Το πρόβλημα μονοδρόμησης (The One-Way Street Problem)

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Το πρόβλημα μονοδρόμησης (The One-Way Street Problem)"

Transcript

1 Το πρόβλημα μονοδρόμησης (The One-Way Street Problem)

2 Το πρόβλημα Σχετίζεται με τη διαχείριση της κίνησης οχημάτων στους δρόμους Αν δεν υπήρχαν καθυστερήσεις στην κίνηση στις πόλεις Αποφυγή σπατάλης ενέργειας Μείωση ρύπανσης ατμόσφαιρας Προσέγγιση αντιμετώπισης: μονοδρόμηση οδών αποδοτικότερη διαχείριση κίνησης Ερώτηση: είναι δυνατόν να μονοδρομηθούν συγκεκριμένοι οδοί και αν ναι, πώς; Πάντα είναι δυνατή η μονοδρόμηση οδών Απλά τοποθετείται ένα σχετικό σήμα!! Πρέπει όμως πάντα να υπάρχει τρόπος μετάβασης από οποιοδήποτε σημείο σε οποιοδήποτε άλλο

3 Απλουστευμένη εκδοχή του προβλήματος Υπόθεση: κάθε οδός είναι διπλής κατεύθυνσης Ζητούμενο: κάθε οδός να μονοδρομηθεί τελικά Γραφοθεωρητική διατύπωση του προβλήματος Γωνίες οδών κορυφές γραφήματος Υπάρχει ακμή μεταξύ δύο κορυφών στο γράφημα οι αντίστοιχες γωνίες οδών συνδέονται από οδό διπλής κατεύθυνσης Αναθέτουμε κατευθύνσεις στις ακμές ώστε να λάβουμε ένα προσανατολισμένο γράφημα (oriented graph) Από τα κατευθυνόμενα γραφήματα, τα προσανατολισμένα είναι αυτά που δεν περιέχουν 2-cycles, δηλ., το πολύ μία από τις ακμές (x, y) και (y, x) είναι κατευθυνόμενες ακμές του γραφήματος Στο δικατευθυνόμενο γράφημα που προκύπτει είναι δυνατή η μετάβαση από κάθε σημείο σε κάθε άλλο το δικατευθυνόμενο γράφημα είναι ισχυρά συνεκτικό (strongly connected)

4 Ισχυρά συνεκτικά προσανατολισμένα γραφήματα Κάθε γράφημα G έχει ισχυρά συνεκτική προσανατολισμένη εκδοχή; Αρκεί το γράφημα G να είναι συνεκτικό; Συνεκτικό: υπάρχει σε αυτό μονοπάτι από κάθε κορυφή σε κάθε άλλη Όχι! Τα παρακάτω γραφήματα είναι ισχυρά συνεκτικά αλλά δεν έχουν ισχυρά συνεκτική προσανατολισμένη εκδοχή Σε όλες τις περιπτώσεις, υπάρχει πρόβλημα με την κατεύθυνση της ακμής a

5 Ισχυρά συνεκτικά προσανατολισμένα γραφήματα Αν κατευθύνουμε την κόκκινη ακμή από την κορυφή α προς την b δεν υπάρχει μονοπάτι από την b στην α Αν κατευθύνουμε την κόκκινη ακμή από την κορυφή b προς την α δεν υπάρχει μονοπάτι από την α στην b

6 Ισχυρά συνεκτικά προσανατολισμένα γραφήματα Μια ακμή x σε ένα κατευθυνόμενο γράφημα G λέγεται γέφυρα (bridge) αν η απομάκρυνσή της χωρίς την απομάκρυνση των κορυφών που συνδέει δημιουργεί μη συνεκτικό γράφημα Όλες οι κόκκινες ακμές (με επιγραφή a) είναι γέφυρες (bridges) Αν ένα κατευθυνόμενο γράφημα διαθέτει ισχυρά συνεκτική προσανατολισμένη εκδοχή, τότε δεν μπορεί να περιέχει γέφυρες Ισχύει και το αντίστροφο: αν ένα κατευθυνόμενο γράφημα δεν περιέχει γέφυρες, τότε διαθέτει ισχυρά συνεκτική προσανατολισμένη εκδοχή

7 Θεώρημα [Robbins, 1939] Ένα γράφημα G διαθέτει ισχυρά συνεκτική προσανατολισμένη εκδοχή αν και μόνον αν το G είναι συνεκτικό και δεν περιέχει γέφυρες

8 Θεώρημα [Robbins, 1939]: απόδειξη Αν ένα κατευθυνόμενο γράφημα διαθέτει ισχυρά συνεκτική προσανατολισμένη εκδοχή η συνεκτικότητα διατηρείται όποια ακμή και αν απομακρυνθεί (χωρίς να απομακρυνθούν τα άκρα της) καμία ακμή δεν είναι γέφυρα Αν ένα κατευθυνόμενο γράφημα δεν περιέχει γέφυρες Αναθέτουμε κατεύθυνση σε μία ακμή κάθε φορά Αφού σε κάθε βήμα η ακμή {u, v} δεν είναι γέφυρα δε μπορεί να γίνει μετά την απόδοση κατεύθυνσης σε αυτή το γράφημα διαθέτει ισχυρά συνεκτική προσανατολισμένη εκδοχή

9 Άλλη εκδοχή του προβλήματος Υπόθεση: κάθε οδός είναι διπλής κατεύθυνσης Ζητούμενο: κάποιες οδοί να μονοδρομηθούν Έστω D κατευθυνόμενο γράφημα με σύνολο κορυφών το σύνολο των γωνιών των οδών κατευθυνόμενη ακμή από την x στην y αν υπάρχει δρόμος που συνδέει τις x και y και επιτρέπεται η κυκλοφορία από την x στην y Αντικαθιστούμε τις 2 κατευθυνόμενες ακμές σε δρόμους διπλής κατεύθυνσης με 1 μία μη κατευθυνόμενη ακμή Το γράφημα G που προκύπτει είναι μικτό (mixed graph) αφού από τις κορυφές του κάποιες συνδέονται με ακμές μιας κατεύθυνσης κάποιες συνδέονται με μη κατευθυνόμενες ακμές Το κατευθυνόμενο γράφημα D λέμε ότι υπόκειται του γραφήματος G και συμβολίζεται D(G)

10 Συνεκτικότητα μικτών γραφημάτων Ένα μικτό γράφημα G είναι ισχυρά συνεκτικό αν το υποκείμενο γράφημά του D(G) είναι ισχυρά συνεκτικό Ένα μικτό γράφημα G είναι συνεκτικό αν όταν αγνοήσουμε τις κατευθύνσεις των ακμών του λαμβάνουμε συνεκτικό γράφημα Μια μη κατευθυνόμενη ακμή a σε ένα μικτό γράφημα είναι γέφυρα αν η απομάκρυνση της a αλλά όχι των κορυφών στα άκρα της δίνει μικρό γράφημα που δεν είναι συνεκτικό Τα γραφήματα G1, G2 και G3 είναι συνεκτικά αλλά το G2 δεν είναι ισχυρά συνεκτικό η ακμή a στο G3 είναι γέφυρα

11 Θεώρημα [Boesch και Tindell, 1977] Έστω G ισχυρά συνεκτικό μικτό γράφημα Τότε για κάθε ακμή {u, v} του G που δεν είναι γέφυρα, υπάρχει κατευθυνόμενη εκδοχή της {u, v} τέτοια ώστε το μικτό γράφημα που προκύπτει να είναι ισχυρά συνεκτικό Για την απόδειξη χρησιμοποιούμε το επόμενο Λήμμα

