ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ"

Transcript

1 5 ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Εισαγωγή Στο κεφάλαιο αυτό θα δούμε πώς, με τη βοήθεια των πληροφοριών που α- ποκτήσαμε μέχρι τώρα, μπορούμε να χαράξουμε με όσο το δυνατόν μεγαλύτερη ακρίβεια τη γραφική παράσταση των συναρτήσεων f ( ) α, f α 3 ( ), ( ) α f3 και f α β γ ( ). 4 Η πορεία την οποία ακολουθούμε λέγεται μελέτη συνάρτησης και περιλαμβάνει τα ακόλουθα βήματα:. Βρίσκουμε το πεδίο ορισμού της συνάρτησης.. Προσδιορίζουμε τα διαστήματα μονοτονίας και τα ολικά ακρότατα της συνάρτησης. 3. Μελετούμε τη συμπεριφορά της συνάρτησης στα άκρα των διαστημάτων του πεδίου ορισμού της ( οριακές τιμές κτλ.). 4. Συντάσσουμε έναν πίνακα τιμών της συνάρτησης και, με τη βοήθεια αυτού και των προηγούμενων συμπερασμάτων, χαράσσουμε τη γραφική της παράσταση. ΣΧΟΛΙΟ Όπως είναι γνωστό, αν μια συνάρτηση f με πεδίο ορισμού ένα σύνολο Α είναι άρτια, τότε η γραφική της παράσταση έχει άξονα συμμετρίας τον άξονα yy, ενώ αν είναι περιττή, έχει κέντρο συμμετρίας την αρχή των αξόνων. Επομένως, για τη μελέτη μιας τέτοιας συνάρτησης αρκεί να περιοριστούμε στα A, με 0 και να χαράξουμε τη γραφική της παράσταση στο σύνολο αυτό. Στη συνέχεια θα πάρουμε το συμμετρικό της καμπύλης που χαράξαμε ως προς τον άξονα yy αν η συνάρτηση είναι άρτια και ως προς την αρχή των αξόνων αν η συνάρτηση είναι περιττή και θα βγάλουμε τα σχετικά συμπεράσματα. Γι αυτό, συνήθως, πριν προχωρήσουμε στα βήματα έως 4, ελέγχουμε από την αρχή αν η συνάρτηση είναι άρτια ή περιττή.

2 40 5. ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ 5. ΜΕΛΕΤΗ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ: f α Η συνάρτηση g Ας θεωρήσουμε τη συνάρτηση g. Παρατηρούμε ότι η συνάρτηση αυτή, έχει πεδίο ορισμού όλο το και είναι άρτια, διότι για κάθε ισχύει : g g Επομένως, η γραφική παράσταση της g έχει άξονα συμμετρίας τον άξονα yy. ' Άρα, σύμφωνα με όσα αναφέραμε προηγουμένως, αρχικά θα μελετήσουμε και θα παραστήσουμε γραφικά την g στο διάστημα 0,. Έχουμε λοιπόν: Μονοτονία: Έστω τυχαία, 0, με. Τότε θα είναι, οπότε θα έχουμε g g. Άρα η συνάρτηση g 0,. είναι γνησίως αύξουσα στο Ακρότατα: Για κάθε 0, ισχύει: g g 0 0. Άρα η συνάρτηση g παρουσιάζει στο 0 0 ελάχιστο, το g 0 0. Συμπεριφορά της g για μεγάλες τιμές του : Ας θεωρήσουμε τον παρακάτω πίνακα τιμών της g για πολύ μεγάλες τιμές του : 0 0 g Παρατηρούμε ότι, καθώς το αυξάνεται απεριόριστα, ή όπως λέμε τείνει στο, το αυξάνεται και αυτό απεριόριστα και μάλιστα γρηγορότερα και άρα τείνει στο. Αυτό σημαίνει ότι η γραφική παράσταση της g προεκτείνεται απεριόριστα προς τα πάνω, καθώς το απομακρύνεται προς το.

3 5. Μελέτη της συνάρτησης f()=α 4 Λαμβάνοντας υπόψη τα παραπάνω και παίρνοντας ένα πίνακα τιμών της g για μη αρνητικές τιμές του, μπορούμε να χαράξουμε τη γραφική της παράσταση στο διάστημα 0,. Αν τώρα πάρουμε το συμμετρικό της παραπάνω καμπύλης ως προς τον άξονα yy, ' τότε θα έχουμε τη γραφική παράσταση της g( ) σε όλο, από την οποία συμπεραίνουμε ότι: Η συνάρτηση g : Είναι γνησίως φθίνουσα στο,0 και γνησίως αύξουσα στο 0, Παρουσιάζει ελάχιστο για 0, το g(0) 0. Έχει γραφική παράσταση που προεκτείνεται απεριόριστα προς τα πάνω, καθώς το τείνει είτε στο, είτε στο. Η συνάρτηση h Ας θεωρήσουμε τώρα τη συνάρτηση h ( ). Παρατηρούμε ότι για κάθε ισχύει h g Άρα, όπως μάθαμε στην 4., η γραφική παράσταση της h είναι συμμετρική της γραφικής παράστασης της g ως προς τον άξονα '. h : Επομένως η συνάρτηση Είναι γνησίως αύξουσα στο,0 0,. και γνησίως φθίνουσα στο, το Παρουσιάζει μέγιστο για 0 h 0 0 Έχει γραφική παράσταση που προεκτείνεται απεριόριστα προς τα κάτω, καθώς το τείνει είτε στο είτε στο. Η συνάρτηση f α Διακρίνουμε δύο περιπτώσεις: Αν α 0, τότε εργαζόμαστε όπως εργαστήκαμε για τη συνάρτηση g και καταλήγουμε στα ίδια συμπεράσματα. Τα συμπεράσματα αυτά συνοψίζονται στον παρακάτω πίνακα:

4 4 5. ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ 0 f( ) α α 0 Στο σχήμα που ακολουθεί δίνονται οι γραφικές παραστάσεις της συνάρτησης f α για α 0,5, α και α. Αν α 0, τότε εργαζόμαστε όπως εργαστήκαμε για τη συνάρτηση h και καταλήγουμε στα ίδια συμπεράσματα. Τα συμπεράσματα αυτά συνοψίζονται στον παρακάτω πίνακα: 0 f( ) α α 0 Στο σχήμα που ακολουθεί δίνονται οι γραφικές παραστάσεις της συνάρτησης f α για α 0,5, α, α.

5 5. Μελέτη της συνάρτησης f()=α 43 Η γραφική παράσταση της συνάρτησης f α, με α 0, είναι μια καμπύλη που λέγεται παραβολή με κορυφή την αρχή των αξόνων και άξονα συμμετρίας τον άξονα yy. ' Στα παραπάνω σχήματα παρατηρούμε ότι: Όταν το α είναι θετικό, τότε η παραβολή είναι ανοικτή προς τα πάνω, ενώ όταν το α είναι αρνητικό, τότε η παραβολή είναι ανοικτή προς τα κάτω. Καθώς η α μεγαλώνει, η παραβολή γίνεται όλο και πιο κλειστή, δηλαδή πλησιάζει τον άξονα yy. ' ΕΦΑΡΜΟΓΗ Να μελετηθεί και να παρασταθεί γραφικά η συνάρτηση h 3 α. ΛΥΣΗ Η συνάρτηση hα 3, με α 0, είναι περιττή, διότι: h h 3 3 ( ) ( ) ( ) Επομένως, αρκεί να τη μελετήσουμε και να την παραστήσουμε γραφικά στο διάστημα 0, και στη συνέχεια να βγάλουμε τα σχετικά συμπεράσματα για όλο το. Αν εργαστούμε με τρόπο ανάλογο με εκείνο με τον οποίο εργαστήκαμε για τη μελέτη της συνάρτησης f α, συμπεραίνουμε ότι: Η συνάρτηση hα 3, με α 0 : Αν α 0, Είναι γνησίως αύξουσα στο. Έχει γραφική παράσταση που διέρχεται από την αρχή των αξόνων και ε- κτείνεται απεριόριστα προς τα πάνω, όταν το τείνει στο και απεριόριστα προς τα κάτω όταν το τείνει στο. Αν α 0, Είναι γνησίως φθίνουσα στο

6 44 5. ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Έχει γραφική παράσταση που διέρχεται από την αρχή των αξόνων και ε- κτείνεται απεριόριστα προς τα κάτω, όταν το τείνει στο και απεριόριστα προς τα πάνω όταν το τείνει στο. ΑΣΚΗΣΕΙΣ Α ΟΜΑΔΑΣ. Να βρείτε την εξίσωση της παραβολής του διπλανού σχήματος.. Στο ίδιο σύστημα συντεταγμένων να παραστήσετε γραφικά τις συναρτήσεις: φ 0,5, f 0,5 και g 0,5 3 i) ii) ψ 0,5, h 0,5 και q 0, Ομοίως τις συναρτήσεις: i) φ 0,5, f 0,5 και g0,5 ii) ψ 0,5, h0,5 και q 0,5. 4. i) Στο ίδιο σύστημα συντεταγμένων να χαράξετε τις γραφικές παραστάσεις των συναρτήσεων f ( ) και g= ( ) και με τη βοήθεια αυτών να λύσετε τις ανισώσεις: και. ii) Να επιβεβαιώσετε αλγεβρικά τα προηγούμενα συμπεράσματα. Β ΟΜΑΔΑΣ. Να χαράξετε τη γραφική παράσταση της συνάρτησης: f.

