ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ"

Transcript

1 ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ Ενότητα 12: Μη ντετερμινιστικές μηχανές Turing Ρεφανίδης Ιωάννης

2 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς. 2

3 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Μακεδονίας» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 3

4 Μη Ντετερμινιστικές Μηχανές Turing 4

5 Ορισμός Μια μη-ντετερμινιστική μηχανή Turing ορίζεται όμοια με μια ντετερμινιστική, με την εξής διαφορά: Για κάθε συνολική κατάσταση της μηχανής, μπορεί να ορίζονται περισσότερες από μια επόμενες καταστάσεις. Δημιουργείται το ερώτημα, πώς λειτουργεί. 5

6 Μη-ντετερμινισμός και ημι-αποφασίσιμες γλώσσες Μια μη-ντετερμινιστική μηχανή Turing δέχεται μια είσοδο w, αν υπάρχει τρόπος ξεκινώντας με είσοδο το w να καταλήξουμε σε τελική κατάσταση. Η μη-ντετερμινιστική μηχανή Turing ημιαποφασίζει μια γλώσσα L, αν δέχεται κάθε λέξη w της L. 6

7 Μη-ντετερμινισμός και αποφασίσιμες γλώσσες Μια μη-ντετερμινιστική μηχανή Turing Μ αποφασίζει μια γλώσσα L, αν για κάθε λέξη w Σ* ισχύουν τα εξής: Υπάρχει φυσικός αριθμός Ν που εξαρτάται από την Μ και την w, τέτοιος ώστε να μην υπάρχει κατάσταση C στην οποία να καταλήγει η μηχανή μετά από Ν μηντετερμινιστικά βήματα. Η w ανήκει στην L αν και μόνο αν η Μ με αρχική είσοδο την w καταλήγει στην «θετική» κατάσταση τερματισμού της. 7

8 Μη-ντετερμινισμός και υπολογίσιμες συναρτήσεις Μια μη-ντετερμινιστική μηχανή Turing υπολογίζει μια συνάρτηση f: Σ* Σ*, αν ισχύουν τα εξής για κάθε λέξη w: Υπάρχει Ν που εξαρτάται από την f και την w, τέτοιος ώστε να μην υπάρχει συνολική κατάσταση C προσβάσιμη από την (s, #w#) σε Ν βήματα. (s,#w#) *(h,#u#) αν και μόνο αν f(w)=u. Όλοι οι δυνατοί υπολογισμοί πρέπει να συμφωνούν. 8

9 Παράδειγμα: Σύνθετοι αριθμοί (1/2) Ένας σύνθετος αριθμός είναι το γινόμενο δύο μεγαλύτερων της μονάδας φυσικών αριθμών. Έστω C το σύνολο όλων σύνθετων αριθμών, σε δυαδική αναπαράσταση: C={100, 110, 1000, 1001, 1010,, , } Για να ελέγξει αν ένας αριθμός n είναι σύνθετος, μια ντετερμινιστική μηχανή θα έπρεπε να ελέγχει όλους τους μικρότερους αριθμούς... 9

10 Παράδειγμα: Σύνθετοι αριθμοί (2/2) Για να ελέγξει αν ένας αριθμός n είναι σύνθετος, μια μη-ντετερμινιστική μηχανή: Θα επέλεγε μη-ντετερμινιστικά δύο αριθμούς p και q, μεγαλύτερους της μονάδας και μικρότερους από τον n. Θα τους πολλαπλασίαζε. Εάν n=p q, θα τερματίζει «θετικά». Εάν n p q, θα τερματίζει «αρνητικά». 10

11 Σύγκριση ντετερμινιστικών και μη-ντετερμινιστικών μηχανών Turing Αν μια μη-ντετερμινιστική μηχανή Turing Μ αποφασίζει ή ημι-αποφασίζει μια γλώσσα ή υπολογίζει μια συνάρτηση, τότε υπάρχει μια ντετερμινιστική μηχανή Turing Μ' που αποφασίζει ή ημι-αποφασίζει την ίδια γλώσσα ή υπολογίζει την ίδια συνάρτηση. Η Μ' θα προσομοιώσει συστηματικά όλους τους υπολογισμούς της Μ. Η Μ' απαιτεί εκθετικά περισσότερο αριθμό βημάτων για να προσομοιώσει έναν υπολογισμο της Μ. 11

12 Αναγωγές Έστω L 1, L 2 Σ*. Μια αναγωγή από την L 1 στην L 2 είναι μια συνάρτηση τ : Σ* Σ*, τέτοια ώστε x L 1 αν και μόνο αν τ(x) L 2. Κατεύθυνση αναγωγής: Από την L 1 στην L 2. Αν η L 1 δεν είναι αποφασίσιμη, και υπάρχει αναγωγή τ από την L 1 στην L 2, τότε ούτε η L 2 είναι αποφασίσιμη. 12

13 Κατεύθυνση αναγωγής Η συνάρτηση τ(x) από την L 1 στην L 2 : Ορίζεται για όλες τις λέξεις της L 1 Δεν έχει ως τιμές της όλες τις λέξεις της L 2 Γενικά η συνάρτηση τ(x) δεν είναι αντιστρέψιμη. Αν είναι, τότε ορίζεται και η αντίστροφη αναγωγή. Αν λοιπόν η L 1 δεν είναι αποφασίσιμη, τότε για τα αντίστοιχα προβλήματα δεν είναι ούτε η L 2. 13

14 Παράδειγμα αναγωγής (1/3) Έστω η γλώσσα: H={«Μ»«w» : Η μηχανή Turing M τερματίζει με συμβολοσειρά εισόδου το w} Η γλώσσα αυτή είναι ημι-αποφασίσιμη Πρόκειται για το πρόβλημα του τερματισμού Θα βρούμε συναρτήσεις αναγωγής τ από την Η σε άλλες γλώσσες. 14

15 Παράδειγμα αναγωγής (2/3) Δεδομένης μιας μηχανής Turing Μ, τερματίζει η Μ με είσοδο κενή ταινία; Περιγράφουμε μια αναγωγή από την Η στην: L={«Μ» : Η Μ τερματίζει με είσοδο ε} Για κάθε λέξη «Μ»«w» της Η, όπου w=a 1 a 2 a n, κατασκευάζουμε μια λέξη «M w» της L ως εξής: M w =Ra 1 Ra 2 Ra n M 15

16 Παράδειγμα αναγωγής (3/3) Δεδομένης μιας μηχανής Turing Μ, υπάρχει έστω και μια συμβολοσειρά για την οποία η Μ τερματίζει; Θα ανάγουμε την L στην L': L' = {«Μ» : Η Μ τερματίζει για κάποια είσοδο} Έχοντας μια μηχανή Μ (για την οποία δεν μπορούμε να αποφασίσουμε αν τερματίζει με κενή είσοδο), κατασκευάζουμε μια μηχανή Μ', η οποία στην αρχή της λειτουργίας της διαγράφει την είσοδό της και μετά συνεχίζει σαν την Μ. 16