12 Λήμμα Έστω G ισχυρά συνεκτικό μικτό γράφημα και {u, v} μια ακμή του G Έστω D ' το κατευθυνόμενο γράφημα που προκύπτει από το D(G) παραλείποντας τις κατευθυνόμενες ακμές (u, v) και (v, u) αλλά όχι τις κορυφές u και v Έστω A το σύνολο όλων των κορυφών που είναι προσπελάσιμες από τη u μέσω ενός μονοπατιού στο γράφημα D', εκτός από την κορυφή u Έστω B το σύνολο κορυφών που ορίζεται ανάλογα για την v Υποθέτουμε ότι u B και v A Τότε η ακμή {u, v} είναι γέφυρα στο γράφημα G

13 Λήμμα: απόδειξη Κάθε κορυφή w του G ανήκει στο σύνολο A ή στο σύνολο B Αν κάποια κορυφή w δεν ανήκει ούτε στο A ούτε στο B, τότε στο D(G) δεν θα υπήρχε μονοπάτι από την u στην w ή από την v στη w το G δεν θα ήταν ισχυρά συνεκτικό Τα A και B πρέπει να είναι ξένα μεταξύ τους Έστω κορυφή w A B Από τον ορισμό των Α και Β: w u, v Λόγω της ισχυρής συνεκτικότητας: υπάρχει στο D(G) μονοπάτι από την w στη u και μονοπάτι από την w στ v (i) υπάρχει μονοπάτι από την w στη u στο D' ή (ii) υπάρχει μονοπάτι από την w στη v στο D (i) υπάρχει μονοπάτι από τη v στη w στη u στο D η u ανήκει στο σύνολο B (ii) η v ανήκει στο σύνολο A Στο G χωρίς την ακμή {u, v}, δε μπορεί να υπάρχει απλή ή κατευθυνόμενη ακμή που να συνδέει κορυφές από τα σύνολο A και B Αν υπήρχε τέτοια απλή ή κατευθυνόμενη ακμή, θα υπήρχε κατευθυνόμενη ακμή στο D' της μορφής (u', v') ή (v', u'), για u' A και v' B Αν υπήρχε ακμή της μορφής (u', v'): v' θα ανήκε στο σύνολο A αντίφαση αφού τα A και B είναι ξένα μεταξύ τους Αν υπήρχε ακμή της μορφής (v', u'): πάλι καταλήγουμε σε ανάλογη αντίφαση Αποδείξαμε ότι τα A και B διαμερίζουν τις κορυφές του G και στο G χωρίς την ακμή {u, v} δεν υπάρχει απλή ή κατευθυνόμενη ακμή μεταξύ κορυφών αυτών των δύο συνόλων το γράφημα G χωρίς την ακμή {u, v} δεν είναι συνεκτικό η ακμή {u, v} είναι γέφυρα

14 Θεώρημα [Boesch και Tindell, 1977]: απόδειξη Με βάση το Λήμμα: u B ή v A Αν u B: δίνοντας στην ακμή {u, v} κατεύθυνση από τη u στη v πετυχαίνουμε ισχυρή συνεκτικότητα Αν u Α: δίνοντας στην ακμή {u, v} κατεύθυνση από τη v στη u πετυχαίνουμε ισχυρή συνεκτικότητα Αν u Α και u B: η ανάθεση οποιασδήποτε κατεύθυνσης στην ακμή {u, v} συνεπάγεται ισχυρή συνεκτικότητα

15 Αλγόριθμος μονοδρόμησης Boesch, Tindell Σταδιακή ανάθεση κατευθύνσεων στις ακμές Αυθαίρετη επιλογή κατευθύνσεων στα 2 πρώτα βήματα

16 Αλγόριθμος μονοδρόμησης βασισμένος σε DFS Επιγράφουμε τις ακμές με τους ακέραιους 1, 2,, n n: αριθμός κορυφών του αρχικού συνεκτικού, χωρίς γέφυρες γραφήματος Ξεκινάμε επιλέγοντας αυθαίρετα μία κορυφή που την επιγράφουμε με 1 Επιλέγουμε κάποια (χωρίς επιγραφή) κορυφή προσκείμενη στην κορυφή 1 και την επιγράφουμε με 2 Γενικά: έχοντας επιγράψει κορυφές με 1, 2,, k, αναζητούμε όλες τις κορυφές σε απόσταση 1 από την κορυφή με επιγραφή k Αν υπάρχει τέτοια κορυφή την επιγράφουμε με k + 1 Διαφορετικά, βρίσκουμε τη μεγαλύτερη επιγραφή j έτσι ώστε να υπάρχει κορυφή χωρίς επιγραφή σε απόσταση 1 από την j, και επιγράφουμε την κορυφή με k + 1 Η απόδοση κατευθύνσεων γίνεται σύμφωνα με την αρίθμηση Η διαδικασία μπορεί να τερματίσει αν και μόνον αν ξεκινάμε με συνεκτικό γράφημα

17 Σύγκριση των 2 αλγορίθμων Ο δεύτερος αλγόριθμος είναι γρηγορότερος Στη DFS αναζήτηση, χρειάζονται V(G) βήματα, ένα για την ανάθεση κάθε επιγραφής Σε κάθε βήμα εξετάζουμε συγκεκριμένο αριθμό ακμών E(G) αφού δεν επανεξετάζουμε ακμές που έχουμε ήδη εξετάσει η διαδικασία ανάθεσης επιγραφών απαιτεί βήματα της τάξης του V(G) + E(G) Ο πρώτος αλγόριθμος απαιτεί να καθορίσουμε στο πρώτο κιόλας βήμα αν η u συνδέεται με τη v στο D Το D είναι κατευθυνόμενο γράφημα με V(G) κορυφές απαιτούνται υπολογισμοί της τάξης του V(G) 3 (Reinnold, Nievergelt, Deo, 1977, p. 341) Αφού το πλήθος των ακμών E(G) είναι της τάξης του V(G) 2 ο αλγόριθμος αυτός είναι πιο αργός

18 Αποδοτικότητα Ασχοληθήκαμε μόνο με τον προσδιορισμό κατευθύνσεων ώστε να είναι δυνατή η μετάβαση από κάποιο σημείο σε κάποιο άλλο ΔΕΝ ασχοληθήκαμε με το ότι μπορεί να απαιτούνται πολλές «παρακάμψεις» για μια μετάβαση

19 Απόσταση κορυφών γραφήματος Απόσταση d G (x, y) δύο κορυφών x και y σε ένα συνεκτικό γράφημα G: το μήκος της μικρότερης αλυσίδας μεταξύ τους Απόσταση d D (x, y) δύο κορυφών x και y σε ένα ισχυρά συνεκτικό κατευθυνόμενο γράφημα D: το μήκος του συντομότερου μονοπατιού από την x στη y ΠΡΟΣΟΧΗ: Δεν ισχύει πάντα ότι d D (x, y) = d D (y, x) Δείτε δύο ισχυρά συνεκτικές προσανατολισμένες εκδοχές D και D' του γραφήματος G d D (a, b)= 11 ενώ d D (a, b) = 3 Για το άτομο που θέλει να μεταβεί από την a στη b η εκδοχή D' είναι πολύ πιο αποδοτική Γενικά: επιθυμούμε ισχυρά συνεκτικές προσανατολισμένες εκδοχές γραφημάτων χωρίς μεγάλες αποστάσεις μεταξύ των κορυφών τους

20 Αναδιατυπώσεις του προβλήματος 1. Βρες την ισχυρά συνεκτική προσανατολισμένη εκδοχή D του G όπου η μέση απόσταση d D (a,b) για κάθε a, b ελαχιστοποιείται 2. Βρες την ισχυρά συνεκτική προσανατολισμένη εκδοχή D του G όπου η μέγιστη απόσταση d D (a,b) για κάθε a, b ελαχιστοποιείται 3. Βρες την ισχυρά συνεκτική προσανατολισμένη εκδοχή D του G όπου η διαφορά των αποστάσεων d G (a,b) και d D (a,b) είναι κατά μέσο όρο η ελάχιστη δυνατή 4. Βρες την ισχυρά συνεκτική προσανατολισμένη εκδοχή D του G όπου η μέγιστη διαφορά των αποστάσεων d G (a,b) και d D (a,b) είναι η ελάχιστη δυνατή

