KATANOMEΣ- ΚΑΤΑΝΟΜΗ MAXWELL ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "KATANOMEΣ- ΚΑΤΑΝΟΜΗ MAXWELL ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ"

Transcript

1 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ KATANOMEΣ- ΚΑΤΑΝΟΜΗ MAXWELL ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Περιεχόμενα 1. Στατιστικές Συλλογές. Κατανομή Gibbs 3. Από την Κατανομή Gibbs στις Κατανομές Maxwell & Boltzmann 4. Κατανομή Maxwell 4.1 Χαρακτηριστικές ταχύτητες της Κατανομής Maxwell 4. Εξάρτηση της Κατανομής Maxwell από τη θερμοκρασία 4.3 Εξάρτηση της Κατανομής Maxwell από το είδος του αερίου 4.4 Η ατμόσφαιρα των πλανητών 4.5 Ποσοστό σωματιδίων 4.6 Ασκήσεις 1

2 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ Ένα πολύ μεγάλο πλήθος από πανομοιότυπα συστήματα, απομονωμένα, ονομάζεται ΜΙΚΡΟΚΑΝΟΝΙΚΗ ΣΥΛΛΟΓΗ. 1. Στατιστικές Συλλογές Ένα πολύ μεγάλο πλήθος από πανομοιότυπα συστήματα, τα οποία ανταλλάσουν ενέργεια, ονομάζεται ΚΑΝΟΝΙΚΗ ΣΥΛΛΟΓΗ. Ένα πολύ μεγάλο πλήθος από πανομοιότυπα συστήματα, τα οποία ανταλλάσουν ενέργεια αλλά και σωματίδια ονομάζεται ΜΕΓΑΛΟΚΑΝΟΝΙΚΗ ΣΥΛΛΟΓΗ. Αδιαπέρατα τοιχώματα ως προς την ενέργεια Αδιαπέραστα τοιχώματα ως προς τα σωματίδια περατά τοιχώματα ως προς την ενέργεια Αδιαπέρατα τοιχώματα ως προς τα σωματίδια περατά τοιχώματα ως προς την ενέργεια πέρατα τοιχώματα ως προς τα σωματίδια

3 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ Έστω σύστημα Ενέργειας Ε ο. Κατανομή Gibbs Εστω υποσύστημα του συνολικού συστήματος ενέργειας Ε Για απλοποίηση θα θεωρήσουμε ότι το υποσύστημα αποτελείται από ένα σωματίδιο ενέργειας Ε. Η πιθανότητα να βρίσκεται το σωματίδιο σε μία κατάσταση με ενέργεια Ε έως Ε + de αποδεικνύεται να είναι: E k dp Ae d 3

4 Κατανομή Gibbs ως προς τις ενέργειες E k dp Ae d Κανονική Πιθανότητα να βρίσκεται το σωματίδιο σε μία κατάσταση με ενέργεια Ε έως Ε + de. Στοιχειώδης Όγκος στον χώρο των φάσεων. Ουσιαστικά είναι το πλήθος των μικροκαταστάσεων με ενέργειες από Ε έως Ε + de (στο χώρο των θέσεων ορμών) Σταθερά Κανονικοποίησης d drdp 3 p x dp dx x p y dp dy y p z dp z dz Σε καρτεσιανές συντεταγμένες γράφεται x y z d dxdydzdpxdpydpz 3 4

5 3. Από την Κατανομή Gibbs στις Κατανομές Maxwell & Boltzmann Η ενέργεια σωματίδιου (υποσυστήματος) ενός αερίου είναι: Ε = Κ + U Όπου, Κ είναι η κινητική του ενέργεια: K 1 m Ενώ, U είναι η δυναμική ενέργεια που έχει λόγω ενός εξωτερικού δυναμικού πεδίου. Η πιθανότητα να βρίσκεται το σωματίδιο σε μία κατάσταση με ενέργεια Ε έως Ε + de δίνεται από την κατανομή Gibbs που μπορεί να γραφεί ως: k 1 x y z U k dp A e dp dp dp A e dxdydz Όπου A A 3 1 Επειδή η κινητική ενέργεια εξαρτάται μόνο από τις ταχύτητες (ορμές), ενώ η δυναμική ενέργεια μόνο από τη θέση U = U(x,y,z), θα έχει ως αποτέλεσμα η πιθανότητα να χωρίζεται σε δύο νέες ανεξάρτητες πιθανότητες. ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ

6 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ dp k 1 x y pz U k A e dp dp d A e dxdydz dpx, y,z,p x,p y,pz 1 x y z dp p,p,p dp x, y,z Αυτή η πιθανότητα οδηγεί στην κατανομή Maxwell Αυτή η πιθανότητα οδηγεί στην κατανομή Boltzmann Όπου προσδιορίζει την πιθανότητα να έχει ένα σωματίδιο ταχύτητες από υx έως υx + dυx, υy έως υy + dυy, υz έως υz + dυz, Όπου προσδιορίζει την πιθανότητα το σωματίδιο να βρεθεί σε όγκο dv = dxdydz στο σημείο (x,y,z) 6

7 4. Κατανομή Maxwell k dp Ae dpxdpydpz Το γινόμενο dp x dp y dp z αποτελεί τον στοιχειώδη όγκο στον χώρο των ορμών εκφρασμένο σε καρτεσιανές συντεταγμένες. Ο όγκος αυτός γραμμένος σε σφαιρικές συντεταγμένες γράφεται: 3 dpxdpydpz p sin dpd d m sin d d d Όπου p είναι το μέτρο της ορμής και είναι p = mυ και dp = mdυ Έτσι έχουμε: Όπου Β = m 3 A ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ m k dp e sin d d d Παραλείπονται οι δείκτες H Πιθανότητα αυτή σχετίζεται τόσο με το μέτρο της ταχύτητας (υ) όσο με την διεύθυνσή της (θ,φ). Αν μας ενδιαφέρει μόνο το μέτρο της ταχύτητας, ολοκληρώνουμε σε όλες τις γωνίες (θ,φ) και αυτό θα μας δώσει απλά έναν παράγοντα 4π, έτσι: m k dp e 4 d 7

8 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ Για τον υπολογισμό της σταθεράς κανονικοποίησης Β, ολοκληρώνουμε την πιθανότητα σε όλες τις δυνατές τιμές της, επειδή, είναι εκφρασμένη σε σφαιρικές συντεταγμένες (το μέτρο της ταχύτητας) υ[,+ ), επομένως: dp 1 m k 1 e 4 d n x e rx m m kt 4B e d 1 dx 1 n 1 mr m n1 n,m,r m kt 3 3/ 4B 1 3 4B 1 B 1 3/ 3/ m m m kt kt kt B m kt 3/ Άρα: 3/ m m k dp e 4 d kt 8

9 dp 3/ m m k e 4 d kt f(υ) = dp(υ)/dυ είναι η πυκνότητα πιθανότητας f(υ)dυ είναι η κατανομή Maxwell Όπου Είναι η πιθανότητα ένα σωματίδιο να έχει (μέτρο ταχύτητας) ταχύτητα από υ έως υ + dυ m είναι η μάζα του ενός σωματιδίου (μόριο ή άτομο) του αερίου k είναι η σταθερά Boltzman Τ η απόλυτη θερμοκρασία [σε Kelvin] υ το μέτρο της ταχύτητας [σε m/s] 4πυdυ είναι το στοιχείο του όγκου στο χώρο των ταχυτήτων στις σφαιρικές συντεταγμένες ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ

10 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ dp dn n dn N Παρατηρήσεις Σχετική συγκέντρωση των σωματιδίων με ταχύτητες υ έως υ + dυ dn = dn/v n = N/V Είναι η συγκέντρωση των σωματιδίων με ταχύτητες υ έως υ + dυ Είναι η συγκέντρωση των σωματιδίων του αερίου (σε όγκο V) Σχετικός αριθμός των σωματιδίων με ταχύτητες υ έως υ + dυ dn N Είναι o αριθμός των σωματιδίων με ταχύτητες υ έως υ + dυ Είναι ο αριθμός των σωματιδίων του αερίου 1

11 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ Η πυκνότητα πιθανότητας της Κατανομής Maxwell f(υ) 3/ m k m f 4 e kt είναι θετική όταν υ το f(υ) όταν υ το f(υ) έχει τουλάχιστον ένα μέγιστο υ Επίσης το εμβαδόν που περικλείεται από την καμπύλη και τον άξονα υ ισούται με την μονάδα, λόγω κανονικοποίησης f d 1 11

12 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ Χαρακτηριστικές ταχύτητες της Κατανομής Maxwell f(υ) υ H ταχύτητα που αντιστοιχεί στο μέγιστο της καμπύλης ονομάζεται πιθανότερη ταχύτητα και ισούται με: kt m H μέση ταχύτητα είναι η μέση τιμή των ταχυτήτων των σωματιδίων του αερίου: 8kT m Η τετραγωνική ρίζα της μέσης τιμής των τετραγώνων των ταχυτήτων των σωματιδίων του αερίου ονομάζεται ενεργός ταχύτητα και είναι rms 3kT m 1

13 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ Παρατηρήσεις Συχνά, σε διάφορες κατανομές, η μέση τιμή ενός μεγέθους συμπίπτει με την πιθανότερη τιμή του μεγέθους. Στην κατανομή Maxwell η <υ> είναι μεγαλύτερη της υ π, γιατί προβλέπονται μόρια, έστω και λίγα, με πολύ μεγάλες ταχύτητες (δεν υπάρχει όριο στις ταχύτητες των μορίων). Ισχύει: 13

