y είναι πάντα σταθερός και ίσος µε α, δηλα- y x 0.O λόγος αυτός λέγεται κλίση της ευθείας y = αx. x ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "y είναι πάντα σταθερός και ίσος µε α, δηλα- y x 0.O λόγος αυτός λέγεται κλίση της ευθείας y = αx. x ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ"

Transcript

1 ΜΕΡΟΣ Α. ΣΥΝΑΡΤΗΣΗ =α. ΣΥΝΑΡΤΗΣΗ =α Ποσά ανάλογα- Η συνάρτηση =α Δύο ποσά λέγονται ανάλογα, όταν πολλαπλασιάζοντας τις τιµές του ενός ποσού µε έναν αριθµό, τότε και οι αντίστοιχες τιµές του άλλου πολλαπλασιάζονται µε τον ίδιο αριθµό. Η γραφική παράσταση της συνάρτησης = α είναι µία ευθεία που διέρχεται από την αρχή Ο των αξόνων. Όταν αναφερόµαστε στην ευθεία που είναι η γραφική παράσταση της συνάρτησης =α, λέµε η ευθεία µε εξίσωση =α ή απλά η ευθεία =α. Ο άξονας ' είναι η ευθεία µε εξίσωση = 0, δηλαδή = 0. Η κλίση της ευθείας = α Στην ευθεία = α ο λόγος είναι πάντα σταθερός και ίσος µε α, δηλα- δή. = α, 0.O λόγος αυτός λέγεται κλίση της ευθείας = α. ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ. Tα ποσά και είναι ανάλογα. α) Να συµπληρώσετε τον πίνακα. 6 0 β) Ποιος από τους παρακάτω τύπους εκφράζει το ως συνάρτηση του ; A: =, B: =, Γ: =, : = 0,. Nα επιλέξετε τη σωστή απάντηση. ΑΠΑΝΤΗΣΗ α) Τα ανάλογα ποσά έχουν σταθερό λόγο, δηλαδή = = 0 = 0 και = = 0 = 6 β) = = = άρα είναι το Γ.

2 ΜΕΡΟΣ Α -.- ΚΑΡΤΕΣΙΑΝΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ-ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ. Ποια από τις παρακάτω ευθείες είναι η = ; ΑΠΑΝΤΗΣΗ Επειδή είναι της μορφής =α είναι ευθεία που περνά από την αρχή των α- ξόνων επομένως είναι η ευθεία του δευτέρου σχήματος που περνάει από την αρχή των αξόνων.. Ποια από τις παρακάτω ευθείες έχει κλίση α) = β) = - γ) = δ) = ε) ΑΠΑΝΤΗΣΗ = Επειδή η κλίση είναι ο λόγος σε κάθε περίπτωση είναι: α) = =, β) = - = γ) = =, δ) = - = Άρα είναι η =, δηλαδή η δ).

3 ΜΕΡΟΣ Α. ΣΥΝΑΡΤΗΣΗ =α Α Σ Κ Η Σ Ε Ι Σ ΑΣΚΗΣΗ Γνωρίζοντας ότι τα πόσά και είναι ανάλογα: α) Να συµπληρώσετε τον παρακάτω πίνακα β) Να εκφράσετε το ως συνάρτηση του. γ) Να παραστήσετε γραφικά τη συνάρτηση αυτή. α) Τα ανάλογα ποσά έχουν σταθερό λόγο, δηλαδή = = 6 = 6 = = = β) = = γ) 6 και 7 και = = = 0 Γ(,) = 0 = 0 0 f () = 8 6 B(,6) A(,) ΑΣΚΗΣΗ Να σχεδιάσετε στο ίδιο σύστηµα ορθoγωνίων αξόνων τις ευθείες: =, = και =.

4 6 ΜΕΡΟΣ Α -.- ΚΑΡΤΕΣΙΑΝΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ-ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ Κάνουμε τον πίνακα τιμών της συνάρτησης. Επειδή η γραφική της παράσταση είναι μια ευθεία που περνά από την αρχή των αξόνων χρειαζόμαστε ένα ακόμα σημείο h () = 0 8 f () = g () = Γ(,) A(,) Β(,) Ο(0,0) ΑΣΚΗΣΗ Nα σχεδιάσετε στο ίδιο σύστηµα ορθογωνίων αξόνων τις ευθείες: = και = - Κάνουμε τον πίνακα τιμών της συνάρτησης. Επειδή η γραφική της παράσταση είναι μια ευθεία που περνά από την αρχή των αξόνων χρειαζόμαστε ένα ακόμα σημείο. f () (), = 0 0 0, A(,/) 0 0 O(0,0) - -0, - -, B(,-/) () - g () =

5 ΜΕΡΟΣ Α. ΣΥΝΑΡΤΗΣΗ =α 7 ΑΣΚΗΣΗ Ένα κινητό κινείται µε σταθερή ταχύτητα υ= m/s. Να εκφράσετε το διάστηµα S που διανύει ως συνάρτηση του χρόνου t. Nα παραστήσετε γραφικά τη συνάρτηση αυτή. Γνωρίζουμε από την φυσική ότι: s = u. t. Αντικαθιστώντας τη ταχύτητα έχουμε ότι s = t. Κάνουμε τον πίνακα τιμών της συνάρτησης s = t., A(,) t 0 s 0,, f S=t () =,, 0, -0, O(0,0) ΑΣΚΗΣΗ Βρείτε την εξίσωση της ευθείας η οποία διέρχεται από την αρχή των αξόνων και από το σηµείο Α(, 6). = α Η εξίσωση της ευθείας που περνά από την αρχή των αξόνων 6 = α. α = έχει την μορφή = α Επειδή οι συντεταγμένες κάθε σημείου της γραφικής = παράστασης ικανοποιούν τον τύπο της συνάρτησης τότε Αντικαθιστούμε στην θέση του = και =6 ΑΣΚΗΣΗ 6 Να σχεδιάσετε σε ορθογώνιο σύστηµα αξόνων µια ευθεία η οποία να διέρχεται από την αρχή Ο των αξόνων και να έχει κλίση.

6 8 ΜΕΡΟΣ Α -.- ΚΑΡΤΕΣΙΑΝΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ-ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ Εφόσον η ευθεία αυτή έχει κλίση και περνά από την αρχή των αξόνων η εξισωσή της θα είναι =. Η γραφική της παράσταση θα είναι:, ΠΙΝΑΚΑΣ ΤΙΜΩΝ 0 0,,, 0, A(,,) f () = () -0, O(0,0) ΑΣΚΗΣΗ 7 Να βρείτε την κλίση µιας ευθείας η οποία να διέρχεται από την αρχή Ο των αξόνων και από το σηµείο Α(-, ). = α Η εξίσωση της ευθείας που περνά από την αρχή των αξόνων έχει την μορφή = α = α. (-) α = = Αντικαθιστούμε στην θέση του =- και =. Επομένως η κλίση της ευθείας είναι - ΑΣΚΗΣΗ 8 Οι τιµές των αγροτικών προϊόντων σε µια χώρα αυξήθηκαν κατά 0% σ ένα χρόνο. α) Να βρείτε τη σχέση που εκφράζει τις νέες τιµές των αγροτικών προϊόντων, ως συνάρτηση των παλιών τους τιµών. β) Να σχεδιάσετε τη συνάρτηση. γ) Με τη βοήθεια της παραπάνω συνάρτησης να βρείτε: i) Tη σηµερινή τιµή ενός προϊόντος που είχε πέρυσι 7. ii) Tην περσινή τιµή ενός προϊόντος που έχει τώρα 7. 0 α) Εφόσον οι τιμές αυξήθηκαν κατά 0% δηλαδή κατά = 0, 00 θα γίνουν + 0, =,.Επομένως η συνάρτηση που μας δίνει τις νέες τιμές ως συνάρτηση των παλιών τιμών είναι: =,.