21 Αποτελέσματα Διάμετρος (diameter) συνεκτικού γραφήματος (ισχυρά συνεκτικού κατευθυνόμενου γραφήματος): η μέγιστη απόσταση μεταξύ οποιωνδήποτε δύο κορυφών του Chvátal και Thomassen: Κάθε συνεκτικό γράφημα χωρίς γέφυρες και διάμετρο d διαθέτει μια ισχυρά συνεκτική προσανατολισμένη εκδοχή με διάμετρο το πολύ 2d 2 +2d Η εύρεση της ισχυρά συνεκτικής προσανατολισμένης εκδοχής με την ελάχιστη διάμετρο είναι υπολογιστικά δύσκολο πρόβλημα

22 Στοιχεία υπολογιστικής πολυπλοκότητας Για κάθε πεπερασμένο πρόβλημα υπάρχει αλγόριθμος που το λύνει: «Δοκίμασε όλες τις πιθανές λύσεις» Όμως ψάχνουμε για «καλούς» αλγόριθμους (Edmonds): Διαδικασίες που τερματίζουν σε το πολύ p(n) βήματα, όπου n το μέγεθος της «εισόδου» και p(n) κάποιο πολυώνυμο

23 Στοιχεία υπολογιστικής πολυπλοκότητας Οι αλγόριθμοι αυτοί μπορεί να είναι ντετερμινιστικοί (deterministic) ή μη ντετερμινιστικοί (nondeterministic) Φανταστείτε ότι κάθε αλγόριθμος μεταβαίνει μεταξύ καταστάσεων Ένας ντετερμινιστικός αλγόριθμος μεταβαίνει κάθε φορά μόνο σε μία επόμενη κατάσταση Ένας μη ντετερμινιστικός αλγόριθμος μπορεί να μεταβεί κάθε φορά σε πολλές επόμενες καταστάσεις ταυτόχρονα Δηλαδή ένας μη ντετερμινιστικός αλγόριθμος μπορεί να εξερευνήσει πολλά ενδεχόμενα ταυτόχρονα

24 Στοιχεία υπολογιστικής πολυπλοκότητας Η κλάση των προβλημάτων για τα οποία υπάρχει ντετερμινιστικός αλγόριθμος που τερματίζει σε πολυωνυμικό χρόνο καλείται P Η κλάση των προβλημάτων για τα οποία υπάρχει μη ντετερμινιστικός αλγόριθμος που τερματίζει σε πολυωνυμικό χρόνο καλείται NP Παράδειγμα προβλήματος στην κλάση NP είναι το πρόβλημα του καθορισμού του αν ένα γράφημα μπορεί να χρωματιστεί με δεδομένο αριθμό χρωμάτων Όλα τα προβλήματα στην κλάση P ανήκουν επίσης στην κλάση NP ΑΛΛΑ δεν είναι γνωστό αν υπάρχει κάποιο πρόβλημα στην κλάση NP που δεν ανήκει στην κλάση P

25 Στοιχεία υπολογιστικής πολυπλοκότητας Ένα πρόβλημα L λέγεται δύσκολο στην κλάση NP ή NP-hard αν το L έχει την εξής ιδιότητα: Αν το L μπορεί να λυθεί από κάποιον ντετερμινιστικό αλγόριθμο πολυωνυμικού χρόνου, τότε το ίδιο μπορεί να γίνει και για κάθε πρόβλημα στην κλάση NP Ένα πρόβλημα λέγεται πλήρες στην κλάση NP ή NPcomplete αν είναι NP-hard και ανήκει στην κλάση NP Ο Cook (1971) απέδειξε ότι υπάρχουν NP-hard και NPcomplete προβλήματα Απόρροια της δουλειάς του είναι π.χ., ότι το πρόβλημα εύρεσης της μέγιστης κλίκας (clique) σε ένα γράφημα είναι NP-hard Ο Karp (1972) απέδειξε ότι υπάρχουν πάρα πολλά NPcomplete προβλήματα

26 Στοιχεία υπολογιστικής πολυπλοκότητας Πολλοί επιστήμονες αμφισβητούν πως κάθε πρόβλημα στην κλάση NP μπορεί να λυθεί από ντετερμινιστικό αλγόριθμο πολυωνυμικού χρόνου και κατά συνέπεια αμφισβητούν πως τα NP-hard προβλήματα λύνονται από τέτοιους αλγόριθμους

27 Αναδιατυπώσεις του προβλήματος Οι Chvátal και Thomassen απέδειξαν ότι η επαναδιατύπωση (2) του προβλήματος είναι NP-hard 1. Βρες την ισχυρά συνεκτική προσανατολισμένη εκδοχή D του G όπου η μέση απόσταση d D (a,b) για κάθε a, b ελαχιστοποιείται 2. Βρες την ισχυρά συνεκτική προσανατολισμένη εκδοχή D του G όπου η μέγιστη απόσταση d D (a,b) για κάθε a, b ελαχιστοποιείται 3. Βρες την ισχυρά συνεκτική προσανατολισμένη εκδοχή D του G όπου η διαφορά των αποστάσεων d G (a,b) και d D (a,b) είναι κατά μέσο όρο η ελάχιστη δυνατή 4. Βρες την ισχυρά συνεκτική προσανατολισμένη εκδοχή D του G όπου η μέγιστη διαφορά των αποστάσεων d G (a,b) και d D (a,b) είναι η ελάχιστη δυνατή Είναι βάσιμο να αμφισβητεί κανείς ότι θα διατυπωθεί ποτέ «καλός» (δηλ., γρήγορος) ντετερμινιστικός αλγόριθμος για το πρόβλημα αυτό

28 Εύρεση μη αποδοτικών λύσεων Μερικές φορές αρκεί η εύρεση κάποιας ισχυρά συνεκτικής προσανατολισμένης εκδοχής γραφήματος που να μην είναι απαραίτητα αποδοτική Δηλ., χωρίς απαίτηση ελαχιστοποίησης αποστάσεων Παράδειγμα: Συνήθως σε μεγάλα εθνικά πάρκα αποθαρρύνονται οι επισκέπτες να οδηγούν σε πολυσύχναστες περιοχές Μια προσέγγιση είναι η μονοδρόμηση πολλών οδών με μη αποδοτικό τρόπο δηλ., με ανάγκη κάλυψης μεγάλων αποστάσεων για μετάβαση οδικώς από το κάποιο σημείο σε άλλο Αιτιολόγηση: Αν η μετακίνηση με αυτοκίνητο είναι δύσκολη οι άνθρωποι θα ενθαρρυνθούν να χρησιμοποιήσουν άλλους τρόπους μετακίνησης όπως ποδήλατο, πεζοπορία, λεωφορεία Επομένως, είναι ζητούμενο η διάμετρος της προσανατολισμένης εκδοχής να είναι πολύ μεγαλύτερη από τη διάμετρο του αντίστοιχου μη κατευθυνόμενου γραφήματος Ανάλογες μη αποδοτικές εκδοχές είναι δυνατές και για τις υπόλοιπες αναδιατυπώσεις του προβλήματος μονοδρόμησης Ούτε για αυτές τις εκδοχές είναι γνωστοί «καλοί» αλγόριθμοι

Κεφάλαιο 8. NP και Υπολογιστική Δυσεπιλυσιμότητα. Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Κεφάλαιο 8. NP και Υπολογιστική Δυσεπιλυσιμότητα. Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. Κεφάλαιο 8 NP και Υπολογιστική Δυσεπιλυσιμότητα Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 πρόβλημα αναζήτησης (search problem) Ένα πρόβλημα αναζήτησης είναι ένα πρόβλημα στο

Διαβάστε περισσότερα

Κεφάλαιο 8. NP και Υπολογιστική Δυσεπιλυσιμότητα. Παύλος Εφραιμίδης V1.1,

Κεφάλαιο 8. NP και Υπολογιστική Δυσεπιλυσιμότητα. Παύλος Εφραιμίδης V1.1, Κεφάλαιο 8 NP και Υπολογιστική Δυσεπιλυσιμότητα Παύλος Εφραιμίδης V1.1, 2015-01-19 Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 πρόβλημα αναζήτησης (search problem) Ένα πρόβλημα