14 4. Εξάρτηση της Κατανομής Maxwell από την θερμοκρασία f(υ) Τ 1 Τ 1 < Τ < Τ 3 Τ Θεωρούμε ίδιο αέριο σε διάφορες θερμοκρασίες Τ 3 υ Όταν η θερμοκρασία του αερίου αυξάνεται, η καμπύλη μετατοπίζεται προς τα δεξιά και η κορυφή της χαμηλώνει. Αυτό συμβαίνει γιατί όσο αυξάνει η θερμοκρασία η ενεργός ταχύτητα αυξάνεται, ενώ η πυκνότητα πιθανότητας ελαττώνεται. Τέλος ο αριθμός των μορίων στη νέα πιθανότερη ταχύτητα είναι μικρότερος στην υψηλότερη θερμοκρασία. 14

15 4.3 Εξάρτηση της Κατανομής Maxwell από το είδος του αερίου f(υ) m 1 < m < m 3 m 3 Ο Θεωρούμε διαφορετικά αέρια στην ίδια θερμοκρασία m Ν m 1 Η υ Η πυκνότητα πιθανότητας της κατανομής Maxwell δείχνει πως τα μόρια του αερίου με το μικρότερο μοριακό βάρος έχουν μεγαλύτερες ταχύτητες επομένως η καμπύλη μετατοπίζεται προς τα δεξιά και γίνεται πιο αμβλεία. ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ

16 4.4 Η ατμόσφαιρα των πλανητών Για να διαφύγει κάθετα ένα σώμα από το βαρυτικό πεδίο ενός πλανήτη, πρέπει η ταχύτητά του να είναι μεγαλύτερη της ταχύτητας διαφυγής Αν ο πλανήτης έχει μάζα ίση με Μ και ακτίνα R, τότε η ταχύτητα διαφυγής για κάθε πλανήτη δίνεται από την σχέση: f(υ) m 3 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ m υ δ m 1 Η υ GM R h Όπου εξαρτάται μόνο από αυτά τα χαρακτηριστικά του πλανήτη και το ύψος h όπου βάλλεται το σωματίδιο από την επιφάνεια του. m 1 : υπάρχει μεγάλος αριθμός μορίων που έχουν υ > υ δ έτσι διαφεύγουν στην ατμόσφαιρα και ένα τέτοιο αέριο δεν θα μπορούσε να δομήσει την ατμόσφαιρα. m : υπάρχει ένας αριθμός μορίων που έχουν υ > υ δ ένα τέτοιο αέριο θα μπορούσε να δομήσει την ατμόσφαιρα αλλά μετά από κάποιο χρόνο θα διέφευγαν και από αυτό όλα τα μόρια του. m 3 : όλα τα μόρια έχουν υ < υ δ ένα τέτοιο αέριο δομή την ατμόσφαιρα διότι όλη η ποσότητα του παραμένει στην ατμόσφαιρα δίχως να διαφεύγει. 16

17 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ Ποσοστό σωματιδίων υ 1 υ Η πιθανότητα ένα σωματίδιο (το ποσοστό των σωματιδίων) να έχει ταχύτητες από υ 1 έως υ είναι το γραμμοσκιασμένο εμβαδόν και υπολογίζεται από τη σχέση: 1, f d 1 Η πιθανότητα ένα σωματίδιο (το ποσοστό των σωματιδίων) να έχει ταχύτητες από υ έως υ + dυ είναι το γραμμοσκιασμένο εμβαδόν και υπολογίζεται από τη σχέση: d f d 17

18 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΑΣΚΗΣΗ Ασκήσεις Δίνεται η ακανονικοποίητη κατανομή Maxwell: Να βρεθεί η σταθερά κανονικοποίησης Ν. m kt f d Ne 4 d Το ολοκλήρωμα dp θα πρέπει να ισούται ίσο με 1, με άλλα λόγια, για τον υπολογισμό της σταθεράς κανονικοποίησης, ολοκληρώνουμε την κατανομή σε όλες τις δυνατές τιμές της, επειδή, είναι εκφρασμένη σε σφαιρικές συντεταγμένες (το μέτρο της ταχύτητας) υ[,+ ), επομένως: f ( )d 1 3/ 1 3/ m kt m kt 3 4 e d 1 m kt Άρα η κατανομή Maxwell κανονικοποιημένη είναι: 3/ 3/ m m kt f d e 4 d kt m kt n x e 4 1 3/ m kt rx m 1 n 1 dx n1 mr m m n,m,r kt 18

19 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΑΣΚΗΣΗ Δίνεται η κατανομή Maxwell: Να βρεθεί η πιθανότερη ταχύτητα υ πιθ. 3/ m m kt f d e 4 d kt Η πιθανότερη ταχύτητα είναι αυτή που αντιστοιχεί στο μέγιστο της κατανομής, άρα αυτή θα υπολογιστεί από την απαίτηση η πρώτη παράγωγος της κατανομής να μηδενίζεται. Στο σημείο όπου μηδενίζεται είναι και η πιθανότερη ταχύτητα, δηλαδή: 3/ m 3/ m df d m m d Όμως kt kt e 4 4 e d d kt kt d 3/ m m m m kt kt 4 e e kt kt f(υ) df m kt 1 d kt m df d Άρα k m υ π υ 19

20 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΑΣΚΗΣΗ 3 Να βρεθεί η μέση ταχύτητα <υ>. 3/ m 3/ m kt m 3 m kt f ( )d 4 e d 4 e d kt kt 3/ 3/ 3/ m m 3 m 1 4 m 1 kt 4 e d 4 4 kt kt kt m m kt kt / 1/ m m m kt 8kT kt kt kt m m Άρα 8kT f(υ) m n rx m 1 n 1 x e dx n1 mr m m n 3,m,r kt υ <υ>

21 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΑΣΚΗΣΗ 4 Να βρεθεί η μέση τετραγωνική ταχύτητα <υ >. 3/ m 3/ m kt m 4 m kt f ( )d 4 e d 4 e d kt kt 3/ 3/ 3/ m m 4 m 1 5 m 1 3 kt 5 5 kt kt kt 4 4 e d 4 m m kt kt 3/ 3/ 3 m 1 3 kt 3kT 5/ kt m m m n kt rx m 1 n 1 x e dx n1 3kT mr m Άρα f(υ) m m n 4,m,r kt υ

22 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΑΣΚΗΣΗ 5 Να βρεθεί η διασπορά και η σχετική διακύμανση της ταχύτητας των μορίων. Η διασπορά της ταχύτητας είναι: 1 m m m 3 Η σχετική διακύμανση της ταχύτητας είναι: 3kT 8kT 3kT 8 3kT kT 3 m m 3 8

23 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΑΣΚΗΣΗ 6 Να δείξετε ότι η κατανομή Maxwell για την συνιστώσα της ταχύτητας υ x είναι: 1/ m m x kt x x x f d e d kt 3/ m m kt f d e 4 d Η κατανομή Maxwell είναι: kt Αυτή είναι γραμμένη σε σφαιρικές συντεταγμένες. Αν θέλουμε όμως να την γράψουμε σε καρτεσιανές συντεταγμένες θα έχουμε: 4 d dxdydz x z y Συνεπώς σε καρτεσιανές συντεταγμένες μπορεί να γραφεί: 3/ mx y z m kt f d e dxdydz kt m x y mz 1/ m 1/ 1/ kt kt kt e d x e d y e d z m m m kt kt kt f d f d f d x x y y z z f(υ x ) υ x Άρα 1/ m m x kt x x x f d e d kt 3

24 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΑΣΚΗΣΗ 7 Να βρεθεί η μέση ταχύτητα στον άξονα x, <υ x >. f(υ x ) υ x Από την μορφή και μόνο της κατανομής ταχυτήτων, παρατηρούμε ότι η μέση ταχύτητα στον άξονα x είναι μηδέν. Διαφορετικά: 1/ m m x kt x x x x x x kt f ( )d e d Π Α Το ολοκλήρωμα είναι μηδέν, διότι η ολοκληρωτέα συνάρτηση είναι περιττή και ολοκληρώνεται σε συμμετρικά όρια. Π Και γενικά x y z Το ότι βγάζουμε αυτό το αποτέλεσμα δεν σημαίνει ότι όλες οι ταχύτητες είναι μηδέν, αλλά όσα μόρια κινούνται προς την θετική κατεύθυνση άλλα τόσα κινούνται προς την αρνητική κατεύθυνση. 4

25 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΑΣΚΗΣΗ 8 Να βρεθεί η μέση ταχύτητα των μορίων που κινούνται προς τη θετική κατεύθυνση του άξονα του x, <υ x+ >. 1/ m x 1/ m kt m 1 x x x x x x kt kt m 1/ 1/ 1 f ( )d e d 1 m 1 m m kt kt m kt kt m kt kt Άρα x kt m Παρατήρηση: x y z kt m n x e rx m 1 n 1 dx n1 mr m m n 1,m,r kt 5

26 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΑΣΚΗΣΗ 9 Να βρεθεί η μέση τετραγωνική ταχύτητα των μορίων που κινούνται στον άξονα του x, <υ x >. 1/ m x 1/ kt x xf ( x )d x xe d x 3 m 1/ m m 1 3 kt kt m 1 1 kt kt kt 3 kt m m m kt n rx m 1 n 1 x e dx n1 mr m m n,m,r kt Παρατήρηση: x y z kt m 3kT m x y z 6