7 5. Μελέτη της συνάρτησης f()=α 45. Να χαράξετε τη γραφική παράσταση της συνάρτησης:, 0 f( ), 0 και με τη βοήθεια αυτής να βγάλετε τα συμπεράσματα τα σχετικά με τη μονοτονία και τα ακρότατα της συνάρτησης f. 3. Στο διπλανό σχήμα δίνονται οι γραφικές παραστάσεις των συναρτήσεων: f ( ), g( ), 3 h ( ) και φ( ) στο διάστημα 0,, τις οποίες χαράξαμε με τη βοήθεια Η/Y. i) Να διατάξετε από τη μικρότερη στη μεγαλύτερη τις τιμές 3,, και των συναρτήσεων f, g, h και φ : α) για 0 και β) για. ii) Να επιβεβαιώσετε αλγεβρικά τα συμπεράσματα στα οποία καταλήξατε προηγουμένως. 4. Στο διπλανό σχήμα το τρίγωνο OAB είναι ισόπλευρο. Να βρεθεί η τετμημένη του σημείου Α.

8 5. ΜΕΛΕΤΗ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ: f α Η συνάρτηση g Ας θεωρήσουμε τη συνάρτηση g. Παρατηρούμε ότι, η συνάρτηση αυτή έχει πεδίο ορισμού όλο το (,0) (0, ) και είναι περιττή, διότι για κάθε ισχύει : g g Επομένως, η γραφική της παράσταση έχει κέντρο συμμετρίας την αρχή των αξόνων. Γι αυτό αρχικά θα τη μελετήσουμε και θα την παραστήσουμε γραφικά στο διάστημα 0,. Έχουμε λοιπόν: Μονοτονία: Έστω τυχαία, (0, ) με. Τότε θα ισχύει, οπότε θα έχουμε g g. Άρα η συνάρτηση g είναι γνησίως φθίνουσα στο (0, ). Πρόσημο των τιμών της g: Για κάθε (0,+ ) ισχύει g ( ) 0. Επομένως, στο διάστημα (0, ) η γραφική παράσταση της g θα βρίσκεται πάνω από τον άξονα των. Συμπεριφορά της g για μικρές τιμές του : Ας θεωρήσουμε τον παρακάτω πίνακα τιμών της g για πολύ μικρές τιμές του : g Παρατηρούμε ότι, καθώς το μειώνεται απεριόριστα και παίρνει τιμές οσοδήποτε κοντά στο 0 ή, όπως λέμε, τείνει στο 0, το αυξάνεται απεριόριστα και τείνει στο. Αυτό σημαίνει ότι, καθώς το πλησιάζει το 0 από τα δεξιά, η γραφική παράσταση της g τείνει να συ-

9 5. Μελέτη της συνάρτησης f()=α/ 47 μπέσει με τον ημιάξονα Oy. Γι αυτό ο άξονας yy ' λέγεται κατακόρυφη ασύμπτωτη της γραφικής παράστασης της g προς τα πάνω. Συμπεριφορά της g για μεγάλες τιμές του : Ας θεωρήσουμε τον παρακάτω πίνακα τιμών της g για πολύ μεγάλες τιμές του : 0 0 g Παρατηρούμε ότι, καθώς το αυξάνεται απεριόριστα και τείνει στο, το μειώνεται απεριόριστα και τείνει στο 0. Αυτό σημαίνει ότι, καθώς το απομακρύνεται προς το, η γραφική παράσταση της g τείνει να συμπέσει με τον ημιάξονα O. Γι αυτό ο άξονας ' λέγεται οριζόντια ασύμπτωτη της γραφικής παράστασης της g προς τα δεξιά. Λαμβάνοντας υπόψη τα παραπάνω και παίρνοντας ένα πίνακα τιμών της g για θετικές τιμές του, μπορούμε να χαράξουμε τη γραφική της παράσταση στο διάστημα (0, ). Αν τώρα πάρουμε το συμμετρικό της παραπάνω καμπύλης ως προς την αρχή των αξόνων, τότε θα έχουμε τη γραφική παράσταση της g σε όλο το, από την οποία συμπεραίνουμε ότι: Η συνάρτηση g : Είναι γνησίως φθίνουσα σε καθένα από τα διαστήματα (,0) και (0, ). Έχει γραφική παράσταση η οποία: αποτελείται από δύο κλάδους, έναν στο ο και έναν στο 3 ο τεταρτημόριο, έχει κέντρο συμμετρίας την αρχή των αξόνων, έχει άξονες συμμετρίας τις ευθείες y και y, που διχοτομούν τις γωνίες των αξόνων και τέλος

10 48 5. ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ' και κατακόρυφη ασύ- έχει οριζόντια ασύμπτωτη τον άξονα μπτωτη τον άξονα yy. ' Η συνάρτηση h Ας θεωρήσουμε τώρα τη συνάρτηση h. Παρατηρούμε ότι για κάθε ισχύει h g. Επομένως, η γραφική παράσταση της h είναι συμμετρική της γραφικής παράστασης της g ως προς τον άξονα ', οπότε, η συνάρτηση h : Είναι γνησίως αύξουσα σε καθένα από τα διαστήματα (,0) και (0, ). Έχει γραφική παράσταση η οποία: αποτελείται από δύο κλάδους, έναν στο ο και έναν στο 4 ο τεταρτημόριο, έχει κέντρο συμμετρίας την αρχή των αξόνων, έχει άξονες συμμετρίας τις ευθείες y και y, που διχοτομούν τις γωνίες των αξόνων και τέλος ' και κατακόρυφη ασύ- έχει οριζόντια ασύμπτωτη τον άξονα μπτωτη τον άξονα yy. ' Η συνάρτηση f α Διακρίνουμε δύο περιπτώσεις: Αν α 0, τότε εργαζόμαστε όπως εργαστήκαμε για τη συνάρτηση g και καταλήγουμε στα ίδια συμπεράσματα. α Στο σχήμα α δίνονται οι γραφικές παραστάσεις της f για α 0,5, α και α.

11 5. Μελέτη της συνάρτησης f()=α/ 49 Σχήμα α Σχήμα β Αν α 0, τότε εργαζόμαστε όπως εργαστήκαμε για τη συνάρτηση h και καταλήγουμε στα ίδια συμπεράσματα. α Στο σχήμα β δίνονται οι γραφικές παραστάσεις της f για α 0,5, α και α. α Η γραφική παράσταση της συνάρτησης f, με α 0, λέγεται ισοσκελής υπερβολή με κέντρο την αρχή των αξόνων και ασύμπτωτες τους άξονες ' και yy. ' ΕΦΑΡΜΟΓΗ Στο διπλανό σχήμα το σημείο Μ κινείται στο ο τεταρτημόριο του συστήματος συντεταγμένων, έτσι ώστε το εμβαδόν του ορθογώνιου ΟΑΜΒ να παραμένει σταθερό και ίσο με τ.μ. Να αποδειχτεί ότι το σημείο Μ διαγράφει τον έναν κλάδο μιας ισοσκελούς υπερβολής. ΛΥΣΗ Αν με συμβολίσουμε το μήκος και με y το πλάτος του ορθογωνίου, επειδή το εμβαδόν του είναι ίσο με τμ, θα ισχύει y και y, 0, οπότε θα έχουμε: y, με 0 Άρα το σημείο Μ θα διαγράφει τον κλάδο της υπερβολής y που βρίσκεται στο ο τεταρτημόριο.

12 50 5. ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΑΣΚΗΣΕΙΣ Α ΟΜΑΔΑΣ. Να βρείτε την εξίσωση της υπερβολής του διπλανού σχήματος.. Στο ίδιο σύστημα συντεταγμένων να παραστήσετε γραφικά τις συναρτήσεις: i) φ, f και g 3 ii) ψ, h και q Ομοίως τις συναρτήσεις: i) φ f ii) ψ, h, και g και q i) Στο ίδιο σύστημα συντεταγμένων να χαράξετε τις γραφικές παραστάσεις των συναρτήσεων f( ) και g= ( ) και με τη βοήθεια αυτών να λύσετε γραφικά τις ανισώσεις: και ii) Να επιβεβαιώσετε και αλγεβρικά τα παραπάνω συμπεράσματα. 5. Ομοίως για τις συναρτήσεις f( ) = και g( ) > και = και τις ανισώσεις: 6. Οι κάθετες πλευρές ΑΒ και ΑΓ ενός ορθογώνιου τριγώνου ΑΒΓ μεταβάλλονται έτσι, ώστε το εμβαδόν του να παραμένει σταθερό και ίσο με τετραγωνικές μονάδες. Να εκφράσετε το μήκος y της ΑΓ συναρτήσει του μήκους της ΑΒ και στη συνέχεια να παραστήσετε γραφικά τη συνάρτηση αυτή.

