Μαθηματικά Σύνοψη Θεωρίας Τυπολόγιο Αναστασία Κόλλια 20/11/2016 1 / 55 Κανόνες γινομένου και αθροίσματος Κανόνας αθροίσματος: Αν ένα γεγονός μπορεί να συμβεί κατά m τρόπους και ένα άλλο γεγονός

Διαβάστε περισσότερα

Ασκήσεις1 Πολυώνυμα. x x c. με το. b. Να βρεθούν όλες οι τιμές των a, Να βρεθεί ο μκδ και το εκπ τους

Ασκήσεις1 Πολυώνυμα. x x c. με το. b. Να βρεθούν όλες οι τιμές των a, Να βρεθεί ο μκδ και το εκπ τους Aσκήσεις1 1 Βασικά σημεία Ευκλείδεια διαίρεση πολυωνύμων Ορισμός και ιδιότητες μκδ και εκπ Ιδιότητες σχετικών πρώτων πολυωνύμων Τα ανάγωγα πολυώνυμα στο [ ] και [ ] Ασκήσεις1 Πολυώνυμα Ανάλυση πολυωνύμου

Διαβάστε περισσότερα

Α Δ Ι. Παρασκευή 25 Οκτωβρίου Ασκηση 1. Στο σύνολο των πραγματικών αριθμών R ορίζουμε μια σχέση R R R ως εξής:

Α Δ Ι. Παρασκευή 25 Οκτωβρίου Ασκηση 1. Στο σύνολο των πραγματικών αριθμών R ορίζουμε μια σχέση R R R ως εξής: Α Δ Ι Α - Φ 1 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 25 Οκτωβρίου 2013 Ασκηση

Διαβάστε περισσότερα

HY118-Διακριτά Μαθηματικά

HY118-Διακριτά Μαθηματικά HY118-Διακριτά Μαθηματικά Παρασκευή, 02/03/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 02-Mar-18

Διαβάστε περισσότερα

of Mathematics των I.Stewart και D.Tall, Oxford University Press.

of Mathematics των I.Stewart και D.Tall, Oxford University Press. Σημειώσεις του Μαθήματος Μ1124 Θεμέλια των Μαθηματικών Βασισμένες στο βιβλίο των I.Stewart και D.Tall Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2012 Εισαγωγή Αρχίζοντας τη μελέτη των μαθηματικών

Διαβάστε περισσότερα

ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2018 Λύσεις ασκήσεων προόδου

ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2018 Λύσεις ασκήσεων προόδου ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 018 Λύσεις ασκήσεων προόδου Θέμα 1: a. Δείξτε κατά πόσον η πρόταση ((p q) r) ((p q) (q r)) αποτελεί ή όχι ταυτολογία. b. Κάποιος ιδιόρρυθμος δικαστής ρωτήθηκε

Διαβάστε περισσότερα

Π(n) : 1 + a + + a n = αν+1 1

Π(n) : 1 + a + + a n = αν+1 1 Διακριτά Μαθηματικά [Rosen, κεφ. 5] Γιάννης Εμίρης Τμήμα Πληροφορικής & Τηλεπικοινωνιών, ΕΚΠΑ Νοέμβριος 2017 Επαγωγή και Αναδρομή [Rosen, κεφ. 5] Μαθηματική επαγωγή [Rosen 5.1] Μέθοδος απόδειξης μιας μαθηματικής

Διαβάστε περισσότερα

1 Οι πραγµατικοί αριθµοί

1 Οι πραγµατικοί αριθµοί 1 Οι πραγµατικοί αριθµοί 1.1 Σύνολα αριθµών Το σύνολο των ϕυσικών αριθµών N = {1, 2, 3,...} Το σύνολο των ακεραίων Z = {... 3, 2, 1, 0, 1, 2, 3,...}. Οι ακέραιοι διαµερίζονται σε άρτιους και περιττούς

