13. poglavje: Energija

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "13. poglavje: Energija"

Transcript

1 13. poglavje: Energija 1. (Naloga 3) Koliko kilovatna je peč za hišno centralno kurjavo, ki daje 126 MJ toplote na uro? Podatki: Q = 126 MJ, t = 3600 s; P =? Če peč z močjo P enakomerno oddaja toploto, velja (II, 11) Q = P t. Poznamo toploto (Q), ki jo odda peč v času t, zato dobimo moč kot P = Q t = J 3600 s = 35 kw. Odgovor: Peč, ki daje 126 MJ toplote na uro, ima moč 35 kw. 2. (Naloga 6) Kolesar se pelje navzdol po enakomerno strmem klancu in zavira z zadnjo zavoro. Oceni približno, za koliko največ se segreje vsa zavora (skupaj z ležaji, gredjo in ohišjem), ki je iz železa in tehta 1 kg, če se kolesar spusti za 20 metrov niže! Kolesar s kolesom vred tehta 90 kg. Podatki: m k = 90 kg, m = 1 kg, h = 20 m; T =? Energijski zakon (II, 65) za kolesarja s kolesom vred pravi, da je sprememba celotne energije (kinetične, potencialne in notranje) enaka vsoti prejetega dela (A) in toplote (Q): W k + W p + W n = A + Q (A je delo vseh zunanjih sil razen sile teže; delo sile teže je upoštevano v W p ). Kolesarju, ki vozi po klancu enakomerno navzdol, se kinetična energija ne spreminja (saj je hitrost ves čas enaka): W k = 0. Se mu pa 0

2 zmanjšuje potencialna energija W p. Ko se spusti za višino h, je sprememba potencialne energije W p = m k gh. Spreminja se tudi notranja energija. Vzeli bomo, da se segreva le zavora in da se le zavori povečuje notranja energija. Edina sila, ki na sistemu kolesar-kolo opravlja delo, je sila teže (delo sile trenja med kotalečimi se kolesi in tlemi zanemarimo). Torej je A = 0. Tudi toplote sistem od zunaj ne prejema. Torej je Q = 0. Tako od energijskega zakona ostane 0 + ( m k gh) + W n = 0. Sprememba notranje energije zavore z maso m je povezana s temperaturno spremembo: W n = mc p T, c p je specifična toplota železa (tabela 13.1, II, 68). Tako dobimo m k gh = mc p T, odkoder izračunamo, za koliko stopinj se največ segreje zavora: T = m kgh mc p = 90 kg 9,8 m s 2 20 m 1 kg 450 J kg 1 K 1 = 39 K. Odgovor: Ko se kolesar, ki tehta s kolesom vred 90 kg, pelje po klancu navzdol tako, da zavira in vozi enakomerno, ter se spusti za 20 metrov, se železna zavora, ki tehta 1 kg, segreje za največ 39 stopinj. 3. (Naloga 12) *Koliko toplote je treba, da segrejemo pri tlaku 1 bar zrak v sobi z velikostjo 4 m 5 m 3 m od 10 C do 20 C? Podatki: p = 1 bar, V = 4 m 5 m 3 m, T 1 = 10 C, T 2 = 20 C; Q =? Prostornina sobe je ves čas enaka, V s = 4 m 5 m 3 m = 60 m 3. Množina zraka v sobi pa se spreminja. Ko ga namreč pri stalnem tlaku segrevamo, se razteza in uhaja iz sobe v okolico skozi špranje pri oknih in vratih. Zato se masa zraka v sobi zmanjšuje. Iz enačbe stanja za idealni plin (I, 120), pv = (m/m)rt (p, V in T so tlak, prostornina in temperatura plina, m in M sta njegova masa in kilomolska masa, R pa je splošna plinska konstanta) izrazimo maso zraka v sobi: m = pmv s /RT. Ker je tlak stalen, se s segrevanjem zmanjšuje masa zraka v sobi. Naj bosta T 1 in m 1 = pmv s /RT 1 temperatura in masa zraka na začetku segrevanja. Tedaj lahko izrazimo maso 1

