5 η Εργαστηριακή άσκηση. Μαγνητική Επιδεκτικότητα και Αιώρηση Υπεραγωγών. 1. Θεωρία. Όρια της υπεραγώγιμης κατάστασης

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "5 η Εργαστηριακή άσκηση. Μαγνητική Επιδεκτικότητα και Αιώρηση Υπεραγωγών. 1. Θεωρία. Όρια της υπεραγώγιμης κατάστασης"

Transcript

1 5 η Εργαστηριακή άσκηση Μαγνητική Επιδεκτικότητα και Αιώρηση Υπεραγωγών 1. Θεωρία Όρια της υπεραγώγιμης κατάστασης Όπως έχει αναφερθεί, η βασική ιδιότητα που ξεχωρίζει τα υλικά αυτά είναι η ικανότητα μεταφοράς ρεύματος, με μηδενικές απώλειες ενέργειας. Η ιδιότητα αυτή όμως, περιορίζεται από τρία όρια (παράγοντες), πέρα από τα οποία χάνεται και πλέον το υλικό λειτουργεί σαν κλασικός αγωγός ή ημιαγωγός. Το ένα όριο το οποίο οριοθετεί την κατάσταση υπεραγωγιμότητας, είναι η κρίσιμη θερμοκρασία Τ C, η οποία είναι χαρακτηριστική του κάθε υλικού. Η θερμοκρασία αυτή είναι η θερμοκρασία κάτω από την οποία όταν το υλικό ψυχθεί, μεταβαίνει από την κανονική κατάσταση στην υπεραγώγιμη κατάσταση. Όπως φαίνεται και από το διάγραμμα της ηλεκτρικής αντίστασης συναρτήσει της θερμοκρασίας για τον υδράργυρο (διάγραμμα 1, καμπύλη την οποία δημοσίευσε ο Onnes), παρατηρούμε ότι μέχρι την Τ C, η αντίσταση του υλικού ακολουθεί κανονικά τον νόμο του Ohm ενώ στους 4,15 Κ πέφτει απότομα στο μηδέν. Συνεπώς, για να έχουμε κατάσταση υπεραγωγιμότητας, πρέπει να βρισκόμαστε στην θερμοκρασιακή περιοχή στην οποία το υλικό παρουσιάζει τις συγκεκριμένες ιδιότητες. Ένας δεύτερος παράγοντας που επιδρά στην υπεραγώγιμη κατάσταση είναι το μαγνητικό πεδίο. Yπάρχει ένα μέγιστο μαγνητικό πεδίο H C, ορισμένο για συγκεκριμένη θερμοκρασία η οποία είναι οπωσδήποτε κάτω από την κρίσιμη, πέρα από το οποίο αναιρείται η υπεραγώγιμη κατάσταση. Όπως είναι κατανοητό, το μέγιστο μαγνητικό πεδίο το οποίο ονομάζεται κρίσιμο μαγνητικό πεδίο και υπό το οποίο μπορεί να βρεθεί το υλικό και να παραμείνει σε υπεραγώγιμη κατάσταση δεν είναι Διάγραμμα 1. Η αντίσταση του υδραργύρου σε σχέση με τη θερμοκρασία και η μετάπτωσή του σε υπεραγώγιμη κατάσταση στους 4,15Κ [2] σταθερό και καθορισμένο, αλλά είναι συνάρτηση της θερμοκρασίας στην οποία βρίσκεται το υλικό. Πιο συγκεκριμένα, το κρίσιμο μαγνητικό πεδίο σχετίζεται θερμοδυναμικά με την ελεύθερη ενεργειακή διαφορά μεταξύ της κανονικής και της υπεραγώγιμης κατάστασης σε μηδενικό μαγνητικό πεδίο. Το Η C προσδιορίζεται εξισώνοντας την ενέργεια Η 2 /8π ανά μονάδα όγκου, που σχετίζεται με την κατακράτηση του πεδίου εκτός της μάζας του υλικού και ενάντια της μαγνητικής πίεσης (φαινόμενο Meissner), με την ελεύθερη ενεργειακή διαφορά μεταξύ της κανονικής και της υπεραγώγιμης κατάστασης. Δηλαδή:

2 H 2 C T ( ) =f n (T)-f s (T) 8π όπου f n και f s είναι οι ελεύθερες ενέργειες του Helmholtz ανά μονάδα όγκου στην κανονική και υπεραγώγιμη κατάσταση αντίστοιχα σε μηδενικό μαγνητικό πεδίο. Η εξάρτηση του κρίσιμου μαγνητικού πεδίου H C από τη θερμοκρασία έχει εμπειρικά βρεθεί ότι ακολουθεί με ικανοποιητικά καλή προσέγγιση την παρακάτω παραβολική σχέση: T H C (Τ)= H C (0)[1-( ) 2 ] T C Διάγραμμα 2. Το κρίσιμο εξωτερικά επιβαλλόμενο μαγνητικό πεδίο σε συνάρτηση με τη θερμοκρασία [8] ένα υλικό να μεταβεί στην υπεραγώγιμη φάση σε οιανδήποτε θερμοκρασία. Από την παραβολική αυτή εξίσωση είναι προφανές ότι παίρνουμε τη μέγιστη τιμή του κρίσιμου μαγνητικού πεδίου όταν Τ=0 Κ. Επειδή είναι ακόμα αδύνατο να ψυχθεί κάτι στους 0 Κ, βρίσκουμε την μέγιστη τιμή του H C, το H C (0), προσδιορίζοντας το H C στη χαμηλότερη θερμοκρασία που μπορούμε να φτάσουμε και προεκτείνοντας στους 0 Κ. Η διαδικασία αυτή φαίνεται στο διάγραμμα 2. Να σημειωθεί ότι το H C (0) είναι το απόλυτα μέγιστο μαγνητικό πεδίο, πέρα από το οποίο παύει να είναι υπεραγώγιμο ένα υλικό. Με άλλα λόγια, εάν το εφαρμοζόμενο μαγνητικό πεδίο υπερβαίνει το H C (0) είναι αδύνατο Το τρίτο και τελευταίο όριο που περιορίζει το πεδίο στο οποίο έχουμε την εμφάνιση της υπεραγώγιμης κατάστασης είναι η πυκνότητα του ρεύματος που διαρρέει τον υπεραγωγό. Ας φανταστούμε για παράδειγμα ένα μακρύ κυλινδρικό υπεραγώγιμο καλώδιο το οποίο μεταφέρει ένα ρεύμα Ι. Αυτό το ρεύμα δημιουργεί ένα ομόκεντρο κυκλικό μαγνητικό πεδίο στην επιφάνεια του υπεραγωγού, 2 I μαγνήτισης Η=. Το μαγνητικό αυτό ca Διάγραμμα 3. Οι τρεις κρίσιμες τιμές της υπεραγωγής σε συνδυασμό η μία με τις άλλες δύο [8] πεδίο ξεκινά από την επιφάνεια του αγωγού και προς τα έξω λόγω του προαναφερθέντος φαινομένου Meissner. Όσο αυξάνεται η πυκνότητα του ρεύματος (ανάλογη της έντασης), τόσο και το πεδίο αυξάνεται μέχρις

3 ότου φθάσει το κρίσιμο μαγνητικό πεδίο Η C όπου και καταστρέφεται η υπεραγωγιμότητα. Έτσι το κρίσιμο cah C ρεύμα θα είναι Ι C =. Μπορεί να υπολογισθεί αναλυτικά με τις εξισώσεις των London και Maxwell 2 και συνυπολογίζοντας το βάθος διείσδυσης λ (θέματα τα οποία αναπτύσσονται παρακάτω), ότι η κρίσιμη πυκνότητα ρεύματος είναι I C 2 π aλ, δηλαδή: J C = ch C 4πλ Στο σημείο αυτό πρέπει να τονιστεί ότι η εξίσωση του κρίσιμου ρεύματος Ι C συναρτήσει του κρίσιμου μαγνητικού πεδίου Η C εξαρτάται πρωτίστως από τη γεωμετρία του υπεραγωγού. Συγκεντρώνοντας τους τρείς περιορισμούς που αναπτύχθηκαν παραπάνω και τοποθετώντας τους σε ένα σύστημα αξόνων, προκύπτει το διάγραμμα 3. Σημειώνεται ότι μέσα από την επιφάνεια και προς το κέντρο των αξόνων είναι η περιοχή της υπεραγώγιμης κατάστασης, ενώ σε οποιοδήποτε συνδυασμό J-Η-Τ που βρίσκεται εκτός του χώρου αυτού, δεν υπάρχουν υπεραγώγιμες ιδιότητες. Η θεωρία BCS Είναι γνωστό ότι μέρος της ηλεκτρικής αντίστασης των υλικών στην κανονική τους κατάσταση, οφείλεται στις σκεδάσεις που λαμβάνουν μέρος ανάμεσα στα ελεύθερα ηλεκτρόνια και στα ιόντα που πάλλονται φωνονικά γύρω από τις θέσεις ισορροπίας του πλέγματος, λόγω θερμότητας (εικόνα 1). Παράλληλα τα ηλεκτρόνια σκεδάζονται όταν γειτνιάσουν με τις διάφορες προσμίξεις που έχει το υλικό, κάτι το οποίο επίσης αυξάνει την αντίσταση που προβάλλει το υλικό στην κίνηση των ηλεκτρονίων μέσα σε αυτό. Με την ανακάλυψη του φαινομένου της υπεραγωγιμότητας, η Εικόνα 1. Μικροσκοπικά η αντίσταση που προβάλλει το πλέγμα στη κίνηση των ηλεκτρονίων και συνεπώς στην μετάδοση του ηλεκτρικού ρεύματος [25] επιστημονική κοινότητα αντιλήφθηκε ότι το προαναφερθέν σχετικά απλοϊκό μοντέλο της ηλεκτρικής αγωγιμότητας δεν επαρκούσε ώστε να ερμηνεύσει το φαινόμενο. Δηλαδή, παρόλο που στις χαμηλές θερμοκρασίες που λαμβάνει χώρα η υπεραγωγιμότητα, το πλάτος της φωνονικής ταλάντωσης των ιόντων του πλέγματος έχει μειωθεί δραματικά (εικόνα 2, 3), ωστόσο, δεν εξηγείται η απότομη μετάβαση στην κατάσταση υπεραγωγιμότητας, ενώ παράλληλα τα ηλεκτρόνια πάντοτε θα υφίστανται ορισμένες σκεδάσεις κατά την κίνησή τους ακόμη και σε μονοκρύσταλλο, οπότε η πλήρης εξαφάνιση της ηλεκτρικής αντίστασης παρέμενε ανεξήγητη. Η δημοσίευση το 1957 της θεωρίας BCS ήταν λίαν επιτυχής στην ερμηνεία των διαφόρων ιδιοτήτων και φαινομένων της υπεραγωγιμότητας.

