Η Κανονική Κατανομή κανονική κατανομή (normal distribution) Κεντρικό Οριακό Θεώρημα (Central Limit Theorem) συνδέει οποιαδήποτε άλλη κατανομή

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Η Κανονική Κατανομή κανονική κατανομή (normal distribution) Κεντρικό Οριακό Θεώρημα (Central Limit Theorem) συνδέει οποιαδήποτε άλλη κατανομή"

Transcript

1 Η Κανονική Κατανομή H κανονική κατανομή (ormal dstrbuto) θεωρείται η σπουδαιότερη κατανομή της Θεωρίας Πιθανοτήτων και της Στατιστικής. Οι λόγοι που εξηγούν την εξέχουσα θέση της, είναι βασικά δύο: ) Πολλές τυχαίες μεταβλητές περιγράφονται ικανοποιητικά από την κανονική κατανομή ή περιγράφονται από κατανομές που μπορούν να προσεγγισθούν από την κανονική κατανομή. ) Οι ιδιότητες της κανονικής κατανομής αξιοποιούνται στη Στατιστική Συμπερασμασματολογία. Ουσιαστικά, η κανονική κατανομή, αποτελεί το θεμέλιο της Στατιστικής Συμπερασμασματολογίας. Στο δεύτερο μέρος του μαθήματος (Στατιστική), θα έχουμε την ευκαιρία να διαπιστώσουμε πόσο σημαντική είναι η κανονική κατανομή στη στατιστική συμπερασματολογία. Προς το παρόν, ας σταθούμε λίγο περισσότερο στον πρώτο από τους παραπάνω λόγους. Ας προσπαθήσουμε, δηλαδή, να εξηγήσουμε γιατί η κανονική κατανομή βρίσκει εφαρμογή σε μεγάλο πλήθος φαινομένων και πειραμάτων. Το «μυστικό» που εξηγεί το μεγάλο εύρος εφαρμογών της κανονικής κατανομής, βρίσκεται σε ένα εκπληκτικά ισχυρό θεωρητικό αποτέλεσμα της Θεωρίας Πιθανοτήτων το οποίο επιβεβαιώνεται και πειραματικά. Πρόκειται για το Κεντρικό Οριακό Θεώρημα (Cetral Lmt Theorem) τις βάσεις του οποίου έθεσαν δύο μεγάλοι Μαθηματικοί. Ο Abraham De Movre το 7 και, έναν αιώνα περίπου αργότερα, το 8, ο Laplace. Σε αυτό το σημείο, δε θα διατυπώσουμε αυστηρά, ούτε θα αποδείξουμε, το Κεντρικό Οριακό Θεώρημα. Θα προσπαθήσουμε να εξηγήσουμε μόνο το νόημα και τη σημασία του. Αργότερα, θα δώσουμε μια πληρέστερη διατύπωση. Σύμφωνα με το Κεντρικό Οριακό Θεώρημα, το άθροισμα και -επομένως- η μέση τιμή, μεγάλου αριθμού ανεξάρτητων παρατηρήσεων, ακολουθεί κατά προσέγγιση κανονική κατανομή, ανεξαρτήτως από το ποια κατανομή ακολουθούν οι παρατηρήσεις. Πώς, όμως, αυτό το αποτέλεσμα ερμηνεύει τη μεγάλη εφαρμοσιμότητα της κανονικής κατανομής; Είναι απλό. Σε πολλά φαινόμενα και πειράματα, οι τιμές διαφόρων χαρακτηριστικών (μεταβλητών), είναι αποτέλεσμα αθροιστικής επίδρασης πολλών ανεξάρτητων αιτίων-παραγόντων κανένα από τα οποία δεν υπερισχύει των άλλων. Για παράδειγμα, ο χρόνος αναμονής σε μια ουρά, είναι αποτέλεσμα πολλών παραγόντων, όπως, η ημέρα της εβδομάδας, η ώρα της ημέρας, η αποτελεσματικότητα του υπαλλήλου, το είδος της συναλλαγής που διεκπεραιώνεται, κ.ά. Επίσης, το βάρος των ζώων μιας κτηνοτροφικής μονάδας, οφείλεται σύμφωνα με τους ειδικούς, σε πληθώρα παραγόντων όπως, η ατομικότητα του ζώου, η φυλή, το γένος, οι συνθήκες διατροφής, οι συνθήκες ενσταυλισμού, κά. Καθένας από τους παράγοντες αυτούς επιφέρει ένα θετικό ή αρνητικό αποτέλεσμα και όλοι μαζί αθροιστικά συντελούν στη διαμόρφωση του τελικού αποτελέσματος. Τέτοια χαρακτηριστικά (μεταβλητές), εμφανίζονται σε πολλά φαινόμενα και πειράματα. Το Κεντρικό Οριακό Θεώρημα λεει ότι αυτά ακριβώς τα χαρακτηριστικά περιγράφονται ικανοποιητικά από την κανονική κατανομή. Επιπλέον, το Κεντρικό Οριακό Θεώρημα συνδέει την κανονική κατανομή με οποιαδήποτε άλλη κατανομή (αφού δεν προϋποθέτει να ακολουθούν οι παρατηρήσεις την κανονική κατανομή), γεγονός το οποίο, απαντάει, επίσης, στο ερώτημα, γιατί η κανονική κατανομή βρίσκει εφαρμογή σε μεγάλο πλήθος φαινομένων και πειραμάτων. Πρέπει να τονίσουμε ότι για να αποδειχθεί ότι ένα συγκεκριμένο χαρακτηριστικό (μεταβλητή) προσεγγίζεται ικανοποιητικά από την κανονική κατανομή, πρέπει να Εργαστήριο Μαθηματικών & Στατιστικής/ Γ. Παπαδόπουλος (www.aua.gr/gpapadopoulos) 7

2 γίνουν μετρήσεις που να επαληθεύουν ένα τέτοιο συμπέρασμα. Μια από τις πρώτες εφαρμογές της κανονικής κατανομής, έγινε το 809 από το μεγάλο Γερμανό Μαθηματικό Carl F. Gauss ο οποίος διαπίστωσε ότι τα σφάλματα που γίνονται σε αστρονομικές παρατηρήσεις μπορούν να περιγραφούν ικανοποιητικά από την κανονική κατανομή. Στη συνέχεια, διαπιστώθηκε επίσης, ότι τα τυχαία σφάλματα (όχι τα συστηματικά) που εμφανίζονται σε διάφορες μετρήσεις ακολουθούν με ικανοποιητική προσέγγιση κανονική κατανομή. Για το λόγο αυτό, η κανονική κατανομή ονομάζεται και κατανομή των σφαλμάτων (law of errors). Επίσης, είναι γνωστή ως κατανομή του Gauss (Gaussa dstrbuto), για τη μεγάλη συνεισφορά του Gauss στην ανάδειξη των ιδιοτήτων και της σημασίας της. Όμως, για το πώς και από ποιόν εισήχθη η κανονική κατανομή, θα αναφερθούμε αργότερα όταν μιλήσουμε πιο αναλυτικά για το Κεντρικό Οριακό Θεώρημα. Τέλος, ως πρόσθετη σχετική πληροφορία, αναφέρουμε ότι στο γερμανικό χαρτονόμισμα των δέκα μάρκων υπήρχαν, φωτογραφία του Gauss, η κανονική καμπύλη και ο μαθηματικός τύπος της!! Ιδιότητες της κανονικής καμπύλης Στην κανονική καμπύλη έχουμε ήδη αναφερθεί. Όπως όλες οι καμπύλες συχνοτήτων, προκύπτει ως προσέγγιση του πολυγώνου συχνοτήτων των τιμών μιας συνεχούς μεταβλητής. Αυξάνοντας, δηλαδή, το μέγεθος του δείγματος και κατασκευάζοντας το ιστόγραμμα με ολοένα και μικρότερου πλάτους κλάσεις ( c 0 ), το αντίστοιχο πολύγωνο προσεγγίζει μια ομαλή-λεία καμπύλη. Η κανονική καμπύλη έχει κωδωνοειδή μορφή, είναι συμμετρική και οι «ουρές» της πλησιάζουν τον οριζόντιο άξονα ομαλά (ασυμπτωτικά). Η μέση τιμή και η διάμεσος ταυτίζονται. Επίσης, η κορυφή ταυτίζεται με τη μέση τιμή και τη διάμεσο. Έτσι, η περιοχή που παρουσιάζει τη μεγαλύτερη πυκνότητα, βρίσκεται και αυτή στο μέσο της κατανομής. Δηλαδή, όταν οι τιμές μιας μεταβλητής είναι κανονικά κατανεμημένες, τότε γύρω από τη μέση τιμή τους υπάρχουν σχετικά πολλές τιμές ενώ μακριά από τη μέση τιμή βρίσκονται σχετικά λίγες τιμές. Για παράδειγμα, αν το ύψος των ελλήνων, ηλικίας 8 έως 5 ετών, είναι κανονικά κατανεμημένο, με μέση τιμή 70 cm και τυπική απόκλιση 5 cm, τότε μεταξύ 70 cm και 75 cm βρίσκονται περισσότερα άτομα από όσα βρίσκονται μεταξύ 80 cm και 85 cm. Επίσης, πολύ λίγα άτομα έχουν ύψος μεγαλύτερο από 85 cm ή μικρότερο από 55 cm. Δες και το σχόλιο στη σελίδα 78 Ενδεικτική της αναγνώρισης της σημασίας της κανονικής κατανομής και του έργου του Gauss Εργαστήριο Μαθηματικών & Στατιστικής/ Γ. Παπαδόπουλος (www.aua.gr/gpapadopoulos) 7