7 ΜΕΡΟΣ Α. ΣΥΝΑΡΤΗΣΗ =α 9 β) K(0,7) 7 6 Ν(0,8,) =, ΠΙΝΑΚΑΣ ΤΙΜΩΝ 0 0, A(,,) O(0,0) Λ(,8,0) Μ(7,0) - γ) i) Για να βρούμε τη σημερινή τιμή ενός προϊόντος που είχε πέρυσι 7 φέρνουμε κάθετο στον άξονα στο σημείο Μ(7,0) η οποία τέμνει την γραφική παράσταση της συνάρτησης =, σε ένα σημείο από το οποίο φέρνουμε κάθετη στον άξονα η οποία τέμνει τον άξονα στο σημείο Ν(0,8,) άρα η σημερινή τιμή θα είναι 8,. Ομοίως για να βρούμε τη περσινή τιμή ενός προϊόντος που έχει φέτος 7 φέρνουμε κάθετο στον άξονα στο σημείο Κ(0,7) η οποία τέμνει την γραφική παράσταση της συνάρτησης =, σε ένα σημείο από το οποίο φέρνουμε κάθετη στον άξονα η οποία τέμνει τον άξονα στο σημείο Λ(,8, 0) άρα η περσινή τιμή ήταν,8. ΑΣΚΗΣΗ 9 Η ισοτιµία Ευρώ - ολαρίου την /7/0 ήταν $ για 00. α) Σε σύστηµα ορθογωνίων αξόνων να περιγράψετε γραφικά την παραπάνω σχέση. β) Από τη γραφική παράσταση να βρείτε κατά προσέγγιση την τιµή σε δολλάρια ενός αεροπορικού εισιτηρίου που κοστίζει 0. γ) Από τη γραφική παράσταση να βρείτε κατά προσέγγιση την τιµή σε Ευρώ ενός αεροπορικού εισιτηρίου κόστους 0 $.

8 0 ΜΕΡΟΣ Α -.- ΚΑΡΤΕΣΙΑΝΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ-ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ α) 00 Ζ(0,80) 60 0 Η(0,0) 0 ευρώ f () =, Γ(0,) A(00,) O(0,0) B(00,0) E(0,0) δολλάρια Θ(,0) Σε ορθογώνιο σύστημα αξόνων ο άξονας αντιπροσωπεύει τα δολλάρια και ο άξονας τα ευρώ. Στο σημείο Β(00,0) του άξονα φέρνουμε κάθετο. Επίσης στο σημείο Γ(0,) του άξονα φέρνουμε κάθετο. Το σημείο τομής των δύο αυτών καθέτων το ενώνουμε με την αρχή των αξόνων. Η ευθεία =, που δημιουργείται είναι η συνάρτηση που ζητάμε. β) Για να βρούμε τη τιμή σε δολλάρια ενός αεροπορικού εισιτηρίου που κοστίζει 0, έχουμε =,.0 = 80 άρα η τιμή θα είναι 80 $. γ) Ομοίως για να βρούμε τιμή ενός αεροπορικού εισιτηρίου κόστους 0 $ 0 για = 0 έχουμε0 =, ή =,,άρα η τιμή είναι.,

9 ΜΕΡΟΣ Α. ΣΥΝΑΡΤΗΣΗ =α ΠΑΡΑΔΕΙΓΜΑ ΔΙΔΑΣΚΑΛΙΑΣ ΜΕ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΠΑΡΑΔΕΙΓΜΑ: Ενότητα: Ανάλογα ποσά - Η συνάρτηση = α. Στόχοι: Να συνδεθεί η εξίσωση της ευθείας = α με την έννοια των ανάλογων ποσών. Να οδηγηθούν οι μαθητές στη διαπίστωση ότι η γραφική παράσταση της συνάρτησης = α είναι ευθεία που διέρχεται από το Ο. Να βρίσκουν (από τη γραφική παράσταση) την τιμή της συνάρτησης για γνωστή τιμή του. Να βρίσκουν (από τη γραφική παράσταση) την τιμή του για γνωστή τιμή του. Μέθοδος: Μεικτή (καθοδηγούμενη - ανακαλυπτική) Φύλλο εργασίας Ένα κατάστημα ρούχων κάνει έκπτωση 0% σε όλα του τα είδη! Αν ονομάσουμε την κανονική τιμή ενός είδους πριν από την έκπτωση και την μειωμένη τιμή του είδους αυτού μετά την έκπτωση:. Να συμπληρώσετε τον παρακάτω πίνακα με τις τιμές διαφόρων ειδών:. Δύο ποσά και λέγονται ανάλογα, όταν. Να συμπληρώσετε τον πίνακα: Συμπέρασμα:. Όταν δυο ποσά και είναι ανάλογα, τότε ο λόγος. Χρησιμοποιήστε το συμπέρασμα του ερωτήματος για να εκφράσετε το ως συνάρτηση του..

10 ΜΕΡΟΣ Α -.- ΚΑΡΤΕΣΙΑΝΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ-ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ 6. Στο διπλανό σύστημα συντεταγμένων να παραστήσετε τα σημεία με συντεταγμένες (, ) που βρήκατε στον πίνακα. Τι παρατηρείτε;. 7. Να σχεδιάσετε τη γραφική παράσταση της συνάρτησης = 0,6. Συμπέρασμα:. 8. Από τη γραφική παράσταση (χωρίς υπολογισμούς) να βρείτε την τιμή με την έκπτωση που πωλείται ένα ζευγάρι κάλτσες, ένα μαγιό και ένα σακάκι που έχουν χωρίς την έκπτωση 0, και 80 αντίστοιχα. 9. Από τη γραφική παράσταση (χωρίς υπολογισμούς) να βρείτε πόσο είχαν χωρίς την έκπτωση, ένα παντελόνι που αγοράστηκε τελικά με την έκπτωση και μία φούστα που αγοράστηκε τελικά με την έκπτωση 60

4. 1 Η ΣΥΝΑΡΤΗΣΗ Y=AX 2 ME A 0

4. 1 Η ΣΥΝΑΡΤΗΣΗ Y=AX 2 ME A 0 ΜΕΡΟΣ Α. Η ΣΥΝΑΡΤΗΣΗ Y=AX ME A 0 5. Η ΣΥΝΑΡΤΗΣΗ Y=AX ME A 0 Ορισμοί Ονομάζουμε συνάρτηση την διαδικασία με την οποία σε κάθε τιμή της μεταβλητής αντιστοιχίζουμε μια μόνο τιμή της μεταβλητής. Ονομάζουμε

Διαβάστε περισσότερα

Σημεία τομής της ευθείας αx+βy=γ με τους άξονες

Σημεία τομής της ευθείας αx+βy=γ με τους άξονες ΣΥΝΑΡΤΗΣΗ y=αx+β Η ευθεία με εξίσωση y=αx+β. ΣΥΝΑΡΤΗΣΗ y=αx+β Η γραφική παράσταση της y = αx + β, β 0 είναι µια ευθεία παράλληλη της ευθείας µε εξίσωση y = αx, που διέρχεται από το σημείο β του άξονα y'y.

Διαβάστε περισσότερα

Γραφική επίλυση γραμμικού συστήματος με δύο αγνώστους.

Γραφική επίλυση γραμμικού συστήματος με δύο αγνώστους. ΜΕΡΟΣ Α 3. Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΤΟΥ 71 3. Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΤΟΥ Αν έχουμε δύο γραμμικές εξισώσεις με δύο αγνώστους,, π.χ. α + β

Διαβάστε περισσότερα

y x y x+2y=

y x y x+2y= ΜΕΡΟΣ Α 3.1 Η ΕΝΝΟΙΑ ΤΗΣ ΓΡΑΜΜΙΚΗΣ ΕΞΙΣΩΣΗΣ 59 3. 1 Η ΕΝΝΟΙΑ ΤΗΣ ΓΡΑΜΜΙΚΗΣ ΕΞΙΣΩΣΗΣ Η εξίσωση α+β=γ Λύση μιας εξίσωσης α + β = γ ονομάζεται κάθε ζεύγος αριθμών (, ) που την επαληθεύει. Για παράδειγμα η

Διαβάστε περισσότερα

4. Να βρείτε την εξίσωση της ευθείας που διέρχεται από την αρχή των αξόνων και το σημείο Α(,.

4. Να βρείτε την εξίσωση της ευθείας που διέρχεται από την αρχή των αξόνων και το σημείο Α(,. 1. Τι ξέρετε για τη γραφική παράσταση των συναρτήσεων της μορφής ; Πώς ονομάζεται το ; Η γραφική παράσταση των συναρτήσεων της μορφής, είναι ευθεία γραμμή που διέρχεται από την αρχή των αξόνων. Το ονομάζεται

Διαβάστε περισσότερα

lim είναι πραγµατικοί αριθµοί, τότε η f είναι συνεχής στο x 0. β) Να εξετάσετε τη συνέχεια της συνάρτησης f (x) =

lim είναι πραγµατικοί αριθµοί, τότε η f είναι συνεχής στο x 0. β) Να εξετάσετε τη συνέχεια της συνάρτησης f (x) = Ερωτήσεις ανάπτυξης. ** α) Να αποδείξετε ότι αν τα όρια lim - f () - f - είναι πραγµατικοί αριθµοί, τότε η f είναι συνεχής στο. ( ) και β) Να εξετάσετε τη συνέχεια της συνάρτησης f () = lim + στο σηµείο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 Ο 3.2 Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η. (Σ) όπου α, β, α, β, είναι οι

ΚΕΦΑΛΑΙΟ 3 Ο 3.2 Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η. (Σ) όπου α, β, α, β, είναι οι ΚΕΦΑΛΑΙΟ 3 Ο ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ 3. Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΤΟΥ. Ποια είναι η μορφή ενός συστήματος δύο γραμμικών εξισώσεων, δύο αγνώστων; Να δοθεί παράδειγμα.