4 Η κεντρική ιδέα της θεωρίας αυτής είναι ο σχηματισμός δέσμιων καταστάσεων μεταξύ ζευγών ηλεκτρονίων, τα οποία είναι γνωστά ως ζεύγη Cooper, υπό την έμμεση επίδραση μιας έλξης. Η λέξη έμμεση χρησιμοποιείται διότι όπως είναι γνωστό, τα ομώνυμα ηλεκτρικά φορτία απωθούνται. Όμως, με έναν συγκεκριμένο μηχανισμό που συστήνει η θεωρία BCS και που αναπτύσσεται παρακάτω, θα δούμε πως το τελικό αποτέλεσμα είναι να αναπτύσσεται μία έλξη μεταξύ τους της οποίας ενδιάμεσος φορέας είναι τα ιόντα των πλεγματικών θέσεων του υλικού. Σε θερμοκρασία δωματίου, τα ιόντα των πλεγματικών θέσεων του υλικού δεν είναι ακίνητα, αλλά, Εικόνα 2. Η τοπική χωρική παραμόρφωση του πλέγματος κατά την διέλευση ηλεκτρονίου στην υπεραγώγιμη φάση [25] λόγω απορρόφησης της θερμικής ενέργειας, πάλλονται γύρω από τη θέση ισορροπίας τους με ένα πλάτος x 0 και μία συχνότητα ω 0. Όταν η θερμοκρασία μειώνεται, η συχνότητα ταλάντωσης παραμένει η ίδια, αλλά το πλάτος ή αλλιώς η απόσταση στην οποία φθάνει το ιόν από τη θέση ισορροπίας μειώνεται. Σε θερμοκρασίες της τάξης των μερικών Kelvin όπου έχουμε το φαινόμενο της υπεραγωγιμότητας, η Εικόνα 3. Έμμεση αξονική ελκτική δύναμη στο δεύτερο ηλεκτρόνιο λόγω της παραμόρφωσης του πλέγματος που προκύπτει λόγω της κίνησης του πρώτου [2] ταλάντωση του πλέγματος είναι σχεδόν μηδενική. Έτσι, κατεβαίνοντας τον άξονα της θερμοκρασίας, έχουμε σιγά σιγά τον σχηματισμό αγώγιμων οδών μέσα στον μονοκρύσταλλο του υλικού όπου το πλέγμα δεν παρεμβάλλεται και οι σκεδάσεις των ηλεκτρονίων κατά την κίνησή τους στις διευθύνσεις αυτές είναι θεωρητικά μηδενικές. Θα έλεγε κάποιος ότι αυτό είναι αρκετό για την εξήγηση της μηδενικής αντίστασης της υπεραγωγιμότητας, παρόλα αυτά όμως θα παρέμενε αναπάντητη η απότομη μετάβαση στην κατάσταση αυτή, καθώς δεν είναι γραμμική όπως προβλέπει ο νόμος του Ohm και που στη περίπτωση αυτή όλα τα

5 υλικά θα μπορούσαν να είναι υπεραγώγιμα. Επίσης αυτό δεν εξηγεί τα παραμένοντα υπεραγώγιμα ρεύματα και το φαινόμενο Meissner. Όταν λοιπόν ένα ηλεκτρόνιο κινηθεί στην διεύθυνση των υπεραγώγιμων αυτών οδών που σχηματίζονται ενδιάμεσα στο κρυσταλλικό πλέγμα του υλικού όπως φαίνεται στην εικόνα 8, τότε λόγω αμοιβαίας έλξης του ηλεκτρονίου με τα εκατέρωθέν του ιόντα του πλέγματος, τα αναγκάζει στην στιγμιαία εγκατάλειψη των θέσεων ισορροπίας τους και στη σύγκλιση τους προς τη μεριά του ηλεκτρονίου. Το φαινόμενο αυτό δεν μπορεί να παρατηρηθεί σε όλα τα υλικά, διότι είναι απαραίτητες οι παρακάτω προϋποθέσεις: Πρέπει να είναι τέτοιες οι θέσεις ισορροπίας των ιόντων του κρυσταλλικού πλέγματος του υλικού, ώστε να σχηματίζονται υπεραγώγιμοι δρόμοι. Πρέπει οι δεσμοί μεταξύ των ιόντων να είναι τέτοιας ισχύος ώστε να επιτρέπουν τη στιγμιαία μετακίνηση ενός ιόντος από τη θέση ισορροπίας του. Πρέπει η απόσταση μεταξύ των κρυσταλλικών επιπέδων να επιτρέπει τη διέλευση ηλεκτρονίων, αλλά και την έλξη των ιόντων από αυτά. Το αποτέλεσμα είναι ότι στην παραμορφωμένη περιοχή του πλέγματος δημιουργείται εντελώς τοπικά μία περίσσεια θετικού φορτίου. Όταν ένα άλλο ηλεκτρόνιο, το οποίο τυγχάνει να βρίσκεται στην ίδια υπεραγώγιμη οδό, πλησιάσει σε ικανοποιητική απόσταση προτού προλάβουν και επανέλθουν τα ιόντα του πλέγματος στις αρχικές θέσεις ισορροπίας τους, τότε έλκεται από την περίσσεια ηλεκτρικού φορτίου που υπάρχει εκεί. Δημιουργείται δηλαδή μία έμμεση ελκτική δύναμη ανάμεσα στα δύο ηλεκτρόνια η οποία δρα μέσω των θετικών ιόντων του πλέγματος και ωθεί στιγμιαία το δεύτερο ηλεκτρόνιο προς τη διεύθυνση του πρώτου. Ένας αξιοσημείωτος παραλληλισμός ο οποίος έχει κάνει πιο κατανοητό το φαινόμενο των ζευγών Cooper είναι με τα δύο αυτοκίνητα που τρέχουν στην εθνική οδό. Δηλαδή όπως όταν ένα αυτοκίνητο, το οποίο τρέχει στην εθνική και ακολουθεί σε κοντινή απόσταση ένα προπορευόμενό του, μπορεί και διατηρεί την ταχύτητά του με κατά πολύ μικρότερη παροχή καυσίμου σε σχέση με το πρώτο λόγω της μειωμένης αντίστασης του αέρα και της υποπίεσης που δημιουργείται πίσω από αυτό, έτσι και το δεύτερο μέλος του ζεύγους Cooper εκμεταλλεύεται την ενεργειακή κατάσταση που διαμορφώνει το πρώτο και κινείται στην πορεία αυτού χωρίς την ανάγκη πεδίου, άρα ενέργειας, που να το προσανατολίζει ή/και να το επιταχύνει. Το πρώτο μέλος του ζεύγους Cooper ακολουθεί την πορεία που αναφέρθηκε, καθώς κατά την διεύθυνση Εικόνα 4. Ανάλυση των δυνάμεων που λαμβάνουν χώρα σε ένα ζεύγος Cooper: f,f αυτή δεν συναντά ελκτικές δυνάμεις ηλεκτρονίου με πυρήνα, F απωστική δύναμη ηλεκτρονίου με ηλεκτρόνιο. αντίσταση λόγω της μορφολογίας του πλέγματος. Όπως είναι κατανοητό, η κρυσταλλική μορφή του πλέγματος, η διάταξη των ιόντων στο χώρο δηλαδή, παίζει καταλυτικό και μείζονος σημασίας ρόλο στην ικανότητα ενός υλικού να μεταβεί σε υπεραγώγιμη

6 κατάσταση. Ο σχηματισμός δηλαδή υπεραγώγιμων οδών κατά τις οποίες οι σκεδάσεις των ηλεκτρονίων είναι ελάχιστες, δεν είναι δυνατός σε όλα τα υλικά. Όταν λοιπόν το ηλεκτρόνιο έλκει προς τα μέσα τα εκατέρωθέν του ιόντα, η συνισταμένη των δυνάμεων που δρουν σ αυτό, είναι μηδέν (εικόνα 4). Στη συνέχεια, στο δεύτερο ηλεκτρόνιο ασκούνται οι ελκτικές δυνάμεις από τα θετικά ιόντα που έχουν μετακινηθεί από τις θέσεις ισορροπίας τους προς τα μέσα, των οποίων η συνισταμένη έχει τη διεύθυνση κίνησης του πρώτου ηλεκτρονίου. Επίσης, ασκείται η απωθητική δύναμη του προπορευόμενου ηλεκτρονίου λόγω ομωνύμου φορτίου κατά Coulomb, η οποία έχει φορά αντίθετη της κίνησης όπως φαίνεται στην εικόνα 9 αλλά είναι ασθενέστερη των ελκτικών. Έτσι, το δεύτερο ηλεκτρόνιο ακολουθεί ισορροπώντας σε μία πολύ συγκεκριμένη απόσταση το πρώτο, η οποία απόσταση λέγεται μήκος συνάφειας ξ. Επειδή η ταλάντωση του πλέγματος λόγω του πρώτου ηλεκτρονίου είναι κβαντισμένη και άρα έχουμε φωνόνια, ο μηχανισμός που περιγράφηκε ονομάζεται και μηχανισμός οφειλόμενος σε φωτόνια. Είναι σημαντικό στο σημείο αυτό να κατανοηθεί ότι η ροή ενός υπεραγώγιμου ρεύματος σε έναν υπεραγωγό δεν αποτελείται από ένα ζεύγος Cooper, αλλά από συρμούς ηλεκτρονίων, όπου το κάθε ηλεκτρόνιο αποτελεί το δεύτερο μέλος του ζεύγους με το προηγηθέν του και παράλληλα του πρώτο μέλος με το επόμενο. Το κάθε ηλεκτρόνιο δηλαδή συμμετέχει ταυτόχρονα σε δύο ζεύγη Cooper. Έτσι δημιουργούνται σειρές ηλεκτρονίων που ταξιδεύουν μέσα στο πλέγμα του υλικού από υπεραγώγιμες οδούς. Το ζεύγος Cooper αποτελείται από δύο ηλεκτρόνια με ίσα μέτρα και αντίθετα σπιν (εικόνα 5). Επομένως, στην υπεραγώγιμη κατάσταση αλλά με απουσία υπερρευμάτων, το ζεύγος Cooper αποτελεί ένα σύστημα με μηδενική ολική ορμή και μηδενικό σπιν. Αφού λοιπόν τα ζεύγη Cooper έχουν μηδενικό σπιν, είναι μποζόνια και, επομένως, όλα τους μπορούν να βρίσκονται στην ίδια κατάσταση, ενώ, αντίθετα τα μεμονωμένα ηλεκτρόνια είναι φερμιόνια, με σπιν ½ και πρέπει να ικανοποιούν την απαγορευτική αρχή του Pauli, η οποία επιτρέπει ένα μόνο ηλεκτρόνιο σε μία συγκεκριμένη κατάσταση και συγκεκριμένο σπιν. Στη θεωρία BCS η θεμελιώδης κατάσταση αποτελείται από όλα τα δέσμια ζεύγη ηλεκτρονίων. Στη πράξη δηλαδή, όλα τα ζεύγη Cooper βρίσκονται στην ίδια κβαντική κατάσταση μηδενικής ορμής. Οι κυματοσυναρτήσεις των ζευγών Cooper έχουν σφαιρική συμμετρία, διότι έχουν μηδενικό σπιν και επομένως μηδενική στροφορμή. Αφού τα ηλεκτρόνια αποτελούν δέσμια κατάσταση, οι τροχιές τους μεταβάλλονται συνεχώς έτσι ώστε η απόσταση μεταξύ τους να είναι ίση περίπου με ένα μήκος συνάφειας. Η θεωρία BCS είχε ιδιαίτερη επιτυχία στην ερμηνεία των χαρακτηριστικών ιδιοτήτων των υπεραγωγών, όπως είναι η μηδενική αντίσταση και η αποβολή της μαγνητικής ροής. Από καθαρά ποιοτική άποψη, μπορεί κανείς να πει ότι για να ελαττωθεί η ορμή ενός οπουδήποτε ζεύγους Cooper, λόγου χάρη με σκέδασή του, πρέπει ταυτόχρονα να ελαττωθεί η ορμή Εικόνα 5. Το ζεύγος Cooper αποτελείται από ηλεκτρόνια με αντίθετο σπιν μεταξύ τους [8] όλων των ζευγών Cooper. Δεν είναι δυνατόν, βάση της θεωρίας, να μεταβληθεί η ταχύτητα ενός ζεύγους Cooper μόνον, χωρίς ταυτόχρονα να μεταβληθεί ισόποσα και η ταχύτητα όλων των υπολοίπων ζευγών που ακολουθούν. Πολλοί συγγραφείς περιγράφουν αυτή τη συλλογική κατάσταση με τον όρο κολεκτιβιστική κατάσταση. Ένας παραλληλισμός που έγινε παρομοίαζε τα ηλεκτρόνια των ζευγών με τους ορειβάτες που