Διαβάστε περισσότερα

Κεφάλαιο 8. NP και Υπολογιστική Δυσεπιλυσιµότητα. Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Κεφάλαιο 8. NP και Υπολογιστική Δυσεπιλυσιµότητα. Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. Κεφάλαιο 8 NP και Υπολογιστική Δυσεπιλυσιµότητα Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 πρόβληµα αναζήτησης (search problem) Ένα πρόβληµα αναζήτησης είναι ένα πρόβληµα στο

Διαβάστε περισσότερα

ΔΙΑΣΧΙΣΗ ΓΡΑΦΗΜΑΤΩΝ 1

ΔΙΑΣΧΙΣΗ ΓΡΑΦΗΜΑΤΩΝ 1 ΔΙΑΣΧΙΣΗ ΓΡΑΦΗΜΑΤΩΝ 1 Θέματα μελέτης Πρόβλημα αναζήτησης σε γραφήματα Αναζήτηση κατά βάθος (Depth-first search DFS) Αναζήτηση κατά πλάτος (Breadth-first search BFS) 2 Γράφημα (graph) Αναπαράσταση συνόλου

Διαβάστε περισσότερα

Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem)

Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem) Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem) Διατύπωση Σας ανήκει μια πινακοθήκη και επιθυμείτε να τοποθετήσετε κάμερες ασφαλείας έτσι ώστε όλη η γκαλερί να είναι προστατευμένη από κλέφτες. Σε

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Ροή Δικτύου Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Μοντελοποίηση Δικτύων Μεταφοράς Τα γραφήματα χρησιμοποιούνται συχνά για την μοντελοποίηση

Διαβάστε περισσότερα

Κλάσεις Πολυπλοκότητας

Κλάσεις Πολυπλοκότητας Κλάσεις Πολυπλοκότητας Παύλος Εφραιμίδης pefraimi ee.duth.gr Κλάσεις Πολυπλοκότητας 1 Οι κλάσεις πολυπλοκότητας P και NP P: Polynomial ΗκλάσηP περιλαμβάνει όλα τα υπολογιστικά προβλήματα που μπορούν

Διαβάστε περισσότερα

HY118-Διακριτά Μαθηματικά. Τι είδαμε την προηγούμενη φορά. Θεωρία γράφων / γραφήματα. 25 -Γράφοι. ΗΥ118, Διακριτά Μαθηματικά Άνοιξη 2017

HY118-Διακριτά Μαθηματικά. Τι είδαμε την προηγούμενη φορά. Θεωρία γράφων / γραφήματα. 25 -Γράφοι. ΗΥ118, Διακριτά Μαθηματικά Άνοιξη 2017 HY118-Διακριτά Μαθηματικά Τι είδαμε την προηγούμενη φορά Παρασκευή, 12/05/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Υπογράφημα Συμπληρωματικά γραφήματα Ισομορφισμός γράφων Υπολογιστική πολυπλοκότητα

Διαβάστε περισσότερα

Συνεκτικότητα Γραφήματος

Συνεκτικότητα Γραφήματος Συνεκτικότητα Γραφήματος Θεμελιώδης έννοια στη Θεωρία Γραφημάτων. Πληθώρα πρακτικών εφαρμογών, όπως: Αξιόπιστη και ασφαλής επικοινωνία. Δρομολόγηση σε δίκτυα. Πλοήγηση. Συνεκτικότητα Γραφήματος Θεμελιώδης

Διαβάστε περισσότερα

Κατευθυνόμενα και μη κατευθυνόμενα γραφήματα

Κατευθυνόμενα και μη κατευθυνόμενα γραφήματα Εισαγωγικά στοιχεία Κατευθυνόμενα και μη κατευθυνόμενα γραφήματα Κατευθυνόμενο γράφημα (directed graph ή digraph): (V,A) V: πεπερασμένο σύνολο κορυφών που σημειώνονται ως σημεία A: σύνολο διατεταγμένων

Διαβάστε περισσότερα

Υπολογιστική Πολυπλοκότητα

Υπολογιστική Πολυπλοκότητα Υπολογιστική Πολυπλοκότητα ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Πολυπλοκότητα Γιατί κάποια (επιλύσιμα) προβλήματα είναι δύσκολο

Διαβάστε περισσότερα

Χρωματισμός γραφημάτων

Χρωματισμός γραφημάτων Χρωματισμός γραφημάτων Χρωματισμός γραφημάτων Έστω γράφημα G Αποδίδουμε 1 ακριβώς χρώμα σε κάθε κορυφή του G έτσι ώστε κορυφές που συνδέονται με ακμή να λαμβάνουν διαφορετικά χρώματα Χρωματισμός γραφημάτων

Διαβάστε περισσότερα

Υπολογιστική Πολυπλοκότητα

Υπολογιστική Πολυπλοκότητα Υπολογιστική Πολυπλοκότητα ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Επίπεδα Γραφήματα : Προβλήματα και Υπολογιστική Πολυπλοκότητα

Επίπεδα Γραφήματα : Προβλήματα και Υπολογιστική Πολυπλοκότητα Αλγόριθμοι πολυωνυμικού χρόνου Ένας αλγόριθμος πολυωνυμικού χρόνου έχει χρόνο εκτέλεσης όπου είναι μία (θετική) σταθερά Κλάση πολυπλοκότητας : περιλαμβάνει τα προβλήματα που επιδέχονται λύση σε πολυωνυμικό

Διαβάστε περισσότερα

Διάλεξη 3: Σχήμα 3.3: Το σύνολο των κόκκινων ακμών είναι ακμοδιαχωριστής αλλά όχι τομή. Το σύνολο ακμών {1, 2, 3} είναι τομή. Από

Διάλεξη 3: Σχήμα 3.3: Το σύνολο των κόκκινων ακμών είναι ακμοδιαχωριστής αλλά όχι τομή. Το σύνολο ακμών {1, 2, 3} είναι τομή. Από Διάλεξη 3: 19.10.2016 Θεωρία Γραφημάτων Γραφέας: Βασίλης Λίβανος Διδάσκων: Σταύρος Κολλιόπουλος 3.1 Ακμοδιαχωριστές, Τομές, Δεσμοί Ορισμός 3.1 Ακμοδιαχωριστής (Edge-eparator) ενός γραφήματος G = (V, E)

Διαβάστε περισσότερα

Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem)

Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem) Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem) Τι είναι το Πρόβλημα της Πινακοθήκης; Σας ανήκει μια πινακοθήκη και επιθυμείτε να τοποθετήσετε κάμερες ασφαλείας έτσι ώστε όλη η γκαλερί να είναι προστατευμένη

Διαβάστε περισσότερα

Υπολογιστική Πολυπλοκότητα Εξέταση Ιουνίου 2017 Σελ. 1 από 5

Υπολογιστική Πολυπλοκότητα Εξέταση Ιουνίου 2017 Σελ. 1 από 5 Υπολογιστική Πολυπλοκότητα Εξέταση Ιουνίου 2017 Σελ. 1 από 5 Στη σελίδα αυτή γράψτε μόνο τα στοιχεία σας. Γράψτε τις απαντήσεις σας στις επόμενες σελίδες, κάτω από τις αντίστοιχες ερωτήσεις. Στις απαντήσεις

Διαβάστε περισσότερα

Γράφοι. Ένας γράφος ή αλλιώς γράφηµα αποτελείται απο. Εφαρµογές: Τηλεπικοινωνιακά και Οδικά ίκτυα, Ηλεκτρονικά Κυκλώµατα, Β.. κ.ά.