13 5.3 ΜΕΛΕΤΗ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ: f α β γ g 0 που είναι ειδι- Θα μελετήσουμε αρχικά τη συνάρτηση κή περίπτωση της f α β γ με α 0. Για τη μελέτη της συνάρτησης g μετασχηματίζουμε τον τύπο της ως εξής: g 0 60 Έτσι έχουμε g 3 Επομένως, για να παραστήσουμε γραφικά την g, χαράσσουμε πρώτα την y 3 που προκύπτει από μια οριζόντια μετατόπιση της y κατά 3 μονάδες προς τα αριστερά, και στη συνέχεια χαράσσουμε την που προκύπτει από μια κατακόρυφη μετατόπιση της γραφι- y 3 κής παράστασης της y 3 Άρα, η γραφική παράσταση της g 3 προκύπτει από δύο διαδοχικές μετατοπίσεις της παραβολής y, μιας οριζόντιας κατά 3 μονάδες προς τα αριστερά και μιας κατακόρυφης κατά μονάδες προς τα πάνω. Είναι δηλαδή μια παραβολή ανοικτή προς τα άνω με κορυφή το σημείο Κ( 3,) και άξονα συμμετρίας την ευθεία 3. κατά μονάδες προς τα πάνω. Θα μελετήσουμε τώρα τη συνάρτηση f α β γ, με α 0. Όπως είδαμε στην 3. (μορφές τριωνύ- μου), η f παίρνει τη μορφή:

14 5 5. ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ β Δ f α α 4α Επομένως η γραφική της παράσταση προκύπτει από δύο διαδοχικές μετατοπίσεις της παραβολής y α, μιας οριζόντιας και μιας κατακόρυφης, έτσι β Δ ώστε η κορυφή της να συμπέσει με το σημείο Κ,. Συνεπώς είναι α 4α β Δ και αυτή μια παραβολή, που έχει κορυφή το σημείο Κ, α 4α και β άξονα συμμετρίας την ευθεία. α Άρα, η συνάρτηση f α β γ : Αν α 0, και γνησίως αύ- Είναι γνησίως φθίνουσα στο διάστημα, β ξουσα στο διάστημα,. α β α β β Δ Παρουσιάζει ελάχιστο για, το f. α α 4α Τα συμπεράσματα αυτά συνοψίζονται στον παρακάτω πίνακα. β α f( ) α β γ α 0

15 5.3 Μελέτη της συνάρτησης f()=α +β+γ 53 Αν 0 f α β γ : α, η συνάρτηση Είναι γνησίως αύξουσα στο διάστημα, β στο διάστημα, α β α, γνησίως φθίνουσα Παρουσιάζει μέγιστο για β α,το β Δ f. α 4α Τα συμπεράσματα αυτά συνοψίζονται στον πίνακα. β α f( ) α β γ α 0 Τέλος η γραφική παράσταση της f είναι μια παραβολή που τέμνει τον άξονα yy ' στο σημείο Γ0,γ, διότι f 0 γ, ενώ για τα σημεία τομής της με τον άξονα ' παρατηρούμε ότι: Αν Δ 0, το τριώνυμο έχει δύο ρίζες και και επομένως η παραβολή και Β,0 Α,0 α β γ y α β γ τέμνει τον άξονα ' σε δύο σημεία, τα (Σχ. α ). Αν Δ 0, το τριώνυμο έχει διπλή ρίζα την λέμε ότι η παραβολή εφάπτεται του άξονα (Σχ. β ). β. Στην περίπτωση αυτή α β ' στο σημείο Α,0 α Αν Δ 0, το τριώνυμο δεν έχει πραγματικές ρίζες. Επομένως η παραβολή δεν έχει κοινά σημεία με τον άξονα ' (Σχ. γ ). Η γραφική παράσταση της f εξαρτάται από το πρόσημο των α και Δ και φαίνεται κατά περίπτωση στα παρακάτω σχήματα:

16 54 5. ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Σχήμα α Σχήμα β Σχήμα γ Σχήμα α Σχήμα β Σχήμα γ Τα συμπεράσματα της 3. για το πρόσημο του τριωνύμου προκύπτουν άμεσα και με τη βοήθεια των παραπάνω γραφικών παραστάσεων. ΕΦΑΡΜΟΓΗ Να μελετηθεί και να παρασταθεί γραφικά η συνάρτηση ΛΥΣΗ Για τη συνάρτηση f f 4 3 είναι 4 3 β Δ β α 0, και f f, α 4α α Επομένως έχουμε τον πίνακα μεταβολών: f ( ) 4 3

17 5.3 Μελέτη της συνάρτησης f()=α +β+γ 55 Δηλαδή η συνάρτηση f, Είναι γνησίως φθίνουσα στο, και γνησίως αύξουσα στο Παρουσιάζει για ελάχιστο, το f. Επιπλέον, η γραφική παράσταση της f είναι μια παραβολή η οποία: Έχει άξονα συμμετρίας την ευθεία και,, Τέμνει τον άξονα ' στα σημεία με τετμημένες και 3 αντιστοίχως, που είναι οι ρίζες του τριωνύμου 4 3, και τον άξονα y ' y στο σημείο με τε- ταγμένη 3. ΑΣΚΗΣΕΙΣ Α ΟΜΑΔΑΣ. i) Να γράψετε τη συνάρτηση f( ) 4 5 στη μορφή f( ) α( p) q και στη συνέχεια να βρείτε με ποια οριζόντια και ποια κατακόρυφη μετατόπιση η γραφική παράσταση της συνάρτησης g( ) θα συμπέσει με τη γραφική παράσταση της f. ii) Να κάνετε το ίδιο και για τη συνάρτηση f( ) 8 9, θεωρώντας ως g την g( ).. Να βρείτε τη μέγιστη ή ελάχιστη τιμή των συναρτήσεων: α) f 6 3 και β) g 3 5.

18 56 5. ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ 3. Να μελετήσετε και να παραστήσετε γραφικά τις συναρτήσεις α) f 4 και β) g Στα παρακάτω σχήματα δίνονται οι γραφικές παραστάσεις επτά τριωνύμων, δηλαδή συναρτήσεων της μορφής y α β γ. Να συμπληρώσετε τις στήλες του πίνακα που ακολουθεί με το πρόσημο των συντελεστών και της διακρίνουσας των αντίστοιχων τριωνύμων. Τριώνυμο f f f 3 f 4 f 5 f 6 f 7 α β 0 γ Δ Β' ΟΜΑΔΑΣ. Δίνεται η παραβολή y ( k ) k τις οποίες η παραβολή: i) Εφάπτεται του άξονα '. ii) Έχει τον y ' y άξονα συμμετρίας.. Να καθορίσετε τις τιμές του k, για iii) Έχει για κορυφή ένα σημείο με τεταγμένη 4. Ποια είναι η τετμημένη της κορυφής;. Στο διπλανό σχήμα δίνεται η γραφική παράσταση ενός τριωνύμου Pα β γ. Να βρείτε: i) Το πρόσημο του α. ii) Το πρόσημο της διακρίνουσας Δ και iii) Τους συντελεστές του τριωνύμου, αν δίνεται ότι β 6.

19 5.3 Μελέτη της συνάρτησης f()=α +β+γ Οι διαστάσεις, y ενός ορθογωνίου μεταβάλλονται, έτσι ώστε η περίμετρός του να παραμένει σταθερή και ίση με 0 μ. i) Να εκφράσετε το y συναρτήσει του και στη συνέχεια να βρείτε τον τύπο Ε = f ( ) που δίνει το εμβαδόν E του ορθογωνίου συναρτήσει του. ii) Να αποδείξετε ότι το εμβαδόν μεγιστοποιείται για = 5 και να βρείτε τη μέγιστη τιμή του. 4. 'Ένα σημείο Μ κινείται πάνω στο ευθύγραμμο τμήμα ΑΒ 6cm. Με πλευρές τα ΜΑ και ΜΒ κατασκευάζουμε ισόπλευρα τρίγωνα. Για ποια θέση του Μ το άθροισμα των εμβαδών των δύο τριγώνων είναι ελάχιστο; 5. Ένας κτηνοτρόφος έχει σύρμα 00m και θέλει να περιφράξει δύο συνεχόμενους ορθογώνιους υπαίθριους χώρους με διαστάσεις και y, όπως φαίνεται στο διπλανό σχήμα. Για ποιες τιμές των και y το εμβαδόν και των δύο χώρων μεγιστοποιείται; ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ I. Σε καθεμιά από τις παρακάτω περιπτώσεις να κυκλώσετε το γράμμα Α, αν ο ισχυρισμός είναι αληθής και το γράμμα Ψ, αν ο ισχυρισμός είναι ψευδής.. Αν η παραβολή y α, α 0 διέρχεται από το σημείο A (, ), τότε βρίσκεται στο 3 ο και 4 ο τεταρτημόριο.. Αν το τριώνυμο f( ) α β γ, α 0 έχει ρίζες τους αριθμούς και 3, τότε έχει άξονα συμμετρίας την Α Ψ ευθεία. 3. Για οποιουσδήποτε αβ, η παραβολή y α και η υ- β Α Ψ περβολή y έχουν ένα και μοναδικό κοινό σημείο. 4. H υπερβολή y και η ευθεία y τέμνονται. Α Ψ Α Ψ