7 είναι δεμένοι μεταξύ τους. Εάν ένας από αυτούς ξεστρατίσει εξαιτίας των ανωμαλιών του μονοπατιού, που στην περίπτωσή μας οφείλονται στις θερμικές ταλαντώσεις των ατόμων του πλέγματος, οι υπόλοιποι ορειβάτες θα τον επαναφέρουν στην τάξη. Έτσι οι διάφορες ανωμαλίες του πλέγματος και οι ταλαντώσεις του δεν επηρεάζουν τα ζεύγη Cooper. Σε απουσία ηλεκτρικής αντιστάσεως, το ρεύμα διατηρείται στο διηνεκές. Είναι αξιοσημείωτο το γεγονός ότι στις ταλαντώσεις του πλέγματος οφείλεται αφ ενός η ηλεκτρική αντίσταση των κανονικών μετάλλων και, αφ ετέρου, η υπεραγωγιμότητα. Έτσι, μέταλλα όπως τα Cu, Ag και Au που έχουν μικρές ταλαντώσεις πλέγματος σε θερμοκρασία δωματίου και είναι καλοί αγωγοί, δεν είναι υπεραγωγοί. Αντιθέτως, τα Pb, Sn και Hg, αλλά και άλλοι μέτριοι αγωγοί που έχουν μεγάλες ταλαντώσεις πλέγματος σε θερμοκρασία δωματίου, είναι υπεραγωγοί σε χαμηλές θερμοκρασίες. Αυτό οφείλεται στο ότι οι δεσμοί μεταξύ των ιόντων του υλικού πρέπει να έχουν την ανοχή και ελαστικότητα σε παραμορφώσεις, διότι αλλιώς δεν υπάρχουν οι προϋποθέσεις δημιουργίας της δυναμικής αυτής κατάστασης των ζευγών Cooper. Όπως αναφέρθηκε παραπάνω, η υπεραγώγιμη κατάσταση οφείλεται στη συλλογική δράση των ζευγών Cooper. Η συμπύκνωση όλων των ζευγών στην ίδια κβαντική κατάσταση κάνει το σύστημα να μοιάζει με ένα γιγαντιαίο κβαντομηχανικό σύστημα, όπως, αν μας επιτρέπεται η έκφραση, ένα μακρομόριο. Αυτός είναι ο λόγος για τον οποίο οι υπεραγωγοί έχουν κβαντική συμπεριφορά σε μακροσκοπική κλίμακα, ενώ τα επιμέρους άτομα και μόρια εκδηλώνουν τη κβαντική τους συμπεριφορά μόνον σε μικροσκοπική κλίμακα. Η συμπυκνωμένη συμπεριφορά των ζευγών Cooper περιγράφεται με μία και μόνον σύμφωνη κυματοσυνάρτηση ψ. Η κυματοσυνάρτηση αυτή εκτείνεται και καλύπτει ολόκληρο τον όγκο του υπεραγωγού και είναι της μορφής: ψ 0 ( 1 r2 ) = [ g k cos k ( r1 r2 )]( α1β 2 β1α 2 k > k f r ) όπου r 1 -r 2 είναι οι σχετικές συντεταγμένες των ηλεκτρονίων ενός ζεύγους Cooper, τα α 1, β 1, α 2 και β 2 αναφέρονται αντιστοίχως στο άνω και κάτω σπιν (α,β) του πρώτου και δευτέρου (1,2) ηλεκτρονίου ενός ζεύγους Cooper, το k>k f αντιστοιχίζεται στα ηλεκτρόνια που έχουν κινητική ενέργεια μεγαλύτερη από το επίπεδο Fermi και το g k είναι σταθερά. Πρέπει να σημειωθεί ότι όλα τα ελεύθερα ηλεκτρόνια δεν έχουν τη ικανότητα να γίνουν υπεραγώγιμα. Ο αριθμός των υπεραγώγιμων ηλεκτρονίων n s είναι σαφώς μικρότερος από αυτόν των αγώγιμων στην κανονική κατάσταση του υλικού που συμβολίζεται ως n n. 2. Πείραμα Σκοπός του πειράματος είναι ο προσδιορισμός του θερμοκρασιακού σημείου μετάβασης του υλικού από την κανονική του κατάσταση στην υπεραγώγιμη. Αυτό θα πραγματοποιηθεί μέσω της παρατήρησης της μαγνητικής επιδεκτικότητας του υλικού συναρτήσει της θερμοκρασίας. Όπως αναφέρθηκε παραπάνω, όταν το υλικό είναι στην υπεραγώγιμη κατάσταση συμπεριφέρεται ως απόλυτα διαμαγνητικό υλικό, αντιτιθόμενο πλήρως σε εξωτερικά επιβαλλόμενα μαγνητικά πεδία. Η ιδιότητά του αυτή, μπορεί να παρατηρηθεί με την παρακάτω διάταξη του σχήματος 6.

8 Το εξωτερικό πηνίο διεγείρει τα δύο όμοια εσωτερικά πηνία λήψης, τα οποία έχουν αντίρροπη τύλιξη. Λόγω αυτού, η τάση εξόδου που δίνουν είναι μηδενική, διότι το ένα αναιρεί το άλλο. Στην κανονική του κατάσταση το υλικό έχει πολύ μικρή μαγνητική επιδεκτικότητα, της τάξης 10-6 και δεν επηρεάζει το σύστημα. V Όταν το υλικό περάσει στην υπεραγώγιμη κατάσταση, πλέον αναγκάζει τις μαγνητικές γραμμές να μην περάσουν από το δεύτερο πηνίο. Για τον λόγο, το πηνίο δεν δίδει τάση και πλέον εμφανίζεται στο μετρητικό η τάση του πρώτου. Κατά τον τρόπο αυτό μπορούμε μακροσκοπικά να παρατηρήσουμε το σημείο και τη διάρκεια μετάβασης του υλικού στην υπεραγώγιμη κατάσταση. Περαιτέρω, με κατάλληλο ηλεκτρονικό κύκλωμα μπορεί να μεταφραστεί η μέτρηση σε μονάδες μαγνητικής επιδεκτικότητας και παράλληλα με τη μέτρηση της θερμοκρασίας να πάρουμε διαγράμματα όπως αυτό της εικόνας 7. Εικόνα 6. Σχηματικά η διάταξη μέτρησης της μαγνητικής επιδεκτικότητας

9 0,2 41.2K χ / 0,0-0,2 sample 4d old (no superconducting) without Ar flow -0,4 ac field: 4H o cooling rate: E -0,6-0,8 39.7K sample 4p -1, T(K) Εικόνα 7. Πρότυπο διάγραμμα μέτρησης της μαγνητικής επιδεκτικότητας υπεραγωγού συναρτήση της θερμοκρασίας 3. Άσκηση α. Προσδιορίστε το σημείο μετάβασης του υλικού στην υπεραγώγιμη κατάσταση β. Προσδιορίστε τη θερμοκρασιακή διάρκεια μετάβασης στην υπεραγώγιμη κατάσταση γ. Πως εξηγείται η διαμαγνητική συμπεριφορά των υπεραγωγών δ. Εξηγήστε για πιο λόγο το υλικό αιωρείται όταν τοποθετηθεί πάνω από μόνιμο μαγνήτη και τι συμβαίνει καθώς ανεβαίνει η θερμοκρασία του. Το υλικό είναι υπεραγωγός τύπου ΙΙ ε. Αναφέρατε ορισμένες εφαρμογές των υπεραγώγιμων υλικών που θεωρείτε ότι θα μπορούν να έχουν

7η Εργαστηριακή Άσκηση Υπεραγώγιμα Υλικά

7η Εργαστηριακή Άσκηση Υπεραγώγιμα Υλικά 7η Εργαστηριακή Άσκηση Υπεραγώγιμα Υλικά Θεωρητικό μέρος Η μεταβολή της αντίστασης των περισσοτέρων μετάλλων με τη θερμοκρασία γίνεται ομαλά, συγκεκριμένα αυξάνει με την αύξηση της θερμοκρασίας λόγω των

Διαβάστε περισσότερα

έντασης του υπεραγώγιμου ρεύματος για χρόνους μικρότερους των

έντασης του υπεραγώγιμου ρεύματος για χρόνους μικρότερους των Υπεραγώγιμα Υλικά 1.1 Ιστορική Αναδρομή Η υπεραγωγιμότητα ανακαλύφθηκε το 1911 από τον Ολλανδό φυσικό Heike Kamerlingh Onnes, μόλις τρία χρόνια αφού κατάφερε και υγροποίησε το ήλιο, γεγονός το οποίο του

Διαβάστε περισσότερα

ηλεκτρικό ρεύμα ampere

ηλεκτρικό ρεύμα ampere Ηλεκτρικό ρεύμα Το ηλεκτρικό ρεύμα είναι ο ρυθμός με τον οποίο διέρχεται ηλεκτρικό φορτίο από μια περιοχή του χώρου. Η μονάδα μέτρησης του ηλεκτρικού ρεύματος στο σύστημα SI είναι το ampere (A). 1 A =