17 Μερικά ακόμη μηαποφασίσιμα προβλήματα Πρόβλημα Thue Πρόβλημα αντιστοίχησης του Post Πρόβλημα πλακόστρωσης 17

18 Πρόβλημα Thue (1/2) Έστω ένα πεπερασμένο αταξινόμητο σύνολο ζευγών λέξεων: {w 1,u 1 }, {w 2, u 2 },..., {w n, u n } Έστω δύο λέξεις w και u, τέτοιες ώστε: w=w i1 w i2...w ik u=u i1 u i2...u ik όπου i 1, i 2,..., i k {1, 2,...,n} Οι λέξεις w και u λέγονται ισοδύναμες. 18

19 Πρόβλημα Thue (2/2) Παράδειγμα: Έστω {ab, a}, {bc, b}, {abc, c}. Έστω w=abbcabc Τότε η w είναι ισοδύναμη με την u=ababc Πράγματι, μπορούμε να τις γράψουμε: w=ab-bc-abc u=a-b-c Το πρόβλημα που τίθεται είναι εάν μπορεί να κατασκευασθεί ένα πρόγραμμα που να μας λέει εάν για τυχαίο σύστημα Thue υπάρχουν δύο λέξεις w και u που να είναι ισοδύναμες. Το πρόβλημα αυτό είναι μη-αποφασίσιμο. 19

20 Πρόβλημα αντιστοίχησης του Post (παραλλαγή του προβλήματος Thue) (1/2) Έστω και πάλι ένα πεπερασμένο αταξινόμητο σύνολο ζευγών λέξεων: {w 1,u 1 }, {w 2, u 2 },..., {w n, u n } Έστω μια λέξη w τέτοια ώστε: w=w i1 w i2...w ik =u i1 u i2...u ik όπου i 1, i 2,..., i k {1, 2,...,n} Η λέξη w λέγεται ταίριασμα. 20

21 Πρόβλημα αντιστοίχησης του Post (2/2) Παράδειγμα: Έστω {a, aaa}, {abaaa, ab}, {ab, b} Έστω w=abaaaaaab Τότε η w είναι ένα ταίριασμα, αφού: abaaa-a-a-ab = ab-aaa-aaa-b Το πρόβλημα που τίθεται εάν για τυχαίο σύστημα αντιστοίχησης υπάρχει ένα ταίριασμα. Το πρόβλημα αυτό είναι μηαποφασίσιμο. 21

22 Πρόβλημα πλακόστρωσης (1/2) Έστω ένα πεπερασμένο σύνολο από τετράγωνα πλακάκια. Κάθε τύπος από πλακάκι επιτρέπεται να συνορεύει προς κάθε κατεύθυνση με συγκεκριμένους τύπους από άλλα πλακάκια. Τα πλακάκια δεν επιτρέπεται να περιστραφούν. Έχουμε άπειρα πλακάκια από κάθε τύπο. 22

23 Πρόβλημα πλακόστρωσης (2/2) Θέλουμε να πλακοστρώσουμε το πρώτο τεταρτημόριο του επιπέδου, τοποθετώντας στην κάτω αριστερή του γωνία ένα συγκεκριμένο πλακάκι. Το πρόβλημα που τίθεται είναι εάν, για τυχαίο σύστημα πλακόστρωσης, είναι δυνατή η πλακόστρωση του πρώτου τεταρτημόριου. Το πρόβλημα αυτό είναι μη-αποφασίσιμο. 23

24 Ιδιότητες των αποφασίσιμων γλωσσών Μια γλώσσα είναι αποφασίσιμη, αν και μόνο αν το συμπλήρωμά της είναι επίσης αποφασίσιμο. Μια γλώσσα είναι αποφασίσιμη, αν και μόνο αν αυτή και το συμπλήρωμά της είναι ημι-αποφασίσιμες. 24

25 Απαριθμήσιμες γλώσσες Μια γλώσσα L είναι απαριθμίσιμη κατά Turing, αν και μόνο αν υπάρχει μηχανή Turing τέτοια ώστε: L={w : (s,#) * (q,#w#) } όπου q μια προκαθορισμένη «κατάσταση παρουσίασης» της M. Μια γλώσσα είναι ημι-αποφασίσιμη αν και μόνο αν είναι απαριθμήσιμη κατά Turing. 25

26 Λεξικογραφικά απαριθμήσιμες γλώσσες Μια μηχανή Turing Μ λέμε ότι απαριθμεί λεξικογραφικά τη γλώσσα L, αν: Η Μ απαριθμεί την L. Όποτε συμβαίνει να ισχύει: (q,#w#) * (q,#w'#) τότε η w προηγείται λεξικογραφικά της w'. Μια γλώσσα είναι αποφασίσιμη, αν και μόνο αν είναι λεξικογραφικά απαριθμήσιμη. 26

27 Θεώρημα του Rice Έστω ότι C είναι ένα γνήσιο μη-κενό υποσύνολο της κλάσης όλων των ημιαποφασίσιμων γλωσσών. Τότε το ακόλουθο πρόβλημα είναι μη-αποφασίσιμο: Δεδομένης μιας μηχανής Turing M, ισχύει ότι L(M) C; Δεν μπορούμε να αποδείξουμε στη γενική περίπτωση ότι η γλώσσα μιας μηχανής Turing είναι κανονική, χωρίς συμφραζόμενα, κλπ. 27

28 Υπολογιστική Πολυπλοκότητα 28

29 Πρακτικά εφικτοί αλγόριθμοι Μια μηχανή Turing Μ ονομάζεται πολυωνυμικά φραγμένη, αν υπάρχει πολυώνυμο p(n) τέτοιο ώστε να ισχύει το εξής: Για κάθε είσοδο x, δεν υπάρχει κατάσταση C, τέτοια ώστε (s,#x#) p( x )+1 C Μια γλώσσα λέγεται πολυωνυμικά αποφασίσιμη, αν υπάρχει μια πολυωνυμικά φραγμένη μηχανή Turing που την αποφασίζει. Η κλάση όλων των πολυωνυμικά αποφασίσιμων γλωσσών συμβολίζεται με P. 29

30 Θέση του Church (revisited) Οι πολυωνυμικά φραγμένες μηχανές Turing και η κλάση P εκφράζουν ικανοποιητικά τις διαισθητικές έννοιες, αντίστοιχα, των πρακτικά εφικτών αλγορίθμων και των ρεαλιστικά επιλύσιμων προβλημάτων. Η κλάση P είναι κλειστή ως προς το συμπλήρωμα. 30