20 58 5. ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ II. Να συμπληρώσετε τα κενά στις παρακάτω δύο περιπτώσεις με τα σύμβολα της ισότητας ή της ανισότητας. f β γ έχει ρίζες τους αριθμούς και. Αν το τριώνυμο 3, τότε θα ισχύει: f 5 0,. Αν το τριώνυμο, θα ισχύει: 5 f 0, 5 f β γ f 0, f 0, 5 III. Δίνεται το τριώνυμο f α β γ f 0, γ 0 β 4. έχει ρίζες τους αριθμούς 3 και f 0, γ 0, β., α 0. Να επιλέξετε τη σωστή απάντηση σε καθεμιά από τις παρακάτω περιπτώσεις:. Αν α και το τριώνυμο f έχει κορυφή το σημείο Κ, 3 Α) f 3 Β) f 3 Γ) f 3 Δ) f. Αν f 0, f 3 0 και f 5 0, τότε 3., τότε Α) Δ 0 και α 0 Β) Δ 0 και α 0 Γ) Δ 0 και α Αν το τριώνυμο έχει κορυφή το σημείο Κ, και α 0, τότε: Α) Δ 0 Β) Δ 0 Γ) Δ 0 Δ) γ Αν το τριώνυμο έχει κορυφή το σημείο Κ, 0, τότε Α) β 0 Β) Δ 0 Γ) Δ 0 Δ) Δ 0. IV. Οι παρακάτω καμπύλες C, C, C 3 και C 4 είναι οι γραφικές παραστάσεις των συναρτήσεων f( ) 4 γ, f( ) 8 γ, f3( ) 4 γ3 και f4( ) 8 γ4, όχι όμως με την ίδια σειρά. Να αντιστοιχίσετε καθεμιά από τις παραπάνω συναρτήσεις με τη γραφική της παράσταση. f f f 3 f 4

7.1 ΜΕΛΕΤΗ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

7.1 ΜΕΛΕΤΗ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ 7.1 ΜΕΛΕΤΗ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ f ( ) 1. Μορφή της συνάρτησης f ( ) Ιδιότητες Έχει πεδίο ορισµού ολο το R Είναι άρτια, άρα συµµετρική ως προς τον άξονα y y Είναι γνησίως φθίνουσα στο διάστηµα (,0] Είναι γνησίως

Διαβάστε περισσότερα

Η συνάρτηση y = αχ 2 + βχ + γ

Η συνάρτηση y = αχ 2 + βχ + γ Η συνάρτηση y αχ + βχ + γ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Η συνάρτηση y αx + βx + γ με α 0 Μια συνάρτηση της μορφής y αx + βx + γ με α 0 ονομάζεται τετραγωνική

Διαβάστε περισσότερα

Η συνάρτηση y = αχ 2. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Η συνάρτηση y = αχ 2. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Η συνάρτηση y = αχ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Η συνάρτηση y = αχ με α 0 Μια συνάρτηση της μορφής y = α + β + γ με α 0 ονομάζεται τετραγωνική συνάρτηση.

Διαβάστε περισσότερα

Κεφάλαιο 2 ο ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ

Κεφάλαιο 2 ο ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ Κεφάλαιο ο ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ Σε προηγούμενες τάξεις γνωρίσαμε την έννοια της συνάρτησης και μελετήσαμε ορισμένες βασικές συναρτήσεις. Στο κεφάλαιο αυτό θα μελετήσουμε στη γενική τους μορφή ιδιότητες

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ ΚΑΤΑΚΟΡΥΦΗ-ΟΡΙΖΟΝΤΙΑ ΜΕΤΑΤΟΠΙΣΗ ΚΑΜΠΥΛΗΣ Να σχεδιάσετε στο ίδιο σύστημα αξόνων τις γραφικές παραστάσεις των συναρτήσεων: f ()=, g()= +3,h()= -3 Να σχεδιάσετε στο ίδιο σύστημα

Διαβάστε περισσότερα

Ορισμός Τετραγωνική ονομάζεται κάθε συνάρτηση της μορφής y = αx 2 + βx + γ με α 0.

Ορισμός Τετραγωνική ονομάζεται κάθε συνάρτηση της μορφής y = αx 2 + βx + γ με α 0. ΜΕΡΟΣ Α. Η ΣΥΝΑΡΤΗΣΗ =α +β+γ,α 0 337. Η ΣΥΝΑΡΤΗΣΗ =α +β+γ ME α 0 Ορισμός Τετραγωνική ονομάζεται κάθε συνάρτηση της μορφής = α + β + γ με α 0. Η συνάρτηση = α +β+γ με α > 0 Η γραφική παράσταση της συνάρτησης

Διαβάστε περισσότερα

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Άσκηση η Γραμμικά συστήματα Δίνονται οι ευθείες : y3 και :y 5. Να βρεθεί το R, ώστε οι ευθείες να τέμνονται. Οι ευθείες και θα τέμνονται όταν το μεταξύ

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ

ΑΣΚΗΣΕΙΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ www.apodeiis.gr ΑΣΚΗΣΕΙΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ 1 1. Να βρείτε το πεδίο ορισμού των συναρτήσεων: 1 i. ii. 1. Να βρείτε τα πεδία ορισμού των συναρτήσεων: i. 1 1 ii. ln. Δίνεται η συνάρτηση g, i. Να αποδείξετε

Διαβάστε περισσότερα

6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΣΜΟΣ 6. ΣΥΝΑΡΤΗΣΕΙΣ 6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ Ονομάζουμε συνάρτηση από ένα σύνολο Α σε ένα σύνολο Β μια διαδικασία (κανόνα) f, με την οποία κάθε στοιχείο του συνόλου Α αντιστοιχίζεται σε ένα ακριβώς

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Ε.1 I. 1. α 2 = 9 α = 3 ψ p: α 2 = 9, q: α = 3 Σύνολο αλήθειας της p: Α = {-3,3}, Σύνολο αλήθειας της q: B = {3} A B 2. α 2 = α α = 1 ψ p: α 2 = α, q: α = 1 Σύνολο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ

Διαβάστε περισσότερα

Παραδείγµατα συναρτήσεων: f:[0,+ ) IR, f(x)=2+ x f:ir IR: f(x)=

Παραδείγµατα συναρτήσεων: f:[0,+ ) IR, f(x)=2+ x f:ir IR: f(x)= ΣΥΝΑΡΤΗΣΕΙΣ - 9 - ΚΕΦΑΛΑΙ ΚΕΦΑΛΑΙ ο - ΣΥΝΑΡΤΗΣΕΙΣ.. ρισµός Συνάρτηση από ένα σύνολο Α σ ένα σύνολο Β είναι ένας κανόνας µε τον οποίο κάθε στοιχείο του Α απεικονίζεται σε ένα ακριβώς στοιχείο του Β. Το

Διαβάστε περισσότερα

ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Ξεφυλλίζοντας τα σχολικά βιβλία της Α και Β Λυκείου θα συναντήσουμε τις παρακάτω 10 "βασικές" συναρτήσεις των οποίων τη γραφική παράσταση πρέπει να γνωρίζουμε:

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ Άλγεβρα Β Λυκείου, ο Κεφάλαιο ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ ΟΡΙΣΜΟΣ 1 Μια συνάρτηση ƒ λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε

Διαβάστε περισσότερα

Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις

Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις Ορισμός: Έστω Α, Β R. Πραγματική συνάρτηση πραγματικής μεταβλητής από το σύνολο Α στο σύνολο Β ονομάζουμε την διαδικασία κατά την οποία κάθε στοιχείο του συνόλου

Διαβάστε περισσότερα

6.2 ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ

6.2 ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ 1 6. ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΙΑ 1. Οι συντεταγµένες σηµείου Ο Ο άξονας τετµηµένων άξονας τεταγµένων (ΟΚ) µε πρόσηµο = α, η τετµηµένη του Μ (ΟΛ) µε πρόσηµο = β, η τεταγµένη του Μ Το ζευγάρι (α,

Διαβάστε περισσότερα

Ρητοί αριθμοί λέγονται οι αριθμοί που έχουν ή μπορούν να πάρουν τη μορφή

Ρητοί αριθμοί λέγονται οι αριθμοί που έχουν ή μπορούν να πάρουν τη μορφή ΣΥΝΑΡΤΗΣΕΙΣ (ΕΙΣΑΓΩΓΗ)-ΘΕΩΡΕΙΑ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ Το σύνολο των πραγματικών αριθμών Υπενθυμίζουμε ότι το σύνολο των πραγματικών αριθμώv αποτελείται από τους ρητούς και τους άρρητους αριθμούς και παριστάνεται

Διαβάστε περισσότερα

3. Να δειχτει οτι α + 110 20α. Ποτε ισχυει το ισον; y = x. εξαρτάται από το α.