Διαβάστε περισσότερα

7.a. Οι δεσμοί στα στερεά

7.a. Οι δεσμοί στα στερεά ΤΕΤΥ Σύγχρονη Φυσική Κεφ. 7-1 Κεφάλαιο 7. Στερεά Εδάφια: 7.a. Οι δεσμοί στα στερεά 7.b. Η θεωρία των ενεργειακών ζωνών 7.c. Νόθευση ημιαγωγών και εφαρμογές 7.d. Υπεραγωγοί 7.a. Οι δεσμοί στα στερεά Με

Διαβάστε περισσότερα

ηλεκτρικό ρεύµα ampere

ηλεκτρικό ρεύµα ampere Ηλεκτρικό ρεύµα Το ηλεκτρικό ρεύµα είναι ο ρυθµός µε τον οποίο διέρχεται ηλεκτρικό φορτίο από µια περιοχή του χώρου. Η µονάδα µέτρησης του ηλεκτρικού ρεύµατος στο σύστηµα SI είναι το ampere (A). 1 A =

Διαβάστε περισσότερα

Υπεραγωγιμότητα. Βασικά Φαινόμενα: Ηλεκτροδυναμική: Επιφανειακή Ενέργεια: Κβαντικά Φαινόμενα: Μικροσκοπική Θεωρία :

Υπεραγωγιμότητα. Βασικά Φαινόμενα: Ηλεκτροδυναμική: Επιφανειακή Ενέργεια: Κβαντικά Φαινόμενα: Μικροσκοπική Θεωρία : Βασικά Φαινόμενα: Ηλεκτροδυναμική: Επιφανειακή Ενέργεια: Κβαντικά Φαινόμενα: Μικροσκοπική Θεωρία : Υπεραγωγιμότητα Μηδενική Αντίσταση Missn, Κρίσιμο Πεδίο, Θερμοδυναμική Κρίσιμο Ρεύμα Εξισώσεις London,

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 2.4 Παράγοντες από τους οποίους εξαρτάται η αντίσταση ενός αγωγού Λέξεις κλειδιά: ειδική αντίσταση, μικροσκοπική ερμηνεία, μεταβλητός αντισ ροοστάτης, ποτενσιόμετρο 2.4 Παράγοντες που επηρεάζουν την

Διαβάστε περισσότερα

Αγωγιμότητα στα μέταλλα

Αγωγιμότητα στα μέταλλα Η κίνηση των ατόμων σε κρυσταλλικό στερεό Θερμοκρασία 0 Θερμοκρασία 0 Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo

Διαβάστε περισσότερα

Διάλεξη 7: Μοριακή Δομή

Διάλεξη 7: Μοριακή Δομή Μεμονωμένα άτομα: Μόνο τα ευγενή αέρια Μόρια: Τα υπόλοιπα άτομα σχηματίζουν μόρια Γιατί; Διότι η ολική ενέργεια ενός ευσταθούς μορίου είναι μικρότερη από την ολική ενέργεια των μεμονωμένων ατόμων που αποτελούν

Διαβάστε περισσότερα

Αγωγιμότητα στα μέταλλα

Αγωγιμότητα στα μέταλλα Η κίνηση των ατόμων σε κρυσταλλικό στερεό Θερμοκρασία 0 Θερμοκρασία 0 Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo

Διαβάστε περισσότερα

ΠΡΑΓΜΑΤΙΚΑ ΑΕΡΙΑ ΘΕΩΡΙΑ

ΠΡΑΓΜΑΤΙΚΑ ΑΕΡΙΑ ΘΕΩΡΙΑ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 6932 946778 ΠΡΑΓΜΑΤΙΚΑ ΑΕΡΙΑ ΘΕΩΡΙΑ Περιεχόμενα 1. Όρια καταστατικής εξίσωσης ιδανικού αερίου 2. Αποκλίσεις των Ιδιοτήτων των πραγματικών αερίων από τους Νόμους

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΦΥΣΙΚΗ ΙΙ

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΦΥΣΙΚΗ ΙΙ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΦΥΣΙΚΗ ΙΙ 1. Οι δυναμικές γραμμές ηλεκτροστατικού πεδίου α Είναι κλειστές β Είναι δυνατόν να τέμνονται γ Είναι πυκνότερες σε περιοχές όπου η ένταση του πεδίου είναι μεγαλύτερη δ Ξεκινούν

Διαβάστε περισσότερα

Μαγνητικά Υλικά Υπεραγωγοί

Μαγνητικά Υλικά Υπεραγωγοί ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαγνητικά Υλικά Υπεραγωγοί ΥΠΕΡΑΓΩΓΙΜΟΤΗΤΑ Διδάσκων: Καθηγητής Ιωάννης Παναγιωτόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: Ηλεκτρικό Ρεύμα Μέρος 1 ο

ΚΕΦΑΛΑΙΟ 2: Ηλεκτρικό Ρεύμα Μέρος 1 ο ΚΕΦΑΛΑΙΟ 2: Ηλεκτρικό Ρεύμα Μέρος 1 ο Βασίλης Γαργανουράκης Φυσική ήγ Γυμνασίου Εισαγωγή Στο προηγούμενο κεφάλαιο μελετήσαμε τις αλληλεπιδράσεις των στατικών (ακίνητων) ηλεκτρικών φορτίων. Σε αυτό το κεφάλαιο

Διαβάστε περισσότερα

Ηλεκτρικη αγωγιµοτητα

Ηλεκτρικη αγωγιµοτητα Ηλεκτρικη αγωγιµοτητα Κίνηση φορτιων σε ενα υλικο υπο την επιδραση ενος εφαρμοζομενου ηλεκτρικου πεδιου Αγωγοι: μεγαλο αριθμο ελευθερων ηλεκτρονιων Στα μεταλλα, λογω μεταλλικου δεσμου, δημιουργειται μια

Διαβάστε περισσότερα

3.2 ΧΗΜΙΚΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΤΟΥ ΗΛΕΚΤΡΙΚΟΥ ΡΕΥΜΑΤΟΣ

3.2 ΧΗΜΙΚΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΤΟΥ ΗΛΕΚΤΡΙΚΟΥ ΡΕΥΜΑΤΟΣ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 3.2 ΧΗΜΙΚΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΤΟΥ ΗΛΕΚΤΡΙΚΟΥ ΡΕΥΜΑΤΟΣ 1 Λέξεις κλειδιά: Ηλεκτρολυτικά διαλύματα, ηλεκτρόλυση,

Διαβάστε περισσότερα

2η Εργαστηριακή Άσκηση Εξάρτηση της ηλεκτρικής αντίστασης από τη θερμοκρασία Θεωρητικό μέρος

2η Εργαστηριακή Άσκηση Εξάρτηση της ηλεκτρικής αντίστασης από τη θερμοκρασία Θεωρητικό μέρος 2η Εργαστηριακή Άσκηση Εξάρτηση της ηλεκτρικής αντίστασης από τη θερμοκρασία Θεωρητικό μέρος Όπως είναι γνωστό από την καθημερινή εμπειρία τα περισσότερα σώματα που χρησιμοποιούνται στις ηλεκτρικές ηλεκτρονικές

Διαβάστε περισσότερα

Από πού προέρχεται η θερμότητα που μεταφέρεται από τον αντιστάτη στο περιβάλλον;

Από πού προέρχεται η θερμότητα που μεταφέρεται από τον αντιστάτη στο περιβάλλον; 3. ΗΛΕΚΤΡΙΚΗ ΕΝΕΡΓΕΙΑ Ένα ανοικτό ηλεκτρικό κύκλωμα μετατρέπεται σε κλειστό, οπότε διέρχεται από αυτό ηλεκτρικό ρεύμα που μεταφέρει ενέργεια. Τα σπουδαιότερα χαρακτηριστικά της ηλεκτρικής ενέργειας είναι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ Το ηλεκτρικό φορτίο στο εσωτερικό του ατόμου 1. Από τι σωματίδια αποτελούνται τα άτομα σύμφωνα με τις απόψεις των Rutherford και Bohr;

ΚΕΦΑΛΑΙΟ Το ηλεκτρικό φορτίο στο εσωτερικό του ατόμου 1. Από τι σωματίδια αποτελούνται τα άτομα σύμφωνα με τις απόψεις των Rutherford και Bohr; ΚΕΦΑΛΑΙΟ 1 1.1 Γνωριμία με τη ηλεκτρική δύναμη. 1. Ποιες δυνάμεις λέγονται ηλεκτρικές; Λέμε τις δυνάμεις που ασκούνται μεταξύ σωμάτων που έχουμε τρίψει προηγουμένως δηλαδή σωμάτων ηλεκτρισμένων. 2. Τι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7 ΗΛΕΚΤΡΙΚΗ ΑΓΩΓΙΜΟΤΗΤΑ ΣΤΑ ΜΕΤΑΛΛΑ- ΑΝΤΙΣΤΑΤΕΣ

ΚΕΦΑΛΑΙΟ 7 ΗΛΕΚΤΡΙΚΗ ΑΓΩΓΙΜΟΤΗΤΑ ΣΤΑ ΜΕΤΑΛΛΑ- ΑΝΤΙΣΤΑΤΕΣ ΚΕΦΑΛΑΙΟ 7 ΗΛΕΚΤΡΙΚΗ ΑΓΩΓΙΜΟΤΗΤΑ ΣΤΑ ΜΕΤΑΛΛΑ- ΑΝΤΙΣΤΑΤΕΣ 7.1. Εισαγωγή Στο κεφάλαιο αυτό θα εξετάσουμε την ηλεκτρική αγωγιμότητα των μεταλλικών υλικών και τους παράγοντες που την επηρεάζουν, όπως η θερμοκρασία,

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός. Μαγνητικό πεδίο. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Μαγνητικό πεδίο. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Μαγνητικό πεδίο Νίκος Ν. Αρπατζάνης Μαγνητικοί πόλοι Κάθε μαγνήτης, ανεξάρτητα από το σχήμα του, έχει δύο πόλους. Τον βόρειο πόλο (Β) και τον νότιο πόλο (Ν). Μεταξύ των πόλων αναπτύσσονται

Διαβάστε περισσότερα

Υλικά Ηλεκτρονικής & Διατάξεις

Υλικά Ηλεκτρονικής & Διατάξεις Τμήμα Ηλεκτρονικών Μηχανικών Υλικά Ηλεκτρονικής & Διατάξεις 2 η σειρά διαφανειών Δημήτριος Λαμπάκης ΜΟΡΙΑΚΗ ΔΟΜΗ Μεμονωμένα άτομα: Μόνο τα ευγενή αέρια Μόρια: Τα υπόλοιπα άτομα σχηματίζουν μόρια, γιατί

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΑ & ΕΠΙΣΤΗΜΗ ΤΩΝ ΥΛΙΚΩΝ

ΤΕΧΝΟΛΟΓΙΑ & ΕΠΙΣΤΗΜΗ ΤΩΝ ΥΛΙΚΩΝ Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνσης Συντήρησης Πολιτισμικής Κληρονομιάς ΤΕΧΝΟΛΟΓΙΑ & ΕΠΙΣΤΗΜΗ ΤΩΝ ΥΛΙΚΩΝ 3 η Ενότητα ΔΕΣΜΟΙ Δημήτριος Λαμπάκης ΜΟΡΙΑΚΗ ΔΟΜΗ Μεμονωμένα άτομα: Μόνο τα ευγενή αέρια

Διαβάστε περισσότερα

Andre-Marie Ampère Γάλλος φυσικός Ανακάλυψε τον ηλεκτροµαγνητισµό. Ασχολήθηκε και µε τα µαθηµατικά.