31 Προβλήματα 31

32 Το πρόβλημα της συνεκτικότητας Δεδομένων ενός κατευθυνόμενου γραφήματος G VxV, όπου V={v 1,v 2,, v n } και δύο κόμβων v i,v j V, υπάρχει μονοπάτι από τον v i στον v j ; Είναι πρόβλημα, δεν είναι γλώσσα. Μπορεί να μετατραπεί σε γλώσσα ως εξής: L={(«G»,«v i»,«v j») : Υπάρχει μονοπάτι από τον v i στον v j στο γράφημα G. Οι γλώσσες κωδικοποιούν προβλήματα! Ανήκει στο P. 32

33 Γράφημα Euler Δεδομένου ενός κατευθυνόμενου γραφήματος G, υπάρχει κλειστό μονοπάτι στο G το οποίο χρησιμοποιεί κάθε ακμή ακριβώς μία φορά; Γράφημα Euler ή γράφημα μοναδικής διάσχισης. L = { «G» : Το G είναι γράφημα Euler } Λύση: Υπάρχει μονοπάτι μεταξύ κάθε δύο κόμβων. Για κάθε κόμβο, το πλήθος των εισερχόμενων και εξερχόμων ακμών ταυτίζονται. Ανήκει στο P (μπορεί να αποδειχθεί και με αναγωγή στο πρόβλημα της συνεκτικότητας). 33

34 Οι γέφυρες του Königsberg Πηγή: burg_graph.svg Πηγή: d_eulergraph.svg 34

35 Γράφημα Hamilton (1/2) Δεδομένου ενός γραφήματος G, υπάρχει κύκλος που διέρχεται από κάθε κόμβο του G ακριβώς μια φορά; Κύκλος Hamilton, γράφημα Hamilton. Δεν έχει βρεθεί κανείς πολυωνυμικός αλγόριθμος για αυτό το πρόβλημα. Μη-πολυωνυμική λύση: Εξέτασε όλες τις μεταθέσεις κόμβων του γραφήματος. 35

36 Γράφημα Hamilton (2/2) Πηγή: ommons/6/60/hamiltonian_path.svg Πηγή: ommons/c/cf/herschel_graph.svg 36

37 Πλανώδιος πωλητής Δοθέντος ενός πλήρους, μη κατευθυνόμενου γραφήματος G=VxV με κόμβους V={v 1,v 2,,v n }, καθώς και ενός συμμετρικού μη-αρνητικού πίνακα D διαστάσεων nxn, με τα στοιχεία του d ij να εκφράζουν το βάρος της ακμής (v i,v j ), ψάχνουμε μια μετάθεση π των κορυφών V, έτσι ώστε να ελαχιστοποιείται το παρακάτω άθροισμα: c(π)=d π(1)π(2) +d π(2)π(3) +...+d π(n-1)π(n) +d π(n)π(1) Πρόβλημα βελτιστοποίησης 37

38 Μετατροπή προβλημάτων βελτιστοποίησης σε γλώσσες Ορίζουμε έναν περιορισμό στο κόστος της κάθε λύσης. Οι λύσεις που ικανοποιούν τον περιορισμό είναι αποδεκτές (θεωρούνται λέξεις της γλώσσας). Θέτουμε ένα ανώτατο όριο Β στο κόστος της λύσης και ψάχνουμε να βρούμε αν υπάρχει λύση με κόστος το πολύ Β. Αν το πρόβλημα βελτιστοποίησης ανήκει στο P, τότε και το πρόβλημα απόφασης ανήκει στο P. 38

39 Ανεξάρτητο Σύνολο (1/2) Δεδομένων ενός μη κατευθυνόμενου γραφήματος G και ενός ακεραίου Κ 2, υπάρχει υποσύνολο του C του V με C K, τέτοιο ώστε για κάθε v i,v j C, να μην υπάρχει ακμή μεταξύ των v i και v j ; Δεν έχει βρεθεί πολυωνυμικός αλγόριθμος. 39

40 Ανεξάρτητο Σύνολο (2/2) Πηγή: 40

41 Κλίκα Δεδομένων ενός μη κατευθυνόμενου γραφήματος G και ενός ακεραίου Κ 2, υπάρχει υποσύνολο C του V με C K, τέτοιο ώστε για κάθε v i,v j C, να υπάρχει ακμή μεταξύ των v i και v j ; Δεν έχει βρεθεί πολυωνυμικός αλγόριθμος. 41

42 Κλίκα Πηγή: 42

43 Κάλυμμα κόμβων Ένα σύνολο κόμβων καλύπτει μια ακμή, αν περιλαμβάνει μια τουλάχιστον το ένα άκρο της. Δεδομένων ενός μη κατευθυνόμενου γραφήματος G και ενός ακεραίου Β 2, υπάρχει υποσύνολο του C του V με C K, τέτοιο ώστε το C να καλύπτει όλες τις ακμές του G ; Σκεφτείτε το πρόβλημα της φρούρησης των διαδρόμων ενός μουσείου. 43

44 Διαμέριση ακεραίων Μας δίνεται ένα σύνολο n μη-αρνητικών ακεραίων, a 1, a 2,, a n. Μπορούμε να τους χωρίσουμε σε δύο ξένα υποσύνολα, έτσι ώστε οι ακέραιοι κάθε υποσυνόλου να έχουν το ίδιο άθροισμα; Π.χ.: Έστω Α={38,17,52,61,21,88,25} = =

45 Διαμέριση ακεραίων: Αλγόριθμος Έστω Η το ημιάθροισμα όλων των ακεραίων. Ψάχνουμε να βρούμε ένα υποσύνολο των ακεραίων που να αθροίζεται στο Η. Για 1 i n, ορίζουμε το εξής σύνολο αριθμών: B(i)={b H : b είναι το άθροισμα ενός υποσυνόλου των αριθμών {a 1,,a i }} Υπολογίζουμε τα διάφορα b(i), από i=1 μέχρι n, μέχρι να εμφανιστεί ο αριθμός Η μέσα σε κάποιο b(i). 45

46 Παράδειγμα A = {38, 17, 52, 61, 21, 88, 25} H = 151 B(0) = {0} B(1) = {0,38} B(2) = {0,17,38,55} B(3) = {0, 17, 38, 52, 55, 69, 90, 107} B(7) = {0, 17, 21,, 151} 46

47 Πολυπλοκότητα αλγορίθμου διαμέρισης Είναι εύκολο να αποδείξουμε ότι η πολυπλοκότητα του αλγορίθμου είναι Ο(nH). Ανήκει ο αλγόριθμος στο P ; Όχι, γιατί το μήκος της εισόδου είναι τάξης μεγέθους x=nlg(h), με αποτέλεσμα η πολυπλοκότητα να είναι εκθετική σε σχέση με το μήκος της εισόδου: Ο(ne x/n ). Αν ωστόσο υιοθετούσαμε μοναδιαία αναπαράσταση, η πολυπλοκότητα θα ήταν γραμμική ως προς το μέγεθος της εισόδου. 47