3 Συνήθως, η ομαλή καμπύλη μιας συνεχούς μεταβλητής μπορεί να περιγραφείπροσεγγισθεί από ένα μαθηματικό μοντέλο το οποίο ονομάζεται συνάρτηση πυκνότητας. Η συνάρτηση πυκνότητας της κανονικής κατανομής έχει τύπο: ( x μ ) σ f ( x) = e, < x < + σ π σ η τυπική απόκλιση και μ η μέση τιμή της μεταβλητής, με < μ < +. όπου, > 0 Σημείωση Παρατηρείστε ότι στον τύπο της συνάρτησης πυκνότητας της κανονικής κατανομής, εμφανίζονται δύο πολύ «διάσημοι» άρρητοι αριθμοί: ο π, 4 και ο e, 7. Το εμβαδόν του χωρίου που περικλείεται από την καμπύλη της συνάρτησης πυκνότητας και τον άξονα των τιμών της Χ είναι ίσο με και εκφράζει την πιθανότητα η Χ να πάρει κάποια τιμή μεταξύ και +. Ανάλογα, το εμβαδόν του σκιαγραφημένου χωρίου Α στο επόμενο σχήμα, εκφράζει την πιθανότητα η Χ να πάρει κάποια τιμή μεταξύ των τιμών α και β, δηλαδή, A = α X β ). το εμβαδόν του σκιαγραφημένου χωρίου Β στο επόμενο σχήμα, εκφράζει την πιθανότητα η Χ να πάρει κάποια τιμή μικρότερη ή ίση του α, δηλαδή, B = X α). το εμβαδόν του σκιαγραφημένου χωρίου Γ στο επόμενο σχήμα, εκφράζει την πιθανότητα η Χ να πάρει κάποια τιμή μεγαλύτερη ή ίση του α, δηλαδή, Γ = X a). Επισήμανση Πρέπει να επισημάνουμε ότι η τιμή f (x) της συνάρτησης πυκνότητας για συγκεκριμένη τιμή x της μεταβλητής Χ, δεν αντιστοιχεί σε πιθανότητα, δηλαδή, δεν ισχύει f ( x) = P ( X = x). Εξάλλου, στις συνεχείς μεταβλητές, η πιθανότητα P ( X = x) είναι μηδέν. Τι εκφράζει επομένως η f (x); Η f (x) εκφράζει πυκνότητα, Αυτός είναι και ο λόγος που στις συνεχείς μεταβλητές έχουμε: P ( X α ) = X < α), X α ) = X > α) και P ( α X β ) = α < X < β ) = P ( α X < β ) = = P ( α < X β ) Εργαστήριο Μαθηματικών & Στατιστικής/ Γ. Παπαδόπουλος (www.aua.gr/gpapadopoulos) 7

4 δηλαδή, όσο μεγαλύτερη είναι η τιμή f (x) τόσο περισσότερο πιθανό είναι να πάρει η μεταβλητή X τιμές κοντά στο x. Ερώτηση Η f (x) μπορεί να πάρει τιμές μεγαλύτερες του ; Παρατήρηση Παρατηρείστε ότι η καμπύλη της συνάρτησης πυκνότητας της κανονικής κατανομής, στη θέση x = μ παρουσιάζει μέγιστη τιμή (ίση με ) και στις θέσεις x = μ σ και σ π x = μ + σ παρουσιάζει σημεία καμπής. Είναι φανερό, ότι η συνάρτηση πυκνότητας της κανονικής κατανομής δεν ορίζει μια συγκεκριμένη κανονική καμπύλη αλλά μια οικογένεια κανονικών καμπύλων. Έτσι, για διαφορετικές τιμές των παραμέτρων μ και σ παίρνουμε διαφορετικές κανονικές καμπύλες. Για παράδειγμα, οι κατανομές, είναι όλες κανονικές κατανομές, με ίδια μέση τιμή και διαφορετικές τυπικές αποκλίσεις. Επίσης, οι κατανομές, είναι όλες κανονικές κατανομές με ίδιες τυπικές αποκλίσεις και διαφορετικές μέσες τιμές. Είναι φανερό, ότι αλλαγή της μέσης τιμής προκαλεί μόνο μετατόπιση της κανονικής καμπύλης σε μια νέα θέση. Αλλαγή, της τυπικής απόκλισης, όμως, προκαλεί αλλαγή στην κανονική καμπύλη (χωρίς, φυσικά να αλλάζει η κωδωνοειδής μορφή της). Για παράδειγμα, όσο μικρότερη είναι η τυπική απόκλιση, τόσο ψηλότερη και τόσο πιο στενή είναι η κανονική καμπύλη. Δηλαδή, τόσο μικρότερο είναι το διάστημα στο οποίο, πρακτικά, εκτείνεται η κατανομή. Εργαστήριο Μαθηματικών & Στατιστικής/ Γ. Παπαδόπουλος (www.aua.gr/gpapadopoulos) 74

5 Επισημαίνουμε ότι οι παράμετροι μ και σ χαρακτηρίζουν την κανονική κατανομή, δηλαδή, μπορούμε να την προσδιορίσουμε πλήρως αν γνωρίζουμε μόνο τη μέση τιμή της, μ και την τυπική απόκλισή της, σ. Η κανονική κατανομή με μέση τιμή μ και διασπορά σ (δηλαδή τυπική απόκλιση σ ) συμβολίζεται με N ( μ, σ ). Η Τυποποιημένη κανονική Κατανομή Η κανονική κατανομή που έχει μέση τιμή 0 και τυπική απόκλιση (άρα και διασπορά ), συμβολίζεται με N (0,) και ονομάζεται τυποποιημένη κανονική κατανομή (stadard ormal dstrbuto). Μια τυχαία μεταβλητή που ακολουθεί την τυποποιημένη κανονική κατανομή, έχει επικρατήσει να συμβολίζεται με Ζ και η συνάρτηση πυκνότητάς της με ϕ (z). Προφανώς είναι: z ϕ ( z) = e, < z < +. π Σύμφωνα με τα προηγούμενα, η καμπύλη της τυποποιημένης κανονικής κατανομής στη θέση x = 0 παρουσιάζει μέγιστη τιμή (ίση με = 0. 4 ) και στις θέσεις π x = και x = παρουσιάζει σημεία καμπής. Υπολογισμός πιθανοτήτων Σύμφωνα με όσα ήδη έχουμε αναφέρει, ο υπολογισμός πιθανοτήτων, ανάγεται στον υπολογισμό εμβαδών επιπέδων χωρίων. Δυστυχώς, καμία από τις γνωστές τεχνικές ολοκλήρωσης δε μας επιτρέπει τον αναλυτικό υπολογισμό του κατάλληλου, κατά περίπτωση, ορισμένου ολοκληρώματος της f (x). Στην πράξη, για να υπολογίσουμε τις πιθανότητες που αφορούν τις τιμές τυχαίας μεταβλητής που ακολουθεί κανονική κατανομή N ( μ, σ ), χρησιμοποιούμε τον πίνακα της τυποποιημένης κανονικής κατανομής N (0,). Ο πίνακας της τυποποιημένης κανονικής κατανομής 4, μας δίνει την πιθανότητα P ( Z z) για όλα τα z από 0 έως,59 με βήμα 0,0. Ας συμβολίσουμε αυτή την πιθανότητα με Φ (z). Δηλαδή, Φ ( z) = P ( Z z). Ο πίνακας, επομένως, της τυποποιημένης κανονικής κατανομής μας δίνει το εμβαδόν του σκιαγραφημένου χωρίου το οποίο συμβολίζεται με Φ (z). 4 Υπάρχει σε κάθε βιβλίο Πιθανοτήτων και Στατιστικής (δες σελ. 8). Εργαστήριο Μαθηματικών & Στατιστικής/ Γ. Παπαδόπουλος (www.aua.gr/gpapadopoulos) 75

6 Εύκολα μπορεί να αποδειχθεί ότι: Φ ( z) = Φ( z) Άρα P ( Z z) = Φ( z) = Φ( z) Η Κανονική Κατανομή Σημείωση Η ιδιότητα αυτή εξηγεί γιατί ο πίνακας της τυποποιημένης κανονικής κατανομής δίνει τις τιμές της Φ (z) μόνο για μη αρνητικά z. P ( α Z β ) = Φ( β ) Φ( α) P ( α Z α) = Φ( α) Φ( α ) = Φ( α) P ( Z > a) = Z α) = Φ( α). Είναι φανερό, ότι μπορούμε πλέον, να υπολογίσουμε οποιαδήποτε πιθανότητα για τη Ζ με βάση μόνο τις τιμές Φ (z) του πίνακα της τυποποιημένης κανονικής κατανομής. Ας δούμε μερικά παραδείγματα: P ( Z 0) = Φ(0) = 0.5 P ( Z,7) = Φ(.7) = P ( Z >.7) = Z.7) = Φ(.7) = = P ( Z.55) = Φ(.55) = Φ(.55) = = P (.55 Z.) = Φ(.) Φ(.55) = Φ(.) [ Φ(.55)] = = Φ(.) + Φ(.55) = = 0.95 P ( Z ) = Φ() = 0.84 = % P ( Z ) = Φ() = = % P ( Z ) = Φ() = = % Ερώτηση Μπορείτε να εξηγήσετε γιατί ο πίνακας της τυποποιημένης κανονικής κατανομής δίνει τις τιμές της Φ (z) μέχρι z =. 59 ; Όπως, ήδη, έχουμε αναφέρει, μέσω του πίνακα της τυποποιημένης κανονικής κατανομής, μπορούμε να υπολογίσουμε πιθανότητες για οποιαδήποτε κανονική κατανομή N ( μ, σ ). Αυτό μπορεί να γίνει διότι έχει αποδειχθεί ότι: Αν η τυχαία μεταβλητή Χ ακολουθεί την κανονική κατανομή N( μ, σ ) τότε η τυχαία μ μεταβλητή Z = X, ακολουθεί την τυποποιημένη κανονική N (0,). σ Έτσι, αν η τυχαία μεταβλητή Χ, ακολουθεί κανονική κατανομή με μ =. 5 και σ =., η πιθανότητα P ( X 4) μπορεί να υπολογισθεί ως εξής: Εργαστήριο Μαθηματικών & Στατιστικής/ Γ. Παπαδόπουλος (www.aua.gr/gpapadopoulos) 76