Διαβάστε περισσότερα

Παράδειγμα άμεσης απόδειξης. HY118-Διακριτά Μαθηματικά. Μέθοδοι αποδείξεως για προτάσεις της μορφής εάν-τότε

Παράδειγμα άμεσης απόδειξης. HY118-Διακριτά Μαθηματικά. Μέθοδοι αποδείξεως για προτάσεις της μορφής εάν-τότε HY118-Διακριτά Μαθηματικά Τρίτη, 27/02/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 27-Feb-18

Διαβάστε περισσότερα

Φροντιστήριο #5 Λυμένες Ασκήσεις σε Σχέσεις 22/3/2018

Φροντιστήριο #5 Λυμένες Ασκήσεις σε Σχέσεις 22/3/2018 Φροντιστήριο #5 Λυμένες Ασκήσεις σε Σχέσεις 22/3/2018 Άσκηση Φ5.1: Θεωρείστε τις ακόλουθες σχέσεις επί του συνόλου Α={1, 2, 3} 1. R={(1, 1), (1, 2), (1, 3), (3, 3)} 2. S={(1, 1), (1, 2), (2, 1), (2, 2),

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 1

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 1 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 10 Μαρτίου 2017 Ασκηση 1.

Διαβάστε περισσότερα

6 Συνεκτικοί τοπολογικοί χώροι

6 Συνεκτικοί τοπολογικοί χώροι 36 6 Συνεκτικοί τοπολογικοί χώροι Έστω R διάστημα και f : R συνεχής συνάρτηση τότε, όπως γνωρίζουμε από τον Απειροστικό Λογισμό, η f έχει την ιδιότητα της ενδιάμεσου τιμής. Η ιδιότητα αυτή δεν εξαρτάται

Διαβάστε περισσότερα

ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο η Σειρά Ασκήσεων Λύσεις

ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο η Σειρά Ασκήσεων Λύσεις ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο 2016 3 η Σειρά Ασκήσεων Λύσεις Άσκηση 3.1 [1 μονάδα] Έστω p(x) και q(x) κατηγορήματα με πεδίο ορισμού Ω με σύνολα αλήθειας Α και Β αντίστοιχα (Σύνολα αλήθειας:

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις

HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις HY118- ιακριτά Μαθηµατικά Παρασκευή, 06/03/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/8/2015

Διαβάστε περισσότερα

HY118-Διακριτά Μαθηματικά

HY118-Διακριτά Μαθηματικά HY118-Διακριτά Μαθηματικά Τρίτη, 27/02/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 27-Feb-18

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Θεωρία Υπολογισμού Ενότητα 4: Ισοδυναμία, διάταξη, άπειρα σύνολα Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Διακριτά Μαθηματικά Ι Ενότητα 4: Θεωρία Μέτρησης Po lya Μέρος 1 Διδάσκων: Χ. Μπούρας (bouras@cti.gr) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Γιάννης Εμίρης. Τμήμα Πληροφορικής & Τηλεπικοινωνιών ΕΚΠΑ. Νοέμβριος

Διακριτά Μαθηματικά. Γιάννης Εμίρης. Τμήμα Πληροφορικής & Τηλεπικοινωνιών ΕΚΠΑ. Νοέμβριος ΔιακριτάΜαθηματικά Γιάννης Εμίρης http://eclass.uoa.gr/ Τμήμα Πληροφορικής & Τηλεπικοινωνιών ΕΚΠΑ Νοέμβριος 2016 Διακριτά Μαθηματικά ΕπαγωγήκαιΑναδρομή [Rosen,κεφ. 5] Διακριτά Μαθηματικά Μαθηματικήεπαγωγή

Διαβάστε περισσότερα

x < A y f(x) < B f(y).