Διαβάστε περισσότερα

3.5 Η ΣΥΝΑΡΤΗΣΗ y=α/x-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή

3.5 Η ΣΥΝΑΡΤΗΣΗ y=α/x-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή ΣΥΝΑΡΤΗΣΗ y=α/ Η ΥΠΕΡΒΟΛΗ.5 Η ΣΥΝΑΡΤΗΣΗ y=α/-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή Δύο ποσά λέγονται αντιστρόφως ανάλογα, όταν η τιμή του ενός πολλαπλασιαστεί επί έναν αριθµό, τότε η τιµή του

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΣΤΙΣ ΑΣΚΗΣΕΙΣ ΠΡΟΕΤΟΙΜΑΣΙΑΣ ΓΙΑ ΤΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ ΣΤΙΣ ΑΣΚΗΣΕΙΣ ΠΡΟΕΤΟΙΜΑΣΙΑΣ ΓΙΑ ΤΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΙΣ ΑΣΚΗΣΕΙΣ ΠΡΟΕΤΟΙΜΑΣΙΑΣ ΓΙΑ ΤΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ 1. Τι ονομάζουμε συνάρτηση; Συνάρτηση ονομάζεται η αλληλεξάρτηση (ή η σχέση) δυο μεταβλητών εις τρόπον ώστε για κάθε τιμή της μιας

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 Ποιο από τα δύο σχήματα Α, Β έχει το μεγαλύτερο εμβαδόν;

ΑΣΚΗΣΗ 1 Ποιο από τα δύο σχήματα Α, Β έχει το μεγαλύτερο εμβαδόν; ΜΕΡΟΣ Β. ΕΜΒΑΔΑ ΕΠΙΠΕΔΩΝ ΣΧΗΜΑΤΩΝ-ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ 05. ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΗΣ ΕΠΙΦΑΝΕΙΑΣ Ορισμός Το εμβαδόν μιας επίπεδης επιφάνειας είναι ένας θετικός αριθμός, που εκφράζει την έκταση που καταλαμβάνει η επιφάνεια

Διαβάστε περισσότερα

Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος.

Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Ενότητα 2 Γραμμικά Συστήματα Στην ενότητα αυτή θα μάθουμε: Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Να ερμηνεύουμε γραφικά τη

Διαβάστε περισσότερα

3 Ô. º π ΜΕΡΟΣ Α. Συναρτήσεις. Πλατεία Oμονοίας. Μνημείο Ηρώων. Εμπορικό Κέντρο. Εκκλησία. Δημαρχείο. Μεσαιωνικό Κάστρο. Σχολείο.

3 Ô. º π ΜΕΡΟΣ Α. Συναρτήσεις. Πλατεία Oμονοίας. Μνημείο Ηρώων. Εμπορικό Κέντρο. Εκκλησία. Δημαρχείο. Μεσαιωνικό Κάστρο. Σχολείο. ΜΕΡΟΣ Α º π Ô Συναρτήσεις Λεωφόρος Ευημερίας Μνημείο Ηρώων Εμπορικό Κέντρο Εκκλησία Δημαρχείο Πλατεία Oμονοίας Λεωφόρος Ευτυχίας Μεσαιωνικό Κάστρο Σχολείο Μουσείο Ερείπια Αρχ. Ναού ΕΙΣΑΓΩΓΙΚΟ ΣΗΜΕΙΩΜΑ

Διαβάστε περισσότερα

Στοιχεία Συναρτήσεων. 1. Να βρεθεί το πεδίο ορισμού των παρακάτω συναρτήσεων: στ. x 1

Στοιχεία Συναρτήσεων. 1. Να βρεθεί το πεδίο ορισμού των παρακάτω συναρτήσεων: στ. x 1 Στοιχεία Συναρτήσεων 1. Να βρεθεί το πεδίο ορισμού των παρακάτω συναρτήσεων: 1 α. f() β. f() 3 6 8 3 1 γ. g() δ. g() ( 6)( 5) 4 ε. h() 4 στ. h() 4 ζ. ε. στ. 1 φ() η. 1 1 1 r() 5 6 1 r() 1 5 6 φ() 5. Στις

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΘΕΜΑ Α Ερώτηση θεωρίας Αν η συνάρτηση f είναι παραγωγίσιμη στο R και c είναι μια πραγματική σταθερά, να δείξετε ότι: ( c f( )) = c f ( ),. Έστω F( )

Διαβάστε περισσότερα

ΕΠΙΣΚΟΠΗΣΗ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

ΕΠΙΣΚΟΠΗΣΗ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΕΠΙΣΚΟΠΗΣΗ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΕΓΧΕΙΡΙΔΙΟ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ ΔΗΜΗΤΡΙΟΣ ΘΕΟΔΩΡΙΔΗΣ Κεφάλαιο 1.1 Ευθύγραμμη κίνηση 1. Τι ονομάζουμε κίνηση; Τι ονομάζουμε τροχιά; Ποια είδη τροχιών γνωρίζετε; Κίνηση ενός αντικειμένου

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΗ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ. Λυμένες Ασκήσεις

ΑΣΚΗΣΕΙΣ ΣΤΗ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ. Λυμένες Ασκήσεις ΑΣΚΗΣΕΙΣ ΣΤΗ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ Λυμένες Ασκήσεις 1. Στο παρακάτω σχήμα να βρείτε τις συντεταγμένες των σημείων Α, Β, Γ, Δ, Ε, Ζ, Η, Θ και Ι Οι συντεταγμένες των ζητούμενων σημείων είναι: Α(2,3),

Διαβάστε περισσότερα

ΠΑΡΑΓΡΑΦΟΣ Α.3.2 ΚΑΡΤΕΣΙΑΝΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ Α. ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ. Μας δίνουν ένα σημείο Μ στο επίπεδο.για να προσδιορίσουμε την θέση του κάνουμε τα εξής :

ΠΑΡΑΓΡΑΦΟΣ Α.3.2 ΚΑΡΤΕΣΙΑΝΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ Α. ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ. Μας δίνουν ένα σημείο Μ στο επίπεδο.για να προσδιορίσουμε την θέση του κάνουμε τα εξής : ΠΑΡΑΓΡΑΦΟΣ Α.3.2 ΚΑΡΤΕΣΙΑΝΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ Α. ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Μας δίνουν ένα σημείο Μ στο επίπεδο.για να προσδιορίσουμε την θέση του κάνουμε τα εξής : Μ 1) Σχεδιάζουμε δύο άξονες κάθετους μεταξύ τους, με

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο «ΑΛΓΕΒΡΑ»

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο «ΑΛΓΕΒΡΑ» ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ Β ΓΥΜΝΑΣΙΥ ΜΕΡΣ ο «ΑΛΓΕΒΡΑ». Να υπολογίσετε την τιμή της παράστασης: Α = ( + ) 4( ) 8, όταν = 0,45. Απλοποιούμε πρώτα την παράσταση : Α = ( + ) 4( ) 8 = = + 6 4 + 4 8

Διαβάστε περισσότερα

Ορισμός Τετραγωνική ονομάζεται κάθε συνάρτηση της μορφής y = αx 2 + βx + γ με α 0.