27 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ Παρατηρήσεις Ιδιότητες μέσης τιμής < f + g > = < f > + < g > Παραδείγματα m m m 1 kt 3 m3 kt m x y z x y z < f g > = < f > < g > Ισχύει μόνο όταν οι f,g εξαρτώνται από διαφορετικές μεταβλητές x y x y x y x y x x διότι x z y 7

28 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΑΣΚΗΣΗ 1 Να δείξετε ότι η κατανομή Maxwell ως προς της ενέργειες είναι: 1 E 1 kt f EdE E e de kt Η Ενέργεια ενός μορίου ιδανικού αέριου είναι ίση με την κινητική του ενέργεια, δηλαδή: m d 1 de E Άρα: και d m de E m Em m Αντικαθιστώντας στην κατανομή Maxwell, έχουμε: 3/ m m kt f d e 4 d kt 3/ E m E de kt e 4 kt m Em 3 1 E 1 kt E e de f EdE kt 1 E 1 kt Άρα f EdE E e de kt 3 3 f(ε) Τ 1 Τ Τ 1 < Τ < Τ 3 Τ 3 8 Ε

29 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΑΣΚΗΣΗ 11 Να βρεθεί η πιθανότερη ενέργεια για την κατανομή Maxwell. Η πιθανότερη ενέργεια είναι αυτή που αντιστοιχεί στο μέγιστο της κατανομής, άρα: Όμως, df E de EE 3 3 E 1 E kt kt df E e E e de kt E kt kt Απαιτώντας να είναι ίσο με μηδέν έχουμε: df E de 3 3 E 1 E kt kt e E e kt E kt kt f(ε) E E kt 1 E 1 E kt kt E kt Άρα, η πιθανότερη ταχύτητα είναι: E Ε π 9 Ε

30 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΑΣΚΗΣΗ 1 Να βρεθεί η μέση ενέργεια για την κατανομή Maxwell E 3 E 1 1 kt kt f E de E e de E e de kt kt k 5 kt 1 kt 4 kt Άλλως τρόπος E m m m m 3kT 3kT m n x e rx m 1 n 1 dx n1 mr m 1 n 3/,m 1,r kt

31 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΑΣΚΗΣΗ 13 Να βρεθεί η μέση τιμή του τετραγώνου της ενέργειας για την κατανομή Maxwell και η σχετική διακύμανση της ενέργειας των σωματιδίων E 5 E 1 1 kt kt f E de E e de E e de kt kt k 7 kt 1 kt 8 4 kt Η σχετική διακύμανση της ενέργειας είναι: n x e rx m 1 n 1 dx n1 mr m 1 n 5/,m 1,r kt k 9k T 4 4 E 3kT 3 E E 6 31

32 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΑΣΚΗΣΗ 14 Να βρεθεί ο σχετικός αριθμός W των μορίων ιδανικού αερίου η κινητική ενέργεια των οποίων διαφέρει από την πιθανότερη ενέργεια Ε π όχι περισσότερο από 1%. 1.1E W.99E,1.1E f d.99e 3 1 E 1 kt f f.e Ee.E kt E kt 1 kt 1 kt kt. Ee. e kt kt 1. f(ε) e kt E.99Ε π 1.1Ε π * 3 Ε

ΚΑΤΑΝΟΜΗ BOLTZMANN ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

ΚΑΤΑΝΟΜΗ BOLTZMANN ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΚΑΤΑΝΟΜΗ BOLTZMA ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Περιεχόμενα 1. Κατανομή Bltzmann. Ασκήσεις 1 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 1. Κατανομή Bltzmann

Διαβάστε περισσότερα

Στην πράξη βρίσκουμε το Ν Α [το P (A)] όχι με παρατηρήσεις, αλλά με τη χρήση της λογικής (π.χ. ζάρι) ή της Φυσικής (π.χ. όγκος)

Στην πράξη βρίσκουμε το Ν Α [το P (A)] όχι με παρατηρήσεις, αλλά με τη χρήση της λογικής (π.χ. ζάρι) ή της Φυσικής (π.χ. όγκος) Αν σε σύστημα που διατηρείται σε σταθερές συνθήκες κάνουμε Ν παρατηρήσεις και από αυτές στις Ν Α παρατηρήθηκε το γεγονός Α, τότε λέμε ότι η πιθανότητα να συμβεί αυτό το γεγονός δίνεται από τη σχέση: P

Διαβάστε περισσότερα

ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ ΘΕΩΡΙΑ

ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ ΘΕΩΡΙΑ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ ΘΕΩΡΙΑ Περιεχόμενα 1. Κινητική Θεωρία των Αεριών. Πίεση 3. Κινητική Ερμηνεία της Πίεσης 4. Καταστατική εξίσωση των Ιδανικών

Διαβάστε περισσότερα

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ ΚΕΝΤΡΟ ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ Λεωφ Κηφισίας 56, ΕΔΟΥΑΡΔΟΥ Αμπελόκηποι, ΛΑΓΑΝΑ Αθήνα PhD Τηλ: 10 69 97 985, e-mail: edlag@otenetg, wwwedlagg Λεωφ Κηφισίας 56, Τηλ: 10 69 97 985, wwwedlagg ΛΥΜΕΝΑ

Διαβάστε περισσότερα

3/2 dp = f ( υ d ) υ mυ / 2 kt 4 π υ e 2 k π T

3/2 dp = f ( υ d ) υ mυ / 2 kt 4 π υ e 2 k π T m d P = f ( υ) dυ = 4π -mυ / kt υ e dυ πkt N u 3/ Η συνάρτηση f(υ) είναι ΣΥΝΑΡΤΗΣΗ ΠΥΚΝΟΤΗΤΑΣ ΠΙΘΑΝΟΤΗΤΑΣ 3/ m f ( υ) = 4π υ e πkt -mυ / kt Είναι θετική Για υ0 τείνει στο μηδέν Για υ τείνει στο μηδέν Επομένως

Διαβάστε περισσότερα

2 η Εργασία Ημερομηνία Αποστολής : 21 Ιανουαρίου Άσκηση 1. Να υπολογίσετε τα παρακάτω όρια χρησιμοποιώντας τον Κανόνα του L Hopital:

2 η Εργασία Ημερομηνία Αποστολής : 21 Ιανουαρίου Άσκηση 1. Να υπολογίσετε τα παρακάτω όρια χρησιμοποιώντας τον Κανόνα του L Hopital: η Εργασία Ημερομηνία Αποστολής : Ιανουαρίου 7 Άσκηση. Να υπολογίσετε τα παρακάτω όρια χρησιμοποιώντας τον Κανόνα του L Hopil: α. β. γ. lim 6 lim lim sin. (Υπόδειξη: χωρίς να την αποδείξετε, χρησιμοποιήστε

Διαβάστε περισσότερα

Κινητική θεωρία ιδανικών αερίων

Κινητική θεωρία ιδανικών αερίων Κινητική θεωρία ιδανικών αερίων (γέφυρα μακροσκοπικών και μικροσκοπικών ποσοτήτων) Εμπειρικές σχέσεις Boyle, Gay-Lussac, Charles, υπόθεση Avogadro «όταν δυο ή περισσότερα αέρια έχουν τα ίδια V, P και Τ

Διαβάστε περισσότερα

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια:

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια: ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια (όπως ορίζεται στη μελέτη της μηχανικής τέτοιων σωμάτων): Η ενέργεια που οφείλεται σε αλληλεπιδράσεις και κινήσεις ολόκληρου του μακροσκοπικού σώματος, όπως η μετατόπιση

Διαβάστε περισσότερα

3 ος ΘΕΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ- ΘΕΡΜΟΔΥΝΑΜΙΚΑ ΔΥΝΑΜΙΚΑ ΘΕΩΡΙΑ

3 ος ΘΕΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ- ΘΕΡΜΟΔΥΝΑΜΙΚΑ ΔΥΝΑΜΙΚΑ ΘΕΩΡΙΑ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 6932 946778 3 ος ΘΕΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ- ΘΕΡΜΟΔΥΝΑΜΙΚΑ ΔΥΝΑΜΙΚΑ ΘΕΩΡΙΑ Περιεχόμενα 1. Ο τρίτος θερμοδυναμικός Νόμος 2. Συστήματα με αρνητικές θερμοκρασίες 3. Θερμοδυναμικά

Διαβάστε περισσότερα

Το σύστημα των μη αλληλεπιδραστικών ροών και η σημασία του στην ερμηνεία των ιδιοτήτων των ιδανικών αερίων.