Andre-Marie Ampère Γάλλος φυσικός Ανακάλυψε τον ηλεκτροµαγνητισµό. Ασχολήθηκε και µε τα µαθηµατικά. Μαγνητικά πεδία Τα µαγνητικά πεδία δηµιουργούνται από κινούµενα ηλεκτρικά φορτία. Μπορούµε να υπολογίσουµε το µαγνητικό πεδίο που δηµιουργούν διάφορες κατανοµές ρευµάτων. Ο νόµος του Ampère χρησιµεύει

Διαβάστε περισσότερα

ΘΕΜΑ 1ο 1.1 Να γράψετε στο τετράδιό σας τα φυσικά μεγέθη από τη Στήλη Ι και, δίπλα σε καθένα, τη μονάδα της Στήλης ΙΙ που αντιστοιχεί σ' αυτό.

ΘΕΜΑ 1ο 1.1 Να γράψετε στο τετράδιό σας τα φυσικά μεγέθη από τη Στήλη Ι και, δίπλα σε καθένα, τη μονάδα της Στήλης ΙΙ που αντιστοιχεί σ' αυτό. ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 5 ΙΟΥΝΙΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ : ΦΥΣΙΚΗ ΘΕΜΑ 1ο 1.1 Να γράψετε στο τετράδιό σας τα φυσικά μεγέθη από τη Στήλη Ι και,

Διαβάστε περισσότερα

Ανάστροφη πόλωση της επαφής p n

Ανάστροφη πόλωση της επαφής p n Ανάστροφη πόλωση της επαφής p n Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo Επαφή p n Ανάστροφη πόλωση Πολώνουμε

Διαβάστε περισσότερα

Επαφές μετάλλου ημιαγωγού

Επαφές μετάλλου ημιαγωγού Δίοδος Schottky Επαφές μετάλλου ημιαγωγού Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων Τι είναι Ημιαγωγός Κατασκευάζεται με εξάχνωση μετάλλου το οποίο μεταφέρεται στην επιφάνεια

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 4 ΙΟΥΝΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ : ΦΥΣΙΚΗ

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 4 ΙΟΥΝΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ : ΦΥΣΙΚΗ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 4 ΙΟΥΝΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ : ΦΥΣΙΚΗ ΘΕΜΑ 1ο Στις προτάσεις 1.1-1.4 να γράψετε στο τετράδιό σας τον αριθμό της αρχικής

Διαβάστε περισσότερα

Ανάστροφη πόλωση της επαφής p n

Ανάστροφη πόλωση της επαφής p n Ανάστροφη πόλωση της επαφής p n Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo Επαφή p n Ανάστροφη πόλωση Πολώνουμε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Μοριακή Δομή Ι Διδάσκων : Επίκ. Καθ. Μ. Μπενής

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Μοριακή Δομή Ι Διδάσκων : Επίκ. Καθ. Μ. Μπενής ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Σύγxρονη Φυσική II Μοριακή Δομή Ι Διδάσκων : Επίκ. Καθ. Μ. Μπενής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΦΩΤΟΒΟΛΤΑΪΚΑ. Γ. Λευθεριώτης Αναπλ. Καθηγητής Γ. Συρροκώστας Μεταδιδακτορικός Ερευνητής

ΦΩΤΟΒΟΛΤΑΪΚΑ. Γ. Λευθεριώτης Αναπλ. Καθηγητής Γ. Συρροκώστας Μεταδιδακτορικός Ερευνητής ΦΩΤΟΒΟΛΤΑΪΚΑ Γ. Λευθεριώτης Αναπλ. Καθηγητής Γ. Συρροκώστας Μεταδιδακτορικός Ερευνητής Αγωγοί- μονωτές- ημιαγωγοί Μέταλλα: Μία ζώνη μερικώς γεμάτη ή μία ζώνη επικαλύπτει την άλλη Τα ηλεκτρόνια μπορούν

Διαβάστε περισσότερα

1. Να χαρακτηρίσετε τις παρακάτω προτάσεις ως σωστές (Σ) ή λανθασμένες (Λ):

1. Να χαρακτηρίσετε τις παρακάτω προτάσεις ως σωστές (Σ) ή λανθασμένες (Λ): 1. Να χαρακτηρίσετε τις παρακάτω προτάσεις ως σωστές (Σ) ή λανθασμένες (Λ): 1) Ηλεκτρισμένα ονομάζουμε τα σώματα τα οποία, αφού τα τρίψουμε έχουν την ιδιότητα να έλκουν μικρά αντικείμενα. 2) Οι ηλεκτρικές

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 15 Ηλεκτρικό Ρεύμα και Αντίσταση ΦΥΣ102 1 Ηλεκτρική Μπαταρία Ο Volta ανακάλυψε ότι

Διαβάστε περισσότερα

Θεωρητική Εξέταση. Τρίτη, 15 Ιουλίου /3

Θεωρητική Εξέταση. Τρίτη, 15 Ιουλίου /3 Θεωρητική Εξέταση. Τρίτη 15 Ιουλίου 2014 1/3 Πρόβλημα 3. Απλό μοντέλο εκκένωσης αερίου (10 ) Η διέλευση ηλεκτρικού ρεύματος μέσα από ένα αέριο ονομάζεται εκκένωση αερίου. Υπάρχουν πολλοί τύποι εκκένωσης

Διαβάστε περισσότερα

(Β' Τάξη Εσπερινού) Έργο Ενέργεια

(Β' Τάξη Εσπερινού) Έργο Ενέργεια Φυσική Α' Γενικού Λυκείου (Α' Τάξη Εσπερινού) Ευθύγραμμες Κινήσεις: Ομαλή Ομαλά μεταβαλλόμενη Μεγέθη κινήσεων Χρονική στιγμή χρονική διάρκεια Θέση Μετατόπιση Ταχύτητα (μέση στιγμιαία) Επιτάχυνση Εξισώσεις

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 3 ΙΟΥΝΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 3 ΙΟΥΝΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ 1ο ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 3 ΙΟΥΝΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και

Διαβάστε περισσότερα

ΠΡΟΣΟΜΟΙΩΣΗ ΕΞΕΤΑΣΕΩΝ Β ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 27 ΑΠΡΙΛΙΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΠΡΟΣΟΜΟΙΩΣΗ ΕΞΕΤΑΣΕΩΝ Β ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 27 ΑΠΡΙΛΙΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΠΡΟΣΟΜΟΙΩΣΗ ΕΞΕΤΑΣΕΩΝ Β ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 27 ΑΠΡΙΛΙΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 ο Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα

1.Η δύναμη μεταξύ δύο φορτίων έχει μέτρο 120 N. Αν η απόσταση των φορτίων διπλασιαστεί, το μέτρο της δύναμης θα γίνει:

1.Η δύναμη μεταξύ δύο φορτίων έχει μέτρο 120 N. Αν η απόσταση των φορτίων διπλασιαστεί, το μέτρο της δύναμης θα γίνει: ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΩΝ ΕΠΙΛΟΓΩΝ Ηλεκτρικό φορτίο Ηλεκτρικό πεδίο 1.Η δύναμη μεταξύ δύο φορτίων έχει μέτρο 10 N. Αν η απόσταση των φορτίων διπλασιαστεί, το μέτρο της δύναμης θα γίνει: (α)

Διαβάστε περισσότερα

Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 1999

Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 1999 Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 1999 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 4 ΣΕΠΤΕΜΒΡΙΟΥ 1999 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Στις ερωτήσεις 1-4, να γράψετε στο τετράδιό

Διαβάστε περισσότερα

[ i) 34V, 18V, 16V, -16V ii) 240W, - 96W, 144W, iii)14,4j, 96J/s ]

[ i) 34V, 18V, 16V, -16V ii) 240W, - 96W, 144W, iii)14,4j, 96J/s ] ΕΠΑΓΩΓΗ 1) Ένα τετράγωνο πλαίσιο ΑΓΔΕ βρίσκεται μέσα σε ομογενές μαγνητικό πεδίο, με το επίπεδό του κάθετο στις δυναμικές γραμμές του. Στο διάγραμμα φαίνεται η μεταβολή της ροής που διέρχεται από το πλαίσιο

Διαβάστε περισσότερα

Λυχνία Κλύστρον Ανακλάσεως

Λυχνία Κλύστρον Ανακλάσεως Λυχνία Κλύστρον Ανακλάσεως Σκοπός της εργαστηριακής άσκησης είναι η μελέτη της λειτουργίας μιας λυχνίας Κλύστρον ανακλάσεως τύπου 2K25 και η παρατήρηση των διαφορετικών τρόπων ταλάντωσης που υποστηρίζει

Διαβάστε περισσότερα

Ο νόμος της επαγωγής, είναι ο σημαντικότερος νόμος του ηλεκτρομαγνητισμού. Γι αυτόν ισχύουν οι εξής ισοδύναμες διατυπώσεις:

Ο νόμος της επαγωγής, είναι ο σημαντικότερος νόμος του ηλεκτρομαγνητισμού. Γι αυτόν ισχύουν οι εξής ισοδύναμες διατυπώσεις: Άσκηση Η17 Νόμος της επαγωγής Νόμος της επαγωγής ή Δεύτερη εξίσωση MAXWELL Ο νόμος της επαγωγής, είναι ο σημαντικότερος νόμος του ηλεκτρομαγνητισμού. Γι αυτόν ισχύουν οι εξής ισοδύναμες διατυπώσεις: d

Διαβάστε περισσότερα

ΗΛΕΚΤΡΙΚΕΣ ΜΗΧΑΝΕΣ Γ

ΗΛΕΚΤΡΙΚΕΣ ΜΗΧΑΝΕΣ Γ ΗΛΕΚΤΡΙΚΕΣ ΜΗΧΑΝΕΣ Γ ΜΑΘΗΜΑ 2 Ισοδύναμο Ηλεκτρικό Κύκλωμα Σύγχρονων Μηχανών Ουρεϊλίδης Κωνσταντίνος, Υποψ. Διδακτωρ Υπολογισμός Αυτεπαγωγής και αμοιβαίας επαγωγής Πεπλεγμένη μαγνητική ροή συναρτήσει των

Διαβάστε περισσότερα

Δομή ενεργειακών ζωνών

Δομή ενεργειακών ζωνών Ατομικό πρότυπο του Bohr Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo Βασικές αρχές του προτύπου Bohr Θετικά φορτισμένος