7 .5 X P ( X 4) = P ( ) = 0.4 Z.5) =,,, = Φ(.5) Φ(0.4) = = 0.6 Στο παρακάτω σχήμα φαίνεται ο μετασχηματισμός της N (.5,. ) στην N (0,). Παράδειγμα Έχει παρατηρηθεί ότι ο χρόνος που χρειάζεται ένα ασθενοφόρο για να φθάσει από ένα κέντρο υγείας, στο πλησιέστερο περιφερειακό νοσοκομείο, ακολουθεί κατά προσέγγιση κανονική κατανομή με μέση τιμή μ = 7 m και τυπική απόκλιση σ = m. Να βρεθεί η πιθανότητα, ο χρόνος που θα χρειασθεί το ασθενοφόρο για να φθάσει στο περιφερειακό νοσοκομείο, α) να είναι το πολύ 5 m β) να είναι περισσότερο από m γ) να είναι τουλάχιστον m και το πολύ m Απάντηση X α) P ( X 5) = ) = Z 0.67) = Φ( 0.67) = = Φ(0.67) = = 0.5 X 7 7 β) P ( X > ) = > ) = Z >.67) = Z.67) = = Φ(.67) = = X 7 7 γ) P ( X ) = P ( ) =. Z.) = = Φ(.) = = Παράδειγμα Στο προηγούμενο κεφάλαιο είχαμε αναφέρει, χωρίς απόδειξη, ότι αν ένα σύνολο παρατηρήσεων προέρχεται από κανονική κατανομή, τότε το ποσοστό των παρατηρήσεων που απέχει από τη μέση τιμή, λιγότερο α) από μια τυπική απόκλιση είναι περίπου 68% β) από δύο τυπικές αποκλίσεις είναι περίπου 95% γ) από τρεις τυπικές αποκλίσεις είναι περίπου 99.7%. Μπορούμε τώρα να αποδείξουμε αυτή την πρόταση και μάλιστα, σε γενικότερη μορφή: Αν ένα σύνολο παρατηρήσεων προέρχεται από την κανονική κατανομή N ( μ, σ ), ποιο είναι το ποσοστό των παρατηρήσεων που απέχει από τη μέση τιμή μ λιγότερο από k τυπικές αποκλίσεις; Ζητάμε την πιθανότητα P ( μ k σ X μ + k σ ). Σύμφωνα με τα προηγούμενα, μπορούμε πλέον να υπολογίσουμε αυτήν την πιθανότητα. Πράγματι, Εργαστήριο Μαθηματικών & Στατιστικής/ Γ. Παπαδόπουλος (www.aua.gr/gpapadopoulos) 77

8 μ k σ X μ + k σ ) = P ( k σ X μ + k σ ) = k Z + k) = Φ( k). Έτσι, για k =,,, έχουμε: P ( μ σ X μ + σ ) = Φ() = % P ( μ σ X μ + σ ) = Φ() = % P ( μ σ X μ + σ ) = Φ() = % Η Κανονική Κατανομή X μ = k + k) = σ Σχόλιο Ίσως σας έχει δημιουργηθεί το εξής ερώτημα: Πώς είναι δυνατόν τυχαίες μεταβλητές που παίρνουν μόνο θετικές τιμές ή πεπερασμένου πλήθους τιμές, όπως μεταβλητές που εκφράζουν μήκη, χρόνους ζωής, χρονική διάρκεια φαινομένων κ.λπ., να περιγράφονται από την κανονική κατανομή η οποία θεωρητικά παίρνει άπειρου πλήθους τιμές και μάλιστα από το μέχρι το + ; Για παράδειγμα, η πιθανότητα P ( X > α) έχει κάποια τιμή όσο μεγάλο και αν είναι το α. Αν όμως Χ είναι το ύψος του ανθρώπου και έχει διαπιστωθεί ότι προσεγγίζεται από την κανονική κατανομή, τότε αυτό σημαίνει ότι με βάση το μoντέλο μας (την κανονική κατανομή) θα υπήρχε ένα ποσοστό ανθρώπων, έστω πολύ μικρό, με ύψος Χ>0 μέτρα!!! Επίσης, η πιθανότητα P ( X < 0) έχει κάποια τιμή. Δηλαδή, θα υπήρχε ένα ποσοστό ανθρώπων, έστω πολύ μικρό, με αρνητικό ύψος!!! Τι μπορεί να συμβαίνει; Μια πρώτη εξήγηση είναι η εξής. Οι πιθανότητες αυτές είναι πολύ μικρές και στην πράξη θεωρούνται μηδέν. Για παράδειγμα, η πιθανότητα να είναι αρνητικός ο χρόνος που θα χρειασθεί το ασθενοφόρο για να φθάσει στο περιφερειακό νοσοκομείο (βλ. παράδειγμα-) είναι ίση με: X P ( X < 0) = < ) = Z < 5.7) = Φ( 5.7) = Φ(5.7) το οποίο πρακτικά είναι μηδέν. Όμως, αυτή η εξήγηση δε φαίνεται ικανοποιητική, αφού μπορεί οι πιθανότητες αυτές πρακτικά να είναι μηδέν, αλλά θεωρητικά δεν είναι μηδέν και επομένως το θεωρητικό μοντέλο φαίνεται «προβληματικό». Η απάντηση είναι η εξής: Πρέπει να διακρίνουμε την κανονική κατανομή αυτή καθαυτή, από τα τυχαία φαινόμενα που προσεγγίζονται ικανοποιητικά από την κανονική κατανομή. Η κανονική κατανομή δεν είναι «νόμος της φύσης». Είναι, απλά, ένα μοντέλο το οποίο ορίζεται με μια μαθηματική συνάρτηση. Τίποτε περισσότερο και τίποτε λιγότερο. Η κανονική κατανομή δηλαδή, δεν εκφράζει-περιγράφει απολύτως και εξ ορισμού το τυχαίο φαινόμενο που μας ενδιαφέρει. Το πόσο «καλά» το εκφράζει, δηλαδή, το πόσο μας βοηθάει να το κατανοήσουμε, είναι πρόβλημα δικό μας και της Στατιστικής, όχι της κανονικής κατανομής! Εργαστήριο Μαθηματικών & Στατιστικής/ Γ. Παπαδόπουλος (www.aua.gr/gpapadopoulos) 78

9 Ας δούμε ένα διαφορετικό παράδειγμα. Παράδειγμα Οι υποψήφιοι για εγγραφή σε ένα Μεταπτυχιακό Τμήμα Πανεπιστημίου, υποβάλλονται σε ένα τεστ. Το τεστ έχει σχεδιασθεί έτσι, ώστε η βαθμολογία των υποψηφίων στο τεστ να κατανέμεται κανονικά με μέση τιμή 00 και τυπική απόκλιση 60. Η πολιτική του Πανεπιστημίου είναι να δέχεται ως φοιτητές, το 5% των υποψηφίων με τη μεγαλύτερη βαθμολογία στο τεστ. Ποια είναι η ελάχιστη βαθμολογία που επιτρέπει την εισαγωγή στο Μεταπτυχιακό Τμήμα; Απάντηση Αν Χ είναι η βαθμολογία των υποψηφίων, ζητάμε την τιμή x της μεταβλητής για την οποία ισχύει: P ( X x) = Για τον προσδιορισμού του σημείου x της κατανομής, εργαζόμαστε ως εξής: X 00 x 00 x 00 X x) = 0.5 ) = 0.5 Z ) = x 00 x 00 x 00 Z < ) = 0.5 Z < ) = 0.5 Z < ) = Φ( x ) = Στον πίνακα της τυποποιημένης κανονικής κατανομής, βλέπουμε ότι το εμβαδόν (η πιθανότητα) 0.85 βρίσκεται μεταξύ των εμβαδών και που αντιστοιχούν στις τιμές.0 και.04. Κάνοντας παρεμβολή βρίσκουμε z = =. 05. x 00 Επομένως, =.05 x = 6.. Άρα, η ζητούμενη βαθμολογία είναι Σημείωση: Είναι προφανές ότι με την προηγούμενη μέθοδο υπολογίζουμε τα ποσοστημόρια της κατανομής. Ειδικότερα, για την τυποποιημένη κανονική κατανομή Z ~ N(0,), ο αριθμός z για τον οποίο ισχύει P ( Z z) = α, 0 < α <, ονομάζεται άνω α ποσοστιαίο σημείο της τυποποιημένης κανονικής κατανομής και συμβολίζεται με z α. Δηλαδή, P ( Z zα ) = α. Προφανώς, λόγω συμμετρίας της κατανομής, ισχύει: z = α z α. Άσκηση: Επαληθεύστε ότι, z =., z =.645, z =.8, z = Εργαστήριο Μαθηματικών & Στατιστικής/ Γ. Παπαδόπουλος (www.aua.gr/gpapadopoulos) 79