48 Tύποι Bool Έστω X={x 1,x 2,,x n } ένα πεπερασμένο σύνολο από μεταβλητές Bool, και έστω X'={x' 1, x' 2,, x' n } οι αρνήσεις τους. Ονομάζουμε τα μέλη του Χ Χ' στοιχεία. Θετικά στοιχεία και αρνητικά στοιχεία. Μια συνθήκη C είναι ένα μη κενό σύνολο στοιχείων C X X'. Ένας τύπος Bool σε κανονική συζευκτική μορφή είναι ένα σύνολο συνθηκών. 48

49 Παράδειγμα Έστω X={x 1,x 2,x 3 } και άρα X'={x' 1,x' 2,x' 3 }. Μια συνθήκη είναι η: C={x 1 x' 2 } Ένας τύπος Bool είναι ο: F={(x 1 x' 2 x 3 ), (x' 1 ), (x 2 x' 2 )} Απόδοση τιμών αληθείας είναι μια απεικόνιση από το Χ στο σύνολο {T,F} (T=true, F=false). Ικανοποιήσιμος τύπος. x 1 =F, x 2 =T, x 3 =T 49

50 Το πρόβλημα της ικανοποιησιμότητας Μη ικανοποιήσιμος τύπος: F = {(x 1 x 2 x 3 ),(x' 1 x 2 ),(x' 2 x 3 ),(x' 3 x 1 ),(x' 1 x' 2 x' 3 )} Το πρόβλημα της ικανοποιησιμότητας: Δεδομένου ενός τύπου Bool, είναι αυτός ικανοποιήσιμος; 50

51 2-SAT Ειδική περίπτωση του προβλήματος της ικανοποιησιμότητας: Οι συνθήκες έχουν το πολύ δύο στοιχεία F={(x 1 x 2 ),(x 3 x' 2 ),(x 1 ),(x' 1 x' 2 ),(x 3 x 4 ),(x' 3 x 5 ), (x' 4 x' 5 ),(x 4 x' 3 )} Το πρόβλημα 2-SAT ανήκει στο P. 51

52 Η Κλάση NP 52

53 Προβλήματα που δεν ανήκουν στην P Αποφασίσιμη εκδοχή του προβλήματος του τερματισμού: Ε={«Μ»«w» : Η Μ δέχεται την είσοδο w μετά από το πολύ 2 w βήματα} Η Ε δεν ανήκει στην P. Άλλα προβλήματα που δεν ανήκουν στο P : Κύκλος Hamilton, περιοδεύων πωλητής, ανεξάρτητο σύνολο, διαμέριση, ικανοποιησιμότητα,... 53

54 Η κλάση NP Μια μη-ντετερμινιστική μηχανή Turing Μ λέγεται πολυωνυμικά φραγμένη αν υπάρχει πολυώνυμο p(n) τέτοιο ώστε για κάθε είσοδο x να μην υπάρχει συνολική κατάσταση C της Μ, τέτοια ώστε: (s,#x#) p( x )+1 C Ορίζουμε ως NP (non-deterministic polynomial) την κλάση όλων των γλωσσών που αποφασίζονται από μια πολυωνυμικά φραγμένη μη-ντετερμινιστική μηχανή Turing. 54

55 Ικανοποιησιμότητα Έστω μια μηχανή Μ που εκτελεί τους εξής υπολογισμούς: Γράφει στην ταινία μη-ντετερμινιστικά μια ανάθεση τιμών στις μεταβλητές Bool. Ελέγχει την ανάθεση. Κάθε ακολουθία υπολογισμών είναι φραγμένη. Το πρόβλημα της ικανοποιησιμότητας ανήκει στην NP. 55

56 Περιοδεύων πωλητής Με δεδομένο «προϋπολογισμό» Β. Έστω μια μηχανή Μ που εκτελεί τους εξής υπολογισμούς: Γράφει στην ταινία μη-ντετερμινιστικά μια μετάθεση των πόλεων. Ελέγχει την μετάθεση. Κάθε ακολουθία υπολογισμών είναι φραγμένη. Το πρόβλημα του περιοδεύοντος πωλητή ανήκει στην NP. 56

57 Ιδιότητες της NP P NP Τα δένδρα που αναπαριστούν το σύνολο των υπολογισμών μιας πολυωνυμικά φραγμένης μη-ντετερμινιστικής μηχανής Turing μπορεί να έχουν εκθετικά πολλά κλαδιά, αλλά όλα με μέτριο βάθος. Η προσομοίωση μιας πολυωνυμικά φραγμένης μη-ντετερμινιστικής μηχανής Turing από μια ντετερμινιστική μηχανή Turing απαιτεί εκθετικά μεγάλο αριθμό βημάτων. 57

58 Η κλάση EXP Μια ντετερμινιστική μηχανή Turing M ονομάζεται εκθετικά φραγμένη αν υπάρχει πολυώνυμο p(n) τέτοιο ώστε για κάθε είσοδο x να μην υπάρχει κατάσταση C τέτοια ώστε: (s,#x#) 2p( x ) +1 C Ορίζουμε ως EXP την κλάση όλων των γλωσσών που αποφασίζονται από μια εκθετικά φραγμένη ντερμινιστική μηχανή Turing. 58

59 Ιεραρχία κλάσεων Αν μια γλώσσα ανήκει στην NP, τότε ανήκει και στην EXP. Γενικότερα ισχύει: P NP EXP Γνωρίζουμε ωστόσο πως: P EXP Δεν έχει αποδειχθεί κάποιο από τα : P NP NP EXP 59

60 Πιστοποιητικά Οι μη-ντετερμινιστικές πολυωνυμικά φραγμένες μηχανές Turing της κλάσης NP λειτουργούν ως εξής: Δημιουργούν υποψήφιες λύσεις. Τις ελέγχουν. Ονομάζουμε «πιστοποιητικό» (certificate) μια τέτοια συμβολοσειρά που είναι λύση. Ένα πιστοποιητικό πρέπει να είναι πολυωνυμικά σύντομο και να μπορεί να ελεγχθεί σε πολυωνυμικό χρόνο. Όλα τα προβλήματα του NP έχουν πιστοποιητικά και μόνο αυτά. 60

61 Τέλος Ενότητας

Θεωρία Υπολογισμού και Πολυπλοκότητα

Θεωρία Υπολογισμού και Πολυπλοκότητα Θεωρία Υπολογισμού και Πολυπλοκότητα Κλάσεις P, NP NP-πληρότητα 15 Απριλίου 2008 Δρ. Παπαδοπούλου Βίκη 1 Υπολογίσιμα και Εφικτά Υπολογίσιμα Προβλήματα Είδαμε ότι 1. Οτιδήποτε μπορούμε να περιγράψουμε με