Γράφοι. Ένας γράφος ή αλλιώς γράφηµα αποτελείται απο. Εφαρµογές: Τηλεπικοινωνιακά και Οδικά ίκτυα, Ηλεκτρονικά Κυκλώµατα, Β.. κ.ά. Γράφοι Ένας γράφος ή αλλιώς γράφηµα αποτελείται απο πλευρές (ακµές) και κορυφές (κόµβους). Εφαρµογές: Τηλεπικοινωνιακά και Οδικά ίκτυα, Ηλεκτρονικά Κυκλώµατα, Β.. κ.ά. Graph Drawing 4 πιθανές αναπαραστάσεις

Διαβάστε περισσότερα

Φροντιστήριο 11 Λύσεις

Φροντιστήριο 11 Λύσεις Άσκηση 1 Φροντιστήριο 11 Λύσεις Να αποδείξετε ότι η κλάση Ρ είναι κλειστή ως προς τις πράξεις της ένωσης, της συναρμογής και του συμπληρώματος. Θα πρέπει να δείξουμε ότι: (α) Ένωση: Αν οι Λ 1 και Λ 2 είναι

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 13: Παραλλαγές Μηχανών Turing και Περιγραφή Αλγορίθμων

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 13: Παραλλαγές Μηχανών Turing και Περιγραφή Αλγορίθμων ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 13: Παραλλαγές Μηχανών Turing και Περιγραφή Αλγορίθμων Τι θα κάνουμε σήμερα Εισαγωγή Πολυταινιακές Μηχανές Turing (3.2.1) Μη Ντετερμινιστικές Μηχανές

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 10η Διάλεξη

Θεωρία Γραφημάτων 10η Διάλεξη Θεωρία Γραφημάτων 0η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 07 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 0η Διάλεξη

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ Φεβρουάριος 2005 Σύνολο μονάδων: 91

ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ Φεβρουάριος 2005 Σύνολο μονάδων: 91 Ε.Μ.Πoλυτεχνείο ΣΗΜΜΥ, ΣΕΜΦΕ Τομέας Τεχνολογίας Πληροφορικής & Υπολογιστών Διδάσκων: Ε.Ζαχος Ονοματεπώνυμο:... Αριθμός Μητρώου:... Σχολή:... εξάμηνο:... ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ Φεβρουάριος 005 Σύνολο

Διαβάστε περισσότερα

ΣΥΝΕΚΤΙΚΟΤΗΤΑ ΓΡΑΦΗΜΑΤΩΝ

ΣΥΝΕΚΤΙΚΟΤΗΤΑ ΓΡΑΦΗΜΑΤΩΝ Συνεκτικότητα Γραφημάτων 123 ΚΕΦΑΛΑΙΟ 4 ΣΥΝΕΚΤΙΚΟΤΗΤΑ ΓΡΑΦΗΜΑΤΩΝ 4.1 Τοπική και Ολική Συνεκτικότητα Γραφημάτων 4.2 Συνεκτικότητα Μη-κατευθυνόμενων Γραφημάτων 4.3 Συνεκτικότητα Κατευθυνόμενων Γραφημάτων

Διαβάστε περισσότερα

Μέγιστη Ροή Ελάχιστη Τομή

Μέγιστη Ροή Ελάχιστη Τομή Μέγιστη Ροή Ελάχιστη Τομή Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Δίκτυα και Ροές Δίκτυο : κατευθυνόμενο γράφημα G(V, E). Πηγή, προορισμός, χωρητικότητα ακμής b e. ροή μεγέθους

Διαβάστε περισσότερα

Διάλεξη 4: Απόδειξη: Για την κατεύθυνση, παρατηρούμε ότι διαγράφοντας μια κορυφή δεν μπορούμε να διαχωρίσουμε τα u και v. Αποδεικνύουμε

Διάλεξη 4: Απόδειξη: Για την κατεύθυνση, παρατηρούμε ότι διαγράφοντας μια κορυφή δεν μπορούμε να διαχωρίσουμε τα u και v. Αποδεικνύουμε Διάλεξη 4: 20.10.2016 Θεωρία Γραφημάτων Γραφέας: Σ. Κ. Διδάσκων: Σταύρος Κολλιόπουλος 4.1 2-συνεκτικά γραφήματα (συνέχεια) Πρόταση 4.1 Δύο μπλοκ ενός γραφήματος G μοιράζονται το πολύ μία κορυφή. Απόδειξη:

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Εισαγωγή σε βασικές έννοιες. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Εισαγωγή σε βασικές έννοιες. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Θεωρία Γραφημάτων Ενότητα: Εισαγωγή σε βασικές έννοιες Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών Θεωρία Γραφημάτων Χάρης Παπαδόπουλος 2012, Διάλεξη Κεφαλαίου 1 Περιεχόμενα

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 5η Διάλεξη

Θεωρία Γραφημάτων 5η Διάλεξη Θεωρία Γραφημάτων 5η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 2017 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 5η Διάλεξη

Διαβάστε περισσότερα

Θεωρία Γραφημάτων και Εφαρμογές - Διακριτά Μαθηματικά ΙΙ Φεβρουάριος 2017

Θεωρία Γραφημάτων και Εφαρμογές - Διακριτά Μαθηματικά ΙΙ Φεβρουάριος 2017 Θεωρία Γραφημάτων και Εφαρμογές - Διακριτά Μαθηματικά ΙΙ Φεβρουάριος 2017 ΕΓΘΑ : Σ. Κοσμαδάκης, «Εισαγωγή στα Γραφήματα, Θεωρία-Ασκήσεις». Α 1 Έστω η παρακάτω σχέση Q(k) πάνω στο σύνολο {1, 2} όπου k τυχαίος

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Σύνολα Συναρτήσεις και Σχέσεις Γραφήματα Λέξεις και Γλώσσες Αποδείξεις ΕΠΛ 211 Θεωρία

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 5η Διάλεξη

Θεωρία Γραφημάτων 5η Διάλεξη Θεωρία Γραφημάτων 5η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 5η Διάλεξη

Διαβάστε περισσότερα

HY118-Διακριτά Μαθηματικά

HY118-Διακριτά Μαθηματικά HY118-Διακριτά Μαθηματικά Παρασκευή, 12/05/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 12-May-17 1 1 Θεωρία γράφων / γραφήματα 12-May-17 2 2 Τι είδαμε την προηγούμενη φορά Υπογράφημα Συμπληρωματικά

Διαβάστε περισσότερα

Θέματα υπολογισμού στον πολιτισμό

Θέματα υπολογισμού στον πολιτισμό Θέματα υπολογισμού στον πολιτισμό Ενότητα 9: Το πρόβλημα της Πινακοθήκης (The art gallery problem) Εύη Παπαϊωάννου Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος

Διαβάστε περισσότερα

ΕΥΡΕΣΗ ΕΛΑΧΙΣΤΩΝ ΜΟΝΟΠΑΤΙΩΝ & ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΩΝ

ΕΥΡΕΣΗ ΕΛΑΧΙΣΤΩΝ ΜΟΝΟΠΑΤΙΩΝ & ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΩΝ ΕΥΡΕΣΗ ΕΛΑΧΙΣΤΩΝ ΜΟΝΟΠΑΤΙΩΝ & ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΩΝ Εύρεση ελάχιστων μονοπατιών Αλγόριθμος του ijkstra Θέματα μελέτης Πρόβλημα εύρεσης ελάχιστων μονοπατιών σε γραφήματα (shortest path problem) Αλγόριθμος

Διαβάστε περισσότερα

u v 4 w G 2 G 1 u v w x y z 4

u v 4 w G 2 G 1 u v w x y z 4 Διάλεξη :.0.06 Θεωρία Γραφημάτων Γραφέας: Σ. Κ. Διδάσκων: Σταύρος Κολλιόπουλος. Εισαγωγικοί ορισμοί Ορισμός. Γράφημα G καλείται ένα ζεύγος G = (V, E) όπου V είναι το σύνολο των κορυφών (ή κόμβων) και E

Διαβάστε περισσότερα

ΕΥΡΕΣΗ ΕΛΑΧΙΣΤΩΝ ΜΟΝΟΠΑΤΙΩΝ & ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΩΝ

ΕΥΡΕΣΗ ΕΛΑΧΙΣΤΩΝ ΜΟΝΟΠΑΤΙΩΝ & ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΩΝ ΕΥΡΕΣΗ ΕΛΑΧΙΣΤΩΝ ΜΟΝΟΠΑΤΙΩΝ & ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΩΝ (ΑΛΓΟΡΙΘΜΟΙ, Sanjoy Dasgupta, Christos Papadimitriou, Umesh Vazirani, Κεφάλαιο 4 ΣΧΕΔΙΑΣΜΟΣ ΑΛΓΟΡΙΘΜΩΝ, Jon Kleinberg, Eva Tardos, Κεφάλαιο 4) 1 Θέματα

Διαβάστε περισσότερα

Κατανεμημένα Συστήματα Ι

Κατανεμημένα Συστήματα Ι Εκλογή αρχηγού σε γενικά δίκτυα 20 Οκτωβρίου 2016 Παναγιώτα Παναγοπούλου Εκλογή αρχηγού σε γενικά δίκτυα Προηγούμενη διάλεξη Σύγχρονα Κατανεμημένα Συστήματα Μοντελοποίηση συστήματος Πρόβλημα εκλογής αρχηγού

Διαβάστε περισσότερα

Κεφάλαιο 3. Γραφήματα. v1.3 ( ) Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Κεφάλαιο 3. Γραφήματα. v1.3 ( ) Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. Κεφάλαιο 3 Γραφήματα v1.3 (2014-01-30) Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 3.1 Βασικοί Ορισμοί και Εφαρμογές γραφήματα γράφημα G: ένας τρόπος κωδικοποίησης των σχέσεων

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών Εισαγωγή στην Επιστήμη των Υπολογιστών 4 ο εξάμηνο ΣΗΜΜΥ 4 η ενότητα: Γράφοι: προβλήματα και αλγόριθμοι Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης Παγουρτζής, Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { Μ η Μ είναι μια ΤΜ η οποία διαγιγνώσκει το πρόβλημα ΙΣΟΔΥΝΑΜΙΑ ΤΜ (διαφάνεια 9 25)} (α) Γνωρίζουμε ότι το

Διαβάστε περισσότερα

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός Κατευθυνόμενα γραφήματα Μαθηματικά Πληροφορικής 6ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Κατευθυνόμενο γράφημα G είναι ένα ζεύγος (V, E ) όπου V πεπερασμένο σύνολο του οποίου

Διαβάστε περισσότερα

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 3 η Εργασία: Γενική Εικόνα Αρκετά απαιτητικά ερωτήματα,

Διαβάστε περισσότερα

Κεφάλαιο 3. Γραφήµατα v1.1 (2012-01-12) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Κεφάλαιο 3. Γραφήµατα v1.1 (2012-01-12) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. Κεφάλαιο 3 Γραφήµατα v1.1 (2012-01-12) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 3.1 Βασικοί Ορισµοί και Εφαρµογές γραφήµατα γράφηµα G: ένας τρόπος κωδικοποίησης των σχέσεων

Διαβάστε περισσότερα

d(v) = 3 S. q(g \ S) S

d(v) = 3 S. q(g \ S) S Διάλεξη 9: 9.11.2016 Θεωρία Γραφημάτων Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Παναγιωτίδης Αλέξανδρος Θεώρημα 9.1 Εστω γράφημα G = (V, E), υπάρχει τέλειο ταίριασμα στο G αν και μόνο αν για κάθε S υποσύνολο

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Εισαγωγή στους Αλγορίθμους Ενότητα 7η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Αλγόριθμοι Γραφημάτων Τοπολογική Διάταξη

Διαβάστε περισσότερα

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόγχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόγχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός Κατευθυνόμενα γραφήματα Μαθηματικά Πληροφορικής 6ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Κατευθυνόμενο γράφημα G είναι ένα ζεύγος (V, E ) όπου V πεπερασμένο σύνολο του οποίου

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { G 1, G 2 οι G 1 και G 2 είναι δύο CFG που παράγουν μια κοινή λέξη μήκους 144 } (β) { D,k το D είναι ένα DFA

Διαβάστε περισσότερα

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες Διδάσκοντες: Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα

Διαβάστε περισσότερα

Chapter 7, 8 : Time, Space Complexity

Chapter 7, 8 : Time, Space Complexity CSC 314: Switching Theory Chapter 7, 8 : Time, Space Complexity 12 December 2008 1 1 Υπολογίσιμα και Εφικτά Υπολογίσιμα Προβλήματα Είδαμε ότι 1. Οτιδήποτεμπορούμεναπεριγράψουμεμεένααλγόριθμο μπορεί να

Διαβάστε περισσότερα

Μέγιστη ροή. Κατευθυνόμενο γράφημα. Συνάρτηση χωρητικότητας. αφετηρίακός κόμβος. τερματικός κόμβος. Ροή δικτύου. με τις ακόλουθες ιδιότητες

Μέγιστη ροή. Κατευθυνόμενο γράφημα. Συνάρτηση χωρητικότητας. αφετηρίακός κόμβος. τερματικός κόμβος. Ροή δικτύου. με τις ακόλουθες ιδιότητες Κατευθυνόμενο γράφημα Συνάρτηση χωρητικότητας 2 6 20 Ροή δικτύου Συνάρτηση αφετηρίακός κόμβος 0 με τις ακόλουθες ιδιότητες 9 7 τερματικός κόμβος Περιορισμός χωρητικότητας: Αντισυμμετρία: Διατήρηση ροής:

Διαβάστε περισσότερα

Τομές Γραφήματος. Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών. Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα

Τομές Γραφήματος. Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών. Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα Τομές Γραφήματος Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα και 12 26 20 10 9 7 17 14 4 Τομές Γραφήματος Γράφημα (μη κατευθυνόμενο)

Διαβάστε περισσότερα

Επαγωγή και αναδρομή για άκυκλα συνεκτικά γραφήματα

Επαγωγή και αναδρομή για άκυκλα συνεκτικά γραφήματα ΘΕ4 Αναδρομή και Επαγωγή για Γραφήματα Επαγωγή και αναδρομή για άκυκλα συνεκτικά γραφήματα Επαγωγή για άκυκλα συνεκτικά γραφήματα (με αφαίρεση κορυφής) Η αρχή της επαγωγής, με αφαίρεση κορυφής, για δεδομένη

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Συνεκτικότητα και Δισυνεκτικότητα. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Συνεκτικότητα και Δισυνεκτικότητα. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Θεωρία Γραφημάτων Ενότητα: Συνεκτικότητα και Δισυνεκτικότητα Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών Θεωρία Γραφημάτων Χάρης Παπαδόπουλος 2012, Διάλεξη Κεφαλαίου 2 Περιεχόμενα

Διαβάστε περισσότερα

Κεφάλαιο 3. Γραφήµατα v1.0 ( ) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Κεφάλαιο 3. Γραφήµατα v1.0 ( ) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. Κεφάλαιο 3 Γραφήµατα v1.0 (2010-05-25) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 3.1 Βασικοί Ορισµοί και Εφαρµογές γραφήµατα γράφηµα G: ένας τρόπος κωδικοποίησης των σχέσεων

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #: Εύρεση Ελαχίστων Μονοπατιών σε Γραφήματα που Περιλαμβάνουν και Αρνητικά Βάρη: Αλγόριθμος

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΓΡΑΦΩΝ. 7 η Διάλεξη Συνεκτικότητα (Συνδεσμικότητα) Βασικές έννοιες και ιδιότητες Το θεώρημα του Merger Ισομορφισμός