10 Ας δούμε ένα ακόμη παράδειγμα. Παράδειγμα 4 Μια αυτόματη μηχανή συσκευασίας τροφίμων έχει προγραμματισθεί να συσκευάζει δημητριακά σε συσκευασίες των.5kgr. Έχει παρατηρηθεί ότι η ποσότητα δημητριακών κάθε συσκευασίας ακολουθεί κανονική κατανομή με μέση τιμή μ =.5 kgr και τυπική απόκλιση σ = 0. kgr. α) Τι ποσοστό των συσκευασιών περιέχει ποσότητα που υπερβαίνει τα.6kgr; β) Σε τι ποσότητα πρέπει να ρυθμισθεί η μηχανή έτσι ώστε μόνο στο 0.00 των περιπτώσεων η ποσότητα δημητριακών στη συσκευασία να υπερβαίνει τα.6kgr; Απάντηση Έστω Χ η ποσότητα που περιέχεται στις συσκευασίες. α) X ~ N(.5, 0. ). Εύκολα υπολογίζεται ότι το ποσοστό συσκευασιών που υπερβαίνουν τα.6kgr, δηλαδή, η πιθανότητα X >.6) είναι β) X ~ N( μ, 0. ). Πρέπει να προσδιορισθεί η μέση τιμή μ ώστε P ( X >.6) = Έχουμε: X μ.6 μ X.6) = 0.00 X.6) = ) = μ.6 μ Z ) = Φ( ) = μ Άρα, =.09 μ =. 9. Δηλαδή, η μηχανή πρέπει να ρυθμισθεί στα.9kgr. 0. Σε πρακτικά προβλήματα, ενδιαφέρουν πολλές φορές πιθανότητες κάποιας τυχαίας μεταβλητής η οποία εκφράζει το άθροισμα άλλων ανεξάρτητων τυχαίων μεταβλητών που η κάθε μια ακολουθεί κανονική κατανομή. Ας δούμε ένα τέτοιο πρόβλημα και πώς αντιμετωπίζεται. Παράδειγμα 5 Στα ζώα μιας κτηνοτροφικής μονάδας δίνεται τροφή τρεις φορές την ημέρα. Η ποσότητα θερμίδων που παίρνουν κάθε φορά είναι κανονική τυχαία μεταβλητή. Το διαιτολόγιο έχει ρυθμισθεί έτσι, ώστε την πρώτη φορά που δίνεται τροφή η μέση ποσότητα θερμίδων που παίρνουν να είναι μ = 500 cal με τυπική απόκλιση σ = 50cal, τη δεύτερη να είναι μ = 700 cal με σ = 00 cal και την τρίτη να είναι μ cal με σ cal. Αν οι ποσότητες θερμίδων που παίρνουν τα ζώα = 800 = 00 τις τρεις φορές είναι ανεξάρτητες μεταξύ τους, ποια είναι η πιθανότητα η συνολική ημερήσια ποσότητα θερμίδων που παίρνει ένα τυχαία επιλεγμένο ζώο της μονάδας να είναι μεταξύ 975cal και 05cal. Απάντηση Έστω X η ποσότητα θερμίδων που παίρνει το ζώο την η, τη η και την η φορά αντίστοιχα (ημερεσίως). Γνωρίζουμε ότι το διαιτολόγιο έχει ρυθμισθεί έτσι ώστε: X ~ N(500,50 ) ~ N(700, 00 ) και X ~ N(800,00 ). Η συνολική ημερήσια ποσότητα θερμίδων S που παίρνει το ζώο, προφανώς εκφράζεται από το άθροισμα X + X + X, δηλαδή, S = X + X + X. Εργαστήριο Μαθηματικών & Στατιστικής/ Γ. Παπαδόπουλος (www.aua.gr/gpapadopoulos) 80

11 Είναι προφανές ότι για να απαντήσουμε στο ερώτημα που τίθεται (και σε άλλα παρόμοια) πρέπει να γνωρίζουμε την κατανομή της S. Γι αυτή την κατανομή, μας πληροφορεί η ακόλουθη πρόταση (η απόδειξη είναι εκτός των σκοπών του μαθήματος). Αν X..., ανεξάρτητες τυχαίες μεταβλητές με X ~ N(, σ ) =,,...,, τότε, S = X ~ N( μ + μ μ, σ + σ σ ). Αν για κάθε = μ, =,,..., είναι X ~ N( μ, σ ) δηλαδή αν οι X,... είναι ανεξάρτητες και ισόνομες κανονικές κατανομές, τότε, S = X ~ N( μ, σ ) Επειδή οι X είναι ανεξάρτητες, από την παραπάνω πρόταση έχουμε ότι S ~ N( , ) ή S ~ N(000, 5500). Άρα για την ζητούμενη πιθανότητα έχουμε: S < S < 05) = < < ) = = P ( 0. < Z < 0.) = Φ(0.) = 0.7. Παρατήρηση: Από την προηγούμενη πρόταση εύκολα προκύπτει η επόμενη (χρήσιμη, επίσης, σε πολλά πρακτικά προβλήματα). Αν X..., ανεξάρτητες τυχαίες μεταβλητές με ~ N( μ, σ ) = X για κάθε X =,,...,, τότε, = σ X = ~ N( μ, ). Γενικότερα, αν X,... ανεξάρτητες τυχαίες μεταβλητές με X ~ N( μ, σ ), X μ + μ μ σ + σ σ =,,...,, τότε = ~ N(, ) =. Ως εφαρμογή, απαντήστε στο ακόλουθο ερώτημα-συνέχεια του Παραδείγματος 5: Ποια είναι η πιθανότητα, η μέση ποσότητα θερμίδων που θα πάρει το ζώο σε ένα χρόνο (65 ημέρες) να είναι μεταξύ 975cal και 05cal. Απάντηση: Η ζητούμενη πιθανότητα είναι (γιατί;). Ερώτηση: Τι καταλαβαίνετε από την παρακάτω εικόνα 5 ; 5 Η εικόνα αυτή δημοσιεύθηκε στη σελίδα της έκδοσης Bechmarkg Huma Laguage Techologes (HLT) progress Europe, The EUROMAP study, Adrew Joschelye ad Rose Lockwood, Copehage, 00. Εργαστήριο Μαθηματικών & Στατιστικής/ Γ. Παπαδόπουλος (www.aua.gr/gpapadopoulos) 8

12 Η Κατανομή vo Mses Η Κανονική Κατανομή Στις κυκλικές μεταβλητές, δηλαδή, στις μεταβλητές που μετρώνται σε κυκλική κλίμακα, η πλέον χρησιμοποιούμενη κατανομή είναι η κατανομή vo Mses. Η κατανομή vo Mses, έχει ανάλογα χαρακτηριστικά με την κανονική κατανομή (και αντίστοιχα μεγάλη χρησιμότητα), γι αυτό στη βιβλιογραφία συναντάται και ως κυκλική κανονική κατανομή (crcular ormal). Αν η κατανομή μιας τυχαίας κυκλικής μεταβλητής, για παράδειγμα, μιας τυχαίας μεταβλητής κατεύθυνσης Θ, περιγράφεται από την κατανομή vo Mses, τότε, η συνάρτηση πυκνότητας της Θ δίνεται από τον τύπο: kσυν ( ϑ μ ) f ( ϑ) = e π I 0 ( k) όπου: μ η μέση κατεύθυνση (με τιμές σε διάστημα πλάτους π όπως και η Θ) και k παράμετρος που παίρνει μη αρνητικές τιμές ( κ 0 ) και εκφράζει τη συγκέντρωση των τιμών της Θ γύρω από τη μέση κατεύθυνση. Το Ι ( ) είναι σταθερά 6. 0 κ Για μεγάλα k, η κατανομή vo Mses προσεγγίζει την κανονική κατανομή με μ = θ και σ = (όσο αυξάνεται το k, τόσο αυξάνεται και η πιθανότητα να πάρει η k μεταβλητή Θ, τιμή κοντά στη μέση κατεύθυνση). Για μικρά k, δηλαδή όταν το k πλησιάζει στο 0, η κατανομή vo Mses προσεγγίζει την ομοιόμορφη κατανομή (σε διάστημα πλάτους π), δηλαδή, στην περίπτωση αυτή, όλες οι κατευθύνσεις έχουν την ίδια πιθανότητα ή, ακριβέστερα, για κάθε ϑ, δηλαδή, για κάθε κατεύθυνση ϑ, η πιθανότητα να πάρει η μεταβλητή Θ τιμή κοντά στη ϑ είναι για όλα τα ϑ ίδια 7. Σημείωση: Αν ϑ, ϑ,..., ϑ δείγμα από πληθυσμό που ακολουθεί κατανομή vo Mses, τότε, για την εφαρμογή μεθόδων της στατιστικής συμπερασματολογίας (π.χ. στατιστικοί έλεγχοι), η παράμετρος k εκτιμάται μέσω του μέσου μέτρου r του διανύσματος r (υπάρχουν σχετικοί πίνακες που δίνουν εκτιμήσεις των τιμών του k για διάφορες τιμές του r ). 6 Ι 0 ( x) είναι η συνάρτηση Bessel τάξης 0. 7 ή και αλλιώς, η πιθανότητα να πάρει η Θ τιμή σε ένα διάστημα είναι ανάλογη του πλάτους του διαστήματος. Εργαστήριο Μαθηματικών & Στατιστικής/ Γ. Παπαδόπουλος (www.aua.gr/gpapadopoulos) 8