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα

Θεωρία Υπολογισμού και Πολυπλοκότητα Θεωρία Υπολογισμού και Πολυπλοκότητα Κεφάλαιο 14. Χρονική Πολυπλοκότητα 17, 20, 24 Απριλίου 2007 Δρ. Παπαδοπούλου Βίκη 1 Υπολογίσιμα και Εφικτά Υπολογίσιμα Προβλήματα Είδαμε ότι 1. Οτιδήποτε μπορούμε να

Διαβάστε περισσότερα

Chapter 7, 8 : Time, Space Complexity

Chapter 7, 8 : Time, Space Complexity CSC 314: Switching Theory Chapter 7, 8 : Time, Space Complexity 12 December 2008 1 1 Υπολογίσιμα και Εφικτά Υπολογίσιμα Προβλήματα Είδαμε ότι 1. Οτιδήποτεμπορούμεναπεριγράψουμεμεένααλγόριθμο μπορεί να

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Θεωρία Υπολογισμού Ενότητα 21: Υπολογισμοί ΜΤ - Αναδρομικές Γλώσσες Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Θεωρία Υπολογισμού Ενότητα 26: Καθολική Μηχανή Turing Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ Ενότητα 13: Πολυωνυμική αναγωγή Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

CSC 314: Switching Theory

CSC 314: Switching Theory CSC 314: Switching Theory Course Summary 9 th January 2009 1 1 Θέματα Μαθήματος Ερωτήσεις Τι είναι αλγόριθμος? Τι μπορεί να υπολογιστεί? Απαντήσεις Μοντέλα Υπολογισμού Δυνατότητες και μη-δυνατότητες 2

Διαβάστε περισσότερα

Υπολογιστική Πολυπλοκότητα

Υπολογιστική Πολυπλοκότητα Υπολογιστική Πολυπλοκότητα ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ Ενότητα 8: Ιδιότητες Γραμματικών χωρίς Συμφραζόμενα Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ Ενότητα 10: Συνδυασμοί μηχανών Turing Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

Λύσεις 4ης Σειράς Ασκήσεων

Λύσεις 4ης Σειράς Ασκήσεων Λύσεις 4ης Σειράς Ασκήσεων Άσκηση 1 Αναγάγουμε τν Κ 0 που γνωρίζουμε ότι είναι μη-αναδρομική (μη-επιλύσιμη) στην γλώσσα: L = {p() η μηχανή Turing Μ τερματίζει με είσοδο κενή ταινία;} Δοσμένης της περιγραφής

Διαβάστε περισσότερα

Chapter 7, 8 : Time, Space Complexity

Chapter 7, 8 : Time, Space Complexity CSC 314: Switching Theory Chapter 7, 8 : Time, Space Complexity 19 December 2008 1 1 Κλάση NP 2 Μη-Ντετερμινιστικές Μηχανές Turing: Eίναι δυνατόν σε μια συνολική κατάσταση να υπάρχουν πολλές δυνατές επόμενες

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 8: Σχέσεις - Πράξεις Δομές Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ. Ενότητα 11: Περιορισμοί της Αλγοριθμικής Ισχύος

ΑΛΓΟΡΙΘΜΟΙ. Ενότητα 11: Περιορισμοί της Αλγοριθμικής Ισχύος ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΛΓΟΡΙΘΜΟΙ Ενότητα 11: Περιορισμοί της Αλγοριθμικής Ισχύος Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες

Διαβάστε περισσότερα

NP-πληρότητα. Λεωνίδας Παληός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων

NP-πληρότητα. Λεωνίδας Παληός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων NP-πληρότητα Λεωνίδας Παληός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων Πολυωνυμικός μετασχηματισμός Ένας πολυωνυμικός μετασχηματισμός από την L 1 Σ 1 * στην L 2 Σ 2 * είναι μια συνάρτηση

Διαβάστε περισσότερα

Επίπεδα Γραφήματα : Προβλήματα και Υπολογιστική Πολυπλοκότητα

Επίπεδα Γραφήματα : Προβλήματα και Υπολογιστική Πολυπλοκότητα Αλγόριθμοι πολυωνυμικού χρόνου Ένας αλγόριθμος πολυωνυμικού χρόνου έχει χρόνο εκτέλεσης όπου είναι μία (θετική) σταθερά Κλάση πολυπλοκότητας : περιλαμβάνει τα προβλήματα που επιδέχονται λύση σε πολυωνυμικό

Διαβάστε περισσότερα

Υπολογιστική Πολυπλοκότητα Εξέταση Ιουνίου 2017 Σελ. 1 από 5

Υπολογιστική Πολυπλοκότητα Εξέταση Ιουνίου 2017 Σελ. 1 από 5 Υπολογιστική Πολυπλοκότητα Εξέταση Ιουνίου 2017 Σελ. 1 από 5 Στη σελίδα αυτή γράψτε μόνο τα στοιχεία σας. Γράψτε τις απαντήσεις σας στις επόμενες σελίδες, κάτω από τις αντίστοιχες ερωτήσεις. Στις απαντήσεις

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ Ενότητα 11: Καθολική μηχανή Turing Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Θεωρία Υπολογισμού Ενότητα 8: Πεπερασμένα Αυτόματα Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { Μ η Μ είναι μια ΤΜ η οποία διαγιγνώσκει το πρόβλημα ΙΣΟΔΥΝΑΜΙΑ ΤΜ (διαφάνεια 9 25)} (α) Γνωρίζουμε ότι το

Διαβάστε περισσότερα

t M (w) T ( w ) O( n) = O(n 2 )

t M (w) T ( w ) O( n) = O(n 2 ) Κεφάλαιο 9 Υπολογιστική Πολυπλοκότητα Σύνοψη Πέρα από το ερώτημα του αν για ένα πρόβλημα υπάρχει Μηχανή Turing, που το επιλύει, μας απασχολεί επίσης και το ερώτημα του αν ένα πρόβλημα είναι «πρακτικά»

Διαβάστε περισσότερα

Κλάσεις Πολυπλοκότητας

Κλάσεις Πολυπλοκότητας Κλάσεις Πολυπλοκότητας Παύλος Εφραιμίδης pefraimi ee.duth.gr Κλάσεις Πολυπλοκότητας 1 Οι κλάσεις πολυπλοκότητας P και NP P: Polynomial ΗκλάσηP περιλαμβάνει όλα τα υπολογιστικά προβλήματα που μπορούν

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ Ενότητα 3: Μη-ντετερμιμιστικά πεπερασμένα αυτόματα Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Υπολογιστική Πολυπλοκότητα

Υπολογιστική Πολυπλοκότητα Υπολογιστική Πολυπλοκότητα ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Πολυπλοκότητα Γιατί κάποια (επιλύσιμα) προβλήματα είναι δύσκολο

Διαβάστε περισσότερα

Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα

Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 13: Αλγόριθμοι-Μεγάλων ακεραίων- Εκθετοποίηση- Πολλαπλασιασμός πινάκων -Strassen Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Θεωρία Υπολογισμού Ενότητα 25: Γραμματικές Χωρίς Περιορισμούς Τμήμα Πληροφορικής ΘΥ 25: Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