ΘΕΩΡΙΑ ΓΡΑΦΩΝ. 7 η Διάλεξη Συνεκτικότητα (Συνδεσμικότητα) Βασικές έννοιες και ιδιότητες Το θεώρημα του Merger Ισομορφισμός ΘΕΩΡΙΑ ΓΡΑΦΩΝ 7 η Διάλεξη Συνεκτικότητα (Συνδεσμικότητα) Βασικές έννοιες και ιδιότητες Το θεώρημα του Merger Ισομορφισμός Βασικές Έννοιες Στο κεφάλαιο αυτό θα μελετηθεί ο βαθμός συνεκτικότητας (συνδεσμικότητας)

Διαβάστε περισσότερα

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Θεωρία Υπολογισμού. Ενότητα 3 : Γραφήματα & Αποδείξεις. Αλέξανδρος Τζάλλας

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Θεωρία Υπολογισμού. Ενότητα 3 : Γραφήματα & Αποδείξεις. Αλέξανδρος Τζάλλας 1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Θεωρία Υπολογισμού Ενότητα 3 : Γραφήματα & Αποδείξεις Αλέξανδρος Τζάλλας 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Τμήμα Μηχανικών Πληροφορικής

Διαβάστε περισσότερα

CSC 314: Switching Theory

CSC 314: Switching Theory CSC 314: Switching Theory Course Summary 9 th January 2009 1 1 Θέματα Μαθήματος Ερωτήσεις Τι είναι αλγόριθμος? Τι μπορεί να υπολογιστεί? Απαντήσεις Μοντέλα Υπολογισμού Δυνατότητες και μη-δυνατότητες 2

Διαβάστε περισσότερα

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός Κατευθυνόμενα γραφήματα Μαθηματικά Πληροφορικής 6ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Κατευθυνόμενο γράφημα G είναι ένα ζεύγος (V, E ) όπου V πεπερασμένο σύνολο του οποίου

Διαβάστε περισσότερα

Κατώτερα φράγματα Κατώτερο φράγμα: εκτίμηση της ελάχιστης εργασίας που απαιτείται για την επίλυση ενός προβλήματος. Παραδείγματα: Αριθμός συγκρίσεων π

Κατώτερα φράγματα Κατώτερο φράγμα: εκτίμηση της ελάχιστης εργασίας που απαιτείται για την επίλυση ενός προβλήματος. Παραδείγματα: Αριθμός συγκρίσεων π Περιορισμοί Αλγοριθμικής Ισχύος Κατηγοριοποίηση πολυπλοκοτήτων Κατώτερα φράγματα Κατώτερο φράγμα: εκτίμηση της ελάχιστης εργασίας που απαιτείται για την επίλυση ενός προβλήματος. Παραδείγματα: Αριθμός

Διαβάστε περισσότερα

Πολυπλοκότητα. Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης. Απαιτούμενοι πόροι, π.χ. μνήμη, εύρος ζώνης. Προσπάθεια υλοποίησης

Πολυπλοκότητα. Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης. Απαιτούμενοι πόροι, π.χ. μνήμη, εύρος ζώνης. Προσπάθεια υλοποίησης Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης Απαιτούμενοι πόροι, π.χ. μνήμη, εύρος ζώνης Προσπάθεια υλοποίησης Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης Απαιτούμενοι

Διαβάστε περισσότερα

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

Διαβάστε περισσότερα

Εισαγωγή στους Αλγόριθμους

Εισαγωγή στους Αλγόριθμους Εισαγωγή στους Αλγόριθμους Εύη Παπαϊωάννου Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών Σκοποί ενότητας Παρουσίαση και μελέτη αλγορίθμων

Διαβάστε περισσότερα

Κλάση NP, NP-Complete Προβλήματα

Κλάση NP, NP-Complete Προβλήματα Κλάση NP, NP-Complete Προβλήματα Βαγγέλης ούρος douros@aueb.gr 1 11/6/2012 Αλγόριθμοι, Εαρινό Εξάμηνο 2012, Φροντιστήριο #14 Προβλήματα Απόφασης & Βελτιστοποίησης 2 Πρόβλημα Απόφασης: Κάθε πρόβλημα που

Διαβάστε περισσότερα

Κατανεμημένα Συστήματα Ι

Κατανεμημένα Συστήματα Ι Κατανεμημένα Συστήματα Ι Παναγιώτα Παναγοπούλου 11η Διάλεξη 12 Ιανουαρίου 2017 1 Ανεξάρτητο σύνολο Δοθέντος ενός μη κατευθυνόμενου γραφήματος G = (V, E), ένα ανεξάρτητο σύνολο (independent set) είναι ένα

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι είδαµε την προηγούµενη φορά. Συνεκτικότητα Γράφοι

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι είδαµε την προηγούµενη φορά. Συνεκτικότητα Γράφοι HY118- ιακριτά Μαθηµατικά Θεωρία γράφων / γραφήµατα Παρασκευή, 20/05/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 5/22/2016 1 1 5/22/2016 2 2 Τι είδαµε την προηγούµενη φορά Συνεκτικότητα Υπογράφηµα

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 7η Διάλεξη

Θεωρία Γραφημάτων 7η Διάλεξη Θεωρία Γραφημάτων 7η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 7η Διάλεξη

Διαβάστε περισσότερα

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Μαθηματική Επαγωγή ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Τεχνικές Απόδειξης Εξαντλητική

Διαβάστε περισσότερα

Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων ΣΗΜΜΥ - Ε.Μ.Π.

Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων ΣΗΜΜΥ - Ε.Μ.Π. Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων CO.RE.LAB. ΣΗΜΜΥ - Ε.Μ.Π. Άσκηση 1 η : Παιχνίδι επιλογής ακμών Έχουμε ένα ακυκλικό κατευθυνόμενο γράφο, μια αρχική κορυφή και δυο παίκτες. Οι παίκτες διαδοχικά

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (1)

Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (1) Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες () Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Πεπερασμένα Αυτόματα (Κεφάλαιο., Sipser) Ορισμός πεπερασμένων αυτομάτων και ορισμός του

Διαβάστε περισσότερα

Δομές Δεδομένων & Αλγόριθμοι

Δομές Δεδομένων & Αλγόριθμοι Θέματα Απόδοσης Αλγορίθμων 1 Η Ανάγκη για Δομές Δεδομένων Οι δομές δεδομένων οργανώνουν τα δεδομένα πιο αποδοτικά προγράμματα Πιο ισχυροί υπολογιστές πιο σύνθετες εφαρμογές Οι πιο σύνθετες εφαρμογές απαιτούν

Διαβάστε περισσότερα

Αναζήτηση Κατά Βάθος. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Αναζήτηση Κατά Βάθος. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Αναζήτηση Κατά Βάθος ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναζήτηση Κατά Βάθος (DFS) Εξερεύνηση

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα

Θεωρία Υπολογισμού και Πολυπλοκότητα Θεωρία Υπολογισμού και Πολυπλοκότητα Κλάσεις P, NP NP-πληρότητα 15 Απριλίου 2008 Δρ. Παπαδοπούλου Βίκη 1 Υπολογίσιμα και Εφικτά Υπολογίσιμα Προβλήματα Είδαμε ότι 1. Οτιδήποτε μπορούμε να περιγράψουμε με

Διαβάστε περισσότερα

έντρα ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

έντρα ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο έντρα ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο έντρα έντρο: πρότυπο ιεραρχικής δομής. Αναπαράσταση

Διαβάστε περισσότερα

Γράφοι: κατευθυνόμενοι και μη

Γράφοι: κατευθυνόμενοι και μη Γράφοι: κατευθυνόμενοι και μη (V,E ) (V,E ) Γράφος (ή γράφημα): ζεύγος (V,E), V ένα μη κενό σύνολο, Ε διμελής σχέση πάνω στο V Μη κατευθυνόμενος γράφος: σχέση Ε συμμετρική V: κορυφές (vertices), κόμβοι

Διαβάστε περισσότερα

βασικές έννοιες (τόμος Β)