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Φυσική Κατεύθυνσης Β Λυκείου ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ κ ΙΑΓΩΝΙΣΜΑ Β Θέµα ο Να επιλέξετε τη σωστή απάντηση σε κάθε µία από τις παρακάτω ερωτήσεις: Σε ισόχωρη αντιστρεπτή θέρµανση ιδανικού αερίου, η

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΤΕΧΝΙΚΑ Υλικα 3ο μεροσ. Θεωρητικη αναλυση

ΗΛΕΚΤΡΟΤΕΧΝΙΚΑ Υλικα 3ο μεροσ. Θεωρητικη αναλυση ΗΛΕΚΤΡΟΤΕΧΝΙΚΑ Υλικα 3ο μεροσ Θεωρητικη αναλυση μεταλλα Έχουν κοινές φυσικές ιδιότητες που αποδεικνύεται πως είναι αλληλένδετες μεταξύ τους: Υψηλή φυσική αντοχή Υψηλή πυκνότητα Υψηλή ηλεκτρική και θερμική

Διαβάστε περισσότερα

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 03-04 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 0/0/03 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α-Α4 και δίπλα

Διαβάστε περισσότερα

ΑΝΑΛΟΓΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ

ΑΝΑΛΟΓΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΑΝΑΛΟΓΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΚΕΦΑΛΑΙΟ 2ο ΗΜΙΑΓΩΓΟΙ Αγωγοί, Μονωτές, Ημιαγωγοί Κατηγοριοποίηση υλικών βάσει των ηλεκτρικών τους ιδιοτήτων: Αγωγοί (αφήνουν το ρεύμα να περάσει) Μονωτές (δεν αφήνουν το ρεύμα να

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΟ ΕΝΘΕΤΟ σελ. 1. Ηλεκτρικά φορτία

ΕΙΣΑΓΩΓΙΚΟ ΕΝΘΕΤΟ σελ. 1. Ηλεκτρικά φορτία ΕΙΣΑΓΩΓΙΚΟ ΕΝΘΕΤΟ σελ. 1 ΕΙΣΑΓΩΓΙΚΟ ΕΝΘΕΤΟ 1.1 Θεωρητικό Μέρος Ηλεκτρικά φορτία Τα ηλεκτρισμένα σώματα χωρίζονται σε δύο κατηγορίες: Θετικά Ηλεκτρισμένα: Είναι τα σώματα που εμφανίζουν συμπεριφορά όμοια

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΜΑ: Γ ΣΑΞΗ ΛΤΚΕΙΟΤ

ΔΙΑΓΩΝΙΜΑ: Γ ΣΑΞΗ ΛΤΚΕΙΟΤ ΔΙΑΓΩΝΙΜΑ: Γ ΣΑΞΗ ΛΤΚΕΙΟΤ Μ Α Θ Η Μ Α : Υ ΤΙΚΗ ΚΑΣΕΤΘΤΝΗ Ε Π Ω Ν Τ Μ Ο :..... Ο Ν Ο Μ Α :........ Σ Μ Η Μ Α :..... Η Μ Ε Ρ Ο Μ Η Ν Ι Α : 1 3 / 1 0 / 2 0 1 3 Ε Π Ι Μ Ε Λ Ε Ι Α Θ Ε Μ Α Σ Ω Ν : ΥΑΡΜΑΚΗ ΠΑΝΣΕΛΗ

Διαβάστε περισσότερα

ΠΑΡΑΤΗΡΗΣΕΙΣ ΓΙΑ ΤΙΣ ΑΣΚΗΣΕΙΣ

ΠΑΡΑΤΗΡΗΣΕΙΣ ΓΙΑ ΤΙΣ ΑΣΚΗΣΕΙΣ F ΠΑΡΑΤΗΡΗΣΕΙΣ ΓΙΑ ΤΙΣ ΑΣΚΗΣΕΙΣ Όταν δίνονται οι δυνάμεις οι οποίες ασκούνται σε ένα σώμα, υπολογίζουμε τη συνισταμένη των δυνάμεων και από τη σχέση (ΣF=m.α ) την επιτάχυνσή του. Αν ασκούνται σε αρχικά

Διαβάστε περισσότερα

ΦΥΣΙΚΗ. Για τις ερωτήσεις 1-5 να γράψετε στο τετράδιό σας τον αριθμό της. ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΦΥΣΙΚΗ. Για τις ερωτήσεις 1-5 να γράψετε στο τετράδιό σας τον αριθμό της. ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΦΥΣΙΚΗ ΘΕΜΑ 1 ο Για τις ερωτήσεις 1-5 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Η αντίσταση ενός χάλκινου αγωγού σταθερής θερμοκρασίας

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 18 ΜΑΪΟΥ 2004 ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 18 ΜΑΪΟΥ 2004 ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 18 ΜΑΪΟΥ 2004 ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΘΕΜΑ 1ο Για τις ερωτήσεις 1 4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθµό

Διαβάστε περισσότερα

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014 ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://wwwstudy4examsgr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο: ΜΗΧΑΝΙΚΕΣ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ.

ΚΕΦΑΛΑΙΟ 1ο: ΜΗΧΑΝΙΚΕΣ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

Διάλεξη 2. Ηλεκτροτεχνία Ι. Κυκλώματα συνεχούς και Ηλεκτρομαγνητισμός. Α. Δροσόπουλος

Διάλεξη 2. Ηλεκτροτεχνία Ι. Κυκλώματα συνεχούς και Ηλεκτρομαγνητισμός. Α. Δροσόπουλος Ηλεκτροτεχνία Ι Κυκλώματα συνεχούς και Ηλεκτρομαγνητισμός Α Δροσόπουλος Τμήμα Ηλεκτρολόγων Μηχανικών ΤΕ Σχολή Τεχνολογικών Εφαρμογών ΤΕΙ Δυτικής Ελλάδος Α Δροσόπουλος Ηλεκτροτεχνία Ι Θεμελιώδεις έννοιες

Διαβάστε περισσότερα

Δ1. Δ2. Δ3. Δ4. Λύση Δ1. Δ2. Δ3. Δ4.

Δ1. Δ2. Δ3. Δ4. Λύση Δ1. Δ2. Δ3. Δ4. 1) Δύο αντιστάτες με αντιστάσεις R 1 = 2 Ω, R 2 = 4 Ω, είναι μεταξύ τους συνδεδεμένοι σε σειρά, ενώ ένας τρίτος αντιστάτης R 3 = 3 Ω είναι συνδεδεμένος παράλληλα με το σύστημα των δύο αντιστατών R 1, R

Διαβάστε περισσότερα

α. 16 m/s 2 β. 8 m/s 2 γ. 4 m/s 2 δ. 2 m/s 2

α. 16 m/s 2 β. 8 m/s 2 γ. 4 m/s 2 δ. 2 m/s 2 3 ο ΓΕΛ ΧΑΝΑΝ ΡΙΟΥ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2011 ΜΑΘΗΜΑ: ΦΥΣΙΚΗ Τάξη: Α Λυκείου 17/5/2011 Ονοµατεπώνυµο: ΘΕΜΑ 1 ο Α. Στις ερωτήσεις από 1 έως 3 επιλέξτε το γράµµα µε τη σωστή απάντηση.

Διαβάστε περισσότερα

Όσο χρονικό διάστηµα είχε τον µαγνήτη ακίνητο απέναντι από το πηνίο δεν παρατήρησε τίποτα.

Όσο χρονικό διάστηµα είχε τον µαγνήτη ακίνητο απέναντι από το πηνίο δεν παρατήρησε τίποτα. 1 ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΑΓΩΓΗ (Ε επ ). 5-2 ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΑΓΩΓΗ Γνωρίζουµε ότι το ηλεκτρικό ρεύµα συνεπάγεται τη δηµιουργία µαγνητικού πεδίου. Όταν ένας αγωγός διαρρέεται από ρεύµα, τότε δηµιουργεί γύρω του

Διαβάστε περισσότερα

Β' τάξη Γενικού Λυκείου. Κεφάλαιο 1 Κινητική θεωρία αερίων

Β' τάξη Γενικού Λυκείου. Κεφάλαιο 1 Κινητική θεωρία αερίων Β' τάξη Γενικού Λυκείου Κεφάλαιο 1 Κινητική θεωρία αερίων Κεφάλαιο 1 Κινητική θεωρία αερίων Χιωτέλης Ιωάννης Γενικό Λύκειο Πελοπίου 1.1 Ποιο από τα παρακάτω διαγράμματα αντιστοιχεί σε ισοβαρή μεταβολή;

Διαβάστε περισσότερα

ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ Αγωγιμότητα σε ημιαγωγούς

ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ Αγωγιμότητα σε ημιαγωγούς ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ Αγωγιμότητα σε ημιαγωγούς Δρ. Ιούλιος Γεωργίου Required Text: Microelectronic Devices, Keith Leaver (1 st Chapter) Τρέχον περιεχόμενο Αγωγή ηλεκτρικών φορτίων σε ημιαγωγούς

Διαβάστε περισσότερα

ΠΑΡΑΓΩΓΗ ΜΙΚΡΟΚΥΜAΤΩΝ ΜΕ ΔΙΟΔΟ GUNN

ΠΑΡΑΓΩΓΗ ΜΙΚΡΟΚΥΜAΤΩΝ ΜΕ ΔΙΟΔΟ GUNN ΠΑΡΑΓΩΓΗ ΜΙΚΡΟΚΥΜAΤΩΝ ΜΕ ΔΙΟΔΟ GUNN Το φαινόμενο Gunn, ή το φαινόμενο των μεταφερόμενων ηλεκτρονίων, που ανακαλύφθηκε από τον Gunn το 1963 δηλώνει ότι όταν μια μικρή τάση DC εφαρμόζεται κατά μήκος του

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΚΑΙ ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ ΑΠΟ ΤΗΝ Α ΚΑΙ Β ΛΥΚΕΙΟΥ. Από τη Φυσική της Α' Λυκείου

ΒΑΣΙΚΕΣ ΚΑΙ ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ ΑΠΟ ΤΗΝ Α ΚΑΙ Β ΛΥΚΕΙΟΥ. Από τη Φυσική της Α' Λυκείου ΒΑΣΙΚΕΣ ΚΑΙ ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ ΑΠΟ ΤΗΝ Α ΚΑΙ Β ΛΥΚΕΙΟΥ Από τη Φυσική της Α' Λυκείου Δεύτερος νόμος Νεύτωνα, και Αποδεικνύεται πειραματικά ότι: Η επιτάχυνση ενός σώματος (όταν αυτό θεωρείται

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ. Εργαστήριο Φυσικής IΙ. Μελέτη της απόδοσης φωτοβολταϊκού στοιχείου με χρήση υπολογιστή. 1. Σκοπός. 2. Σύντομο θεωρητικό μέρος

ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ. Εργαστήριο Φυσικής IΙ. Μελέτη της απόδοσης φωτοβολταϊκού στοιχείου με χρήση υπολογιστή. 1. Σκοπός. 2. Σύντομο θεωρητικό μέρος ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ 1. Σκοπός Το φωτοβολταϊκό στοιχείο είναι μία διάταξη ημιαγωγών η οποία μετατρέπει την φωτεινή ενέργεια που προσπίπτει σε αυτήν σε ηλεκτρική.. Όταν αυτή φωτιστεί με φωτόνια κατάλληλης συχνότητας

Διαβάστε περισσότερα

Q=Ne. Συνοπτική Θεωρία Φυσικής Γ Γυμνασίου. Q ολ(πριν) = Q ολ(μετά) Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.