Αλγόριθμοι Προσέγγισης για NP-Δύσκολα Προβλήματα

Αλγόριθμοι Προσέγγισης για NP-Δύσκολα Προβλήματα Αλγόριθμοι Προσέγγισης για NP-Δύσκολα Προβλήματα Διδάσκοντες: E. Ζάχος, Α. Παγουρτζής Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο

Διαβάστε περισσότερα

Προσεγγιστικοί Αλγόριθμοι

Προσεγγιστικοί Αλγόριθμοι Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. http://xkcd.com/287/ Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. Πως μπορούμε να αντιμετωπίσουμε το γεγονός ότι είναι απίθανη(;)

Διαβάστε περισσότερα

Μη Ντετερμινισμός και NP-Πληρότητα

Μη Ντετερμινισμός και NP-Πληρότητα Μη Ντετερμινισμός και NP-Πληρότητα Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μη Ντετερμινιστικές Μηχανές Turing Μη ντετερμινιστική

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ Ενότητα 4: Μη-ντετερμινιστικά πεπερασμένα αυτόματα με ε-μεταβάσεις Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Δημήτρης Πλεξουσάκης 3ο μέρος σημειώσεων: Μέθοδος της Επίλυσης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ Ενότητα 1: Εισαγωγή Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Επανάληψη Μαθήματος

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Επανάληψη Μαθήματος ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Επανάληψη Μαθήματος Το Μάθημα σε μια Διαφάνεια Υπολογιστικά μοντέλα Κανονικές Γλώσσες Ντετερμινιστικά Αυτόματα Μη Ντετερμινιστικά Αυτόματα Κανονικές Εκφράσεις

Διαβάστε περισσότερα

ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ

ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Ενότητα 4 Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 13: Παραλλαγές Μηχανών Turing και Περιγραφή Αλγορίθμων

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 13: Παραλλαγές Μηχανών Turing και Περιγραφή Αλγορίθμων ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 13: Παραλλαγές Μηχανών Turing και Περιγραφή Αλγορίθμων Τι θα κάνουμε σήμερα Εισαγωγή Πολυταινιακές Μηχανές Turing (3.2.1) Μη Ντετερμινιστικές Μηχανές

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 5: Αναδρομικές σχέσεις - Υπολογισμός Αθροισμάτων Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 11: Αριθμητική υπολοίπων-δυνάμεις Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Μεταγλωττιστές. Ενότητα 5: Λεκτική ανάλυση (Μέρος 1 ο ) Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ

Μεταγλωττιστές. Ενότητα 5: Λεκτική ανάλυση (Μέρος 1 ο ) Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Μεταγλωττιστές Ενότητα 5: Λεκτική ανάλυση (Μέρος 1 ο ) Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Μη Ντετερμινισμός και NP-Πληρότητα

Μη Ντετερμινισμός και NP-Πληρότητα Μη Ντετερμινισμός και NP-Πληρότητα Διδάσκοντες: Σ Ζάχος, Δ Φωτάκης Επιμέλεια διαφανειών: Δ Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μη Ντετερμινιστικές

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 15 Ιουνίου 2009 1 / 26 Εισαγωγή Η ϑεωρία

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 3: Σύνολα Συνδυαστική Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Θεωρία Υπολογισμού Ενότητα 10: Ισοδυναμία ντετερμινιστικών και μη ντετερμινιστικών αυτομάτων Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Τομές Γραφήματος. Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών. Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα

Τομές Γραφήματος. Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών. Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα Τομές Γραφήματος Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα και 12 26 20 10 9 7 17 14 4 Τομές Γραφήματος Γράφημα (μη κατευθυνόμενο)

Διαβάστε περισσότερα

Κατώτερα φράγματα Κατώτερο φράγμα: εκτίμηση της ελάχιστης εργασίας που απαιτείται για την επίλυση ενός προβλήματος. Παραδείγματα: Αριθμός συγκρίσεων π

Κατώτερα φράγματα Κατώτερο φράγμα: εκτίμηση της ελάχιστης εργασίας που απαιτείται για την επίλυση ενός προβλήματος. Παραδείγματα: Αριθμός συγκρίσεων π Περιορισμοί Αλγοριθμικής Ισχύος Κατηγοριοποίηση πολυπλοκοτήτων Κατώτερα φράγματα Κατώτερο φράγμα: εκτίμηση της ελάχιστης εργασίας που απαιτείται για την επίλυση ενός προβλήματος. Παραδείγματα: Αριθμός

Διαβάστε περισσότερα

Κεφάλαιο 8. NP και Υπολογιστική Δυσεπιλυσιμότητα. Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Κεφάλαιο 8. NP και Υπολογιστική Δυσεπιλυσιμότητα. Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. Κεφάλαιο 8 NP και Υπολογιστική Δυσεπιλυσιμότητα Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 πρόβλημα αναζήτησης (search problem) Ένα πρόβλημα αναζήτησης είναι ένα πρόβλημα στο

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Θεωρία Υπολογισμού Ενότητα 4: Ισοδυναμία, διάταξη, άπειρα σύνολα Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

Κλάση NP, NP-Complete Προβλήματα

Κλάση NP, NP-Complete Προβλήματα Κλάση NP, NP-Complete Προβλήματα Βαγγέλης ούρος douros@aueb.gr 1 11/6/2012 Αλγόριθμοι, Εαρινό Εξάμηνο 2012, Φροντιστήριο #14 Προβλήματα Απόφασης & Βελτιστοποίησης 2 Πρόβλημα Απόφασης: Κάθε πρόβλημα που

Διαβάστε περισσότερα

Μη Ντετερμινισμός και NP-Πληρότητα

Μη Ντετερμινισμός και NP-Πληρότητα Μη Ντετερμινισμός και P-Πληρότητα ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μη Ντετερμινιστικές Μηχανές Turing Μη ντετερμινιστική Μηχ. Turing (ΝTM)

Διαβάστε περισσότερα

Πολυπλοκότητα. Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης. Απαιτούμενοι πόροι, π.χ. μνήμη, εύρος ζώνης. Προσπάθεια υλοποίησης

Πολυπλοκότητα. Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης. Απαιτούμενοι πόροι, π.χ. μνήμη, εύρος ζώνης. Προσπάθεια υλοποίησης Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης Απαιτούμενοι πόροι, π.χ. μνήμη, εύρος ζώνης Προσπάθεια υλοποίησης Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης Απαιτούμενοι

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 9: Γεωμετρία του Χώρου των Μεταβλητών, Υπολογισμός Αντιστρόφου Μήτρας Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Δημήτρης Πλεξουσάκης

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Δημήτρης Πλεξουσάκης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Δημήτρης Πλεξουσάκης 4ο μέρος σημειώσεων: Ακολουθίες Επίλυσης, Επίλυση για όρους Horn, Λογικός Προγραμματισμός Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το