13 Η Συνάρτηση Κατανομής της Τυποποιημένης Κανονικής Κατανομής Εργαστήριο Μαθηματικών & Στατιστικής/ Γ. Παπαδόπουλος (www.aua.gr/gpapadopoulos) 8

Το Κεντρικό Οριακό Θεώρημα

Το Κεντρικό Οριακό Θεώρημα Το Κεντρικό Οριακό Θεώρημα Όπως θα δούμε αργότερα στη Στατιστική Συμπερασματολογία, λέγοντας ότι «από έναν πληθυσμό παίρνουμε ένα τυχαίο δείγμα μεγέθους» εννοούμε ανεξάρτητες τυχαίες μεταβλητές,,..., που

Διαβάστε περισσότερα

ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ

ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ 9 ο ΜΑΘΗΜΑ ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ Πότε κάνουμε ομαδοποίηση των παρατηρήσεων; Όταν το πλήθος των τιμών μιας μεταβλητής είναι αρκετά μεγάλο κάνουμε ομαδοποίηση των παρατηρήσεων. Αυτό συμβαίνει είτε

Διαβάστε περισσότερα

Μέρος Β /Στατιστική. Μέρος Β. Στατιστική. Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.

Μέρος Β /Στατιστική. Μέρος Β. Στατιστική. Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua. Μέρος Β /Στατιστική Μέρος Β Στατιστική Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.gr/gpapadopoulos) Από τις Πιθανότητες στη Στατιστική Στα προηγούμενα, στο

Διαβάστε περισσότερα

. Τι πρακτική αξία έχουν αυτές οι πιθανότητες; (5 Μονάδες)

. Τι πρακτική αξία έχουν αυτές οι πιθανότητες; (5 Μονάδες) Εργαστήριο Μαθηματικών & Στατιστικής Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ η Πρόοδος στο Μάθημα Στατιστική //7 ο Θέμα α) Περιγράψτε τη σχέση Θεωρίας Πιθανοτήτων και Στατιστικής. β) Αν Α, Β ενδεχόμενα του δειγματικού χώρου Ω

Διαβάστε περισσότερα

Εισαγωγή στην Κανονική Κατανομή. Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη

Εισαγωγή στην Κανονική Κατανομή. Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη Εισαγωγή στην Κανονική Κατανομή Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη Ένα πρόβλημα Πρόβλημα: Ένας μαθητής είχε επίδοση στο τεστ Μαθηματικών 18 και στο τεστ

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι., Εισηγητής: Ν.Κυρίτσης, MBA, Ph.D. Candidate,, e-mail: kyritsis@ist.edu.gr

Ποσοτικές Μέθοδοι., Εισηγητής: Ν.Κυρίτσης, MBA, Ph.D. Candidate,, e-mail: kyritsis@ist.edu.gr Ποσοτικές Μέθοδοι Εισηγητής: Ν.Κυρίτσης MBA Ph.D. Candidate e-mail: kyritsis@ist.edu.gr Εισαγωγή στη Στατιστική Διδακτικοί Στόχοι Μέτρα Σχετικής Διασποράς Κατανομές Πιθανοτήτων Η Κανονική Κατανομή Η Τυποποιημένες

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21 ΚΕΦΑΛΑΙΟ 21 Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ (Power of a Test) Όπως είδαμε προηγουμένως, στον Στατιστικό Έλεγχο Υποθέσεων, ορίζουμε δύο είδη πιθανών λαθών (κινδύνων) που μπορεί να συμβούν όταν παίρνουμε αποφάσεις

Διαβάστε περισσότερα

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Θέμα εξετάσεων 2000 Εξετάσαμε 50 μαθητές ως προς τα βιβλία που έχουν διαβάσει και διαπιστώσαμε ότι: 5 μαθητές δεν έχουν διαβάσει κανένα βιβλίο, 15 μαθητές έχουν

Διαβάστε περισσότερα

γ. Η διακύμανση είναι μέτρο διασποράς και είναι καθαρός αριθμός, δηλαδή δεν έχει μονάδες. Μονάδες 9

γ. Η διακύμανση είναι μέτρο διασποράς και είναι καθαρός αριθμός, δηλαδή δεν έχει μονάδες. Μονάδες 9 ΟΝΟΜΑΤΕΠΩΝΥΜΟ:........................................... ΤΜΗΜΑ:....... ΗΜΕΡΟΜΗΝΙΑ:.... / 0 / 20 ΘΕΜΑ A. Έστω μεταβλητή Χ, με τιμές x, x 2,...., x k, που αφορά τα άτομα ενός δείγματος μεγέθους ν, με k,

Διαβάστε περισσότερα

Πίνακας-1 Επίπεδο εκπαίδευσης πατέρα 2

Πίνακας-1 Επίπεδο εκπαίδευσης πατέρα 2 Περιγραφική Στατιστική Όπως, ήδη έχουμε αναφέρει, στόχος της Περιγραφικής Στατιστικής είναι, «η ανάπτυξη μεθόδων για τη συνοπτική και την αποτελεσματική παρουσίαση των δεδομένων» Για το σκοπό αυτό, έχουν

Διαβάστε περισσότερα

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας.

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας. 7 ο ΜΑΘΗΜΑ ΚΕΦΑΛΑΙΟ 2 ΣΤΑΤΙΣΤΙΚΗ Σκοπός Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας. Προσδοκώμενα αποτελέσματα Όταν θα έχετε ολοκληρώσει τη μελέτη αυτού του κεφαλαίου

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΜΑ A A. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι f g f g,. Μονάδες 7 Α. Σε ένα πείραμα με ισοπίθανα αποτελέσματα

Διαβάστε περισσότερα

Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος.

Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος. ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ ου ΚΕΦΑΛΑΙΟΥ Άσκηση 1 (Προτάθηκε από Χρήστο Κανάβη) Έστω CV 0.4 όπου CV ο συντελεστής μεταβολής, και η τυπική απόκλιση s = 0. ενός δείγματος που έχει την ίδια

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ-ΣΤΑΤΙΣΤΙΚΗΣ. Να γράψετε στο τετράδιο σας τον πίνακα των τιμών της μεταβλητής Χ σωστά συμπληρωμένο.

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ-ΣΤΑΤΙΣΤΙΚΗΣ. Να γράψετε στο τετράδιο σας τον πίνακα των τιμών της μεταβλητής Χ σωστά συμπληρωμένο. ΘΕΜΑ (ΙΟΥΝΙΟΣ 000) ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ-ΣΤΑΤΙΣΤΙΚΗΣ Να γράψετε στο τετράδιο σας τον πίνακα των τιμών της μεταβλητής Χ σωστά συμπληρωμένο. Τιμές Μεταβλητής Συχνότητα σχετική Σχετική Αθροιστική f % f N 0

Διαβάστε περισσότερα

ΟΜΑΔΟΠΟΙΗΣΗ ΠΑΡΑΤΗΡΗΣΕΩΝ

ΟΜΑΔΟΠΟΙΗΣΗ ΠΑΡΑΤΗΡΗΣΕΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ Όταν το πλήθος των παρατηρήσεων είναι μεγάλο, είναι απαραίτητο οι παρατηρήσεις να ταξινομηθούν σε μικρό πλήθος ομάδων που ονομάζονται κλάσεις (class intervals). Η ομαδοποίηση αυτή γίνεται

Διαβάστε περισσότερα

Ενδεικτικές ασκήσεις ΔΙΠ 50

Ενδεικτικές ασκήσεις ΔΙΠ 50 Ενδεικτικές ασκήσεις ΔΙΠ 50 Άσκηση 1 (άσκηση 1 1 ης εργασίας 2009-10) Σε ένα ράφι μιας βιβλιοθήκης τοποθετούνται με τυχαία σειρά 11 διαφορετικά βιβλία τεσσάρων θεματικών ενοτήτων. Πιο συγκεκριμένα, υπάρχουν

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (Θ.Ε. ΠΛΗ 12) 6Η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ - ΕΝΗΜΕΡΩΜΕΝΗ ΜΟΡΦΗ Ημερομηνία Αποστολής της εργασίας στον Φοιτητή 5 Μαϊου 2014

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΕΠΑ.Λ. Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΕΠΑ.Λ. Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΕΠΑ.Λ. 2013-2014 ΣΤΑΤΙΣΤΙΚΗ 1. Τι ονομάζουμε: i. πληθυσμό και μέγεθος πληθυσμού; (σελ. 59) ii. μεταβλητή; (σελ.59-60) 2. Ποιες μεταβλητές ονομάζονται ποσοτικές; (σελ.60)

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 008 ΘΕΜΑ o ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ ΜΑΪΟΥ 008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

Η ΚΑΝΟΝΙΚΗ ΚΑΤΑΝΟΜΗ ΚΕΦΑΛΑΙΟ 9

Η ΚΑΝΟΝΙΚΗ ΚΑΤΑΝΟΜΗ ΚΕΦΑΛΑΙΟ 9 ΚΕΦΑΛΑΙΟ 9 Η ΚΑΝΟΝΙΚΗ ΚΑΤΑΝΟΜΗ Η κανονική κατανομή ανακαλύφθηκε γύρω στο 720 από τον Abraham De Moivre στην προσπάθειά του να διαμορφώσει Μαθηματικά που να εξηγούν την τυχαιότητα. Γύρω στο 870, ο Βέλγος

Διαβάστε περισσότερα

1) ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ - ΑΤΑΞΙΝΟΜΗΤΑ ΔΕΔΟΜΕΝΑ

1) ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ - ΑΤΑΞΙΝΟΜΗΤΑ ΔΕΔΟΜΕΝΑ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 205-206 ΔΙΔΑΣΚΟΝΤΕΣ ΔΗΜΗΤΡΗΣ ΚΑΛΛΙΒΩΚΑΣ, ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ ) ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ - ΑΤΑΞΙΝΟΜΗΤΑ ΔΕΔΟΜΕΝΑ ΑΣΚΗΣΗ Τα παρακάτω δεδομένα αναφέρονται στη

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

, όπου x = 0,1,...,300000. Έτσι, για την πιθανότητα σε ένα έτος να μην υπάρξουν θάνατοι ζώων από τον εμβολιασμό έχουμε, 2! 299998!