Το σύστημα των μη αλληλεπιδραστικών ροών και η σημασία του στην ερμηνεία των ιδιοτήτων των ιδανικών αερίων. Το σύστημα των μη αλληλεπιδραστικών ροών και η σημασία του στην ερμηνεία των ιδιοτήτων των ιδανικών αερίων. Θεωρώντας τα αέρια σαν ουσίες αποτελούμενες από έναν καταπληκτικά μεγάλο αριθμό μικροσκοπικών

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9 ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ 18/11/2011 ΚΕΦ. 9

ΚΕΦΑΛΑΙΟ 9 ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ 18/11/2011 ΚΕΦ. 9 ΚΕΦΑΛΑΙΟ 9 ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ 18/11/011 ΚΕΦ. 9 1 ΓΩΝΙΑΚΗ ΚΙΝΗΣΗ: ΟΡΙΣΜΟΙ Περιστροφική κινηματική: περιγράφει την περιστροφική κίνηση. Στερεό Σώμα: Ιδανικό μοντέλο σώματος που έχει τελείως ορισμένα

Διαβάστε περισσότερα

ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ

ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ΕΙΣΑΓΩΓΗ Σκοπός της κινηματικής είναι η περιγραφή της κίνησης του ρευστού Τα αίτια που δημιούργησαν την κίνηση και η αναζήτηση των δυνάμεων που την διατηρούν είναι αντικείμενο της

Διαβάστε περισσότερα

ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ (ΠΕΡΙΣΤΡΟΦΙΚΗ ΑΔΡΑΝΕΙΑ )

ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ (ΠΕΡΙΣΤΡΟΦΙΚΗ ΑΔΡΑΝΕΙΑ ) ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ (ΠΕΡΙΣΤΡΟΦΙΚΗ ΑΔΡΑΝΕΙΑ ) Η περιστροφική αδράνεια ενός σώματος είναι το μέτρο της αντίστασης του στη μεταβολής της περιστροφικής του κατάστασης, αντίστοιχο της μάζας στην περίπτωση της μεταφορικής

Διαβάστε περισσότερα

2 ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ - ΕNTΡΟΠΙΑ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

2 ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ - ΕNTΡΟΠΙΑ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ - ΕNΡΟΠΙΑ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Περιεχόμενα. O ος Θερμοδυναμικός Νόμος. Η Εντροπία 3. Εντροπία και αταξία 4. Υπολογισμός Εντροπίας

Διαβάστε περισσότερα

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ ΚΕΝΤΡΟ ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ ΕΔΟΥΑΡΔΟΥ Αμπελόκηποι, ΛΑΓΑΝΑ Αθήνα Ph.D. Τηλ.: 10 69 97 985, e-mal: edlag@otenet.g, www.edlag.g Τηλ.: 10 69 97 985, www.edlag.g ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ

Διαβάστε περισσότερα

P(n 1, n 2... n k ) = n 1!n 2! n k! pn1 1 pn2 2 pn k. P(N L, N R ) = N! N L!N R! pn L. q N R. n! r!(n r)! pr q n r, n! r 1!r 2! r k!

P(n 1, n 2... n k ) = n 1!n 2! n k! pn1 1 pn2 2 pn k. P(N L, N R ) = N! N L!N R! pn L. q N R. n! r!(n r)! pr q n r, n! r 1!r 2! r k! Ασκήσεις Πιθανοτήτων - Στατιστικής Πρόβλημα 1 (Η Πολυωνυμική Κατανομή). Στο πρόβλημα αυτό θα μελετήσουμε μία γενίκευση της διωνυμικής κατανομής που συναντήσαμε στο μάθημα. Συγκεκριμένα, θα δούμε τί συμβαίνει

Διαβάστε περισσότερα

Θεωρία και Μεθοδολογία

Θεωρία και Μεθοδολογία Θεωρία και Μεθοδολογία Εισαγωγή/Προαπαιτούμενες γνώσεις (κάθετη δύναμη) Πίεση p: p = F A (εμβαδόν επιφάνειας) Μονάδα μέτρησης πίεσης στο S.I. είναι το 1 Ν m2, που ονομάζεται και Pascal (Pa). Συνήθως χρησιμοποιείται

Διαβάστε περισσότερα

ΠΑΓΚΟΣΜΙΑ ΕΛΞΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

ΠΑΓΚΟΣΜΙΑ ΕΛΞΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 69 946778 ΠΑΚΟΣΜΙΑ ΕΛΞΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μοίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 69 946778 www.poias.weebly.co ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ

Διαβάστε περισσότερα

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ. Ασκήσεις Κεφαλαίου Ι

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ. Ασκήσεις Κεφαλαίου Ι ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου Ι Άσκηση 1: Θεωρήστε δύο ορθοκανονικά διανύσματα ψ 1 και ψ και υποθέστε ότι αποτελούν βάση σε ένα χώρο δύο διαστάσεων. Θεωρήστε επίσης ένα τελαστή T που ορίζεται στο χώρο

Διαβάστε περισσότερα

... Σχετικότητα. Αναίρεση λοιπόν της ιδέας απόλυτου χρόνου ή χώρου, εισαγωγή απόλυτου χωροχρόνου.

... Σχετικότητα. Αναίρεση λοιπόν της ιδέας απόλυτου χρόνου ή χώρου, εισαγωγή απόλυτου χωροχρόνου. ΝΟΜΟΙ ΤΟΥ NEWTON Αδρανειακά η Γαλιλαιϊκά συστήματα αναφοράς Μη Αδρανειακά συστήματα αναφοράς Αρχή της αιτιοκρατίας Συμμετρία αντιστροφής χρόνου Νόμοι του Newton I. O Χώρος είναι Ευκλείδειος II. Όλοι οι

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Περιεχόμενα 1. Θερμοδυναμική Ορισμοί. Έργο 3. Θερμότητα 4. Εσωτερική ενέργεια 5. Ο Πρώτος Θερμοδυναμικός Νόμος 6. Αντιστρεπτή

Διαβάστε περισσότερα

Από τι αποτελείται το Φως (1873)

Από τι αποτελείται το Φως (1873) Από τι αποτελείται το Φως (1873) Ο James Maxwell έδειξε θεωρητικά ότι το ορατό φως αποτελείται από ηλεκτρομαγνητικά κύματα. Ηλεκτρομαγνητικό κύμα είναι η ταυτόχρονη διάδοση, μέσω της ταχύτητας του φωτός

Διαβάστε περισσότερα

κλασσική περιγραφή Κλασσική στατιστική

κλασσική περιγραφή Κλασσική στατιστική Η κανονική κατανομή στη κλασσική περιγραφή Κλασσική στατιστική φυσική Βίγκα Ελένη (ttp://users.aut.gr/vinga) Στατιστική Φυσική Διαφάνεια o o Μια πολύ απλή περίπτωση για να ξεκινήσουμε είναι: Na θεωρήσουμε

Διαβάστε περισσότερα

Ιόνιο Πανεπιστήμιο - Τμήμα Πληροφορικής

Ιόνιο Πανεπιστήμιο - Τμήμα Πληροφορικής Ιόνιο Πανεπιστήμιο - Τμήμα Πληροφορικής Μαθηματικός Λογισμός Ενότητα: ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ- ΠΟΛΛΑΠΛΗ ΟΛΟΚΛΗΡΩΣΗ- ΠΑΡΑΔΕΙΓΜΑΤΑ Παναγιώτης Βλάμος Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

Διάλεξη 1: Κβαντομηχανική σε τρεις διαστάσεις

Διάλεξη 1: Κβαντομηχανική σε τρεις διαστάσεις Διάλεξη : Κβαντομηχανική σε τρεις διαστάσεις Βασικές Αρχές της Κβαντομηχανικής H κατάσταση ενός φυσικού συστήματος περιγράφεται από την κυματοσυνάρτησή του και αποτελεί το πλάτος πιθανότητας να βρεθεί

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΗΧΑΝΙΚΗ ΙΙ Σεπτέµβριος 2001 ΘΕΜΑ 1 Ένα φυσικό σύστηµα, ενός βαθµού ελευθερίας, περιγράφεται από την ακόλουθη συνάρτηση

ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΗΧΑΝΙΚΗ ΙΙ Σεπτέµβριος 2001 ΘΕΜΑ 1 Ένα φυσικό σύστηµα, ενός βαθµού ελευθερίας, περιγράφεται από την ακόλουθη συνάρτηση ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΗΧΑΝΙΚΗ ΙΙ Σεπτέµβριος 2001 ΘΕΜΑ 1 Ένα φυσικό σύστηµα, ενός βαθµού ελευθερίας, περιγράφεται από την ακόλουθη συνάρτηση Hamilton:, όπου κάποια σταθερά και η κανονική θέση και ορµή

Διαβάστε περισσότερα

Αντιδράσεις των κοσμικών ακτίνων στην ατμόσφαιρα,

Αντιδράσεις των κοσμικών ακτίνων στην ατμόσφαιρα, 1 Αντιδράσεις των κοσμικών ακτίνων στην ατμόσφαιρα, Τα πολυπληθέστερα σωματίδια των Κ.Α. είναι τα πρωτόνια. Όπως έχουμε αναφέρει, η ενέργεια τους είναι υψηλή και αντιδρούν με τους πυρήνες της ατμόσφαιρας.

Διαβάστε περισσότερα

Πρόβλημα 4.9.