Ορισμός Τετραγωνική ονομάζεται κάθε συνάρτηση της μορφής y = αx 2 + βx + γ με α 0. ΜΕΡΟΣ Α. Η ΣΥΝΑΡΤΗΣΗ =α +β+γ,α 0 337. Η ΣΥΝΑΡΤΗΣΗ =α +β+γ ME α 0 Ορισμός Τετραγωνική ονομάζεται κάθε συνάρτηση της μορφής = α + β + γ με α 0. Η συνάρτηση = α +β+γ με α > 0 Η γραφική παράσταση της συνάρτησης

Διαβάστε περισσότερα

Διαφορικός Λογισμός. Κεφάλαιο Συναρτήσεις. Κατανόηση εννοιών - Θεωρία. 1. Τι ονομάζουμε συνάρτηση;

Διαφορικός Λογισμός. Κεφάλαιο Συναρτήσεις. Κατανόηση εννοιών - Θεωρία. 1. Τι ονομάζουμε συνάρτηση; Κεφάλαιο 1 Διαφορικός Λογισμός 1.1 Συναρτήσεις Κατανόηση εννοιών - Θεωρία 1. Τι ονομάζουμε συνάρτηση; 2. Πως ορίζονται οι πράξεις της πρόσθεσης, της διαφοράς, του γινομένου και του πηλίκου μεταξύ δύο συναρτήσεων;

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ Α. Η ΣΥΝΑΡΤΗΣΗ : y = α.x ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ 1. Δίνεται η ευθεία y = 3x. α) Να υπολογίσετε την κλίση της ευθείας. β) Να κάνετε την γραφική της παράσταση. 2. Μια ευθεία διέρχεται από την αρχή των

Διαβάστε περισσότερα

Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης

Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Ορθοκανονικό σύστημα αξόνων ονομάζεται ένα σύστημα από δύο κάθετους άξονες με κοινή αρχή στους οποίους οι μονάδες έχουν το ίδιο μήκος. Υπάρχουν περιπτώσεις

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1 ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Πότε µια συνάρτηση f σε ένα διάστηµα του πεδίου ορισµού της λέγεται γνησίως αύξουσα και πότε γνησίως φθίνουσα; 2. Να αποδείξετε ότι η παράγωγος

Διαβάστε περισσότερα

Ερωτήσεις ανάπτυξης. α) να βρείτε το σηµείο x 0. β) να αποδείξετε ότι η κλίση της εφαπτοµένης της

Ερωτήσεις ανάπτυξης. α) να βρείτε το σηµείο x 0. β) να αποδείξετε ότι η κλίση της εφαπτοµένης της Ερωτήσεις ανάπτυξης. ** Η συνάρτηση είναι παραγωγίσιµη στο R και η ευθεία (ε) είναι εφαπτοµένη της C στο σηµείο (0, (0)). Μετακινούµε τη C παράλληλα προς τους άξονες, όπως φαίνεται στο σχήµα, και ονοµάζουµε

Διαβάστε περισσότερα

ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΑ ΜΕΤΑΒΑΛΟΜΕΝΗ ΚΙΝΗΣΗ. Κινητική του υλικού σηµείου Ερωτήσεις Ασκήσεις

ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΑ ΜΕΤΑΒΑΛΟΜΕΝΗ ΚΙΝΗΣΗ. Κινητική του υλικού σηµείου Ερωτήσεις Ασκήσεις ΕΡΓΑΣΙΑ ΣΤΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΑ ΜΕΤΑΒΑΛΟΜΕΝΗ ΚΙΝΗΣΗ Κινητική του υλικού σηµείου Ερωτήσεις Ασκήσεις Α. Ερωτήσεις Πολλαπλής Επιλογής Να γράψετε στο φύλλο των απαντήσεών

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΘΕΜΑ Α Ερώτηση θεωρίας Αν η συνάρτηση f είναι παραγωγίσιμη στο R και c είναι μια πραγματική σταθερά, να δείξετε ότι: ( c f) = c f, Έστω F = c f Έχουμε

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ Άλγεβρα Β Λυκείου, ο Κεφάλαιο ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ ΟΡΙΣΜΟΣ 1 Μια συνάρτηση ƒ λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε

Διαβάστε περισσότερα

Ημερομηνία: Κυριακή 30 Οκτωβρίου 2016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Ημερομηνία: Κυριακή 30 Οκτωβρίου 2016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Ημερομηνία: Κυριακή 30 Οκτωβρίου 016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Στις ημιτελείς προτάσεις Α1 Α4 να γράψετε στο τετράδιό σας τον αριθμό

Διαβάστε περισσότερα

ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΚΡΟΤΑΤΩΝ

ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΚΡΟΤΑΤΩΝ Ενότητα 1 ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΚΡΟΤΑΤΩΝ Ασκήσεις για λύση 3 3, < 1). Δίνεται η συνάρτηση f ( ). 6, Να βρείτε : i ) την παράγωγο της f, ii) τα κρίσιμα σημεία της f. ). Να μελετήσετε ως προς τη μονοτονία

Διαβάστε περισσότερα

1ο τεταρτημόριο x>0,y>0 Ν Β

1ο τεταρτημόριο x>0,y>0 Ν Β ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ( 6.2 ) Καρτεσιανό σύστημα συντεταγμένων ονομάζεται ένα επίπεδο εφοδιασμένο με δύο κάθετους άξονες οι οποίοι έχουν κοινή αρχή Ο και είναι αριθμημένοι με τις ίδιες μονάδες μήκους.

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑ «ΠΡΟΟΔΟΣ» ΚΥΡΙΑΚΗ 22 ΝΟΕΜΒΡΙΟΥ 2015 ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ» Γ ΛΥΚΕΙΟΥ

ΦΡΟΝΤΙΣΤΗΡΙΑ «ΠΡΟΟΔΟΣ» ΚΥΡΙΑΚΗ 22 ΝΟΕΜΒΡΙΟΥ 2015 ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ» Γ ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΑ «ΠΡΟΟΔΟΣ» ΚΥΡΙΑΚΗ ΝΟΕΜΒΡΙΟΥ 5 ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ» Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο A. Να δώσετε τον ορισμό της συνέχειας μιας συνάρτησης στο πεδίο ορισμού της. ( Μονάδες)

Διαβάστε περισσότερα

Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Εφαρμογές

Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Εφαρμογές Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Εφαρμογές Να βρείτε για καθεμιά από τις παρακάτω γραμμές αν είναι γραφική παράσταση κάποιας συνάρτησης. 4-1 1 () (1) (3) (4) (5) (6) Αν υπάρχει ευθεία

Διαβάστε περισσότερα

4.3 Η ΣΥΝΑΡΤΗΣΗ f (x) x

4.3 Η ΣΥΝΑΡΤΗΣΗ f (x) x 1 4.3 Η ΣΥΝΑΡΤΗΣΗ f () A Ομάδας Ασκήσεις σχολικού βιβλίου σελίδας 164 167 1. Να βρείτε τη γωνία που σχηματίζει με τον άξονα η ευθεία = + = 3 1 i = + 1 iv) = 3 + εφω = 1 ω = 45 ο εφω = 3 ω = 60 ο i εφω

Διαβάστε περισσότερα

Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ. ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ. ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Συνοπτική Θεωρία Ασκήσεις της Τράπεζας Θεμάτων Ερωτήσεις Σωστού-Λάθους Διαγωνίσματα Επιμέλεια: Συντακτική ομάδα mathp.gr Συντονισμός

Διαβάστε περισσότερα

1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Μέθοδοι επίλυσης γραμμικού συστήματος χ Γραφική επίλυση Σχεδιάζουμε τις ευθείες που αντιπροσωπεύουν οι εξισώσεις του συστήματος. Αν: - οι δύο ευθείες τέμνονται, τότε το σύστημα έχει

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΑ. Φυσική Α' Λυκείου. Ευθύγραµµη οµαλή κίνηση. ΘΕΜΑ 1 ο

ΙΑΓΩΝΙΣΜΑ. Φυσική Α' Λυκείου. Ευθύγραµµη οµαλή κίνηση. ΘΕΜΑ 1 ο ΙΑΓΩΝΙΣΜΑ Εξεταζόµενο Μάθηµα Ονοµατεπώνυµο Μαθητή/τριας Τµήµα Ηµεροµηνία Ύλη Βαθµολογία Φυσική Α' Λυκείου Ευθύγραµµη οµαλή κίνηση ΘΕΜΑ ο Για τις ερωτήσεις έως 5 να σηµειώσετε το γράµµα που αντιστοιχεί

Διαβάστε περισσότερα

4.4 ΟΜΑΔΟΠΟΙΗΣΗ ΠΑΡΑΤΗΡΗΣΕΩΝ

4.4 ΟΜΑΔΟΠΟΙΗΣΗ ΠΑΡΑΤΗΡΗΣΕΩΝ ΜΕΡΟΣ Α. ΟΜΑΔΟΠΟΙΗΣΗ ΠΑΡΑΤΗΡΗΣΕΩΝ 177. ΟΜΑΔΟΠΟΙΗΣΗ ΠΑΡΑΤΗΡΗΣΕΩΝ ΟΡΙΣΜΟΙ Αν οι παρατηρήσεις είναι πολλές τότε κάνουμε ομαδοποίηση των παρατηρήσεων χωρίζοντας το διάστημα που ανήκουν οι παρατηρήσεις σε υποδιαστήματα.

Διαβάστε περισσότερα

1 ο Διαγώνισμα Α Λυκείου Κυριακή 15 Νοεμβρίου 2015

1 ο Διαγώνισμα Α Λυκείου Κυριακή 15 Νοεμβρίου 2015 1 ο Διαγώνισμα Α Λυκείου Κυριακή 15 Νοεμβρίου 2015 Διάρκεια Εξέτασης 3 ώρες Ονοματεπώνυμο. ΘΕΜΑ Α: Στις ερωτήσεις Α1 ως και Α4 επιλέξτε την σωστή απάντηση: Α1. Αν υ η ταχύτητα ενός κινητού και α η επιτάχυνσή

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..