Διαβάστε περισσότερα

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός Κατευθυνόμενα γραφήματα Μαθηματικά Πληροφορικής 6ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Κατευθυνόμενο γράφημα G είναι ένα ζεύγος (V, E ) όπου V πεπερασμένο σύνολο του οποίου

Διαβάστε περισσότερα

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 3: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ - ΓΡΑΦΗΜΑΤΑ

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 3: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ - ΓΡΑΦΗΜΑΤΑ Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 3: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ - ΓΡΑΦΗΜΑΤΑ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 18: Χρονική και Χωρική Πολυπλοκότητα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 18: Χρονική και Χωρική Πολυπλοκότητα ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 18: Χρονική και Χωρική Πολυπλοκότητα Τι θα κάνουμε σήμερα Εισαγωγικά Χρονική Πολυπλοκότητα (7) Κλάση P (7.2) Κλάση ΝΡ (7.3) ΝΡ-πληρότητα (7.4) Χωρική

Διαβάστε περισσότερα

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός Κατευθυνόμενα γραφήματα Μαθηματικά Πληροφορικής 6ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Κατευθυνόμενο γράφημα G είναι ένα ζεύγος (V, E ) όπου V πεπερασμένο σύνολο του οποίου

Διαβάστε περισσότερα

Το πρόβλημα μονοδρόμησης (The One-Way Street Problem)

Το πρόβλημα μονοδρόμησης (The One-Way Street Problem) Το πρόβλημα μονοδρόμησης (The One-Way Street Problem) Το πρόβλημα Σχετίζεται με τη διαχείριση της κίνησης οχημάτων στους δρόμους Αν δεν υπήρχαν καθυστερήσεις στην κίνηση στις πόλεις Αποφυγή σπατάλης ενέργειας

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 1: Εισαγωγή- Χαρακτηριστικά Παραδείγματα Αλγορίθμων Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Αναζήτηση Κατά Πλάτος

Αναζήτηση Κατά Πλάτος Αναζήτηση Κατά Πλάτος ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 2: Γραφήματα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 2: Γραφήματα Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 2: Γραφήματα Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης

Διαβάστε περισσότερα

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Θεωρία Υπολογισμού. Ενότητα 3 : Γραφήματα & Αποδείξεις. Αλέξανδρος Τζάλλας

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Θεωρία Υπολογισμού. Ενότητα 3 : Γραφήματα & Αποδείξεις. Αλέξανδρος Τζάλλας 1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Θεωρία Υπολογισμού Ενότητα 3 : Γραφήματα & Αποδείξεις Αλέξανδρος Τζάλλας 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Τμήμα Μηχανικών Πληροφορικής

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 4: Διατάξεις Μεταθέσεις Συνδυασμοί Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Μαθηματική Ανάλυση Ι

Μαθηματική Ανάλυση Ι Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Μαθηματική Ανάλυση Ι Ενότητα 1: Σύνολα, Πραγματικοί αριθμοί Επίκ. Καθηγητής Θ. Ζυγκιρίδης e-mail: tzygiridis@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (1)

Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (1) Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες () Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Πεπερασμένα Αυτόματα (Κεφάλαιο., Sipser) Ορισμός πεπερασμένων αυτομάτων και ορισμός του

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { R η R είναι μια κανονική έκφραση η οποία παράγει μια μη πεπερασμένη γλώσσα} (β) { G η G είναι μια CFG η οποία

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Άλγεβρα των Πινάκων (2) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Άλγεβρα των Πινάκων (2) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΕΝΟΤΗΤΑ: Άλγεβρα των Πινάκων (2) ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 18: Επίλυση Γενικών Γραμμικών Προβλημάτων Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Ροή Δικτύου Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Μοντελοποίηση Δικτύων Μεταφοράς Τα γραφήματα χρησιμοποιούνται συχνά για την μοντελοποίηση

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Κεφάλαιο 8. NP και Υπολογιστική Δυσεπιλυσιμότητα. Παύλος Εφραιμίδης V1.1,

Κεφάλαιο 8. NP και Υπολογιστική Δυσεπιλυσιμότητα. Παύλος Εφραιμίδης V1.1, Κεφάλαιο 8 NP και Υπολογιστική Δυσεπιλυσιμότητα Παύλος Εφραιμίδης V1.1, 2015-01-19 Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 πρόβλημα αναζήτησης (search problem) Ένα πρόβλημα

Διαβάστε περισσότερα

Προσεγγιστικοί Αλγόριθμοι

Προσεγγιστικοί Αλγόριθμοι Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. http://xkcd.com/287/ Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. Πως μπορούμε να αντιμετωπίσουμε το γεγονός ότι είναι απίθανη(;)

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ Ενότητα 5: Μη κανονικές γλώσσες Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

για NP-Δύσκολα Προβλήματα

για NP-Δύσκολα Προβλήματα Προσεγγιστικοί Αλγόριθμοι για NP-Δύσκολα Προβλήματα Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 23: Κλασική Ανάλυση Ευαισθησίας, Βασικές Έννοιες Γραφημάτων Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Διακριτά Μαθηματικά Ι Ενότητα 4: Θεωρία Μέτρησης Po lya Μέρος 1 Διδάσκων: Χ. Μπούρας (bouras@cti.gr) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Κεφάλαιο 8. NP και Υπολογιστική Δυσεπιλυσιµότητα. Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Κεφάλαιο 8. NP και Υπολογιστική Δυσεπιλυσιµότητα. Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. Κεφάλαιο 8 NP και Υπολογιστική Δυσεπιλυσιµότητα Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 πρόβληµα αναζήτησης (search problem) Ένα πρόβληµα αναζήτησης είναι ένα πρόβληµα στο

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Διακριτά Μαθηματικά Ι Ενότητα 2: Γεννήτριες Συναρτήσεις Μέρος 3 Διδάσκων: Χ. Μπούρας (bouras@cti.gr) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Chapter 7, 8 : Completeness

Chapter 7, 8 : Completeness CSC 314: Switching Theory Chapter 7, 8 : Completeness 19 December 2008 1 1 Αναγωγές Πολυωνυμικού Χρόνου Ορισμός. f: Σ * Σ * ονομάζεται υπολογίσιμη σε πολυνωνυμικό χρόνο αν υπάρχει μια πολυωνυμικά φραγμένη

Διαβάστε περισσότερα

Ασκήσεις στους Γράφους. 1 ο Σετ Ασκήσεων Βαθμός Μονοπάτια Κύκλος Euler Κύκλος Hamilton Συνεκτικότητα

Ασκήσεις στους Γράφους. 1 ο Σετ Ασκήσεων Βαθμός Μονοπάτια Κύκλος Euler Κύκλος Hamilton Συνεκτικότητα Ασκήσεις στους Γράφους 1 ο Σετ Ασκήσεων Βαθμός Μονοπάτια Κύκλος Euler Κύκλος Hamilton Συνεκτικότητα Ασκηση 1 η Να αποδείξετε ότι κάθε γράφημα περιέχει μια διαδρομή από μια κορυφή u σε μια κορυφή w αν και