Πρόβλημα 4.9. Πρόβλημα 4.9. Να βρεθεί το δυναμικό V() παντού στο χώρο ενός θετικά φορτισμένου φύλλου απείρων διαστάσεων με επιφανειακή πυκνότητα φορτίου σ. Πάρτε τον άξονα κάθετα στο φύλλο και θεωρήστε ότι το φύλλο

Διαβάστε περισσότερα

Κβαντική Φυσική Ι. Ενότητα 5: Κυματομηχανική. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Φυσική Ι. Ενότητα 5: Κυματομηχανική. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Φυσική Ι Ενότητα 5: Κυματομηχανική Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοπός ενότητας Σκοπός της ενότητας είναι η ερμηνεία της κυματοσυνάρτησης, δηλαδή της λύσης της εξίσωσης

Διαβάστε περισσότερα

Ο ΧΩΡΟΣ ΚΑΙ Ο ΧΡΟΝΟΣ

Ο ΧΩΡΟΣ ΚΑΙ Ο ΧΡΟΝΟΣ Ο ΧΩΡΟΣ ΚΑΙ Ο ΧΡΟΝΟΣ. Γενικές αρχές. Η αντιληπτική μας ικανότητα του Φυσικού Χώρου, μας οδηγεί στον προσδιορισμό των σημείων του, μέσω τριών ανεξαρτήτων παραμέτρων. Είναι, λοιπόν, αποδεκτή η απεικόνισή

Διαβάστε περισσότερα

ΠΡΑΓΜΑΤΙΚΑ ΑΕΡΙΑ ΘΕΩΡΙΑ

ΠΡΑΓΜΑΤΙΚΑ ΑΕΡΙΑ ΘΕΩΡΙΑ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 6932 946778 ΠΡΑΓΜΑΤΙΚΑ ΑΕΡΙΑ ΘΕΩΡΙΑ Περιεχόμενα 1. Όρια καταστατικής εξίσωσης ιδανικού αερίου 2. Αποκλίσεις των Ιδιοτήτων των πραγματικών αερίων από τους Νόμους

Διαβάστε περισσότερα

L = T V = 1 2 (ṙ2 + r 2 φ2 + ż 2 ) U (3)

L = T V = 1 2 (ṙ2 + r 2 φ2 + ż 2 ) U (3) ΥΠΟΛΟΓΙΣΤΙΚΗ ΑΣΤΡΟΔΥΝΑΜΙΚΗ 3): Κινήσεις αστέρων σε αστρικά συστήματα Βασικές έννοιες Θεωρούμε αστρικό σύστημα π.χ. γαλαξία ή αστρικό σμήνος) αποτελούμενο από μεγάλο αριθμό αστέρων της τάξης των 10 8 10

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός. Ηλεκτρικό δυναμικό. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Ηλεκτρικό δυναμικό. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Ηλεκτρικό δυναμικό Νίκος Ν. Αρπατζάνης Ηλεκτρικό δυναμικό Θα συνδέσουμε τον ηλεκτρομαγνητισμό με την ενέργεια. Χρησιμοποιώντας την αρχή διατήρησης της ενέργειας μπορούμε να λύνουμε διάφορα

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ - ΑΣΚΗΣΕΙΣ ΘΕΡΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ

ΕΦΑΡΜΟΓΕΣ - ΑΣΚΗΣΕΙΣ ΘΕΡΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ ΕΦΑΡΜΟΓΕΣ - ΑΣΚΗΣΕΙΣ ΘΕΡΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ 1. Ένα κιλό νερού σε θερμοκρασία 0 C έρχεται σε επαφή με μιά μεγάλη θερμική δεξαμενή θερμοκρασίας 100 C. Όταν το νερό φτάσει στη θερμοκρασία της δεξαμενής,

Διαβάστε περισσότερα

Εργασία 2. Παράδοση 20/1/08 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες

Εργασία 2. Παράδοση 20/1/08 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες Εργασία Παράδοση 0/1/08 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες 1. Υπολογίστε τα παρακάτω όρια: Α. Β. Γ. όπου x> 0, y > 0 Δ. όπου Κάνετε απευθείας τις πράξεις χωρίς να χρησιμοποιήσετε παραγώγους. Επιβεβαιώστε

Διαβάστε περισσότερα

ΜΑΘΗΜΑ - VI ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ Ι (ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ) Α. ΑΣΚΗΣΗ Α3 - Θερµοχωρητικότητα αερίων Προσδιορισµός του Αδιαβατικού συντελεστή γ

ΜΑΘΗΜΑ - VI ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ Ι (ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ) Α. ΑΣΚΗΣΗ Α3 - Θερµοχωρητικότητα αερίων Προσδιορισµός του Αδιαβατικού συντελεστή γ ΜΑΘΗΜΑ - VI ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ Ι (ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ) ΑΣΚΗΣΗ Α3 - Θερµοχωρητικότητα αερίων Προσδιορισµός του Αδιαβατικού συντελεστή γ Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής

Διαβάστε περισσότερα

( ) ) V(x, y, z) Παραδείγματα. dt + "z ˆk + z d ˆk. v 2 =!x 2 +!y 2 +!z 2. F =! "p. T = 1 2 m (!x2 +!y 2 +!z 2

( ) ) V(x, y, z) Παραδείγματα. dt + z ˆk + z d ˆk. v 2 =!x 2 +!y 2 +!z 2. F =! p. T = 1 2 m (!x2 +!y 2 +!z 2 ΦΥΣ 211 - Διαλ.04 1 Παραδείγματα Κίνηση ενός και μόνο σωματιδίου, χρησιμοποιώντας Καρτεσιανές συντεταγμένες και συντηρητικές δυνάμεις. Οι εξισώσεις Lagrange θα πρέπει να επιστρέφουν τα ίδια αποτελέσματα

Διαβάστε περισσότερα

2 Η ΠΡΟΟΔΟΣ. Ενδεικτικές λύσεις κάποιων προβλημάτων. Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση

2 Η ΠΡΟΟΔΟΣ. Ενδεικτικές λύσεις κάποιων προβλημάτων. Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση 2 Η ΠΡΟΟΔΟΣ Ενδεικτικές λύσεις κάποιων προβλημάτων Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση Ένας τροχός εκκινεί από την ηρεμία και επιταχύνει με γωνιακή ταχύτητα που δίνεται από την,

Διαβάστε περισσότερα

Διάλεξη 9: Στατιστική Φυσική

Διάλεξη 9: Στατιστική Φυσική Στατιστική Φυσική: Η μελέτη της θερμοδυναμικής συμπεριφοράς ενός συστήματος σωματίων σε σχέση με τις ιδιότητες των επί μέρους σωματίων. Αν και δεν μπορεί να προβλέψει με απόλυτη ακρίβεια την θερμοδυναμική

Διαβάστε περισσότερα

Βαρύτητα Βαρύτητα Κεφ. 12

Βαρύτητα Βαρύτητα Κεφ. 12 Κεφάλαιο 1 Βαρύτητα 6-1-011 Βαρύτητα Κεφ. 1 1 Νόμος βαρύτητας του Νεύτωνα υο ή περισσότερες μάζες έλκονται Βαρυτική δύναμη F G m1m ˆ Βαρυτική σταθερά G =667*10 6.67 11 N*m Nm /kg παγκόσμια σταθερά 6-1-011

Διαβάστε περισσότερα

d dx ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ

d dx ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ α) Η παράγωγος μιας συνάρτησης = f() σε ένα σημείο 0 εκφράζει το ρυθμό μεταβολής της συνάρτησης (ή τον παράγωγο αριθμό) στο σημείο 0. β) Γραφικά, η παράγωγος της συνάρτησης στο σημείο

Διαβάστε περισσότερα

ΦΥΣ Διάλ Άλγεβρα. 1 a. Άσκηση για το σπίτι: Διαβάστε το παράρτημα Β του βιβλίου

ΦΥΣ Διάλ Άλγεβρα. 1 a. Άσκηση για το σπίτι: Διαβάστε το παράρτημα Β του βιβλίου ΦΥΣ 131 - Διάλ. 4 1 Άλγεβρα a 1 a a ( ± y) a a ± y log a a 10 log a ± logb log( ab ± 1 ) log( a n ) n log( a) ln a a e ln a ± ln b ln( ab ± 1 ) ln( a n ) nln( a) Άσκηση για το σπίτι: Διαβάστε το παράρτημα

Διαβάστε περισσότερα

Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις

Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις Έστω F=f κεντρικό πεδίο δυνάμεων. Είναι εύκολο να δείξουμε ότι F=0, δηλ. είναι διατηρητικό: F= V. Σε σφαιρικές συντεταγμένες, γενικά: V ma = F =, V maθ = Fθ =,

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Ακαδημαϊκό έτος 0-3 Στατιστική Θερμοδυναμική ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Επώνυμο: Όνομα: Προσωπικός Αριθμός: Ημερομηνία: Βαθμολογία θεμάτων 3 4 5 6 7 8 9 0 Γενικός Βαθμός η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΣΤΗ "ΦΥΣΙΚΟΧΗΜΕΙΑ"

Διαβάστε περισσότερα

Εφαρμογές Νόμος Gauss, Ηλεκτρικά πεδία. Ιωάννης Γκιάλας 7 Μαρτίου 2014

Εφαρμογές Νόμος Gauss, Ηλεκτρικά πεδία. Ιωάννης Γκιάλας 7 Μαρτίου 2014 Εφαρμογές Νόμος Gauss, Ηλεκτρικά πεδία Ιωάννης Γκιάλας 7 Μαρτίου 14 Άσκηση: Ηλεκτρικό πεδίο διακριτών φορτίων Δύο ίσα θετικά φορτία q βρίσκονται σε απόσταση α μεταξύ τους. Να βρεθεί η ακτίνα του κύκλου,

Διαβάστε περισσότερα

Κ. Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής 61. 12. Ολοκληρώµατα διανυσµατικών συναρτήσεων

Κ. Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής 61. 12. Ολοκληρώµατα διανυσµατικών συναρτήσεων Κ Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής 6 Ολοκληρώµατα διανυσµατικών συναρτήσεων Υπάρχουν διαφόρων ειδών ολοκληρώµατα διανυσµάτων, ανάλογα µε τη µορφή που έχει η ολοκληρωτέα

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός. Χρήσιμες μαθηματικές έννοιες. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Χρήσιμες μαθηματικές έννοιες. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Χρήσιμες μαθηματικές έννοιες Νίκος Ν. Αρπατζάνης Παράγωγος ΓΕΩΜΕΤΡΙΚΗ ΕΡΜΗΝΕΙΑ y y = f(x) x φ y y y = f(x) x φ y y y = f(x) φ x 1 x 1 + х x x 1 x 1 + х x x 1 x tanϕ = y x tanϕ = dy dx

Διαβάστε περισσότερα

Κβαντομηχανική σε. τρεις διαστάσεις. Εξίσωση Schrödinger σε 3D. Τελεστές 2 )