βασικές έννοιες (τόμος Β) θεωρία γραφημάτων Παύλος Εφραιμίδης 1 περιεχόμενα βασικές έννοιες (τόμος Α) βασικές έννοιες (τόμος Β) 2 Θεωρία Γραφημάτων Βασική Ορολογία Τόμος Α, Ενότητα 4.1 Βασική Ορολογία Γραφημάτων Γράφημα Γ = (E,V)

Διαβάστε περισσότερα

Θέματα Υπολογισμού στον Πολιτισμό - Δένδρα. Δένδρα

Θέματα Υπολογισμού στον Πολιτισμό - Δένδρα. Δένδρα Δένδρα Δένδρα Ειδική κατηγορία γραφημάτων: συνεκτικά γραφήματα που δεν περιέχουν απλά κυκλώματα [1857] Arthur Cayley: για απαρίθμηση ορισμένων ειδών χημικών ενώσεων Χρησιμοποιούνται σε πληθώρα προβλημάτων,

Διαβάστε περισσότερα

Maximal Independent Set

Maximal Independent Set Maximal Indpndnt St Quick Rviw Μας δίνεται γράφος. Στους κόμβους του βρίσκονται ακίνητοι επεξεργαστές οι οποίοι επικοινωνούν σύγχρονα μέσω των ακμών. Οι επεξεργαστές προσπαθούν να λύσουν ένα πρόβλημα ανταλλάζοντας

Διαβάστε περισσότερα

Διμερή γραφήματα και ταιριάσματα

Διμερή γραφήματα και ταιριάσματα Κεφάλαιο 6 Διμερή γραφήματα και ταιριάσματα Κύριες βιβλιογραφικές αναφορές για αυτό το Κεφάλαιο είναι οι C. L. Liu and C. Liu 1985, Cameron 1994, Diestel 2005 και Stanley 1986. 6.1 Διμερή γραφήματα Η κλάση

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Ενότητα 7η

Εισαγωγή στους Αλγορίθμους Ενότητα 7η Εισαγωγή στους Αλγορίθμους Ενότητα 7η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Γράφων (Graph Theory)

Στοιχεία Θεωρίας Γράφων (Graph Theory) Στοιχεία Θεωρίας Γράφων (Graph Theory) Ε Εξάμηνο, Τμήμα Πληροφορικής & Τεχνολογίας Υπολογιστών ΤΕΙ Λαμίας plam@inf.teilam.gr, Οι διαφάνειες βασίζονται στα βιβλία:. Αλγόριθμοι, Σχεδιασμός & Ανάλυση, η έκδοση,

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 15 Ιουνίου 2009 1 / 26 Εισαγωγή Η ϑεωρία

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Θεωρία Υπολογισμού Ενότητα 8: Πεπερασμένα Αυτόματα Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα

Θεωρία Υπολογισμού και Πολυπλοκότητα Θεωρία Υπολογισμού και Πολυπλοκότητα Κεφάλαιο 14. Χρονική Πολυπλοκότητα 17, 20, 24 Απριλίου 2007 Δρ. Παπαδοπούλου Βίκη 1 Υπολογίσιμα και Εφικτά Υπολογίσιμα Προβλήματα Είδαμε ότι 1. Οτιδήποτε μπορούμε να

Διαβάστε περισσότερα

Αναζήτηση Κατά Βάθος. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Αναζήτηση Κατά Βάθος. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Αναζήτηση Κατά Βάθος ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Προσεγγιστικοί Αλγόριθμοι

Προσεγγιστικοί Αλγόριθμοι Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. http://xkcd.com/287/ Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. Πως μπορούμε να αντιμετωπίσουμε το γεγονός ότι είναι απίθανη(;)

Διαβάστε περισσότερα

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 3 η Εργασία: Γενική Εικόνα Αξιόλογη προσπάθεια,

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { R η R είναι μια κανονική έκφραση η οποία παράγει μια μη πεπερασμένη γλώσσα} (β) { G η G είναι μια CFG η οποία

Διαβάστε περισσότερα

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών έντρα ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο έντρα έντρο: πρότυπο ιεραρχικής δομής.

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ Ενότητα 12: Μη ντετερμινιστικές μηχανές Turing Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Επαγωγή και αναδρομή για συνεκτικά γραφήματα

Επαγωγή και αναδρομή για συνεκτικά γραφήματα ΘΕ4 Αναδρομή και Επαγωγή για Γραφήματα Επαγωγή και αναδρομή για συνεκτικά γραφήματα Επαγωγή για συνεκτικά γραφήματα (με αφαίρεση κορυφής) Η αρχή της επαγωγής, με αφαίρεση κορυφής, για δεδομένη προτασιακή

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 7η Διάλεξη

Θεωρία Γραφημάτων 7η Διάλεξη Θεωρία Γραφημάτων 7η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 2017 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 7η Διάλεξη

Διαβάστε περισσότερα

Αλγόριθμοι Προσέγγισης για NP-Δύσκολα Προβλήματα

Αλγόριθμοι Προσέγγισης για NP-Δύσκολα Προβλήματα Αλγόριθμοι Προσέγγισης για NP-Δύσκολα Προβλήματα Διδάσκοντες: E. Ζάχος, Α. Παγουρτζής Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 6η Διάλεξη

Θεωρία Γραφημάτων 6η Διάλεξη Θεωρία Γραφημάτων 6η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 6η Διάλεξη

Διαβάστε περισσότερα

Αναζήτηση Κατά Πλάτος

Αναζήτηση Κατά Πλάτος Αναζήτηση Κατά Πλάτος ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα Μοντελοποίηση πολλών σημαντικών προβλημάτων (π.χ. δίκτυα συνεκτικότητα,

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών Εισαγωγή στην Επιστήμη των Υπολογιστών 4 ο εξάμηνο ΣΗΜΜΥ 5 η ενότητα: Γράφοι: προβλήματα και αλγόριθμοι Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης Παγουρτζής, Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών

Διαβάστε περισσότερα

Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ

Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ 3 η Διάλεξη Μονοπάτια και Κύκλοι Μήκη και αποστάσεις Κέντρο και μέσο γράφου. Ακτίνα και Διάμετρος Δυνάμεις Γραφημάτων Γράφοι Euler.

Διαβάστε περισσότερα

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων ημήτρης Φωτάκης ιακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 3 η Εργασία: Γενική Εικόνα Ικανοποιητική εικόνα, αντίστοιχη

Διαβάστε περισσότερα

Ασκήσεις στους Γράφους. 1 ο Σετ Ασκήσεων Βαθμός Μονοπάτια Κύκλος Euler Κύκλος Hamilton Συνεκτικότητα

Ασκήσεις στους Γράφους. 1 ο Σετ Ασκήσεων Βαθμός Μονοπάτια Κύκλος Euler Κύκλος Hamilton Συνεκτικότητα Ασκήσεις στους Γράφους 1 ο Σετ Ασκήσεων Βαθμός Μονοπάτια Κύκλος Euler Κύκλος Hamilton Συνεκτικότητα Ασκηση 1 η Να αποδείξετε ότι κάθε γράφημα περιέχει μια διαδρομή από μια κορυφή u σε μια κορυφή w αν και

Διαβάστε περισσότερα

ΤΕΙ ΛΑΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΕΙ ΛΑΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ ÌïëëÜ Ì. Á μýô Á.Ì. : 5 moll@moll.r ΤΕΙ ΛΑΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ ΜΑΘΗΜΑ : ΕΙΣΑΓΩΓΗ ΣΤΟ ΔΙΑΔΙΚΤΥΟ (ΕΡΓΑΣΤΗΡΙΟ) Ε ΕΞΑΜΗΝΟ ΕΙΣΗΓΗΤΕΣ: Χαϊδόγιαννος Χαράλαμπος ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ

Διαβάστε περισσότερα

Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ

Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ 2 Η ΔΙΑΛΕΞΗ Βασικές Έννοιες Γράφων - Ορισμοί (συνέχεια) - Ισομορφισμοί-Ομοιομορφισμοί Γράφων - Πράξεις - Αναπαράσταση Γράφων (Πίνακες

Διαβάστε περισσότερα