, όπου x = 0,1,...,300000. Έτσι, για την πιθανότητα σε ένα έτος να μην υπάρξουν θάνατοι ζώων από τον εμβολιασμό έχουμε, 2! 299998! Η Κατανομή Poisso Ας δούμε ένα πρόβημα: Σε μια κτηνοτροφική περιοχή υπάρχουν 3 αιγοπρόβατα. Κάθε χρόνο όα τα αιγοπρόβατα εμβοιάζονται για προστασία από κάποια ασθένεια. Σύμφωνα με την άδεια χρήσης του

Διαβάστε περισσότερα

f x g x f x g x, x του πεδίου ορισμού της; Μονάδες 4 είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w

f x g x f x g x, x του πεδίου ορισμού της; Μονάδες 4 είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 0 ΜΑΪΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α Α1 Αν οι συναρτήσεις f,g

Διαβάστε περισσότερα

Διάλεξη 1 Βασικές έννοιες

Διάλεξη 1 Βασικές έννοιες Εργαστήριο SPSS Ψ-4201 (ΕΡΓ) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com Διαλέξεις αναρτημένες στο: Διαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ Διάλεξη

Διαβάστε περισσότερα

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος xi 1 Αντικείμενα των Πιθανοτήτων και της Στατιστικής 1 1.1 Πιθανοτικά Πρότυπα και Αντικείμενο των Πιθανοτήτων, 1 1.2 Αντικείμενο της Στατιστικής, 3 1.3 Ο Ρόλος των Πιθανοτήτων

Διαβάστε περισσότερα

ν ν = 6. όταν είναι πραγµατικός αριθµός.

ν ν = 6. όταν είναι πραγµατικός αριθµός. Συνάρτηση: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ λέγεται µια διαδικασία µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σε ένα ακριβώς στοιχείο κάποιου άλλου συνόλου Β. Γνησίως αύξουσα: σε ένα διάστηµα του πεδίου

Διαβάστε περισσότερα

Εισαγωγή. Αντικείμενο της Στατιστικής

Εισαγωγή. Αντικείμενο της Στατιστικής Εισαγωγή Οι κυνικοί λένε σαρκαστικά πως μπορείς να αποδείξεις οτιδήποτε με τη Στατιστική. Άλλοι πάλι υποστηρίζουν πως δεν μπορείς να κάνεις τίποτα με τη Στατιστική. Κάποιοι θυμίζουν ότι η Στατιστική είναι

Διαβάστε περισσότερα

Εισαγωγή στην Εκτιμητική

Εισαγωγή στην Εκτιμητική Εισαγωγή στην Εκτιμητική Πληθυσμός Εκτίμηση παραμέτρου πληθυσμού μ, σ 2, σ, p Δείγμα Υπολογισμός στατιστικού Ερώτηματα: Πόσο κοντά στην πραγματική τιμή της παραμέτρου του πληθυσμού βρίσκεται η εκτίμηση

Διαβάστε περισσότερα

ρ. Ευστρατία Μούρτου

ρ. Ευστρατία Μούρτου ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΩΝ ΣΧΟΛΗ ΕΠΑΓΓΕΛΜΑΤΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΕΞΑΜΗΝΟ : Ε ΑΚΑ ΗΜΑΪΚΟ ΕΤΟΣ : - ΜΑΘΗΜΑ «ΒΙΟΣΤΑΤΙΣΤΙΚΗ» ΚΕΦ. ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ρ. Ευστρατία Μούρτου

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΠΑΝΟΣ ΣΑΡΑΚΗΝΟΣ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΠΑΝΟΣ ΣΑΡΑΚΗΝΟΣ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΠΑΝΟΣ ΣΑΡΑΚΗΝΟΣ Άσκηση 1 Οι βαθμοί 5 φοιτητών που πέρασαν το μάθημα της Στατιστικής ήταν: 6 5 7 5 9 5 6 6 8 10 8 5 6 7 5 6 5 7 8 9 5 6 7 5 8 i. Να κάνετε πίνακα κατανομής

Διαβάστε περισσότερα

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Διαφορικός Λογισμός 1. Ισχύει f (g())) ) f ( = f (g())g () όπου f,g παραγωγίσιµες συναρτήσεις 2. Αν µια συνάρτηση f είναι παραγωγίσιµη σε ένα διάστηµα

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες

Διαβάστε περισσότερα

Βιοστατιστική ΒΙΟ-309

Βιοστατιστική ΒΙΟ-309 Βιοστατιστική ΒΙΟ-309 Χειμερινό Εξάμηνο Ακαδ. Έτος 2015-2016 Ντίνα Λύκα lika@biology.uoc.gr 1. Εισαγωγή Εισαγωγικές έννοιες Μεταβλητότητα : ύπαρξη διαφορών μεταξύ ομοειδών μετρήσεων Μεταβλητή: ένα χαρακτηριστικό

Διαβάστε περισσότερα

6.3 Ο ΑΜΦΙΠΛΕΥΡΟΣ ΕΛΕΓΧΟΣ SMIRNOV ΓΙΑ k ΑΝΕΞΑΡΤΗΤΑ ΔΕΙΓΜΑΤΑ

6.3 Ο ΑΜΦΙΠΛΕΥΡΟΣ ΕΛΕΓΧΟΣ SMIRNOV ΓΙΑ k ΑΝΕΞΑΡΤΗΤΑ ΔΕΙΓΜΑΤΑ 6.3 Ο ΑΜΦΙΠΛΕΥΡΟΣ ΕΛΕΓΧΟΣ SMIRNOV ΓΙΑ k ΑΝΕΞΑΡΤΗΤΑ ΔΕΙΓΜΑΤΑ Το 1965, από τον Conover και πάλι προτάθηκε ένας άλλος έλεγχος τύπου Smirnov για k ανεξάρτητα δείγματα. Ο έλεγχος αυτός διαφέρει από τον προηγούμενο

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο R, να αποδείξετε ότι (f() + g() )=f ()+g (), R Μονάδες 7 Α. Σε

Διαβάστε περισσότερα

2. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ

2. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ 1. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ 1. Σφάλματα Κάθε μέτρηση ενός φυσικού μεγέθους χαρακτηρίζεται από μία αβεβαιότητα που ονομάζουμε σφάλμα, το οποίο αναγράφεται με τη μορφή Τιμή ± αβεβαιότητα π.χ έστω ότι σε ένα πείραμα

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΙΙ. Ενότητα 2: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (2/4). Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΣΤΑΤΙΣΤΙΚΗ ΙΙ. Ενότητα 2: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (2/4). Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) ΣΤΑΤΙΣΤΙΚΗ ΙΙ Ενότητα 2: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (2/4). Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 8: Επαγωγική Στατιστική. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 8: Επαγωγική Στατιστική. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 8: Επαγωγική Στατιστική. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

3.4.2 Ο Συντελεστής Συσχέτισης τ Του Kendall

3.4.2 Ο Συντελεστής Συσχέτισης τ Του Kendall 3..2 Ο Συντελεστής Συσχέτισης τ Του Kendall Ο συντελεστής συχέτισης τ του Kendall μοιάζει με τον συντελεστή ρ του Spearman ως προς το ότι υπολογίζεται με βάση την τάξη μεγέθους των παρατηρήσεων και όχι

Διαβάστε περισσότερα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα Δύο κύριοι τρόποι παρουσίασης δεδομένων Παράδειγμα Με πίνακες Με διαγράμματα Ονομαστικά δεδομένα Εδώ τα περιγραφικά μέτρα (μέσος, διάμεσος κλπ ) δεν έχουν νόημα Πήραμε ένα δείγμα από 25 άτομα και τα ρωτήσαμε

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ. Βασικές έννοιες

ΕΙΣΑΓΩΓΗ. Βασικές έννοιες ΕΙΣΑΓΩΓΗ Βασικές έννοιες Σε ένα ερωτηματολόγιο έχουμε ένα σύνολο ερωτήσεων. Μπορούμε να πούμε ότι σε κάθε ερώτηση αντιστοιχεί μία μεταβλητή. Αν θεωρήσουμε μια ερώτηση, τα άτομα δίνουν κάποιες απαντήσεις