Κβαντομηχανική σε. τρεις διαστάσεις. Εξίσωση Schrödinger σε 3D. Τελεστές 2 ) vs of Io vs of Io D of Ms Scc & gg Couo Ms Scc ική Θεωλης ική Θεωλης ιδάσκων: Λευτέρης Λοιδωρίκης Π 746 dok@cc.uo.g cs.s.uo.g/dok ομηχ ομηχ δ ά τρεις διαστ Εξίσωση Schödg σε D Σε μία διάσταση Σε τρείς

Διαβάστε περισσότερα

ΔΥΝΑΜΕΙΣ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΗ ΡΕΥΣΤΩΝ

ΔΥΝΑΜΕΙΣ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΗ ΡΕΥΣΤΩΝ ΔΥΝΑΜΕΙΣ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΗ ΡΕΥΣΤΩΝ Α. Παϊπέτης 6 ο Εξάμηνο Μηχανικών Επιστήμης Υλικών Εισαγωγή Φύση και μορφή δυνάμεων/ ρυθμός παραμόρφωσης Σωματικές δυνάμεις: δυνάμεις σε όγκο ελέγχου που είναι πλήρης ρευστού

Διαβάστε περισσότερα

β) Από τον νόμο του Νεύτωνα για την μεταφορική κίνηση του κέντρου μάζας έχουμε: Επομένως το κέντρο μάζας αποκτάει αρνητική επιτάχυνση σταθερού μέτρου

β) Από τον νόμο του Νεύτωνα για την μεταφορική κίνηση του κέντρου μάζας έχουμε: Επομένως το κέντρο μάζας αποκτάει αρνητική επιτάχυνση σταθερού μέτρου ΣΥΝΘΕΤΗ ΚΙΝΗΣΗ 1) Συμπαγής κύλινδρος μάζας m και ακτίνας R δέχεται μια αρχική μεγάλη και στιγμιαία ώθηση προς τα πάνω σε κεκλιμένο επίπεδο γωνίας θ και μετά αφήνεται ελεύθερος. Κατά την παύση της ώθησης,

Διαβάστε περισσότερα

Φυσική Προσανατολισμού Β Λυκείου Κεφάλαιο 2 ο. Σύντομη Θεωρία

Φυσική Προσανατολισμού Β Λυκείου Κεφάλαιο 2 ο. Σύντομη Θεωρία Φυσική Προσανατολισμού Β Λυκείου 05-06 Κεφάλαιο ο Σύντομη Θεωρία Θερμοδυναμικό σύστημα είναι το σύστημα το οποίο για να το περιγράψουμε χρησιμοποιούμε και θερμοδυναμικά μεγέθη, όπως τη θερμοκρασία, τη

Διαβάστε περισσότερα

Περι - Φυσικής. Επαναληπτικό ιαγώνισµα Β Τάξης Λυκείου Παρασκευή 15 Μάη 2015 Μηχανική/Θερµοδυναµική/Ηλεκτρικό Πεδίο. Θέµα Α. Ενδεικτικές Λύσεις

Περι - Φυσικής. Επαναληπτικό ιαγώνισµα Β Τάξης Λυκείου Παρασκευή 15 Μάη 2015 Μηχανική/Θερµοδυναµική/Ηλεκτρικό Πεδίο. Θέµα Α. Ενδεικτικές Λύσεις Επαναληπτικό ιαγώνισµα Β Τάξης Λυκείου Παρασκευή 15 Μάη 2015 Μηχανική/Θερµοδυναµική/Ηλεκτρικό Πεδίο Ενδεικτικές Λύσεις Θέµα Α Α.1. Στην άκρη ενός τραπεζιού ϐρίσκονται δύο σφαίρες Σ 1 και Σ 2. Κάποια χρονική

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική I 2 Σεπτεμβρίου 2010

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική I 2 Σεπτεμβρίου 2010 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική I Σεπτεμβρίου 00 Απαντήστε και στα 0 ερωτήματα με σαφήνεια και απλότητα. Οι ολοκληρωμένες απαντήσεις εκτιμώνται ιδιαιτέρως. Καλή σας επιτυχία.. Ένας

Διαβάστε περισσότερα

Για τη συνέχεια σήμερα...

Για τη συνέχεια σήμερα... ΦΥΣ 211 - Διαλ.10 1 Για τη συνέχεια σήμερα... q Συζήτηση ξανά των νόμων διατήρησης q Χρησιμοποιώντας τον φορμαλισμό Lagrange q Γραμμική ορμή και στροφορμή q Σύνδεση μεταξύ συμμετρίας, αναλλοίωτο της Lagrangan,

Διαβάστε περισσότερα

Βασική έννοια. Μηχανική ενέργεια.

Βασική έννοια. Μηχανική ενέργεια. Έργο - Ενέργεια Βασική έννοια. Μηχανική, Ηλεκτρομαγνητική, Χημική, Θερμική, Πυρηνική, κ.α. Δυνατότητα μετατροπής της μίας μορφής σε άλλη. Μηχανική ενέργεια. Λύση προβλημάτων μηχανικής. α) ος νόμος Νεύτωνα,

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 19 ΣΕΠΤΕΜΒΡΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 19 ΣΕΠΤΕΜΒΡΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 19 ΣΕΠΤΕΜΒΡΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ ΘΕΜΑ 1ο Στις ερωτήσεις 1, 2 και3 να γράψετε στο τετράδιό

Διαβάστε περισσότερα

ΑΝΤΙΣΤΡΕΠΤΕΣ ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ ΘΕΩΡΙΑ

ΑΝΤΙΣΤΡΕΠΤΕΣ ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ ΘΕΩΡΙΑ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 6932 946778 ΑΝΤΙΣΤΡΕΠΤΕΣ ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ ΘΕΩΡΙΑ Περιεχόμενα 1. Μελέτη Ισόχωρης μεταβολής 2. Μελέτη Ισοβαρής μεταβολής 3. Μελέτη Ισόθερμης μεταβολής 4.

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΙΙ- ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ 2/2012

ΑΝΑΛΥΣΗ ΙΙ- ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ 2/2012 ΑΝΑΛΥΣΗ ΙΙ- ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ /0 Έστω r rx, y, z, I a, b συνάρτηση C τάξης και r r r x y z Nα αποδείξετε ότι: d dr r (α) r r, I r r r d dr d r (β) r r, I dr (γ) Αν r 0, για κάθε I κάθε I d (δ)

Διαβάστε περισσότερα

1 IΔΑΝΙΚΑ ΑΕΡΙΑ 1.1 ΓΕΝΙΚΑ

1 IΔΑΝΙΚΑ ΑΕΡΙΑ 1.1 ΓΕΝΙΚΑ 1 1 IΔΑΝΙΚΑ ΑΕΡΙΑ 1.1 ΓΕΝΙΚΑ Θα αρχίσουμε τη σειρά των μαθημάτων της Φυσικοχημείας με τη μελέτη της αέριας κατάστασης της ύλης. Η μελέτη της φύσης των αερίων αποτελεί ένα ιδανικό μέσο για την εισαγωγή

Διαβάστε περισσότερα

Ενότητα 9: Ασκήσεις. Άδειες Χρήσης

Ενότητα 9: Ασκήσεις. Άδειες Χρήσης Μηχανική των Ρευστών Ενότητα 9: Ασκήσεις Βασίλειος Λουκόπουλος, Επίκουρος Καθηγητής Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Οι ιδιότητες των αερίων και καταστατικές εξισώσεις. Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι

Οι ιδιότητες των αερίων και καταστατικές εξισώσεις. Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι Οι ιδιότητες των αερίων και καταστατικές εξισώσεις Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι Τι είναι αέριο; Λέμε ότι μία ουσία βρίσκεται στην αέρια κατάσταση όταν αυθόρμητα

Διαβάστε περισσότερα

1 p p a y. , όπου H 1,2. u l, όπου l r p και u τυχαίο μοναδιαίο διάνυσμα. Δείξτε ότι μπορούν να γραφούν σε διανυσματική μορφή ως εξής.

1 p p a y. , όπου H 1,2. u l, όπου l r p και u τυχαίο μοναδιαίο διάνυσμα. Δείξτε ότι μπορούν να γραφούν σε διανυσματική μορφή ως εξής. ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου V Άσκηση : Οι θεμελιώδεις σχέσεις μετάθεσης της στροφορμής επιτρέπουν την ύπαρξη ακέραιων και ημιπεριττών ιδιοτιμών Αλλά για την τροχιακή στροφορμή L r p γνωρίζουμε ότι

Διαβάστε περισσότερα

Φυσική Ι 1ο εξάμηνο. Γεώργιος Γκαϊντατζής Επίκουρος Καθηγητής. Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης.