Διαβάστε περισσότερα

Συντομότερες ιαδρομές

Συντομότερες ιαδρομές Συντομότερες ιαδρομές ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόγχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόγχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός Κατευθυνόμενα γραφήματα Μαθηματικά Πληροφορικής 6ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Κατευθυνόμενο γράφημα G είναι ένα ζεύγος (V, E ) όπου V πεπερασμένο σύνολο του οποίου

Διαβάστε περισσότερα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Θεωρία Συνόλων, Συναρτήσεις Πραγματικής Μεταβλητής, Όριο και Συνέχεια Ανδριανός Ε Τσεκρέκος Τμήμα Λογιστικής

Διαβάστε περισσότερα

NP-complete problems. IS, 4-Degree IS,CLIQUE, NODE COVER, MAX CUT, MAX BISECTION, BISECTION WIDTH. NP-complete problems 1 / 30

NP-complete problems. IS, 4-Degree IS,CLIQUE, NODE COVER, MAX CUT, MAX BISECTION, BISECTION WIDTH. NP-complete problems 1 / 30 NP-complete problems IS, 4-Degree IS,CLIQUE, NODE COVER, MAX CUT, MAX BISECTION, BISECTION WIDTH Καλογερόπουλος Παναγιώτης (ΜΠΛΑ) NP-complete problems 1 / 30 Independent Set is NP-complete Ορισμός. Εστω

Διαβάστε περισσότερα

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί Η ΠΑΡΑΓΩΓΟΣ. Η ΕΝΝΟΙΑ ΤΗΣ ΑΝΑΛΥΤΙΚΗΣ ΣΥΝΑΡΗΣΗΣ Διδάσκων : Επίκ. Καθ. Κολάσης Χαράλαμπος Άδειες Χρήσης

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Θεωρία Υπολογισμού Ενότητα 2: Σύνολα και σχέσεις Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 7β: Όρια Αλγόριθμων Ταξινόμησης Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos.

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 10: Αριθμητική υπολοίπων - Κυκλικές ομάδες: Διαιρετότητα - Ευκλείδειος αλγόριθμος - Κατάλοιπα Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Φροντιστήριο 11 Λύσεις

Φροντιστήριο 11 Λύσεις Άσκηση 1 Φροντιστήριο 11 Λύσεις Να αποδείξετε ότι η κλάση Ρ είναι κλειστή ως προς τις πράξεις της ένωσης, της συναρμογής και του συμπληρώματος. Θα πρέπει να δείξουμε ότι: (α) Ένωση: Αν οι Λ 1 και Λ 2 είναι

Διαβάστε περισσότερα

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 6: Προβλήματα ικανοποίησης περιορισμών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 6: Προβλήματα ικανοποίησης περιορισμών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 6: Προβλήματα ικανοποίησης περιορισμών Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Θεωρία Υπολογισμού Ενότητα 12: Κανονικότητα ή μη των γλωσσών Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Θεωρία Υπολογισμού Ενότητα 14: Γραμματικές Χωρίς Συμφραζόμενα Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 5: Προτασιακός Λογισμός: Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών

Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 5: Προτασιακός Λογισμός: Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 5: Προτασιακός Λογισμός: Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης 1. Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Θεωρία Υπολογισμού Ενότητα 7: Πεπερασμένη αναπαράσταση γλωσσών Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 2: Διαφορικός Λογισμός. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Μαθηματικά. Ενότητα 2: Διαφορικός Λογισμός. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Μαθηματικά Ενότητα 2: Διαφορικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Διακριτά Μαθηματικά Ι Ενότητα 2: Γεννήτριες Συναρτήσεις Μέρος 2 Διδάσκων: Χ. Μπούρας (bouras@cti.gr) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

214 ΚΕΦΑΛΑΙΟ 7. ΕΠΙΛΥΣΙΜΟΤΗΤΑ - ΜΗ ΕΠΙΛΥΣΙΜΟΤΗΤΑ 7.1 Το Πρόβλημα του Τερματισμού Θεώρημα 7.1 (Πρόβλημα του Τερματισμού - ημιαπόφαση) Η γλώσσα του Προβ

214 ΚΕΦΑΛΑΙΟ 7. ΕΠΙΛΥΣΙΜΟΤΗΤΑ - ΜΗ ΕΠΙΛΥΣΙΜΟΤΗΤΑ 7.1 Το Πρόβλημα του Τερματισμού Θεώρημα 7.1 (Πρόβλημα του Τερματισμού - ημιαπόφαση) Η γλώσσα του Προβ Κεφάλαιο 7 Επιλυσιμότητα - Μη επιλυσιμότητα Σύνοψη Στα προηγούμενα κεφάλαια επικεντρωθήκαμε σε επιλύσιμα προβλήματα και μελετήσαμε υπολογιστικά μοντέλα με δυνατότητες, που συνεχώς διευρύναμε. Το τελευταίο

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Θεμελιώσεις Επιστήμης Η/Υ ΠΛΗ30 Τελική Εξέταση 26 Ιουνίου 2013 Ονοματεπώνυμο Φοιτητή Αριθμός Μητρώου Φοιτητή Τμήμα Υπογραφή Φοιτητή Υπογραφή Επιτηρητή Διάρκεια: 180 Ερώτημα Μονάδες Βαθμολογία 1 10+10 2

Διαβάστε περισσότερα

Ενότητα: Δακτύλιοι, Ακέραιες Περιοχές, Σώματα. Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος

Ενότητα: Δακτύλιοι, Ακέραιες Περιοχές, Σώματα. Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος Τίτλος Μαθήματος: Αλγεβρικές Δομές ΙΙ Ενότητα: Δακτύλιοι, Ακέραιες Περιοχές, Σώματα Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος Τμήμα: Μαθηματικών Κεφάλαιο 1 Προκαταρκτικές Έννοιες 1.1 Δακτύλιοι,

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 9: Εσωτερική πράξη και κλάσεις ισοδυναμίας - Δομές Ισομορφισμοί Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Θεωρία Υπολογισμού. Ενότητα 5 : Λογικά Επιχειρήματα, Αλφάβητα & Γλώσσες (2/2) Αλέξανδρος Τζάλλας

Θεωρία Υπολογισμού. Ενότητα 5 : Λογικά Επιχειρήματα, Αλφάβητα & Γλώσσες (2/2) Αλέξανδρος Τζάλλας 1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Θεωρία Υπολογισμού Ενότητα 5 : Λογικά Επιχειρήματα, Αλφάβητα & Γλώσσες (2/2) Αλέξανδρος Τζάλλας 2 Ανοιχτά Ακαδημαϊκά Μαθήματα Τμήμα Μηχανικών

Διαβάστε περισσότερα