Διαβάστε περισσότερα

1. ** Να βρεθεί το ευρύτερο δυνατό υποσύνολο του R στο οποίο ορίζεται καθεµιά από τις παρακάτω συναρτήσεις: , x [0, 2π] εφx -1

1. ** Να βρεθεί το ευρύτερο δυνατό υποσύνολο του R στο οποίο ορίζεται καθεµιά από τις παρακάτω συναρτήσεις: , x [0, 2π] εφx -1 Ερωτήσεις ανάπτυξης. ** Να βρεθεί το ευρύτερο δυνατό υποσύνολο του R στο οποίο ορίζεται καθεµιά από τις παρακάτω συναρτήσεις: α) f () = ( -) 4 - + β) f () = - - + 3 4 - - γ) f () = δ) f () = - + - - 5-3

Διαβάστε περισσότερα

Ζ ΕΝΟΤΗΤΑ. Μελέτη βασικών συναρτήσεων. Ζ.1 (7.1 παρ/φος σχολικού βιβλίου) Ζ.2 (7.2 παρ/φος σχολικού βιβλίου) Ζ.3 (7.3 παρ/φος σχολικού βιβλίου) 2

Ζ ΕΝΟΤΗΤΑ. Μελέτη βασικών συναρτήσεων. Ζ.1 (7.1 παρ/φος σχολικού βιβλίου) Ζ.2 (7.2 παρ/φος σχολικού βιβλίου) Ζ.3 (7.3 παρ/φος σχολικού βιβλίου) 2 Ζ ΕΝΟΤΗΤΑ Μελέτη βασικών συναρτήσεων Ζ.1 (7.1 παρ/φος σχολικού βιβλίου) Μελέτη της συνάρτησης f(x) = αx Ζ. (7. παρ/φος σχολικού βιβλίου) Μελέτη της συνάρτησης f x α x Ζ.3 (7.3 παρ/φος σχολικού βιβλίου)

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ( ΚΑΡΤΕΣΙΑΝΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ )

ΘΕΩΡΙΑ ( ΚΑΡΤΕΣΙΑΝΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ ) ΘΕΩΡΙΑ ( ΚΑΡΤΕΣΙΑΝΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ ) Έχουμε δύο κάθετους άξονες x x και y y με κοινή αρχή 0. Από ένα σημείο Μ του επιπέδου φέρνουμε τις κάθετες στους δύο άξονες x x και y y. Ονομάζουμε τετμημένη του σημείου

Διαβάστε περισσότερα

Ο λόγος που σχηματίζεται, αν διαιρέσουμε την απέναντι κάθετη πλευρά

Ο λόγος που σχηματίζεται, αν διαιρέσουμε την απέναντι κάθετη πλευρά ΜΕΡΟΣ. ΗΜΙΤΟΝΟ ΚΙ ΣΥΝΗΜΙΤΟΝΟ ΟΞΕΙΣ ΩΝΙΣ 61 Ορισμοί. ΗΜΙΤΟΝΟ ΚΙ ΣΥΝΗΜΙΤΟΝΟ ΟΞΕΙΣ ΩΝΙΣ Ημίτονο γωνίας Ο λόγος που σχηματίζεται, αν διαιρέσουμε την απέναντι κάθετη πλευρά μιας οξείας γωνίας ω ενός ορθογωνίου

Διαβάστε περισσότερα

MATHematics.mousoulides.com

MATHematics.mousoulides.com ΟΔΗΓΙΕΣ: ΕΝΔΕΙΚΤΙΚΕΣ ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ ΑΞΙΟΛΟΓΗΣΗΣ 3 (Θέματα από τελικό γραπτό Ιουνίου 2014, Γυμνασίου Αρχαγγέλου Μιχαήλ) Επιτρέπεται η χρήση υπολογιστικής μηχανής. Να γράφετε μόνο με μελάνι μπλε ή μαύρο,

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Μυλωνάκης Κων/νος ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Σχολείο: Ημερομηνία: / / Α Λυκείου τμήμα.. Καθηγητής/τρια: Α) Το θέμα και το μαθησιακό περιβάλλον. 1) Το γνωστικό αντικείμενο της διδασκαλίας είναι

Διαβάστε περισσότερα

Ημερομηνία: Σάββατο 11 Νοεμβρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Ημερομηνία: Σάββατο 11 Νοεμβρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Ημερομηνία: Σάββατο 11 Νοεμβρίου 017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Στις ημιτελείς προτάσεις Α1 Α4 να γράψετε στο τετράδιό σας τον αριθμό

Διαβάστε περισσότερα

ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ

ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ ΧΑΡΑΞΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ Δημήτρης Στεφανάκης Η Μέθοδος των Ελαχίστων Τετραγώνων (ΜΕΤ) χρησιμοποιείται για την κατασκευή της γραφικής παράστασης που περιγράφει ένα φαινόμενο,

Διαβάστε περισσότερα

Περι-Φυσικής. Θέµα 1ο. 1ο ιαγώνισµα - Κινηµατική της Ευθύγραµµης Κίνησης. Ονοµατεπώνυµο: Βαθµολογία %

Περι-Φυσικής. Θέµα 1ο. 1ο ιαγώνισµα - Κινηµατική της Ευθύγραµµης Κίνησης. Ονοµατεπώνυµο: Βαθµολογία % 1ο ιαγώνισµα - Κινηµατική της Ευθύγραµµης Κίνησης Ηµεροµηνία : Νοέµβρης 2012 ιάρκεια : 3 ώρες Ονοµατεπώνυµο: Βαθµολογία % Θέµα 1ο Στις ερωτήσεις 1.1 1.4 επιλέξτε την σωστη απάντηση (4 5 = 20 µονάδες )

Διαβάστε περισσότερα

. Όλες οι συναρτήσεις δεν μπορούν να παρασταθούν στο καρτεσιανό επίπεδο όπως για παράδειγμα η συνάρτηση του Dirichlet:

. Όλες οι συναρτήσεις δεν μπορούν να παρασταθούν στο καρτεσιανό επίπεδο όπως για παράδειγμα η συνάρτηση του Dirichlet: Κεφάλαιο: Συναρτήσεις Γραφική παράσταση συνάρτησης Γράφημα μιας συνάρτησης ( ) ονομάζουμε το σύνολο των σημείων G( ) (, ( ) ) / A που είναι υποσύνολο του. Το γράφημα αυτό { } συνήθως παριστάνεται πάνω

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟΔΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟΔΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟΔΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ Κεφάλαιο ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ο ΜΕΡΟΣ Απαντήσεις στις ερωτήσεις του τύπου Σωστό-Λάθος. Σ 6. Λ 8. Λ. Σ 7. Σ 9. Λ 3. Λ 8. Λ 3. Σ 4. Σ 9. Σ 3. α Σ 5. Σ. Σ β Σ 6. Λ.

Διαβάστε περισσότερα

Η συνάρτηση y = αχ 2. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Η συνάρτηση y = αχ 2. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Η συνάρτηση y = αχ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Η συνάρτηση y = αχ με α 0 Μια συνάρτηση της μορφής y = α + β + γ με α 0 ονομάζεται τετραγωνική συνάρτηση.

Διαβάστε περισσότερα

Φύλλο εργασίας Νο1. Ορθοκανονικό Σύστημα Ημιαξόνων, Συντεταγμένες Σημείου. Το ορθοκανονικό σύστημα αποτελείται από δύο ημιευθείεςοχ και Οy ώστε:

Φύλλο εργασίας Νο1. Ορθοκανονικό Σύστημα Ημιαξόνων, Συντεταγμένες Σημείου. Το ορθοκανονικό σύστημα αποτελείται από δύο ημιευθείεςοχ και Οy ώστε: 9 ο Γυμνάσιο Αθηνών ΜΑΘΗΜΑΤΙΚΑΑ ΓΥΜΝΑΣΙΟΥ Κεφάλαιο 6: ΠΑΡΑΣΤΑΣΗ ΣΗΜΕΙΩΝ ΣΤΟ ΕΠΙΠΕΔΟ Φύλλο εργασίας Νο1 1 Ονοματεπώνυμο μαθητή : Ημερομηνία :.../.../20... Μαθηματικές έννοιες: Ορθοκανονικό Σύστημα Ημιαξόνων,

Διαβάστε περισσότερα

6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΣΜΟΣ 6. ΣΥΝΑΡΤΗΣΕΙΣ 6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ Ονομάζουμε συνάρτηση από ένα σύνολο Α σε ένα σύνολο Β μια διαδικασία (κανόνα) f, με την οποία κάθε στοιχείο του συνόλου Α αντιστοιχίζεται σε ένα ακριβώς

Διαβάστε περισσότερα

Επαναληπτικές ασκήσεις για το Πάσχα.