Φυσική Ι 1ο εξάμηνο. Γεώργιος Γκαϊντατζής Επίκουρος Καθηγητής. Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης. Φυσική Ι 1ο εξάμηνο Γεώργιος Γκαϊντατζής Επίκουρος Καθηγητής Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης 4 ο μάθημα Κεφάλαιο 7 Έργο και Ενέργεια Έργο σε μια διάσταση Νόμοι διατήρησης:

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ. Κινητική Θεωρία Αερίων. Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ. Κινητική Θεωρία Αερίων. Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ Κινητική Θεωρία Αερίων Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός / Νόμος του Boyle: με τον όγκο. Η πίεση ορισμένης ποσότητας αερίου του οποίου η θερμοκρασία

Διαβάστε περισσότερα

Αστροφυσική. Οµάδα 2. v f = 0

Αστροφυσική. Οµάδα 2. v f = 0 Αστροφυσική Οµάδα 2 1 Η εξίσωση Boltzann αποτελεί τη ϐάση της κινητικής ϑεωρίας των αερίων και περιγράφει την εξέλιξη της συνάρτησης κατανοµής ταχυτήτων f x, v, t ενός αερίου πλάσµα, αστέρες, µόρια στο

Διαβάστε περισσότερα

Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς

Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς Εργαστηριακή Άσκηση 4 Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και του θεωρήματος μεταβολής της κινητικής ενέργειας με τη διάταξη της αεροτροχιάς Βαρσάμης Χρήστος Στόχος: Μελέτη της ευθύγραμμης

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ- ΕΞΙΣΩΣΕΙΣ NAVIER STOKES

ΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ- ΕΞΙΣΩΣΕΙΣ NAVIER STOKES ΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ- ΕΞΙΣΩΣΕΙΣ NAVIER STOKES ΙΣΟΡΡΟΠΙΑ ΔΥΝΑΜΕΩΝ ΣΕ ΕΝΑΝ ΑΠΕΙΡΟΣΤΟ ΟΓΚΟ ΡΕΥΣΤΟΥ Στο κεφάλαιο αυτό θα εξετάσουμε την ισορροπία των δυνάμεων οι οποίες ασκούνται σε ένα τυχόν σωματίδιο ρευστού.

Διαβάστε περισσότερα

ΘΕΡΜΙΚΕΣ & ΨΥΚΤΙΚΕΣ ΜΗΧΑΝΕΣ ΘΕΩΡΙΑ

ΘΕΡΜΙΚΕΣ & ΨΥΚΤΙΚΕΣ ΜΗΧΑΝΕΣ ΘΕΩΡΙΑ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 6932 946778 www.pmoiras.weebly.om ΘΕΡΜΙΚΕΣ & ΨΥΚΤΙΚΕΣ ΜΗΧΑΝΕΣ ΘΕΩΡΙΑ Περιεχόμενα 1. Κυκλικές διαδικασίες 2. O 2ος Θερμοδυναμικός Νόμος- Φυσική Ερμηνεία 2.1 Ισοδυναμία

Διαβάστε περισσότερα

Ενδεικτικές ερωτήσεις Μηχανικής για τους υποψήφιους ΠΕ04 του ΑΣΕΠ

Ενδεικτικές ερωτήσεις Μηχανικής για τους υποψήφιους ΠΕ04 του ΑΣΕΠ Ενδεικτικές ερωτήσεις Μηχανικής για τους υποψήφιους ΠΕ του ΑΣΕΠ Ένα κινητό κινείται σε κύκλο Κεντρομόλος και επιτρόχια επιτάχυνση υπάρχουν: α Και οι δύο πάντα β Η πρώτη πάντα γ Η δεύτερη πάντα δ Ενδέχεται

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Ιούνιος 2004

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Ιούνιος 2004 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Ιούνιος 2004 Τμήμα Π. Ιωάννου & Θ. Αποστολάτου Απαντήστε στα 4 θέματα με σαφήνεια συντομία. Η πλήρης απάντηση θέματος εκτιμάται ιδιαίτερα. Καλή

Διαβάστε περισσότερα

ΕΡΓΟ -ΕΝΕΡΓΕΙΑ. Το στοιχειώδες έργο dw δύναμης F που ασκείται σε ένα σώμα κατά τη στοιχειώδη μετατόπισή του d s είναι η ποσότητα:

ΕΡΓΟ -ΕΝΕΡΓΕΙΑ. Το στοιχειώδες έργο dw δύναμης F που ασκείται σε ένα σώμα κατά τη στοιχειώδη μετατόπισή του d s είναι η ποσότητα: ΕΡΓΟ -ΕΝΕΡΓΕΙΑ Το στοιχειώδες έργο dw δύναμης F που ασκείται σε ένα σώμα κατά τη στοιχειώδη μετατόπισή του d s είναι η ποσότητα: d F d s Παρατηρήσεις Το έργο εκφράζει την ποσότητα της ενέργειας που παράγεται

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ

ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ Έννοια συνάρτησης Παραγώγιση Ακρότατα Ασκήσεις Βασικές έννοιες Στην Οικονομία, τα περισσότερα από τα μετρούμενα μεγέθη, εξαρτώνται από άλλα μεγέθη. Π.χ η ζήτηση από την τιμή,

Διαβάστε περισσότερα

b proj a b είναι κάθετο στο

b proj a b είναι κάθετο στο ΦΥΛΛΑ ΙΟ ΑΣΚΗΣΕΩΝ. Βρείτε όλα τα σηµεία P τέτοια ώστε η απόσταση του P από το A(, 5, 3) είναι διπλάσια από την απόσταση του P από το B(6, 2, 2). είξτε ότι το σύνολο όλων αυτών των σηµείων είναι σφαίρα.

Διαβάστε περισσότερα

Φ Ρ Ο Ν Τ Ι Σ Τ Η Ρ Ι Α ΘΕΩΡΗΤΙΚΗ ΘΕΤΙΚΗ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΕΠΑ.Λ

Φ Ρ Ο Ν Τ Ι Σ Τ Η Ρ Ι Α ΘΕΩΡΗΤΙΚΗ ΘΕΤΙΚΗ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΕΠΑ.Λ Προτεινόµενα Θέµατα Β Λυκείου Οκτώβριος 01 Φυσική ΘΕΜΑ Α Στις ερωτήσεις από 1-4 να επιλέξετε την σωστή απάντηση. κατεύθυνσης 1. Η καταστατική εξίσωση των ιδανικών αερίων εφαρμόζεται και στα πραγματικά

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Β ΓΥΜΝΑΣΙΟΥ 2013

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Β ΓΥΜΝΑΣΙΟΥ 2013 1. Τί ονομάζουμε απόλυτη τιμή ενός αριθμού α ; Ονομάζουμε απόλυτη τιμή ενός αριθμού α την απόστασή του από το 0 (μηδέν). ή Απόλυτη τιμή λέμε τον αριθμό χωρίς πρόσημο. 2.Πότε δύο αριθμοί λέγονται αντίθετοι;

Διαβάστε περισσότερα

Περιεχόμενο της άσκησης

Περιεχόμενο της άσκησης Προαπαιτούμενες γνώσεις Ημιαγωγοί Θεωρία ζωνών Ενδογενής αγωγιμότητα Ζώνη σθένους Ζώνη αγωγιμότητας Προτεινόμενη βιβλιογραφία 1) Π.Βαρώτσος Κ.Αλεξόπουλος «Φυσική Στερεάς Κατάστασης» 2) C.Kittl, «Εισαγωγή

Διαβάστε περισσότερα

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 16/2/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ A ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Ι

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 16/2/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ A ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Ι ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 6//0 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ A ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Ι ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ Σωματίδιο μάζας m = Kg κινείται ευθύγραμμα και ομαλά στον

Διαβάστε περισσότερα

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 19//013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 υ (m/s) Σώμα μάζας m = 1Kg κινείται σε ευθύγραμμη τροχιά

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Κβαντομηχανική σε τρεις διαστάσεις Διδάσκων : Επίκ. Καθ. Μ.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Κβαντομηχανική σε τρεις διαστάσεις Διδάσκων : Επίκ. Καθ. Μ. ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Σύγρονη Φυσική II Κβαντομηχανική σε τρεις διαστάσεις Διδάσκων : Επίκ. Καθ. Μ. Μπενής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

1. Δυναμική Ενέργεια και Διατηρητικές Δυνάμεις

1. Δυναμική Ενέργεια και Διατηρητικές Δυνάμεις . Δυναμική Ενέργεια και Διατηρητικές Δυνάμεις Εξετάζοντας την αιώρα παρατηρούμε ότι στα ανώτατα σημεία η ενέργεια μοιάζει να έχει αποθηκευτεί υπό κάποια άλλη μορφή, που συνδέεται με το ύψος της πάνω από

Διαβάστε περισσότερα

Μακροσκοπική ανάλυση ροής

Μακροσκοπική ανάλυση ροής Μακροσκοπική ανάλυση ροής Α. Παϊπέτης 6 ο Εξάμηνο Μηχανικών Επιστήμης Υλικών Εισαγωγή Μακροσκοπική ανάλυση Όγκος ελέγχου και νόμοι της ρευστομηχανικής Θεώρημα μεταφοράς Εξίσωση συνέχειας Εξίσωση ορμής

Διαβάστε περισσότερα

ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ

ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ 9 ο ΜΑΘΗΜΑ ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ Πότε κάνουμε ομαδοποίηση των παρατηρήσεων; Όταν το πλήθος των τιμών μιας μεταβλητής είναι αρκετά μεγάλο κάνουμε ομαδοποίηση των παρατηρήσεων. Αυτό συμβαίνει είτε

Διαβάστε περισσότερα

P H Y S I C S S O L V E R ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Ι ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΦΥΣΙΚΗΣ Ι. Σχολή Αγρονόμων & Τοπογράφων Μηχανικών ΕΞΕΤΑΣΤΙΚΕΣ ΠΕΡΙΟΔΟΙ

P H Y S I C S S O L V E R ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Ι ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΦΥΣΙΚΗΣ Ι. Σχολή Αγρονόμων & Τοπογράφων Μηχανικών ΕΞΕΤΑΣΤΙΚΕΣ ΠΕΡΙΟΔΟΙ P H Y S I C S S O L V E R ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Ι ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΦΥΣΙΚΗΣ Ι Σχολή Αγρονόμων & Τοπογράφων Μηχανικών (Σ.Α.Τ.Μ. ΕΜΠ) ΕΞΕΤΑΣΤΙΚΕΣ ΠΕΡΙΟΔΟΙ 00-0-0 ΘΕΜΑ Ο ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΦΥΣΙΚΗΣ Ι Σχολή Αγρονόμων