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων α) Σημειοεκτιμητική β) Εκτιμήσεις Διαστήματος ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Παράδειγμα

Διαβάστε περισσότερα

Λήψη αποφάσεων κατά Bayes

Λήψη αποφάσεων κατά Bayes Λήψη αποφάσεων κατά Bayes Σημειώσεις μαθήματος Thomas Bayes (1701 1761) Στυλιανός Χατζηδάκης ECE 662 Άνοιξη 2014 1. Εισαγωγή Οι σημειώσεις αυτές βασίζονται στο μάθημα ECE662 του Πανεπιστημίου Purdue και

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ. ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ - ΘΕΜΑ Ο Έστω η συνάρτηση f( ) =, 0 ) Να αποδείξετε ότι f ( ). f( ) =. ) Να υπολογίσετε το όριο lm f ( )+ 4. ) Να βρείτε την εξίσωση της εφαπτομένης

Διαβάστε περισσότερα

2.3. Ασκήσεις σχ. βιβλίου σελίδας 100 104 Α ΟΜΑ ΑΣ

2.3. Ασκήσεις σχ. βιβλίου σελίδας 100 104 Α ΟΜΑ ΑΣ .3 Ασκήσεις σχ. βιβλίου σελίδας 00 04 Α ΟΜΑ ΑΣ. Έξι διαδοχικοί άρτιοι αριθµοί έχουν µέση τιµή. Να βρείτε τους αριθµούς και τη διάµεσό τους. Αν είναι ο ποιο µικρός άρτιος τότε οι ζητούµενοι αριθµοί θα είναι

Διαβάστε περισσότερα

Μοντέλα Παλινδρόμησης. Άγγελος Μάρκος, Λέκτορας ΠΤ Ε, ΠΘ

Μοντέλα Παλινδρόμησης. Άγγελος Μάρκος, Λέκτορας ΠΤ Ε, ΠΘ Μοντέλα Παλινδρόμησης Άγγελος Μάρκος, Λέκτορας ΠΤ Ε, ΠΘ Εισαγωγή (1) Σε αρκετές περιπτώσεις επίλυσης προβλημάτων ενδιαφέρει η ταυτόχρονη μελέτη δύο ή περισσότερων μεταβλητών, για να προσδιορίσουμε με ποιο

Διαβάστε περισσότερα

Δειγματικές Κατανομές

Δειγματικές Κατανομές Δειγματικές Κατανομές Στατιστική συνάρτηση ή στατιστική Δειγματική κατανομή - Εκτιμητής Τα άγνωστα στοιχεία του πληθυσμού λέγονται παράμετροι. Τα συμπεράσματα για μια παράμετρο εξάγονται με τη βοήθεια

Διαβάστε περισσότερα

Περιγραφική Στατιστική

Περιγραφική Στατιστική Περιγραφική Στατιστική Σε αυτή την ενότητα, όπως και στις επόμενες, όταν θα αναφερόμαστε σε δεδομένα από έναν πληθυσμό, θα θεωρούμε ότι έχουμε στη διάθεσή μας τιμές, x, x,, x, μιας τυχαίας μεταβλητής Χ

Διαβάστε περισσότερα

ΔΕΟ13(ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΛΙΟΥ )

ΔΕΟ13(ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΛΙΟΥ ) ΔΕΟ13(ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΛΙΟΥ ) ΑΣΚΗΣΗ 1 Μια εταιρεία ταχυμεταφορών διατηρεί μια αποθήκη εισερχομένων. Τα δέματα φθάνουν με βάση τη διαδικασία Poion με μέσο ρυθμό 40 δέματα ανά ώρα. Ένας υπάλληλος

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 Ε_3.Μλ3Γ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηνία: Κυριακή 1 Απριλίου 01 ΕΚΦΩΝΗΣΕΙΣ Α1. Για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου

Διαβάστε περισσότερα

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ 20 3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ ΟΡΙΣΜΟΣ ΤΗΣ ΜΕΣΗΣ ΤΙΜΗΣ Μια πολύ σηµαντική έννοια στη θεωρία πιθανοτήτων και τη στατιστική είναι η έννοια της µαθηµατικής ελπίδας ή αναµενόµενης τιµής ή µέσης τιµής µιας τυχαίας

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 3: Αριθμητικά Περιγραφικά Μέτρα Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ

Διαβάστε περισσότερα

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες Ορισμός Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες αβεβαιότητας. Βασικές έννοιες Η μελέτη ενός πληθυσμού

Διαβάστε περισσότερα

Έλεγχος Χ 2 (καλής προσαρμογής, ανεξαρτησίας και ομογένειας) Προβλήματα και Ασκήσεις

Έλεγχος Χ 2 (καλής προσαρμογής, ανεξαρτησίας και ομογένειας) Προβλήματα και Ασκήσεις Έλεγχος Χ -Προβλήματα και Ασκήσεις Έλεγχος Χ (καλής προσαρμογής, ανεξαρτησίας και ομογένειας) Προβλήματα και Ασκήσεις 1. Στη βιβλιογραφία αναφέρεται ότι τα ποσοστά των ομάδων αίματος Α, Β, ΑΒ και Ο σε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 0 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιµες στο, να αποδείξετε ότι (f() + g ()) f () + g (),. Μονάδες 7 Α. Σε ένα πείραµα µε ισοπίθανα

Διαβάστε περισσότερα

Εισαγωγή στη Στατιστική

Εισαγωγή στη Στατιστική Εισαγωγή στη Στατιστική Μετεκπαιδευτικό Σεμινάριο στην ΨΥΧΟΚΟΙΝΩΝΙΚΗ ΑΠΟΚΑΤΑΣΤΑΣΗ ΨΥΧΟΚΟΙΝΩΝΙΚΕΣ ΘΕΡΑΠΕΥΤΙΚΕΣ ΠΡΟΣΕΓΓΙΣΕΙΣ Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων

Διαβάστε περισσότερα

Λύσεις των θεμάτων ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Λύσεις των θεμάτων ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 04 Λύσεις των θεμάτων

Διαβάστε περισσότερα

27-Ιαν-2009 ΗΜΥ 429. 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό

27-Ιαν-2009 ΗΜΥ 429. 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό ΗΜΥ 429 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό 1 (i) Βασική στατιστική 2 Στατιστική Vs Πιθανότητες Στατιστική: επιτρέπει μέτρηση και αναγνώριση θορύβου και

Διαβάστε περισσότερα

2.4 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΜΙΑ ΠΙΘΑΝΟΤΗΤΑ

2.4 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΜΙΑ ΠΙΘΑΝΟΤΗΤΑ .4 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΜΙΑ ΠΙΘΑΝΟΤΗΤΑ Η μέθοδος για τον προσδιορισμό ενός διαστήματος εμπιστοσύνης για την άγνωστη πιθανότητα =P(A) ενός ενδεχομένου A συνδέεται στενά με τον διωνυμικό έλεγχο. Ένα

Διαβάστε περισσότερα

ΖΗΤΗΜ Α 1 Ο. Α1. Τι είναι το ραβδόγραµµα και πότε χρησιµοποιείται; 5) Α2. Σε τι διακρίνονται οι µεταβλητές και τι είναι οι τιµές τους;

ΖΗΤΗΜ Α 1 Ο. Α1. Τι είναι το ραβδόγραµµα και πότε χρησιµοποιείται; 5) Α2. Σε τι διακρίνονται οι µεταβλητές και τι είναι οι τιµές τους; ΔΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 1 ΦΕΒΡΟΥΑΡΙΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΖΗΤΗΜ Α 1 Ο Α1. Τι είναι το ραβδόγραµµα

Διαβάστε περισσότερα

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr VI Ολοκληρώματα Παντελής Μπουμπούλης, MSc, PhD σελ mth-grlogspotcom, ououlismyschgr ΜΕΡΟΣ Αρχική Συνάρτηση Ορισμός Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ Αρχική συνάρτηση ή παράγουσα της στο Δ

Διαβάστε περισσότερα

ΘΕΜΑ Α. α) Αν x>0, τότε ( x ) = x

ΘΕΜΑ Α. α) Αν x>0, τότε ( x ) = x ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 4 ΙΟΥΝΙΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ

Διαβάστε περισσότερα

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής.

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής. 2.6 ΟΡΙΑ ΑΝΟΧΗΣ Το διάστηµα εµπιστοσύνης παρέχει µία εκτίµηση µιας άγνωστης παραµέτρου µε την µορφή διαστήµατος και ένα συγκεκριµένο βαθµό εµπιστοσύνης ότι το διάστηµα αυτό, µε τον τρόπο που κατασκευάσθηκε,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Έστω t, t,..., t ν οι παρατηρήσεις µιας ποσοτικής µεταβλητής Χ ενός δείγµατος µεγέθους ν, που έχουν µέση τιµή x. Σχηµατίζουµε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 00 Πέµπτη, Ιουνίου 00 ΓΕΝΙΚΗ ΠΑΙ ΕΙΑ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α.. Να αποδείξετε ότι για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω ισχύει ότι P(A B) P(A)

Διαβάστε περισσότερα

Δ Ι Α Γ Ω Ν Ι Σ Μ Α Σ Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Γ Ε Ν Ι Κ Η Σ Π Α Ι Δ Ε Ι Α Σ. οι τιμές μιας μεταβλητής Χ ενός δείγματος πλήθους ν με k.