Q=Ne. Συνοπτική Θεωρία Φυσικής Γ Γυμνασίου. Q ολ(πριν) = Q ολ(μετά) Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno. Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Φυσικής Γ Γυμνασίου Κβάντωση ηλεκτρικού φορτίου ( q ) Q=Ne Ολικό

Διαβάστε περισσότερα

16/12/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 09. ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ

16/12/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 09. ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 09. ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ Στέλιος Τζωρτζάκης 1 3 4 φάση Η έννοια των ταυτόσημων σωματιδίων Ταυτόσημα αποκαλούνται όλα τα σωματίδια

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1 ΗΛΕΚΤΡΙΣΜΟΣ. Κεφάλαιο 1. Ηλεκτρική δύναμη και φορτίο. 1.1 Γνωριμία με την ηλεκτρική δύναμη.

ΕΝΟΤΗΤΑ 1 ΗΛΕΚΤΡΙΣΜΟΣ. Κεφάλαιο 1. Ηλεκτρική δύναμη και φορτίο. 1.1 Γνωριμία με την ηλεκτρική δύναμη. ΕΝΟΤΗΤΑ 1 ΗΛΕΚΤΡΙΣΜΟΣ Κεφάλαιο 1. Ηλεκτρική δύναμη και φορτίο. 1.1 Γνωριμία με την ηλεκτρική δύναμη. 1. Σώματα, όπως ο πλαστικός χάρακας ή το ήλεκτρο, που αποκτούν την ιδιότητα να ασκούν δύναμη σε ελαφρά

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 3 ο ΕΚΦΩΝΗΣΕΙΣ

ΔΙΑΓΩΝΙΣΜΑ 3 ο ΕΚΦΩΝΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑ 3 ο ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α. Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η οποία τη συμπληρώνει σωστά. 1. Η σχέση

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΘΕΜΑΤΑ ΚΑΙ ΛΥΕΙ ΠΑΝΕΛΛΑ ΙΚΩΝ ΕΞΕΤΑΕΩΝ 004 ΦΥΙΚΗ ΓΕΝΙΚΗ ΠΑΙ ΕΙΑ ΘΕΜΑ ο Για τις ερωτήσεις -4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθµό το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

Κεφάλαιο 25 Ηλεκτρικό Ρεύµα και Αντίσταση. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 25 Ηλεκτρικό Ρεύµα και Αντίσταση. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 25 Ηλεκτρικό Ρεύµα και Αντίσταση Μπαταρία Ρεύµα Νόµος του Ohm Αντίσταση και Αντιστάσεις Resistivity Ηλεκτρική Ισχύς Ισχύς Οικιακών Συσκευών/Κυκλωµάτων Εναλλασσόµενη Τάση Υπεραγωγιµότητα Περιεχόµενα

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 3 Ο ΔΥΝΑΜΕΙΣ

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 3 Ο ΔΥΝΑΜΕΙΣ ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 3 Ο ΔΥΝΑΜΕΙΣ 3.1 Η έννοια της δύναμης ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Στο κεφάλαιο των κινήσεων ασχοληθήκαμε με τη μελέτη της κίνησης χωρίς να μας απασχολούν τα αίτια που προκαλούν την κίνηση

Διαβάστε περισσότερα

Κεφάλαιο 20. Θερμότητα

Κεφάλαιο 20. Θερμότητα Κεφάλαιο 20 Θερμότητα Εισαγωγή Για να περιγράψουμε τα θερμικά φαινόμενα, πρέπει να ορίσουμε με προσοχή τις εξής έννοιες: Θερμοκρασία Θερμότητα Θερμοκρασία Συχνά συνδέουμε την έννοια της θερμοκρασίας με

Διαβάστε περισσότερα

Απαραίτητες γνώσεις. Περιεχόμενο της άσκησης

Απαραίτητες γνώσεις. Περιεχόμενο της άσκησης Απαραίτητες γνώσεις Ηλεκτρική αγωγιμότητα μετάλλων Βασικές έννοιες μαγνητισμού (παραμαγνητισμός, διαμαγνητισμός, μαγνητική ροπή, μαγνητική δύναμη) Κρίσιμα φαινόμενα Προτεινόμενη βιβλιογραφία 1. C. Kittel

Διαβάστε περισσότερα

Physics by Chris Simopoulos

Physics by Chris Simopoulos ΘΕΜΑ 1 ο 1 ΘΕΜΑ 1 ο ΕΠΑΝΑΛΗΠΤΙΚΟ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς

Διαβάστε περισσότερα

ΔΥΝΑΜΕΙΣ ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ

ΔΥΝΑΜΕΙΣ ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ ΔΥΝΑΜΕΙΣ ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ ΠΑΡΑΤΗΡΗΣΕΙΣ ΓΙΑ ΤΙΣ ΑΣΚΗΣΕΙΣ Όταν δίνονται οι δυνάμεις οι οποίες ασκούνται σε ένα σώμα, υπολογίζουμε τη συνισταμένη των δυνάμεων και από τη σχέση (ΣF=m.α ) την επιτάχυνσή του.

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΑ Ι ΚΕΦΑΛΑΙΟ 1 Ο :ΗΜΙΑΓΩΓΟΙ

ΗΛΕΚΤΡΟΝΙΚΑ Ι ΚΕΦΑΛΑΙΟ 1 Ο :ΗΜΙΑΓΩΓΟΙ ΗΛΕΚΤΡΟΝΙΚΑ Ι ΚΕΦΑΛΑΙΟ 1 Ο :ΗΜΙΑΓΩΓΟΙ 1 1. ΗΛΕΚΤΡΙΚΗ ΔΟΜΗ. ΕΝΔΟΓΕΝΕΙΣ ΗΜΙΑΓΩΓΟΙ Δομή του ατόμου Σήμερα γνωρίζουμε ότι η ύλη αποτελείται από ενώσεις ατόμων, δημιουργώντας τις πολυάριθμες χημικές ενώσεις

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΕΠΑΓΩΓΗ

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΕΠΑΓΩΓΗ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΕΠΑΓΩΓΗ ΣΤΟΧΟΙ: Να διαπιστώσουμε πειραματικά το φαινόμενο της ηλεκτρομαγνητικής επαγωγής και τους τρόπους παραγωγής ρεύματος από επαγωγή. Να μελετήσουμε ποιοτικά τους παράγοντες από τους

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. ΘΕΜΑ 1 ο

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. ΘΕΜΑ 1 ο ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 ο 1.1. Φορτισμένο σωματίδιο αφήνεται ελεύθερο μέσα σε ομογενές ηλεκτρικό πεδίο χωρίς την επίδραση της βαρύτητας. Το σωματίδιο: α. παραμένει ακίνητο. β. εκτελεί ομαλή κυκλική κίνηση.

Διαβάστε περισσότερα

Μαγνητικό Πεδίο. Ζαχαριάδου Αικατερίνη Γενικό Τμήμα Φυσικής, Χημείας & Τεχνολογίας Υλικών Τομέας Φυσικής ΤΕΙ ΠΕΙΡΑΙΑ

Μαγνητικό Πεδίο. Ζαχαριάδου Αικατερίνη Γενικό Τμήμα Φυσικής, Χημείας & Τεχνολογίας Υλικών Τομέας Φυσικής ΤΕΙ ΠΕΙΡΑΙΑ Μαγνητικό Πεδίο Ζαχαριάδου Αικατερίνη Γενικό Τμήμα Φυσικής, Χημείας & Τεχνολογίας Υλικών Τομέας Φυσικής ΤΕΙ ΠΕΙΡΑΙΑ Προτεινόμενη βιβλιογραφία: SERWAY, Physics for scientists and engineers YOUNG H.D., University

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Ηλεκτρομαγνητισμός

Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Ηλεκτρομαγνητισμός Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Ηλεκτρομαγνητισμός Βαρουτάς Δημήτρης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών 7/15/2014 Ηλεκτρικό ρεύμα Ρεύμα και αντίσταση

Διαβάστε περισσότερα

Ακτίνες επιτρεπόμενων τροχιών (2.6)

Ακτίνες επιτρεπόμενων τροχιών (2.6) Αντικαθιστώντας το r με r n, έχουμε: Ακτίνες επιτρεπόμενων τροχιών (2.6) Αντικαθιστώντας n=1, βρίσκουμε την τροχιά με τη μικρότερη ακτίνα n: Αντικαθιστώντας την τελευταία εξίσωση στη 2.6, παίρνουμε: Αν

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ και ΕΦΑΡΜΟΓΕΣ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ ΜΑΘΗΜΑΤΟΣ

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ και ΕΦΑΡΜΟΓΕΣ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ ΜΑΘΗΜΑΤΟΣ 1 ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ και ΕΦΑΡΜΟΓΕΣ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ ΜΑΘΗΜΑΤΟΣ 1) Να αναφέρετε τις 4 παραδοχές που ισχύουν για το ηλεκτρικό φορτίο 2) Εξηγήστε πόσα είδη κατανοµών ηλεκτρικού φορτίου υπάρχουν. ιατυπώστε τους

Διαβάστε περισσότερα

( ) Στοιχεία που αποθηκεύουν ενέργεια Ψ = N Φ. διαφορικές εξισώσεις. Πηνίο. μαγνητικό πεδίο. του πηνίου (κάθε. ένα πηνίο Ν σπειρών:

( ) Στοιχεία που αποθηκεύουν ενέργεια Ψ = N Φ. διαφορικές εξισώσεις. Πηνίο. μαγνητικό πεδίο. του πηνίου (κάθε. ένα πηνίο Ν σπειρών: Στοιχεία που αποθηκεύουν ενέργεια Λέγονται επίσης και δυναμικά στοιχεία Οι v- χαρακτηριστικές τους δεν είναι αλγεβρικές, αλλά ολοκληρο- διαφορικές εξισώσεις. Πηνίο: Ουσιαστικά πρόκειται για έναν περιεστραμμένο

Διαβάστε περισσότερα

και μάζας m 9.1*10 Kg, το οποίο βρίσκεται στον χώρο επιρροής ενός ηλεκτρικού πεδίου, υφίσταται την επιρροή του. Πάνω

και μάζας m 9.1*10 Kg, το οποίο βρίσκεται στον χώρο επιρροής ενός ηλεκτρικού πεδίου, υφίσταται την επιρροή του. Πάνω Άσκηση Η31 Ο λόγος του ηλεκτρονίου Το ηλεκτρόνιο σε ηλεκτρικό πεδίο Επιτάχυνση του ηλεκτρονίου Ένα ηλεκτρόνιο φορτίου 1.6*1 19 As και μάζας 9.1*1 31 Kg, το οποίο βρίσκεται στον χώρο επιρροής ενός ηλεκτρικού

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 4 Φαινόμενο Hall

ΑΣΚΗΣΗ 4 Φαινόμενο Hall ΑΣΚΗΣΗ 4 Φαινόμενο all Απαραίτητα όργανα και υλικά 4.1 Απαραίτητα όργανα και υλικά 1. Τροφοδοτικό ρυθμιζόμενης DC τάσης 0 έως 20V, 10Α. 2. Ενισχυτής ηλεκτρικής τάσης. 3. Ηλεκτρομαγνήτης ο οποίος αποτελείται:

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΑΤΟΜΙΚΗΣ ΦΥΣΙΚΗΣ. Άσκηση 3: Πείραμα Franck-Hertz. Μέτρηση της ενέργειας διέγερσης ενός ατόμου.