3. Να δειχτει οτι α + 110 20α. Ποτε ισχυει το ισον; y = x. εξαρτάται από το α. BAΣΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Σ υ ν α ρ τ η σ η : f ( x ) = a / x. Πεδιο Ορισμου: Α = =(-,0) (0, + ) (αφου πρεπει x 0) * 3. Να δειχτει οτι α + 0 0α. Ποτε ισχυει το ισον;. Aν α, θετικοι. Συνολο Τιμων: f(α) = (αφου,

Διαβάστε περισσότερα

,, δηλαδή στο σημείο αυτό παρουσιάζει τη μέγιστη τιμή της αν α < 0 2α 4α και την ελάχιστη τιμή της αν α > 0. β Στο διάστημα,

,, δηλαδή στο σημείο αυτό παρουσιάζει τη μέγιστη τιμή της αν α < 0 2α 4α και την ελάχιστη τιμή της αν α > 0. β Στο διάστημα, Γενικής Παιδείας 1.4 Εφαρμογές των παραγώγων Το κριτήριο της πρώτης παραγώγου Στην Άλγεβρα της Α Λυκείου μελετήσαμε τη συνάρτηση f(x) = αx + βx + γ, α 0 και είδαμε ότι η γραφική της παράσταση είναι μία

Διαβάστε περισσότερα

1ο Κεφάλαιο: Συστήματα

1ο Κεφάλαιο: Συστήματα ο Κεφάλαιο: Συστήματα Γραμμικά συστήματα i. Ποια εξίσωση λέγεται γραμμική; ii. Πως μεταβάλλεται η ευθεία y, 0 ή 0 για τις διάφορες τιμές των α,β,γ; iii. Τι ονομάζεται λύση μιας γραμμικής εξίσωσης; iv.

Διαβάστε περισσότερα

α) γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.α), όταν β) γνησίως φθίνουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.

α) γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.α), όταν β) γνησίως φθίνουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ. ΜΟΝΟΤΟΝΙΑ. ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ. ΜΟΝΟΤΟΝΙΑ - ΑΚΡΟΤΑΤΑ - ΣΥΜΜΕΤΡΙΕΣ Μια συνάρτηση f λέγεται: α) γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.α), όταν για οποιαδήποτε χ,χ Δ με χ

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β. 0και 4 x 3 0.

ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β. 0και 4 x 3 0. ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 1: ΕΝΝΟΙΑ ΠΡΑΓΜΑΤΙΚΗΣ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ. IΣΟΤΗΤΑ ΣΥΝΑΡΤΗΣΕΩΝ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ [Ενότητα

Διαβάστε περισσότερα

i) Αν (,, ) είναι μια πυθαγόρεια τριάδα και είναι ένας θετικός ακέραιος, να αποδείξετε ότι και η τριάδα (,,

i) Αν (,, ) είναι μια πυθαγόρεια τριάδα και είναι ένας θετικός ακέραιος, να αποδείξετε ότι και η τριάδα (,, 1. i) Να αποδείξετε την ταυτότητα 1 ( ) ( ) ( ) + + = + +. ii) Να αποδείξετε ότι για όλους τους,, ισχύει Πότε ισχύει ισότητα; + + + +.. Λέμε ότι μια τριάδα θετικών ακεραίων (,, ) είναι όταν είναι πλευρές

Διαβάστε περισσότερα

Κεφάλαιο 2 ο ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ

Κεφάλαιο 2 ο ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ Κεφάλαιο ο ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ Σε προηγούμενες τάξεις γνωρίσαμε την έννοια της συνάρτησης και μελετήσαμε ορισμένες βασικές συναρτήσεις. Στο κεφάλαιο αυτό θα μελετήσουμε στη γενική τους μορφή ιδιότητες

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 1 ο ΚΕΦΑΛΑΙΟ Ι. Να αντιστοιχίσετε καθένα από τα συστήματα: (Σ 1 ): { (Σ 2 ): { (Σ 3 ): { (Σ 4 ): { με εκείνη από τις απαντήσεις Α, Β, Γ που νομίζετε ότι είναι η σωστή.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ. ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO 1o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ. ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO 1o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ 000 ΘΕΜΑ ο Α.α) Δίνεται η συνάρτηση F f g αποδείξετε ότι: F f g. cf,. Αν οι συναρτήσεις

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Ασκήσεις σχολικού βιβλίου σελίδας

ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Ασκήσεις σχολικού βιβλίου σελίδας ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Ασκήσεις σχολικού βιβλίου σελίδας 07 3. Να αποδείξετε την ταυτότητα + + αβ βγ γα = Να αποδείξετε ότι για όλους τους α, β, γ ισχύει + + αβ + βγ + γα Πότε ισχύει ισότητα; = = + + =

Διαβάστε περισσότερα

f(x) = και στην συνέχεια

f(x) = και στην συνέχεια ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ Ερώτηση. Στις συναρτήσεις μπορούμε να μετασχηματίσουμε πρώτα τον τύπο τους και μετά να βρίσκουμε το πεδίο ορισμού τους; Όχι. Το πεδίο ορισμού της συνάρτησης το βρίσκουμε πριν μετασχηματίσουμε

Διαβάστε περισσότερα

Συναρτήσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. A ΛΥΚΕΙΟΥ κεφάλαιο ασκήσεις και τεχνικές σε 16 σελίδες. εκδόσεις. Καλό πήξιμο

Συναρτήσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. A ΛΥΚΕΙΟΥ κεφάλαιο ασκήσεις και τεχνικές σε 16 σελίδες. εκδόσεις. Καλό πήξιμο Συναρτήσεις Κώστας Γλυκός A ΛΥΚΕΙΟΥ κεφάλαιο 6 185 ασκήσεις και τεχνικές σε 16 σελίδες ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 0 0. 8 8. 8 8 Kgllykos..gr 1 / / 0 1 7 εκδόσεις Καλό

Διαβάστε περισσότερα

3.4 ΤΡIΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ. και g( x) 3x

3.4 ΤΡIΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ. και g( x) 3x 1 ΓΕΝΙΚΟ ΥΚΕΙΟ ΚΑΤΡΙΤΙΟΥ ΕΠΙΜΕΕΙΑ: Kωνσταντόπουλος Κων/νος Μαθηματικός ΜSc ΤΡIΓΩΝΟΜΕΤΡΙΚΕ ΥΝΑΡΤΗΕΙ 1 ε κάθε μια από τις παρακάτω περιπτώσεις να κυκλώσετε το γράμμα, αν ο ισχυρισμός είναι αληθής διαφορετικά

Διαβάστε περισσότερα

Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης

Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Ορθοκανονικό σύστημα αξόνων ονομάζεται ένα σύστημα από δύο κάθετους άξονες με κοινή αρχή στους οποίους οι μονάδες έχουν το ίδιο μήκος. Υπάρχουν περιπτώσεις

Διαβάστε περισσότερα

3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ

3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΚΩΝΙΚΕ ΤΟΜΕ ΕΡΩΤΗΕΙ ΑΞΙΟΟΓΗΗ ΕΡΩΤΗΕΙ ΑΞΙΟΟΓΗΗ 1. Να σημειώσετε το σωστό () ή το λάθος () στους παρακάτω ισχυρισμούς: 1. Η εξίσωση + = α (α > 0) παριστάνει κύκλο.. Η εξίσωση + + κ + λ = 0 µε κ, λ 0 παριστάνει

Διαβάστε περισσότερα

2.1 ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗ

2.1 ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗ ΚΕΦΑΛΑΙΟ Ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ. ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΣΜΟΣ ΣΥΝΑΡΤΗΣΗΣ Συνάρτηση από ένα σύνολο Α σε ένα σύνολο Β λέγεται μια διαδικασία (κανόνας), με την οποία κάθε στοιχείο του

Διαβάστε περισσότερα

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 2: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 2: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ ΚΕΦΑΛΑΙΟ 2ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 2: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ [Κεφ. 1.3: Μονότονες Συναρτήσεις - Αντίστροφη Συνάρτηση σχολικού βιβλίου]. ΣΗΜΕΙΩΣΕΙΣ Μονοτονία

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΤΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΤΩΝ ΣΥΝΑΡΤΗΣΕΩΝ 4 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΤΩΝ ΣΥΝΑΡΤΗΣΕΩΝ 4. Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ Εισαγωγή Σε πολλά καθημερινά φαινόμενα εμφανίζονται δύο μεγέθη, τα οποία μεταβάλλονται έτσι, ώστε η τιμή του ενός να καθορίζει την τιμή του

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ Μαθηματικά Γενικής Παιδείας Γ.Λυκείου ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΑΣΚΗΣΕΙΣ ) Να βρείτε το πεδίο ορισμού των συναρτήσεων: ( ) 6+ 9, g ( ), h ( ) 5 +, k

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος.