Δ Ι Α Γ Ω Ν Ι Σ Μ Α Σ Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Γ Ε Ν Ι Κ Η Σ Π Α Ι Δ Ε Ι Α Σ. οι τιμές μιας μεταβλητής Χ ενός δείγματος πλήθους ν με k. Δ Ι Α Γ Ω Ν Ι Σ Μ Α Σ Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Γ Ε Ν Ι Κ Η Σ Π Α Ι Δ Ε Ι Α Σ ΘΕΜΑ Α A Να αποδείξετε ότι η συνάρτηση () είναι παραγωγίσιμη στο R με () Α Έστω k οι τιμές μιας μεταβλητής Χ ενός δείγματος πλήθους

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 2 Ο «ΣΤΑΤΙΣΤΙΚΗ»

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 2 Ο «ΣΤΑΤΙΣΤΙΚΗ» ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ Ο «ΣΤΑΤΙΣΤΙΚΗ» Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ. ΣΤΑΤΙΣΤΙΚΗ. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Στατιστική είναι ο κλάδος των εφαρμοσμένων

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ 3.1 Τυχαίοι αριθμοί Στην προσομοίωση διακριτών γεγονότων γίνεται χρήση ακολουθίας τυχαίων αριθμών στις περιπτώσεις που απαιτείται η δημιουργία στοχαστικών

Διαβάστε περισσότερα

4 Πιθανότητες και Στοιχεία Στατιστικής για Μηχανικούς

4 Πιθανότητες και Στοιχεία Στατιστικής για Μηχανικούς Πρόλογος Ο μηχανικός πρέπει να συνεχίσει να βελτιώνει την ποιότητα της δουλειάς του εάν επιθυμεί να είναι ανταγωνιστικός στην αγορά της χώρας του και γενικότερα της Ευρώπης. Μία σημαντική αναλογία σε αυτήν

Διαβάστε περισσότερα

Γραπτή Εξέταση Περιόδου Σεπτεμβρίου 2008 στο Μάθημα Στατιστική Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ 29.9.2008

Γραπτή Εξέταση Περιόδου Σεπτεμβρίου 2008 στο Μάθημα Στατιστική Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ 29.9.2008 Γραπτή Εξέταση Περιόδου Σεπτεμβρίου 8 στο Μάθημα Στατιστική Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ 9.9.8. [] Μια βιομηχανία τροφίμων προμηθεύεται νωπά κοτόπουλα από τρεις διαφορετικούς παραγωγούς Α, Β, Γ. Το % των κοτόπουλων

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 4o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gvasil

Διαβάστε περισσότερα

Στατιστική Συμπερασματολογία

Στατιστική Συμπερασματολογία 4. Εκτιμητική Στατιστική Συμπερασματολογία εκτιμήσεις των αγνώστων παραμέτρων μιας γνωστής από άποψη είδους κατανομής έλεγχο των υποθέσεων που γίνονται σε σχέση με τις παραμέτρους μιας κατανομής και σε

Διαβάστε περισσότερα

Σ ΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΕΡΜΗΝΕΙΑ ΑΠΟΤΕΛΕΣΜΑΤΩΝ

Σ ΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΕΡΜΗΝΕΙΑ ΑΠΟΤΕΛΕΣΜΑΤΩΝ Σ ΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΕΡΜΗΝΕΙΑ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Μ ΑΪΟΥ 2002 2004 Δ ΕΥΤΕΡΟ ΜΕΡΟΣ Π ΕΡΙΛΗΨΗ: Η μελέτη αυτή έχει σκοπό να παρουσιάσει και να ερμηνεύσει τα ευρήματα που προέκυψαν από τη στατιστική

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ ΔΙΕΥΘΥΝΣΗ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΠΕΡΙΦ. ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΜΕ ΕΔΡΑ

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ 1.1 Πίνακες, κατανομές, ιστογράμματα... 1 1.2 Πυκνότητα πιθανότητας, καμπύλη συχνοτήτων... 5 1.3

Διαβάστε περισσότερα

3. ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Stratified Random Sampling)

3. ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Stratified Random Sampling) 3 ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Stratfed Radom Samplg) Είναι προφανές από τα τυπικά σφάλματα των εκτιμητριών των προηγούμενων παραγράφων, ότι ένας τρόπος να αυξηθεί η ακρίβεια τους είναι να αυξηθεί

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα

Διαβάστε περισσότερα

Π Α Ρ Α Ρ Τ Η Μ Α. Πίνακας 9. p ποσοστιαία Σημεία της Ελεγχοσυνάρτησης των. Προσημασμένων Τάξεων Μεγέθους του Wilcoxon

Π Α Ρ Α Ρ Τ Η Μ Α. Πίνακας 9. p ποσοστιαία Σημεία της Ελεγχοσυνάρτησης των. Προσημασμένων Τάξεων Μεγέθους του Wilcoxon ΠΙΝΑΚΕΣ Π Α Ρ Α Ρ Τ Η Μ Α Πίνακας 1. Διωνυμική Κατανομή Πίνακας 2. Τυποποιημένη Κανονική Κατανομή Πίνακας 3. Oρια Εμπιστοσύνης για την Πιθανότητα p της Διωνυμικής Κατανομής Πίνακας 4. Ποσοστιαία Σημεία

Διαβάστε περισσότερα

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος 75 Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 1.1. Τυχαία γεγονότα ή ενδεχόμενα 17 1.2. Πειράματα τύχης - Δειγματικός χώρος 18 1.3. Πράξεις με ενδεχόμενα 20 1.3.1. Ενδεχόμενα ασυμβίβαστα

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 14 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 14 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 14 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ 1ο Α.1. Να αποδείξετε ότι για δύο ενδεχόµενα Α και Β ενός

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων 1 Μάθημα του A Εξαμήνου

Στατιστική Επιχειρήσεων 1 Μάθημα του A Εξαμήνου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ Τμήμα Λογιστικής & Χρηματοοικονομικής Στατιστική Επιχειρήσεων 1 Μάθημα του A Εξαμήνου Περιεχόμενα-Ύλη του Μαθήματος Περιγραφική Στατιστική: Είδη δεδομένων, Μετασχηματισμοί,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 1o ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ A. Η συνάρτηση f είναι παραγωγίσιμη στο ΙR. και c πραγματική σταθερά. Να αποδείξετε ότι (c f()) =c f (), ΙR. B.α. Πότε δύο ενδεχόμενα

Διαβάστε περισσότερα

Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n..

Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n.. Μέτρα Κινδύνου για Δίτιμα Κατηγορικά Δεδομένα Σε αυτή την ενότητα θα ορίσουμε δείκτες μέτρησης του κινδύνου εμφάνισης μίας νόσου όταν έχουμε δίτιμες κατηγορικές μεταβλητές. Στην πιο απλή περίπτωση μας

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

6. ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΚΑΤΑ ΟΜΑΔΕΣ (Cluster Sampling)

6. ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΚΑΤΑ ΟΜΑΔΕΣ (Cluster Sampling) 6. ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΚΑΤΑ ΟΜΑΔΕΣ (Cluster Sampling) Από την θεωρία που αναπτύχθηκε στα προηγούμενα κεφάλαια, φαίνεται ότι μια αλλαγή στον σχεδιασμό της δειγματοληψίας και, κατά συνέπεια, στην μέθοδο εκτίμησης

Διαβάστε περισσότερα

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46 ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11. Σύνολα..............................................................

Διαβάστε περισσότερα

ιωνυµική Κατανοµή(Binomial)

ιωνυµική Κατανοµή(Binomial) ιωνυµική Κατανοµή(Binomial) ~B(n,p) n N και 0

Διαβάστε περισσότερα

Θέµατα Μαθηµατικών & Στ. Στατ/κής Γενικής Παιδείας Γ Λυκείου 2000

Θέµατα Μαθηµατικών & Στ. Στατ/κής Γενικής Παιδείας Γ Λυκείου 2000 Θέµατα Μαθηµατικών & Στ. Στατ/κής Γενικής Παιδείας Γ Λυκείου 000 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα ο Α.α) ίνεται η συνάρτηση F() f() + g(). Αν οι συναρτήσεις f, g είναι παραγωγίσιµες, να αποδείξετε ότι: F () f () + g

Διαβάστε περισσότερα

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα 1: Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται βασικές

Διαβάστε περισσότερα

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά;

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά; ΚΕΦΑΛΑΙΟ 2 ο ΚΙΝΗΣΗ 2.1 Περιγραφή της Κίνησης 1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά; Μονόμετρα ονομάζονται τα μεγέθη τα οποία, για να τα προσδιορίσουμε πλήρως, αρκεί να γνωρίζουμε

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες

Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες Πινάκες συνάφειας εξερεύνηση σχέσεων μεταξύ τυχαίων μεταβλητών. Είναι λογικό λοιπόν, στην ανάλυση των κατηγορικών δεδομένων να μας ενδιαφέρει η σχέση μεταξύ δύο ή περισσότερων κατηγορικών μεταβλητών. Έστω

Διαβάστε περισσότερα

Κατανομές Τυχαίων Μεταβλητών Προβλήματα και Ασκήσεις

Κατανομές Τυχαίων Μεταβλητών Προβλήματα και Ασκήσεις Κατανομές Τυχαίων Μεταβλητών Προβλήματα και Ασκήσεις 1. Μια διακριτή τυχαία μεταβλητή Χ έχει συνάρτηση πιθανότητας 0 1 2 3 4 f () 1/16 4/16 6/16 c 1/16 Να βρεθούν α) η τιμή της σταθεράς c β) η πιθανότητα

Διαβάστε περισσότερα