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

ΕΝΤΡΟΠΙΑ-2ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ-ΚΥΚΛΟΣ CARNOT

ΕΝΤΡΟΠΙΑ-2ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ-ΚΥΚΛΟΣ CARNOT ΕΝΤΡΟΠΙΑ-ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ-ΚΥΚΛΟΣ CARNO Η εντροπία είναι το φυσικό µέγεθος το οποίο εκφράζει ποσοτικά το βαθµό αταξίας µιας κατάστασης ενός θερµοδυναµικού συστήµατος. ΣΤΑΤΙΣΤΙΚΟΣ ΟΡΙΣΜΟΣ Η εντροπία

Διαβάστε περισσότερα

ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ ΕΔΟΥΑΡΔΟΥ ΛΑΓΑΝΑ Ph.D. Κεντρικό: Λεωφ. Κηφισίας 56, Αμπελόκηποι, Αθήνα Τηλ.: ,

ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ ΕΔΟΥΑΡΔΟΥ ΛΑΓΑΝΑ Ph.D. Κεντρικό: Λεωφ. Κηφισίας 56, Αμπελόκηποι, Αθήνα Τηλ.: , ΕΔΟΥΑΡΔΟΥ ΛΑΓΑΝΑ Ph.D. Κεντρικό: Τηλ.: 0 69 97 985, www.edlag.gr ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ Τηλ.: 0 69 97 985, e-mal: edlag@oteet.gr, www.edlag.gr ΣΜΑΡΑΓΔΑ ΣΑΡΑΝΤΟΠΟΥΛΟΥ, MSC, ΥΠΟΨΗΦΙΑ ΔΙΔΑΚΤΩΡ

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2001. + mu 1 2m. + u2. = u 1 + u 2. = mu 1. u 2, u 2. = u2 u 1 + V2 = V1

ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2001. + mu 1 2m. + u2. = u 1 + u 2. = mu 1. u 2, u 2. = u2 u 1 + V2 = V1 ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 00 ΘΕΜΑ : (α) Ταχύτητα ΚΜ: u KM = mu + mu m = u + u Εποµένως u = u u + u = u u, u = u u + u = u u (β) Διατήρηση ορµής στο ΚΜ: mu + mu = mv + mv u + u = V + V = 0 V = V

Διαβάστε περισσότερα

( ) Ολική στροφορμή L = p! i. L =! R M! v + ri m i vi. r i. q Ορίζουμε την θέση ενός σημείου I από το κέντρο μάζας: r! i

( ) Ολική στροφορμή L = p! i. L =! R M! v + ri m i vi. r i. q Ορίζουμε την θέση ενός σημείου I από το κέντρο μάζας: r! i ΦΥΣ - Διαλ.03 Ολική στροφορμή q Ορίζουμε την θέση ενός σημείου I από το κέντρο μάζας: r = r R q Ορίζουμε επίσης τις ταχύτητες: v = " r v = και R " Ø Υπολογίζουμε την ολική στροφορμή L = r p = L = R M v

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ΕΠΝΛΗΠΤΙΚ ΘΕΜΤ 3 Ε_3.ΦλΘΤ(α) ΤΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΘΗΜ: ΦΥΣΙΚΗ / ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΘΕΜ Ηµεροµηνία: Κυριακή 8 πριλίου 3 ιάρκεια Εξέτασης: ώρες ΠΝΤΗΣΕΙΣ. δ. γ 3. β 4. γ 5. α. Σωστό, β. Λάθος, γ. Σωστό,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΘΕΩΡΙΑ

ΚΕΦΑΛΑΙΟ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΘΕΩΡΙΑ ΚΕΦΑΛΑΙΟ o ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΘΕΩΡΙΑ.) Τ ι γνωρίζετε για την αρχή της ανεξαρτησίας των κινήσεων; Σε πολλές περιπτώσεις ένα σώμα εκτελεί σύνθετη κίνηση, δηλαδή συμμετέχει σε περισσότερες από μία κινήσεις. Για

Διαβάστε περισσότερα

1. Ηλεκτρικό Φορτίο. Ηλεκτρικό Φορτίο και Πεδίο 1

1. Ηλεκτρικό Φορτίο. Ηλεκτρικό Φορτίο και Πεδίο 1 . Ηλεκτρικό Φορτίο Το ηλεκτρικό φορτίο είναι ένα από τα βασικά χαρακτηριστικά των σωματιδίων από τα οποία οικοδομείται η ύλη. Υπάρχουν δύο είδη φορτίου (θετικό αρνητικό). Κατά την φόρτιση το φορτίο δεν

Διαβάστε περισσότερα

ΦΥΣ Διαλ Σήμερα...? q Λογισμό μεταβολών (calculus of variations)

ΦΥΣ Διαλ Σήμερα...? q Λογισμό μεταβολών (calculus of variations) ΦΥΣ 11 - Διαλ.09 1 Σήμερα...? q Λογισμό μεταβολών (calculus of variations) Λογισμός μεταβολών - εισαγωγικά ΦΥΣ 11 - Διαλ.09 q Εύρεση του ελάχιστου ή μέγιστου μιας ποσότητας που εκφράζεται με τη μορφή ενός

Διαβάστε περισσότερα

Τετραγωνικά μοντέλα. Τετραγωνικό μοντέλο συνάρτησης. Παράδειγμα τετραγωνικού μοντέλου #1. Παράδειγμα τετραγωνικού μοντέλου #1

Τετραγωνικά μοντέλα. Τετραγωνικό μοντέλο συνάρτησης. Παράδειγμα τετραγωνικού μοντέλου #1. Παράδειγμα τετραγωνικού μοντέλου #1 Τετραγωνικό μοντέλο συνάρτησης Τετραγωνικά μοντέλα Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc64.materials.uoi.gr/dpapageo Για συνάρτηση μιας

Διαβάστε περισσότερα

Λαμβάνοντας επιπλέον και την βαρύτητα, η επιτάχυνση του σώματος έχει συνιστώσες

Λαμβάνοντας επιπλέον και την βαρύτητα, η επιτάχυνση του σώματος έχει συνιστώσες Μικρό σώμα μάζας m κινείται μέσα σε βαρυτικό πεδίο με σταθερά g και επιπλέον κάτω από την επίδραση μιας δύναμης με συνιστώσες F x = 2κm και F y = 12λmt 2 όπου κ και λ είναι θετικές σταθερές σε κατάλληλες

Διαβάστε περισσότερα

Θεωρητική μηχανική ΙΙ

Θεωρητική μηχανική ΙΙ ΟΣΑ ΓΡΑΦΟΝΤΑΙ ΕΔΩ ΝΑ ΤΑ ΔΙΑΒΑΖΕΤΕ ΜΕ ΣΚΕΠΤΙΚΟ ΒΛΕΜΜΑ. ΜΠΟΡΕΙ ΝΑ ΠΕΡΙΕΧΟΥΝ ΛΑΘΗ. Θεωρητική μηχανική ΙΙ Να δειχθεί ότι αν L x, L y αποτελούν ολοκληρώματα της κίνησης τότε και η L z αποτελεί ολοκλήρωμα της

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός Κεφάλαιο Β.: Η Παράγωγος Συνάρτησης Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Γεώργιος Νικ. Μπροδήμας Κεφάλαιο Β.: Η Παράγωγος

Διαβάστε περισσότερα

Εργασία 3, ΦΥΕ 24, N. Κυλάφης

Εργασία 3, ΦΥΕ 24, N. Κυλάφης Εργασία ΦΥΕ 4-4 Κυλάφης Λύσεις Άσκηση : Ένας κυκλικός δίσκος µάζας M και ακτίνας R µπορεί να περιστρέφετε χωρίς τριβές γύρω από έναν οριζόντιο άξονα που διέρχεται από το κέντρο του Ένα αβαρές νήµα είναι

Διαβάστε περισσότερα

Ασκήσεις κέντρου μάζας και ροπής αδράνειας. αν φανταστούμε ότι το χωρίζουμε το στερεό σώμα σε μικρά κομμάτια, μόρια, μάζας m i και θέσης r i

Ασκήσεις κέντρου μάζας και ροπής αδράνειας. αν φανταστούμε ότι το χωρίζουμε το στερεό σώμα σε μικρά κομμάτια, μόρια, μάζας m i και θέσης r i Κέντρο μάζας Ασκήσεις κέντρου μάζας και ροπής αδράνειας Η θέση κέντρου μάζας ορίζεται ως r r i i αν φανταστούμε ότι το χωρίζουμε το στερεό σώμα σε μικρά κομμάτια, μόρια, μάζας i και θέσης r i. Συμβολίζουμε

Διαβάστε περισσότερα

Το Ελεύθερο Σωμάτιο Ρεύμα Πιθανότητας

Το Ελεύθερο Σωμάτιο Ρεύμα Πιθανότητας Το Ελεύθερο Σωμάτιο Ρεύμα Πιθανότητας Δομή Διάλεξης Χρονική εξέλιξη Gaussian κυματοσυνάρτησης σε μηδενικό δυναμικό (ελέυθερο σωμάτιο): Μετατόπιση και Διασπορά Πείραμα διπλής οπής: Κροσσοί συμβολής για

Διαβάστε περισσότερα