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος. ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ Πριν περιγράψουµε πως µπορούµε να µελετήσουµε µια συνάρτηση είναι αναγκαίο να δώσουµε µερικούς ορισµούς. Άρτια και περιττή συνάρτηση Ορισµός : Μια συνάρτηση fµε πεδίο ορισµού Α λέγεται

Διαβάστε περισσότερα

7.2 ΜΕΛΕΤΗ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ f(x) = x

7.2 ΜΕΛΕΤΗ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ f(x) = x 7. ΜΕΛΕΤΗ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ () = α ΘΕΩΡΙΑ. Μορφή της συνάρτησης (Ισοσκελής υπερβολή) Ιδιότητες Πεδίο ορισµού g() = R = (, 0) (0, + ) Είναι περιττή, άρα συµµετρική ως προς την αρχή των αξόνων Είναι γν.φθίνουσα

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ. f (x) =, x 0, (1), x. lim f (x) = lim = +. x

ΣΗΜΕΙΩΣΕΙΣ. f (x) =, x 0, (1), x. lim f (x) = lim = +. x ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΑΣΥΜΠΤΩΤΕΣ - ΚΑΝΟΝΕΣ DE L HOSPITAL - ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ [Κεφ. 2.9: Ασύμπτωτες Κανόνες de l Hospital Μέρος Β του σχολικού βιβλίου]. ΣΗΜΕΙΩΣΕΙΣ ΑΣΥΜΠΤΩΤΕΣ-ΚΑΝΟΝΑΣ

Διαβάστε περισσότερα

1. Συµπλήρωσε τον πίνακα µε την κατάλληλη µαθηµατική έκφραση:

1. Συµπλήρωσε τον πίνακα µε την κατάλληλη µαθηµατική έκφραση: ΕΡΩΤΗΣΕΙΣ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ Ερωτήσεις συµπλήρωσης 1. Συµπλήρωσε τον πίνακα µε την κατάλληλη µαθηµατική έκφραση: Φυσική γλώσσα Μαθηµατική γλώσσα ύο αριθµοί x, y διαφέρουν κατά και έχουν γινόµενο x (x

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ ΣΤΗΝ Α ΛΥΚΕΙΟΥ

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ ΣΤΗΝ Α ΛΥΚΕΙΟΥ Περιοδικό ΕΥΚΛΕΙΔΗΣ Β ΕΜΕ ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ ΣΤΗΝ Α ΛΥΚΕΙΟΥ (ΑΡΤΙΑ ΠΕΡΙΤΤΗ ΣΥΝΑΡΤΗΣΗ, ΜΟΝΟΤΟΝΙΑ ΚΑΙ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ) Κώστα Βακαλόπουλου Στο ο κεφάλαιο της Άλγεβρας της Α Λυκείου γίνεται η μελέτη των

Διαβάστε περισσότερα

4. 1 Η ΣΥΝΑΡΤΗΣΗ Y=AX 2 ME A 0

4. 1 Η ΣΥΝΑΡΤΗΣΗ Y=AX 2 ME A 0 ΜΕΡΟΣ Α. Η ΣΥΝΑΡΤΗΣΗ Y=AX ME A 0 5. Η ΣΥΝΑΡΤΗΣΗ Y=AX ME A 0 Ορισμοί Ονομάζουμε συνάρτηση την διαδικασία με την οποία σε κάθε τιμή της μεταβλητής αντιστοιχίζουμε μια μόνο τιμή της μεταβλητής. Ονομάζουμε

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (Α ΜΕΡΟΣ: ΣΥΝΑΡΤΗΣΕΙΣ) Μαθηματικά Προσανατολισμού Γ Λυκείου- Μαθηματικός Περιηγητής ΕΝΟΤΗΤΑ

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να

Διαβάστε περισσότερα

4.3 Η ΣΥΝΑΡΤΗΣΗ f (x) x

4.3 Η ΣΥΝΑΡΤΗΣΗ f (x) x 1 4.3 Η ΣΥΝΑΡΤΗΣΗ f () A Ομάδας Ασκήσεις σχολικού βιβλίου σελίδας 164 167 1. Να βρείτε τη γωνία που σχηματίζει με τον άξονα η ευθεία = + = 3 1 i = + 1 iv) = 3 + εφω = 1 ω = 45 ο εφω = 3 ω = 60 ο i εφω

Διαβάστε περισσότερα

ΓΕΝΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΔΙΑΓΩΝΙΣΜΑΤΑ ΣΕ ΟΛΗ ΤΗΝ ΔΙΔΑΚΤΕΑ ΥΛΗ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ

ΓΕΝΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΔΙΑΓΩΝΙΣΜΑΤΑ ΣΕ ΟΛΗ ΤΗΝ ΔΙΔΑΚΤΕΑ ΥΛΗ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΓΕΝΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΔΙΑΓΩΝΙΣΜΑΤΑ ΣΕ ΟΛΗ ΤΗΝ ΔΙΔΑΚΤΕΑ ΥΛΗ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ο Γενικό Επαναληπτικό Διαγώνισμα ΘΕΜΑ ο Α. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στην κόλλα σας δίπλα στο γράμμα

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. ΘΕΜΑ 2ο

ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. ΘΕΜΑ 2ο ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. β) Να παραστήσετε γραφικά

Διαβάστε περισσότερα

Συνάρτηση f, λέγεται η διαδικασία µε βάση την. Παρατηρήσεις - Σχόλια f

Συνάρτηση f, λέγεται η διαδικασία µε βάση την. Παρατηρήσεις - Σχόλια f Συνάρτηση f, λέγεται η διαδικασία µε βάση την οποία σε κάθε στοιχείο χ ενός συνόλου Α αντιστοιχούµε ακριβώς ένα στοιχείο ενός άλλου συνόλου Β. Το σύνολο Α λέγεται πεδίο ορισµού ( ή σύνολο ορισµού ) της

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού

ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού 97 98 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ 1. Να λυθεί η εξίσωση: 1 1 1 ( x+ )(x ) = x 3 3 9. Αν η εξίσωση (x - 3) λ + 3 = λ x έχει ρίζα τον αριθμό, να υπολογιστεί

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 2002 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 2002 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο Α) Έστω η συνάρτηση f, η οποία είναι συνεχής στο διάστημα [α,β] με f(α) f(β). Να αποδείξετε ότι για κάθε αριθμό η μεταξύ των f(α) και

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΜΗ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ ΜΟΝΟΤΟΝΙΑ-ΑΚΡΟΤΑΤΑ-ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΜΗ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ ΜΟΝΟΤΟΝΙΑ-ΑΚΡΟΤΑΤΑ-ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 4_095. Δίνονται οι ευθείες ε 1: λx + y = 1 και ε : x + λy = λ α) Να βρείτε για ποιες τιμές του λ οι δύο ευθείες τέμνονται και να γράψετε τις συντεταγμένες του κοινού τους σημείου συναρτήσει

Διαβάστε περισσότερα

Μελέτη και γραφική παράσταση συνάρτησης

Μελέτη και γραφική παράσταση συνάρτησης 7 Μελέτη και γραφική παράσταση συνάρτησης Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Η διαδικασία με την οποία προσδιορίζουμε τα ιδιαίτερα χαρακτηριστικά μιας συνάρτησης ονομάζεται μελέτη συνάρτησης Αυτή συνίσταται

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ

ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ i) Να αποδείξετε την ταυτότητα α β γ αββγγα α β βγ γα ii) Να αποδείξετε ότι για όλους τους αβγ,, ισχύει Πότε ισχύει ισότητα; α β γ αβ βγ γα Λέμε ότι μια τριάδα θετικών ακεραίων β,

Διαβάστε περισσότερα

Μαθηματικά Προσανατολισμού Γ Λυκείου, 1.1-1.7. ΚΑΡΑΓΙΑΝΝΗΣ ΙΩΑΝΝΗΣ Σχολικός Σύμβουλος Μαθηματικών Μ Α Θ Η Μ Α Τ Α ΣΤΑ Μ Α Θ Η Μ Α Τ Ι Κ Α

Μαθηματικά Προσανατολισμού Γ Λυκείου, 1.1-1.7. ΚΑΡΑΓΙΑΝΝΗΣ ΙΩΑΝΝΗΣ Σχολικός Σύμβουλος Μαθηματικών Μ Α Θ Η Μ Α Τ Α ΣΤΑ Μ Α Θ Η Μ Α Τ Ι Κ Α ΚΑΡΑΓΙΑΝΝΗΣ ΙΩΑΝΝΗΣ Σχολικός Σύμβουλος Μαθηματικών Μ Α Θ Η Μ Α Τ Α ΣΤΑ Μ Α Θ Η Μ Α Τ Ι Κ Α Π Ρ Ο Σ Α Ν Α Τ Ο Λ Ι Σ Μ Ο Υ Θ Ε Τ Ι Κ Ω Ν Σ Π Ο Υ Δ Ω Ν, Ο Ι Κ Ο Ν Ο Μ Ι Α Σ & Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ Γ ΛΥΚΕΙΟΥ