Επαναληπτικές ασκήσεις για το Πάσχα. Μαθηματικά B Γυμνασίου Επαναληπτικές ασκήσεις για το Πάσχα. Άλγεβρα. Κεφάλαιο 1 ο. 1. Να υπολογιστούν οι παρακάτω αριθμητικές παραστάσεις : 1 7 1 7 1 1 ) - 1 4 : ) -1 1 : 1 4 10 9 6. Να λυθούν οι εξισώσεις:

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014 ΓΥΜΝΑΣΙΟ ΑΡΧ. ΜΑΚΑΡΙΟΥ Γ - ΠΛΑΤΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 2013-2014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΒΑΘΜΟΣ ΗΜΕΡΟΜΗΝΙΑ: 6/6/2014 Αριθμητικά.. ΤΑΞΗ: Β ΧΡΟΝΟΣ: 2 ώρες Ολογράφως: ΥΠ. ΚΑΘΗΓΗΤΗ:......

Διαβάστε περισσότερα

Β Γυμνασίου. Θέματα Εξετάσεων

Β Γυμνασίου. Θέματα Εξετάσεων υμνασίου Θέματα Εξετάσεων υμνασίου Θέματα Εξετάσεων υμνασίου Θέματα Εξετάσεων Θέμα 1. α. Ποια ποσά λέγονται ανάλογα και ποια σχέση τα συνδέει; β. Τι γνωρίζετε για τη γραφική παράσταση της συνάρτησης y=αx

Διαβάστε περισσότερα

i) Αν (,, ) είναι μια πυθαγόρεια τριάδα και είναι ένας θετικός ακέραιος, να αποδείξετε ότι και η τριάδα (,,

i) Αν (,, ) είναι μια πυθαγόρεια τριάδα και είναι ένας θετικός ακέραιος, να αποδείξετε ότι και η τριάδα (,, 1. i) Να αποδείξετε την ταυτότητα 1 ( ) ( ) ( ) + + = + +. ii) Να αποδείξετε ότι για όλους τους,, ισχύει Πότε ισχύει ισότητα; + + + +.. Λέμε ότι μια τριάδα θετικών ακεραίων (,, ) είναι όταν είναι πλευρές

Διαβάστε περισσότερα

ΔΙΑΓΏΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 16-10- 2011. 1) α) Μονάδα μέτρησης ταχύτητας στο Διεθνές Σύστημα μονάδων (S.I.) είναι το 1Km/h.

ΔΙΑΓΏΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 16-10- 2011. 1) α) Μονάδα μέτρησης ταχύτητας στο Διεθνές Σύστημα μονάδων (S.I.) είναι το 1Km/h. ΔΙΑΓΏΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 16- - 2011 ΘΕΜΑ 1 0 Για τις ερωτήσεις 1-5, αρκεί να γράψετε στο φύλλο απαντήσεων τον αριθμό της ερώτησης και δεξιά από αυτόν, το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΒΑΣΙΛΕΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ

ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΒΑΣΙΛΕΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΒΑΣΙΛΕΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 015 016 Βαθμός αριθμητικώς:. =. 100 0 Ολογράφως: Υπογραφή Εισηγητή: ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 016 Μάθημα: Μαθηματικά Τάξη: B Ημερομηνία: 15 Ιουνίου 016

Διαβάστε περισσότερα

1. Όταν λέμε ότι κάποιος κινείται ευθύγραμμα με σταθερή επιτάχυνση 5m/s 2 εννοούμε ότι:

1. Όταν λέμε ότι κάποιος κινείται ευθύγραμμα με σταθερή επιτάχυνση 5m/s 2 εννοούμε ότι: ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΜΕΡΟΜΗΝΙΑ: 13/11/2016 ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΘΕΜΑ Α Να γράψετε στο τετραδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Όταν

Διαβάστε περισσότερα

Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης

Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Ορθοκανονικό σύστημα αξόνων ονομάζεται ένα σύστημα από δύο κάθετους άξονες με κοινή αρχή στους οποίους οι μονάδες έχουν το ίδιο μήκος. Υπάρχουν περιπτώσεις

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ. ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO 1o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ. ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO 1o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ 000 ΘΕΜΑ ο Α.α) Δίνεται η συνάρτηση F f g αποδείξετε ότι: F f g. cf,. Αν οι συναρτήσεις

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ / Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ Μ- ΑΓΙΑΝΝΙΩΤΑΚΗ ΑΝ.-ΠΟΥΛΗ Κ.

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ / Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ Μ- ΑΓΙΑΝΝΙΩΤΑΚΗ ΑΝ.-ΠΟΥΛΗ Κ. ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ / Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 21-12-2014 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ Μ- ΑΓΙΑΝΝΙΩΤΑΚΗ ΑΝ.-ΠΟΥΛΗ Κ. ΘΕΜΑ A Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς

Διαβάστε περισσότερα

6.2 ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ

6.2 ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ 1 6. ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΙΑ 1. Οι συντεταγµένες σηµείου Ο Ο άξονας τετµηµένων άξονας τεταγµένων (ΟΚ) µε πρόσηµο = α, η τετµηµένη του Μ (ΟΛ) µε πρόσηµο = β, η τεταγµένη του Μ Το ζευγάρι (α,

Διαβάστε περισσότερα

3.2 Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ

3.2 Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ . Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΤΟΥ ΘΕΩΡΙΑ. Γραµµικό σύστηµα δύο εξισώσεων µε δύο αγνώστους Είναι ένα σύνολο δύο γραµµικών εξισώσεων µε δύο αγνώστους και των οποίων αναζητούµε

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΚΙΝΗΣΗΣ ΤΩΝ ΣΩΜΑΤΩΝ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ. υ = σταθερη (1) - Με διάγραμμα :

ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΚΙΝΗΣΗΣ ΤΩΝ ΣΩΜΑΤΩΝ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ. υ = σταθερη (1) - Με διάγραμμα : Πρότυπο Πρότυπα ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΚΙΝΗΣΗΣ ΤΩΝ ΣΩΜΑΤΩΝ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ Η Φυσική για να ερμηνεύσει τα φαινόμενα, δημιουργεί τα πρότυπα ή μοντέλα. Τα πρότυπα αποτελούνται από ένα πλέγμα

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Ασκήσεις σχολικού βιβλίου σελίδας

ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Ασκήσεις σχολικού βιβλίου σελίδας ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Ασκήσεις σχολικού βιβλίου σελίδας 07 3. Να αποδείξετε την ταυτότητα + + αβ βγ γα = Να αποδείξετε ότι για όλους τους α, β, γ ισχύει + + αβ + βγ + γα Πότε ισχύει ισότητα; = = + + =

Διαβάστε περισσότερα

6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ 6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΣΜΟΣ ΣΥΝΑΡΤΗΣΗΣ Συνάρτηση από ένα σύνολο Α σε ένα σύνολο Β λέγεται μια διαδικασία (κανόνας), με την οποία κάθε στοιχείο του συνόλου Α αντιστοιχίζεται σε ακριβώς ένα στοιχείο

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ Ευθύγραμμη Ομαλή Κίνηση Επιμέλεια: ΑΓΚΑΝΑΚΗΣ.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός https://physicscorses.wordpress.com/ Βασικές Έννοιες Ένα σώμα καθώς κινείται περνάει από διάφορα σημεία.