ΕΡΓΑΣΤΗΡΙΟ ΑΤΟΜΙΚΗΣ ΦΥΣΙΚΗΣ. Άσκηση 3: Πείραμα Franck-Hertz. Μέτρηση της ενέργειας διέγερσης ενός ατόμου. ΕΡΓΑΣΤΗΡΙΟ ΑΤΟΜΙΚΗΣ ΦΥΣΙΚΗΣ Άσκηση 3: Πείραμα Franck-Hertz. Μέτρηση της ενέργειας διέγερσης ενός ατόμου. Επώνυμο: Όνομα: Α.Ε.Μ: ΘΕΩΡΗΤΙΚΗ ΕΙΣΑΓΩΓΗ Σκοπός της άσκησης που πραγματοποιήθηκε είναι η μελέτη

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ 1 ο :Σε κάθε μια από τις παρακάτω προτάσεις να βρείτε τη μια σωστή απάντηση: 1. Η διαφορά δυναμικού μεταξύ δύο σημείων μιας δυναμικής γραμμής, ομογενούς ηλεκτρικού

Διαβάστε περισσότερα

Ηλεκτρικό ρεύμα ονομάζουμε την προσανατολισμένη κίνηση των ηλεκτρονίων ή γενικότερα των φορτισμένων σωματιδίων.

Ηλεκτρικό ρεύμα ονομάζουμε την προσανατολισμένη κίνηση των ηλεκτρονίων ή γενικότερα των φορτισμένων σωματιδίων. 2. ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ Το ηλεκτρικό ρεύμα είναι η κοινή αιτία λειτουργίας μιας πολύ μεγάλης κατηγορίας συσκευών που χρησιμοποιούνται στην καθημερινή μας ζωή, όπως ο ηλεκτρικός λαμπτήρας, ο ηλεκτρικός ανεμιστήρας,

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ Β. συντελεστής απόδοσης δίνεται από τη σχέση e = 1

ΔΙΑΓΩΝΙΣΜΑ Β. συντελεστής απόδοσης δίνεται από τη σχέση e = 1 ΔΙΑΩΝΙΣΜΑ Β Θέµα ο Α Να δείξετε ότι η καταστατική εξίσωση των ιδανικών αερίων µπορεί να πάρει τη µορφή ρ P = RT, όπου ρ η πυκνότητα του αερίου και M η M γραµµοµοριακή του µάζα Ξεκινώντας από τη σχέση της

Διαβάστε περισσότερα

AΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 10 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ : ΦΥΣΙΚΗ

AΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 10 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ : ΦΥΣΙΚΗ AΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 10 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ : ΦΥΣΙΚΗ ΘΕΜΑ 1 ο Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό

Διαβάστε περισσότερα

Γεννήτριες ΣΡ Κινητήρες ΣΡ

Γεννήτριες ΣΡ Κινητήρες ΣΡ Κινητήρες ΣΡ Ως γεννήτρια ΣΡ χαρακτηρίζεται η ηλεκτρική μηχανή που κατά τη λειτουργία της λαμβάνει κινητική ενέργεια και τη μετατρέπει σε ηλεκτρική με τη μορφή συνεχούς ρεύματος Η ΗΕΔ που δημιουργείται

Διαβάστε περισσότερα

ΔΟΜΗ ΑΤΟΜΩΝ ΚΑΙ ΜΟΡΙΩΝ ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΑΤΟΜΙΚΟ ΠΡΟΤΥΠΟ ΤΟΥ BOHR

ΔΟΜΗ ΑΤΟΜΩΝ ΚΑΙ ΜΟΡΙΩΝ ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΑΤΟΜΙΚΟ ΠΡΟΤΥΠΟ ΤΟΥ BOHR ΔΟΜΗ ΑΤΟΜΩΝ ΚΑΙ ΜΟΡΙΩΝ ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΑΤΟΜΙΚΟ ΠΡΟΤΥΠΟ ΤΟΥ BOHR Μοντέλο του Bohr : Άτομο ηλιακό σύστημα. Βασικά σημεία της θεωρίας του Bohr : 1 η συνθήκη ( μηχανική συνθήκη ) Τα ηλεκτρόνια κινούνται

Διαβάστε περισσότερα

1 p p a y. , όπου H 1,2. u l, όπου l r p και u τυχαίο μοναδιαίο διάνυσμα. Δείξτε ότι μπορούν να γραφούν σε διανυσματική μορφή ως εξής.

1 p p a y. , όπου H 1,2. u l, όπου l r p και u τυχαίο μοναδιαίο διάνυσμα. Δείξτε ότι μπορούν να γραφούν σε διανυσματική μορφή ως εξής. ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου V Άσκηση : Οι θεμελιώδεις σχέσεις μετάθεσης της στροφορμής επιτρέπουν την ύπαρξη ακέραιων και ημιπεριττών ιδιοτιμών Αλλά για την τροχιακή στροφορμή L r p γνωρίζουμε ότι

Διαβάστε περισσότερα

ΑΝΑΛΟΓΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ

ΑΝΑΛΟΓΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΑΝΑΛΟΓΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ Διάλεξη 1: Ημιαγωγοί Δίοδος pn Δρ. Δ. ΛΑΜΠΑΚΗΣ 1 Ταλαντωτές. Πολυδονητές. Γεννήτριες συναρτήσεων. PLL. Πολλαπλασιαστές. Κυκλώματα μετατροπής και επεξεργασίας σημάτων. Εφαρμογές με

Διαβάστε περισσότερα

ΠΥΡΗΝΙΚΟΣ ΜΑΓΝΗΤΙΚΟΣ ΣΥΝΤΟΝΙΣΜΟΣ ΚΑΙ ΔΟΜΗ ΤΟΥ ΑΤΟΜΟΥ. Του Αλέκου Χαραλαμπόπουλου ΕΙΣΑΓΩΓΗ

ΠΥΡΗΝΙΚΟΣ ΜΑΓΝΗΤΙΚΟΣ ΣΥΝΤΟΝΙΣΜΟΣ ΚΑΙ ΔΟΜΗ ΤΟΥ ΑΤΟΜΟΥ. Του Αλέκου Χαραλαμπόπουλου ΕΙΣΑΓΩΓΗ ΠΥΡΗΝΙΚΟΣ ΜΑΓΝΗΤΙΚΟΣ ΣΥΝΤΟΝΙΣΜΟΣ ΚΑΙ ΔΟΜΗ ΤΟΥ ΑΤΟΜΟΥ Του Αλέκου Χαραλαμπόπουλου ΕΙΣΑΓΩΓΗ Ένα επαναλαμβανόμενο περιοδικά φαινόμενο, έχει μία συχνότητα επανάληψης μέσα στο χρόνο και μία περίοδο. Επειδή κάθε

Διαβάστε περισσότερα

ΣΥΝΕΧΕΣ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ

ΣΥΝΕΧΕΣ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ ΣΥΝΕΧΕΣ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ Τι είναι αυτό που προϋποθέτει την ύπαρξη μιας συνεχούς προσανατολισμένης ροής ηλεκτρονίων; Με την επίδραση διαφοράς δυναμικού ασκείται δύναμη στα ελεύθερα ηλεκτρόνια του μεταλλικού

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ. α β γ δ

ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ. α β γ δ ΟΔΗΓΙΕΣ: 11/03/2017 1. Οι απαντήσεις σε όλα τα ερωτήματα θα πρέπει να αναγραφούν στο Φύλλο Απαντήσεων που θα σας δοθεί χωριστά από τις εκφωνήσεις. 2. Η επεξεργασία των θεμάτων θα γίνει γραπτώς σε φύλλα

Διαβάστε περισσότερα

ΦΩΤΟΒΟΛΤΑΪΚΑ. Γ. Λευθεριώτης Αναπλ. Καθηγητής Γ. Συρροκώστας Μεταδιδακτορικός Ερευνητής

ΦΩΤΟΒΟΛΤΑΪΚΑ. Γ. Λευθεριώτης Αναπλ. Καθηγητής Γ. Συρροκώστας Μεταδιδακτορικός Ερευνητής ΦΩΤΟΒΟΛΤΑΪΚΑ Γ. Λευθεριώτης Αναπλ. Καθηγητής Γ. Συρροκώστας Μεταδιδακτορικός Ερευνητής Αγωγοί- μονωτές- ημιαγωγοί Μέταλλα: Μία ζώνη μερικώς γεμάτη ή μία ζώνη επικαλύπτει την άλλη Τα ηλεκτρόνια μπορούν

Διαβάστε περισσότερα

Στο μαγνητικό πεδίο του πηνίου αποθηκεύεται ενέργεια. Το μαγνητικό πεδίο έχει πυκνότητα ενέργειας.

Στο μαγνητικό πεδίο του πηνίου αποθηκεύεται ενέργεια. Το μαγνητικό πεδίο έχει πυκνότητα ενέργειας. Αυτεπαγωγή Αυτεπαγωγή Ένα χρονικά μεταβαλλόμενο ρεύμα που διαρρέει ένα κύκλωμα επάγει ΗΕΔ αντίθετη προς την ΗΕΔ από την οποία προκλήθηκε το χρονικά μεταβαλλόμενο ρεύμα.στην αυτεπαγωγή στηρίζεται η λειτουργία

Διαβάστε περισσότερα

Διάλεξη 3: Ενέργεια σύνδεσης και πυρηνικά πρότυπα

Διάλεξη 3: Ενέργεια σύνδεσης και πυρηνικά πρότυπα Διάλεξη 3: Ενέργεια σύνδεσης και πυρηνικά πρότυπα Ενέργεια σύνδεσης Η συνολική μάζα ενός σταθερού πυρήνα είναι πάντοτε μικρότερη από αυτή των συστατικών του. Ως παράδειγμα μπορούμε να θεωρήσουμε έναν πυρήνα

Διαβάστε περισσότερα