Διαβάστε περισσότερα

Σύνολα. Γνωστά µας σύνολα: Ν σύνολο φυσικών αριθµών Q σύνολο ρητών αριθµών Ζ σύνολο ακεραίων αριθµών R σύνολο πραγµατικών αριθµών

Σύνολα. Γνωστά µας σύνολα: Ν σύνολο φυσικών αριθµών Q σύνολο ρητών αριθµών Ζ σύνολο ακεραίων αριθµών R σύνολο πραγµατικών αριθµών Σύνολα Σελ. 40 Ορισµός συνόλου (κατά Cantor): Σύνολο είναι κάθε συλλογή αντικειµένων, που προέρχεται από το µυαλό µας ή την εµπειρία µας, είναι καλά ορισµένο και τα αντικείµενα ξεχωρίζουν το ένα από το

Διαβάστε περισσότερα

f( x 1, x ( ) ( ) f x > f x. ( ) ( )

f( x 1, x ( ) ( ) f x > f x. ( ) ( ) MONOTONIA ΑΚΡΟΤΑΤΑ ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ I MONOTONIA ΣΥΝΑΡΤΗΣΕΩΝ ΘΕΩΡΙΑ Στο διπλανό σχήµα δίνεται η γραφική παράσταση µιας συνάρτησης f στο α,β Παρατηρούµε ότι διάστηµα [ ] καθώς αυξάνουν οι τιµές του

Διαβάστε περισσότερα

ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΚΡΟΤΑΤΩΝ

ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΚΡΟΤΑΤΩΝ Ενότητα 1 ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΚΡΟΤΑΤΩΝ Ασκήσεις για λύση 3 3, < 1). Δίνεται η συνάρτηση f ( ). 6, Να βρείτε : i ) την παράγωγο της f, ii) τα κρίσιμα σημεία της f. ). Να μελετήσετε ως προς τη μονοτονία

Διαβάστε περισσότερα

Άλγεβρα Β Λυκείου. Στέλιος Μιχαήλογλου.

Άλγεβρα Β Λυκείου. Στέλιος Μιχαήλογλου. Άλγεβρα Β Λυκείου Στέλιος Μιχαήλογλου wwwaskisopolisgr Το φυλλάδιο αυτό δημιουργήθηκε για να χρησιμοποιηθεί ως επέκταση του σχολικού βιβλίου και όχι αυτόνομα δ έκδοση 0--06 Συστήματα Γραμμικές Εξισώσεις

Διαβάστε περισσότερα

ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ- ΣΥΝΟΛΟ ΤΙΜΩΝ ΚΟΙΛΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ. i) Για την εύρεση µονοτονίας µιας συνάρτησης υπολογίζω την f ( x )

ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ- ΣΥΝΟΛΟ ΤΙΜΩΝ ΚΟΙΛΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ. i) Για την εύρεση µονοτονίας µιας συνάρτησης υπολογίζω την f ( x ) () Μονοτονία ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ- ΣΥΝΟΛΟ ΤΙΜΩΝ ΚΟΙΛΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ i) Για την εύρεση µονοτονίας µιας συνάρτησης υπολογίζω την f ( ) και βρίσκω το πρόσηµό της ii) Αν προκύψει να είναι αύξουσα ή φθίνουσα,

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 1 ο δείγμα Α1 Αν α> με α 1 τότε για οποιουσδήποτε θ1, θ> να αποδείξετε ότι ισχύει: logα(θ1θ) = logαθ1 + logαθ Α Πότε ένα πολυώνυμο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ.3.7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ.3.7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ..7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β Άσκηση. Να υπολογίσετε το εμβαδόν του χωρίου που περικλείεται από τη γραφική

Διαβάστε περισσότερα

II. Συναρτήσεις. math-gr

II. Συναρτήσεις. math-gr II Συναρτήσεις Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ Α Βασικές Έννοιες Ορισμός: Έστω Α ένα υποσύνολο του συνόλου των πραγματικών αριθμών R Ονομάζουμε πραγματική

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2ο: ΣΥΝΑΡΤΗΣΕΙΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ

ΚΕΦΑΛΑΙΟ 2ο: ΣΥΝΑΡΤΗΣΕΙΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2ο: ΣΥΝΑΡΤΗΣΕΙΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ) Copyright 2015 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoocom Αδεια χρήσης 3η Εκδοση, Ιωάννινα, Σεπτέµβριος 2015 Περιεχόµενα 1 Ι ΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 3 Ε_3.Μλ3ΘΤ(ε) ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

1.1 ΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ ΣΥΝΕΧΕΙΑ

1.1 ΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ ΣΥΝΕΧΕΙΑ . ΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ ΣΥΝΕΧΕΙΑ Α. ΣΥΝΑΡΤΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ : ΕΥΡΕΣΗ ΠΕΔΙΟΥ ΟΡΙΣΜΟΥ ΣΥΝΑΡΤΗΣΗΣ ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΑΡΤΗΣΕΙΣ ΣΥΝΑΡΤΗΣΗ ΠΕΡΙΟΡΙΣΜΟΣ P Q Q v P P ln P P P P, P P, Q P P Ποιο είναι το πεδίο ορισμού των

Διαβάστε περισσότερα

Ερωτήσεις κατανόησης σελίδας Κεφ. 1

Ερωτήσεις κατανόησης σελίδας Κεφ. 1 Ερωτήσεις κατανόησης σελίδας 50 5 Κεφ.. Ο όγκος του διπλανού ορθογωνίου παραλληλεπιπέδου εκφράζεται µε τη συνάρτηση V() = ( )( ). Το πεδίο ορισµού της συνάρτησης αυτής είναι το διάστηµα : A. [0, + ] B.

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας- Άλγεβρα Β ΓΕ.Λ.-Σχολικό έτος 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος: 2014-2015

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας- Άλγεβρα Β ΓΕ.Λ.-Σχολικό έτος 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος: 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ Σχολικό έτος: 014-015 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων από το Ι.Ε.Π. Γ ε ν ι κ ή Ε π ι μ έ λ ε ι

Διαβάστε περισσότερα

3.2 Η ΠΑΡΑΒΟΛΗ. Ορισμός Παραβολής. Εξίσωση Παραβολής

3.2 Η ΠΑΡΑΒΟΛΗ. Ορισμός Παραβολής. Εξίσωση Παραβολής 9 3 Η ΠΑΡΑΒΟΛΗ Ορισμός Παραβολής Έστω μια ευθεία δ και ένα σημείο Ε εκτός της δ Ονομάζεται παραβολή με εστία το σημείο Ε και διευθετούσα την ευθεία δ ο γεωμετρικός τόπος C των σημείων του επιπέδου τα οποία

Διαβάστε περισσότερα

Άλγεβρα Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ. Τόμος 1ος

Άλγεβρα Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ. Τόμος 1ος Άλγεβρα Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Τόμος 1ος Συγγραφική ομάδα: Ανδρεαδάκης Στυλιανός Καθηγητής Πανεπιστημίου Αθηνών Κατσαργύρης Βασίλειος Καθηγητής μαθηματικών Βαρβακείου Πειραμ. Λυκείου Παπασταυρίδης Στάυρος

Διαβάστε περισσότερα

lim είναι πραγµατικοί αριθµοί, τότε η f είναι συνεχής στο x 0. β) Να εξετάσετε τη συνέχεια της συνάρτησης f (x) =

lim είναι πραγµατικοί αριθµοί, τότε η f είναι συνεχής στο x 0. β) Να εξετάσετε τη συνέχεια της συνάρτησης f (x) = Ερωτήσεις ανάπτυξης. ** α) Να αποδείξετε ότι αν τα όρια lim - f () - f - είναι πραγµατικοί αριθµοί, τότε η f είναι συνεχής στο. ( ) και β) Να εξετάσετε τη συνέχεια της συνάρτησης f () = lim + στο σηµείο

Διαβάστε περισσότερα

Άλγεβρα Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ. Τόμος 1ος 1η ΕΚΔΟΣΗ

Άλγεβρα Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ. Τόμος 1ος 1η ΕΚΔΟΣΗ Άλγεβρα Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Τόμος 1ος 1η ΕΚΔΟΣΗ Συγγραφική ομάδα: Ανδρεαδάκης Στυλιανός Καθηγητής Πανεπιστημίου Αθηνών Κατσαργύρης Βασίλειος Καθηγητής μαθηματικών Βαρβακείου Πειραμ. Λυκείου Παπασταυρίδης

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ 1 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ ΘΕΜΑ ο GI_V_ALG 16950 1.1 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. β)

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..