Διαβάστε περισσότερα

2.8. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας. 1.i)

2.8. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας. 1.i) 1.8 Ασκήσεις σχολικού βιβλίου σελίδας 77 79 A Οµάδας 1.i) Να βρείτε τα διαστήµατα στα οποία η συνάρτηση () 5 5 4 + είναι κυρτή ή κοίλη και να προσδιορίσετε (αν υπάρχουν) τα σηµεία καµπής της γραφικής της

Διαβάστε περισσότερα

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 1 ΑΒ ΒΓ ΓΔ ΔΑ ΟΑ ΟΓ ΒΔ

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 1 ΑΒ ΒΓ ΓΔ ΔΑ ΟΑ ΟΓ ΒΔ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 1 ΕΝΟΤΗΤΑ : ΠΑΡΑΓΡΑΦΟΣ 3.2 - ΚΑΡΤΕΣΙΑΝΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΜΑΘΗΜΑ :ΠΑΡΑΣΤΑΣΗ ΣΗΜΕΙΩΝ, ΥΠΟΛΟΓΙΣΜΟΣ ΜΗΚΩΝ -ΕΜΒΑΔΟΝ ΑΣΚΗΣΗ Δίνονται τα σημεία Α=(1,2), Β=(1,-2), Γ = (-1,-2), Δ=(-1,-2) α ) σε ένα

Διαβάστε περισσότερα

kg(χιλιόγραμμο) s(δευτερόλεπτο) Ένταση ηλεκτρικού πεδίου Α(Αμπέρ) Ένταση φωτεινής πηγής cd (καντέλα) Ποσότητα χημικής ουσίας mole(μόλ)

kg(χιλιόγραμμο) s(δευτερόλεπτο) Ένταση ηλεκτρικού πεδίου Α(Αμπέρ) Ένταση φωτεινής πηγής cd (καντέλα) Ποσότητα χημικής ουσίας mole(μόλ) ΕΙΣΑΓΩΓΗ- ΦΥΣΙΚΑ ΜΕΓΕΘΗ Στα φυσικά φαινόμενα εμφανίζονται κάποιες ιδιότητες της ύλης. Για να περιγράψουμε αυτές τις ιδιότητες χρησιμοποιούμε τα φυσικά μεγέθη. Τέτοια είναι η μάζα, ο χρόνος, το ηλεκτρικό

Διαβάστε περισσότερα

3. lim [f(x) g(x)] = lim f(x) lim g(x) x xo x xo x xo x xo x xo v f(x) lim f(x) x xo lim = x xo g(x) lim g(x) x xo v lim [f(x)] = lim f(x) 6. li

3. lim [f(x) g(x)] = lim f(x) lim g(x) x xo x xo x xo x xo x xo v f(x) lim f(x) x xo lim = x xo g(x) lim g(x) x xo v lim [f(x)] = lim f(x) 6. li Μετά το τέλος της µελέτης του 1ου κεφαλαίου, ο µαθητής θα πρέπει να γνωρίζει: Τον ορισµό της συνάρτησης και τον τρόπο εύρεσης του πεδίου ορισµού της. Τις πράξεις µεταξύ συναρτήσεων, τις γραφικές παραστάσεις

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 1.1 Ευθύγραμμη κίνηση 1. Να αναφέρετε ποια από τα σώματα που φαίνονται στην εικόνα κινούνται. Α. Ως προς τη Γη B. Ως προς το αυτοκίνητο. Α. Ως προς τη Γη κινούνται το αυτοκίνητο, το αεροπλάνο και ο γλάρος.

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ 5 ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Εισαγωγή Στο κεφάλαιο αυτό θα δούμε πώς, με τη βοήθεια των πληροφοριών που α- ποκτήσαμε μέχρι τώρα, μπορούμε να χαράξουμε με όσο το δυνατόν μεγαλύτερη ακρίβεια τη γραφική παράσταση

Διαβάστε περισσότερα

4.2 Η ΣΥΝΑΡΤΗΣΗ y = αx 2 + βx + γ µε α 0

4.2 Η ΣΥΝΑΡΤΗΣΗ y = αx 2 + βx + γ µε α 0 1. Η ΣΥΝΑΡΤΗΣΗ y = α + + γ µε α 0 ΘΕΩΡΙΑ 1. Τετραγωνική συνάρτηση : Ονοµάζεται κάθε συνάρτηση της µορφής y = α + + γ, α 0. Γραφική παράσταση της συνάρτησης y = α + + γ, α 0 Η γραφική παράσταση της συνάρτησης

Διαβάστε περισσότερα

2. Έστω η συνάρτηση f :[0, 6] με την παρακάτω γραφική παράσταση.

2. Έστω η συνάρτηση f :[0, 6] με την παρακάτω γραφική παράσταση. . Έστω η συνάρτηση f : με την παρακάτω γραφική παράσταση. Α. Να προσδιορίσετε τα διαστήματα στα οποία η f είναι γνησίως αύξουσα, γνησίως φθίνουσα, κυρτή, κοίλη, καθώς και τα τοπικά ακρότατα και τα σημεία

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΜΗ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ ΜΟΝΟΤΟΝΙΑ-ΑΚΡΟΤΑΤΑ-ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΜΗ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ ΜΟΝΟΤΟΝΙΑ-ΑΚΡΟΤΑΤΑ-ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 4_095. Δίνονται οι ευθείες ε 1: λx + y = 1 και ε : x + λy = λ α) Να βρείτε για ποιες τιμές του λ οι δύο ευθείες τέμνονται και να γράψετε τις συντεταγμένες του κοινού τους σημείου συναρτήσει

Διαβάστε περισσότερα

5. Σε ορθογώνιο σύστημα αξόνων να σχεδιαστούν οι ευθείες που έχουν εξισώσεις τις: β. y = 4 δ. x = y

5. Σε ορθογώνιο σύστημα αξόνων να σχεδιαστούν οι ευθείες που έχουν εξισώσεις τις: β. y = 4 δ. x = y . Δύο φίλοι, ο Μάρκος και ο Βασίλης, έχουν άθροισμα ηλικιών 7 χρόνια, και ο Μάρκος είναι μεγαλύτερος από το Βασίλη. Μπορείτε να υπολογίσετε την ηλικία του καθενός; Να δικαιολογήσετε την απάντησή σας. β.

Διαβάστε περισσότερα

1 x και y = - λx είναι κάθετες

1 x και y = - λx είναι κάθετες Κεφάλαιο ο: ΕΥΘΕΙΑ Ερωτήσεις του τύπου «Σωστό-Λάθος» 1. * Συντελεστής διεύθυνσης μιας ευθείας (ε) είναι η εφαπτομένη της γωνίας που σχηματίζει η ευθεία (ε) με τον άξονα. Σ Λ. * Ο συντελεστής διεύθυνσης

Διαβάστε περισσότερα

ΠΕΝΤΕΛΗ. Κτίριο 1 : Πλ. Ηρώων Πολυτεχνείου 13, Τηλ. 210 8048919 / 210 6137110 Κτίριο 2 : Πλ. Ηρώων Πολυτεχνείου 17, Τηλ. 210 8100606 ΒΡΙΛΗΣΣΙΑ

ΠΕΝΤΕΛΗ. Κτίριο 1 : Πλ. Ηρώων Πολυτεχνείου 13, Τηλ. 210 8048919 / 210 6137110 Κτίριο 2 : Πλ. Ηρώων Πολυτεχνείου 17, Τηλ. 210 8100606 ΒΡΙΛΗΣΣΙΑ Τάξη Μάθημα Εξεταστέα ύλη Α Λυκείου Φυσική Ευθύγραμμη Κίνηση ΠΕΝΤΕΛΗ Κτίριο 1 : Πλ. Ηρώων Πολυτεχνείου 13, Τηλ. 210 8048919 / 210 6137110 Κτίριο 2 : Πλ. Ηρώων Πολυτεχνείου 17, Τηλ. 210 8100606 ΒΡΙΛΗΣΣΙΑ

Διαβάστε περισσότερα

Κεφάλαιο 2ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ

Κεφάλαιο 2ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Κεφάλαιο ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις ανάπτυξης. ** Να βρείτε τους πραγµατικούς αριθµούς x και y ώστε να ισχύουν οι ισότητες: α) x - + y = - + - y β) y + = 3 - ( + ) x γ) 4y - 3y - x = - 5x + 9 δ) (x

Διαβάστε περισσότερα

lim lim lim f (x) δ) lim lim lim lim 1- x 1- lim lim lim lim lim Ερωτήσεις ανάπτυξης

lim lim lim f (x) δ) lim lim lim lim 1- x 1- lim lim lim lim lim Ερωτήσεις ανάπτυξης Ερωτήσεις ανάπτυξης. ** Η γραφική παράσταση της συνάρτησης f είναι αυτή που φαίνεται στο διπλανό σχήμα. Να βρεθούν τα παρακάτω όρια: α) γ) ε) ζ) - f () β) f () δ) f () f () στ) - - - f () f () f () - y

Διαβάστε περισσότερα

4. Δίνεται το πολυώνυμο P(x) = x 3 2x 2 + x 12 α) Να αιτιολογήσετε γιατί το διώνυμο x 3 είναι παράγοντας του P(x) β) Να λύσετε την εξίσωση P(x) = 0

4. Δίνεται το πολυώνυμο P(x) = x 3 2x 2 + x 12 α) Να αιτιολογήσετε γιατί το διώνυμο x 3 είναι παράγοντας του P(x) β) Να λύσετε την εξίσωση P(x) = 0 1. α) Να βρείτε το υπόλοιπο και το πηλίκο της διαίρεσης (x 3 6x 2 +11x 2) : (x 3) β) Αν P(x) = x 3 6x 2 +11x + λ να βρείτε το λ R ώστε η διαίρεση P(x) : (x 3) να έχει υπόλοιπο 0. 2. Δίνονται τα πολυώνυμα:

Διαβάστε περισσότερα

20 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ - ΟΡΙΣΜΟΙ

20 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ - ΟΡΙΣΜΟΙ ΕΚΔΣΕΙΣ ΚΕΛΑΦΑ 19 Μιγαδικός αριθμός λέγεται η έκφραση α + i, με α, ΙR. Φανταστικός αριθμός λέγεται η έκφραση i, με ΙR. Αν z = α + i, α, ΙR, το α λέγεται πραγματικό μέρος του z. Αν z = α + i, α, ΙR, το

Διαβάστε περισσότερα

7.1 ΜΕΛΕΤΗ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

7.1 ΜΕΛΕΤΗ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ 7.1 ΜΕΛΕΤΗ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ f ( ) 1. Μορφή της συνάρτησης f ( ) Ιδιότητες Έχει πεδίο ορισµού ολο το R Είναι άρτια, άρα συµµετρική ως προς τον άξονα y y Είναι γνησίως φθίνουσα στο διάστηµα (,0] Είναι γνησίως

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΚΙΝΗΜΑΤΙΚΗΣ. = t. (1) 2 επειδή Δx 1 = Δx 2 = Δ xoλ / 2 Επειδή Δx 1 = u 1 t 1, από την

ΑΣΚΗΣΕΙΣ ΚΙΝΗΜΑΤΙΚΗΣ. = t. (1) 2 επειδή Δx 1 = Δx 2 = Δ xoλ / 2 Επειδή Δx 1 = u 1 t 1, από την 1 ΑΣΚΗΣΕΙΣ ΚΙΝΗΜΑΤΙΚΗΣ 1) Δίνεται η διπλανή γραφική παράσταση της ταχύτητας με το χρόνο. Να γίνει το διάγραμμα (θέσης χρόνου ), αν όταν o= είναι o =. Υπόδειξη Βρείτε τα εμβαδά μεταξύ της γραφικής παράστασης

Διαβάστε περισσότερα

ΘΕΜΑ 2. Δίνονται οι συναρτήσεις

ΘΕΜΑ 2. Δίνονται οι συναρτήσεις ΘΕΜΑ 2 Δίνονται οι συναρτήσεις (, x R 3 f ( x) = x και g x) = x α) Να δείξετε ότι οι γραφικές παραστάσεις των συναρτήσεων f, g τέμνονται σε τρία σημεία τα οποία και να βρείτε. (Μονάδες 13) β) Αν Α, Ο,

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΛΥΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 13/10/2013

ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΛΥΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 13/10/2013 ΜΘΗΜ / ΤΞΗ : ΦΥΣΙΚΗ ΛΥΚΕΙΟΥ ΣΕΙΡ: (ΛΥΣΕΙΣ) ΗΜΕΡΟΜΗΝΙ: 13/1/13 ΘΕΜ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Διαβάστε περισσότερα

Θέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ

Θέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ Α. Να συμπληρωθούν οι ισότητες: (α + β) =.., (α β) 3 = και (α + β)(α β) =.. Β. Να αποδείξετε τη δεύτερη. Θέμα ο Να γράψετε τα τρία (3) κριτήρια ισότητας τριγώνων. Να λυθεί η εξίσωση: 3 + 4 = 7 + 1 Άσκηση

Διαβάστε περισσότερα

ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ

ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ Φύλλο εργασίας ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ 1. Όταν ένα σώμα εκτελεί ευθύγραμμη ομαλή κίνηση (Ε.Ο.Κ.) κινείται με σταθερή.. Αυτό δηλώνει ότι κινείται διαρκώς προς την. κατεύθυνση και οι του είναι ανάλογες των

Διαβάστε περισσότερα

ΚΙΝΗΜΑΤΙΚΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΚΙΝΗΜΑΤΙΚΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΚΙΝΗΜΑΤΙΚΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΘΕΣΗ ΤΡΟΧΙΑ ΜΕΤΑΤΟΠΙΣΗ ΚΑΙ ΔΙΑΣΤΗΜΑ. Παρατηρώντας τις εικόνες προσπαθήστε να ορίσετε τις θέσεις των διαφόρων ηρώων των κινουμένων σχεδίων. Ερώτηση: Πότε ένα σώμα

Διαβάστε περισσότερα

Β ΚΥΚΛΟΣ ΠΡΟΣΟΜΟΙΩΤΙΚΩΝ ΙΑΓΩΝΙΣΜΑΤΩΝ ΣΥΓΧΡΟΝΟ. Προτεινόµενα Θέµατα Α Λυκείου Νοέµβριος 2013 ΘΕΜΑ Α

Β ΚΥΚΛΟΣ ΠΡΟΣΟΜΟΙΩΤΙΚΩΝ ΙΑΓΩΝΙΣΜΑΤΩΝ ΣΥΓΧΡΟΝΟ. Προτεινόµενα Θέµατα Α Λυκείου Νοέµβριος 2013 ΘΕΜΑ Α Προτεινόµενα Θέµατα Α Λυκείου Νοέµβριος 01 Φυσική γενιικής παιιδείίας ΘΕΜΑ Α Να γράψετε τον αριθµό καθεµιάς από τις παρακάτω προτάσεις 1-5 και δίπλα το γράµµα που αντιστοιχεί στη σωστά απάντηση 1 Στην

Διαβάστε περισσότερα

( 2) 1 0,. Αν ρ 1, ρ 2 οι ρίζες της (ε) και

( 2) 1 0,. Αν ρ 1, ρ 2 οι ρίζες της (ε) και ΘΕΜΑ ο Δίνεται η συνάρτηση f με τύπο : f( ) α. Να βρείτε το πεδίο ορισμού της. β. Να βρείτε τα σημεία τομής της με τους άξονες αν υπάρχουν. γ. Αν α, β ρίζες της εξίσωσης: ΘΕΜΑ ο f ( ), να δείξετε ότι αβ+=0.

Διαβάστε περισσότερα

ΑΣΚHΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Β ΓΥΜΝΑΣΙΟΥ

ΑΣΚHΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Β ΓΥΜΝΑΣΙΟΥ ΣΚHΣΙΣ ΠΝΛΗΨΗΣ ΜΘΗΜΤΙΚΩΝ ΥΜΝΣΙΟΥ ΦΥΛΧΤΟΣ Π. ΣΜΪΛΗ. ΜYΡΙΙΝΝΗΣ. 1. Να λύσετε τις εξισώσεις : α) χ (χ 1) 3 = (1+5χ) β) x (3 3 x) 1 3(1 x) γ ) χ 3(χ ) +7 =( 3)( 5) 3χ δ) 5χ 19 3-(4χ-5) =χ (6χ 5) ε) 4 x 5 x

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (Α ΜΕΡΟΣ: ΣΥΝΑΡΤΗΣΕΙΣ) Μαθηματικά Προσανατολισμού Γ Λυκείου- Μαθηματικός Περιηγητής ΕΝΟΤΗΤΑ

Διαβάστε περισσότερα

Ερωτήσεις κατανόησης σελίδας Κεφ. 1

Ερωτήσεις κατανόησης σελίδας Κεφ. 1 Ερωτήσεις κατανόησης σελίδας 50 5 Κεφ.. Ο όγκος του διπλανού ορθογωνίου παραλληλεπιπέδου εκφράζεται µε τη συνάρτηση V() = ( )( ). Το πεδίο ορισµού της συνάρτησης αυτής είναι το διάστηµα : A. [0, + ] B.

Διαβάστε περισσότερα

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 4ο : Κωνικές τοµ ές)

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 4ο : Κωνικές τοµ ές) ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ ( Κεφάλαιο 4ο : Κωνικές τοµ ές) Τα κριτήρια αξιολόγησης που ακολουθούν είναι ενδεικτικά. Ο καθηγητής έχει τη δυνατότητα διαµόρφωσής τους σε ενιαία θέµατα, επιλογής

Διαβάστε περισσότερα

Μελέτη της συνάρτησης ψ = α χ 2

Μελέτη της συνάρτησης ψ = α χ 2 Μελέτη της συνάρτησης ψ = α χ Η γραφική της παράσταση είναι μια καμπύλη που λέγεται παραβολή. Ανάλογα με το πρόσημο του α έχω και τα αντίστοιχα συμπεράσματα. αν α > 0 1) Η γραφική της παράσταση είναι πάνω

Διαβάστε περισσότερα