x < A y f(x) < B f(y). Χειμερινό Εξάμηνο 2016 2017 Ασκήσεις στα Κεφάλαια 5 & 6 1. Αυτή είναι ουσιαστικά η Άσκηση 5.2 (σελ. 119), από τις σημειώσεις του Σκανδάλη. Εστω A, < καλά διατεταγμένο σύνολο και έστω στοιχείο a A. Αποδείξτε

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 2

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 2 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt016/nt016.html Πέµπτη 7 Οκτωβρίου 016 Ασκηση 1. Βρείτε όλους

Διαβάστε περισσότερα

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Θεωρία Υπολογισμού Ενότητα 3: Συναρτήσεις - σχέσεις Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

( ( )) ( 3 1) 2( 3 1)

( ( )) ( 3 1) 2( 3 1) Φροντιστήριο #5 Ασκήσεις σε Συναρτήσεις Αρχή του Περιστερώνα 7/4/2017 ΜΕΡΟΣ Α: ΣΥΝΑΡΤΗΣΕΙΣ Άσκηση Φ5.1: (α) Έστω οι συναρτήσεις f : A B, g : B διάγραμμα. C και h : C D που ορίζονται στο παρακάτω Υπολογίστε

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 8

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 8 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 8 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi07/asi07.html Παρασκευή 9 Μαίου 07 Για κάθε µετάθεση

Διαβάστε περισσότερα

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C Κεφάλαιο 1 Εισαγωγικές έννοιες Στο κεφάλαιο αυτό θα αναφερθούμε σε ορισμένες έννοιες, οι οποίες ίσως δεν έχουν άμεση σχέση με τους διανυσματικούς χώρους, όμως θα χρησιμοποιηθούν αρκετά κατά τη μελέτη τόσο

Διαβάστε περισσότερα

S n = ( 1, 0] 1 + b 1 a1 + b 1 I 1 I 2 I 3...,

S n = ( 1, 0] 1 + b 1 a1 + b 1 I 1 I 2 I 3..., ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΕΜ Χειμερινό εξάμηνο 017-18 ΜΕΜ31-ΤΟΠΟΛΟΓΙΑ 1, 3Η ΔΙΑΛΕΞΗ ΣΥΝΤΟΜΗ ΕΠΑΝΑΛΗΨΗ ΤΗΣ ΤΟΠΟΛΟΓΙΑΣ ΤΟΥ R ΔΙΔΑΣΚΩΝ: Ι.Δ. ΠΛΑΤΗΣ 1. Ανοικτα και κλειστα συνολα του R Το σύνολο R των πραγματικών

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ασύμμετρα Κρυπτοσυστήματα κλειδί κρυπτογράφησης k1 Αρχικό κείμενο (m) (δημόσιο κλειδί) Αλγόριθμος

Διαβάστε περισσότερα

Α Δ Ι. Παρασκευή 15 Νοεμβρίου Ασκηση 1. Να ευρεθεί η τάξη τού στοιχείου a τής ομάδας (G, ), όπου. (4) a = ( 1 + i 3)/2, (G, ) = (C, ),

Α Δ Ι. Παρασκευή 15 Νοεμβρίου Ασκηση 1. Να ευρεθεί η τάξη τού στοιχείου a τής ομάδας (G, ), όπου. (4) a = ( 1 + i 3)/2, (G, ) = (C, ), Α Δ Ι Α - Φ 4 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 15 Νοεμβρίου

Διαβάστε περισσότερα

Ασκήσεις στους Γράφους. 2 ο Σετ Ασκήσεων. Δέντρα

Ασκήσεις στους Γράφους. 2 ο Σετ Ασκήσεων. Δέντρα Ασκήσεις στους Γράφους 2 ο Σετ Ασκήσεων Δέντρα Ασκηση 1 η Ένας γράφος G είναι δέντρο αν και μόνο αν κάθε δυο κορυφές του συνδέονται με ένα μοναδικό μονοπάτι. Υποθέτουμε ότι ο γράφος G είναι δέντρο. Έστω

Διαβάστε περισσότερα