Διαβάστε περισσότερα

Μαθηματικά Γενικής Παιδείας Κεφάλαιο 1ο Ανάλυση ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΝΑΛΥΣΗ

Μαθηματικά Γενικής Παιδείας Κεφάλαιο 1ο Ανάλυση ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΝΑΛΥΣΗ Μαθηματικά Γενικής Παιδείας Κεφάλαιο ο Ανάλυση ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΝΑΛΥΣΗ Ερωτήσεις του τύπου «Σωστό - Λάθος». * Η διαδικασία, με την οποία κάθε στοιχείο ενός συνόλου Α

Διαβάστε περισσότερα

Λύκειο Παραλιμνίου Σχολική Χρονιά 2013-2014 Γενικές ασκήσεις επανάληψης Γ κατ

Λύκειο Παραλιμνίου Σχολική Χρονιά 2013-2014 Γενικές ασκήσεις επανάληψης Γ κατ Λύκειο Παραλιμνίου Σχολική Χρονιά 1-14 Γενικές ασκήσεις επανάληψης Γ κατ 1. Να βρείτε την παράγωγο της συνάρτησης y = e ημ + ln. Να βρείτε την παράγωγο της συνάρτησης y = τοξημ( ) d y y = ημ θ. Να βρείτε

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ 4 o Κεφάλαιο ΑΝΑΛΥΣΗ Απαντήσεις στις ερωτήσεις του τύπου Σωστό-Λάθος. Σ 0. Σ 9. Λ. Λ. Σ 40. Σ. Σ. Σ 4. Λ 4. Λ. Σ 4. Σ 5. Σ 4. Σ 4. Λ 6. Σ 5. Λ 44.

Διαβάστε περισσότερα

ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ. f : A R και στη συνέχεια δίνουμε τον τύπο της συνάρτησης, π.χ.

ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ. f : A R και στη συνέχεια δίνουμε τον τύπο της συνάρτησης, π.χ. Συναρτήσεις σελ ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ Α Βασικές Έννοιες Ορισμός: Έστω Α ένα υποσύνολο του συνόλου των πραγματικών αριθμών R Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α μια διαδικασία (κανόνα),

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1 Δ Ι Α Γ Ω Ν Ι Σ Μ Α Θ έ μ α Α Α. α. Πότε η εξίσωση αx + βx + γ = 0, α 0 έχει διπλή ρίζα; Ποια είναι η διπλή ρίζα της; 4 μονάδες β. Ποια μορφή παίρνει το τριώνυμο αx + βx + γ, α 0, όταν Δ = 0; 3 μονάδες

Διαβάστε περισσότερα

παράσταση της f τέμνει τον άξονα ψ ψ στο σημείο με τεταγμένη 3 και διέρχεται από το σημείο

παράσταση της f τέμνει τον άξονα ψ ψ στο σημείο με τεταγμένη 3 και διέρχεται από το σημείο ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ ου ΚΕΦΑΛΑΙΟΥ ΑΣΚΗΣΗ η (Κατσίποδας Δημήτρης) Δίνονται οι συναρτήσεις f() = με a, β R και g() = 5.Αν η γραφική παράσταση της f τέμνει τον άξονα ψ ψ στο σημείο

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 6 Β' Λυκείου. Ύλη: Συστήματα Ιδιότητες Συναρτήσεων- Τριγωνομετρία

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 6 Β' Λυκείου. Ύλη: Συστήματα Ιδιότητες Συναρτήσεων- Τριγωνομετρία ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 6 Β' Λυκείου Ον/μο:. ΕΠΑ.Λ. Ύλη: Συστήματα Ιδιότητες Συναρτήσεων- Τριγωνομετρία 06-11-16 Θέμα 1 ο : Α.i. Τι ονομάζουμε γραμμική εξίσωση; (4 μον.) ii. Πότε μία συνάρτηση f ονομάζεται

Διαβάστε περισσότερα

2. Έστω η συνάρτηση f :[0, 6] με την παρακάτω γραφική παράσταση.

2. Έστω η συνάρτηση f :[0, 6] με την παρακάτω γραφική παράσταση. . Έστω η συνάρτηση f : με την παρακάτω γραφική παράσταση. Α. Να προσδιορίσετε τα διαστήματα στα οποία η f είναι γνησίως αύξουσα, γνησίως φθίνουσα, κυρτή, κοίλη, καθώς και τα τοπικά ακρότατα και τα σημεία

Διαβάστε περισσότερα

Για να παραστήσουμε ένα σύνολο χρησιμοποιούμε συνήθως έναν από τους παρακάτω τρόπους :

Για να παραστήσουμε ένα σύνολο χρησιμοποιούμε συνήθως έναν από τους παρακάτω τρόπους : ΚΕΦΑΛΑΙΟ Ο ΣΥΝΑΡΤΗΣΕΙΣ. Σύνολα ΠΑΡΑΣΤΑΣΗ ΣΥΝΟΛΟΥ ΓΡΑΦΗ ΣΥΝΟΛΟΥ Για να παραστήσουμε ένα σύνολο χρησιμοποιούμε συνήθως έναν από τους παρακάτω τρόπους : ) Παράσταση με αναγραφή των στοιχείων Όταν δίνονται

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο.

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο. ΣΥΛΛΟΓΟΣ «Η ΕΛΛΗΝΙΚΗ ΠΑΙΔΕΙΑ» ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑ 1 Δίνονται τα πολυώνυμα (3x ) (5 x)(3x ) και 5x 9 i). Να κάνετε τις πράξεις στο πολυώνυμο. ii). Να βρείτε την τιμή του

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ

ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ Το σύνολο των πραγματικών αριθμών Υπενθυμίζουμε ότι το σύνολο των πραγματικών αριθμών αποτελείται από τους ρητούς και τους άρρητους αριθμούς και παριστάνεται

Διαβάστε περισσότερα

<Πεδία ορισμού ισότητα πράξεις σύνθεση>

<Πεδία ορισμού ισότητα πράξεις σύνθεση> Συναρτήσεις 1 A Έστω μία συνάρτηση Να βρείτε το πεδίο ορισμού της συνάρτησης B Δίνεται η συνάρτηση Να βρείτε το πεδίο ορισμού των συναρτήσεων :, και Γ Να εξετάσετε

Διαβάστε περισσότερα

7.1 ΜΕΛΕΤΗ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ f(x) = αx 2

7.1 ΜΕΛΕΤΗ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ f(x) = αx 2 1 7.1 ΜΕΛΕΤΗ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ f() = α ΘΕΩΡΙΑ 1. Μορφή της συνάρτησης g() = (Παραβολή) O g( ) = Ιδιότητες Πεδίο ορισµού = R Είναι άρτια, άρα συµµετρική ως προς τον άξονα Είναι γν.φθίνουσα στο διάστηµα (,

Διαβάστε περισσότερα

1 x και y = - λx είναι κάθετες

1 x και y = - λx είναι κάθετες Κεφάλαιο ο: ΕΥΘΕΙΑ Ερωτήσεις του τύπου «Σωστό-Λάθος» 1. * Συντελεστής διεύθυνσης μιας ευθείας (ε) είναι η εφαπτομένη της γωνίας που σχηματίζει η ευθεία (ε) με τον άξονα. Σ Λ. * Ο συντελεστής διεύθυνσης

Διαβάστε περισσότερα

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ Εισαγωγή Η ιδέα της χρησιμοποίησης ενός συστήματος συντεταγμένων για τον προσδιορισμό της θέσης ενός σημείου πάνω σε μια επιφάνεια προέρχεται από την Γεωγραφία και ήταν γνωστή στους

Διαβάστε περισσότερα

Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Εφαρμογές

Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Εφαρμογές Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Εφαρμογές Να βρείτε για καθεμιά από τις παρακάτω γραμμές αν είναι γραφική παράσταση κάποιας συνάρτησης. 4-1 1 () (1) (3) (4) (5) (6) Αν υπάρχει ευθεία

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1 ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Πότε µια συνάρτηση f σε ένα διάστηµα του πεδίου ορισµού της λέγεται γνησίως αύξουσα και πότε γνησίως φθίνουσα; 2. Να αποδείξετε ότι η παράγωγος

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΗ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ. Λυμένες Ασκήσεις

ΑΣΚΗΣΕΙΣ ΣΤΗ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ. Λυμένες Ασκήσεις ΑΣΚΗΣΕΙΣ ΣΤΗ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ Λυμένες Ασκήσεις 1. Στο παρακάτω σχήμα να βρείτε τις συντεταγμένες των σημείων Α, Β, Γ, Δ, Ε, Ζ, Η, Θ και Ι Οι συντεταγμένες των ζητούμενων σημείων είναι: Α(2,3),

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2016 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2016 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 6 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 6 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ ο

Διαβάστε περισσότερα

lnx ln x ln l x 1. = (0,1) (1,7].

lnx ln x ln l x 1. = (0,1) (1,7]. ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 1: ΕΝΝΟΙΑ ΠΡΑΓΜΑΤΙΚΗΣ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ. IΣΟΤΗΤΑ ΣΥΝΑΡΤΗΣΕΩΝ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ [Ενότητα

Διαβάστε περισσότερα