3 zraka v sobi v odvisnosti od temperature kot m(t ) = pmv s /RT = (pmv s /RT ) (T 1 /T 1 ) = (pmv s /RT 1 ) (T 1 /T ) = m 1 T 1 /T. Toplota, ki je potrebna, da zrak segrejemo od temperature T na T +dt, je (II, 68) dq = m(t ) c p dt, kjer smo z m(t ) zaznamovali maso zraka v sobi, ko je temperatura enaka T. Celotna toplota pa je enaka vsoti prispevkov dq, ki jih je treba dovesti, da zraste temperatura od T 1 do T 2 : Q = T2 T 1 m(t ) c p dt = T2 T 1 m 1 T 1 c p dt T = m 1 T 1 c p T2 T 1 dt T. Izračunajmo Q! Pri računanju produkta m 1 T 1 c p upoštevamo, da je m 1 T 1 = pmv s /R in vzamemo p = 1 bar = 10 5 Pa, kilomolska masa zraka je (II, 71) M = 29 kg, R = 8300 J/K, specifična toplota zraka pa (II, 71) c p = 1010 J/kg K. Tako dobimo m 1 T 1 c p = pmv sc p R = 105 Pa 29 kg 60 m J kg 1 K J K 1 = 2, J. Vsoto dt/t izračunamo tako, da celotni temperaturni interval od T 1 = 10 C do T 2 = 20 C razdelimo npr. na 5 delov širine dt = 2 K; prvi podinterval gre od 10 C = 283 K do 12 C = 285 K, drugi od 12 C = 285 K do 14 C = 287 K itn. V kvocientu dt/t vzamemo vsakokrat temperaturo na sredini podintervala. Pri prvem podintervalu je to T 1,s = 11 C = 284 K, pri drugem T 2,s = 13 C = 286 K itn. Tako dobimo dt T = 2 K 284 K + 2 K 286 K + 2 K 288 K + 2 K 290 K + 2 K 292 K = 0,0347. (Kdor že zna računati integrale, si lahko prihrani zadnji račun: T 2 T 1 dt/t = ln(t 2 /T 1 ) = ln(293 K/283 K) = 0,0347.) Celotna toplota Q, ki jo potrebujemo, da segrejemo sobo, je Q = m 1 T 1 c p T2 T 1 dt T = (2,1 107 J) 0,0347 = 730 kj. Odgovor: Da pri tlaku 1 bar segrejemo zrak v sobi velikosti 4 m 5 m 3 m od 10 C do 20 C, je treba dovesti 730 kj toplote. 2

4 4. (Naloga 13) *1 dm 3 zraka z začetnim tlakom 1 bar pri stalni temperaturi 20 C počasi stisnemo na prostornino 0,9 dm 3. Koliko toplote odda zrak pri tem? Za koliko se mu spremeni notranja energija? Kolikšen je končni tlak? Podatki: V 1 = 1 dm 3, p 1 = 1 bar, T 1 = 20 C, V 2 = 0,9 dm 3 ; Q =?, W n =?, p 2 =? Ker stiskamo plin pri stalni temperaturi (T = const), velja Boylov zakon (I, 100): produkt tlaka in prostornine plina se ne spreminja, pv = p 1 V 1. Najprej izračunajmo delo, ki ga plin prejme pri stiskanju. To je delo tlaka, ki je enako (II, 31) A = p dv. Ko plin stiskamo, se hkrati s prostornino spreminja tudi tlak; odvisnost tlaka od prostornine je po Boylovem zakonu p(v ) = p 1 V 1 /V, tako da je delo A = p dv = p 1 V 1 dv/v. Pri izračunu A = p dv bomo za prostonino V, ki se spreminja od V 1 = 1 dm 3 do V 2 = 0,9 dm 3, vzeli kar srednjo vrednost V s = 1 2 (V 1 + V 2 ) = 0,95 dm 3, sprememba prostornine pa je seveda V = V 2 V 1 = 0,1 dm 3. Tako dobimo A = p 1 V 1 dv V = p 1V 1 ( V V s ) ( ) = 10 5 Pa 10 3 m 3 0,1 dm 3 = 10,5 J. 0,95 dm 3 Vemo, da je notranja energija (W n ) plinov odvisna le od temperature (II, 71). Če je temperatura stalna, se tudi notranja energija ne spreminja. V našem primeru, ko plin stiskamo izotermno, tj. pri stalni temperaturi, je potemtakem W n = 0. Po drugi strani nam energijski zakon (II, 65) pove, da je sprememba energije telesa enaka vsoti prejetega dela in toplote: W n = A + Q 3

5 (kinetična in potencialna energija se ne spreminjata, saj plin miruje). Ker je W n = 0, to pomeni, da je toplota Q = A = 10,5 J. Ko plin izotermno stisnemo, se mu notranja energija ne spremeni; plin odda toliko toplote, kolikor prejme dela. Končni tlak plina dobimo spet iz Boylovega zakona: produkt tlaka in prostornine je konstanten, kar pomeni, da je enak tudi na začetku in na koncu: p 1 V 1 = p 2 V 2. Odtod dobimo za končni tlak p 2 = p 1V 1 V 2 = 1 bar 1,0 dm3 0,9 dm 3 = 1,1 bar Dodatek: Če znamo integrirati, lahko delo, ki ga opravimo pri stiskanju plina, izračunamo iz A = p dv (II, 29): V2 V2 dv A = p(v ) dv = p 1 V 1 V 1 V 1 V = p 1V 1 ln ( ) 1,0 dm = 10 5 Pa 10 3 m 3 3 ln 0,9 dm 3 = 10,5 J. ( ) V2 V 1 = +p 1 V 1 ln ( ) V1 Toplota, ki jo plin izmenja pri izotermnih spremembah ( T = 0 in zato W n = 0), je torej enaka Q = A = p 1 V 1 ln ( V2 če se temperatura plina ne spreminja, plin pri stiskanju toploto oddaja, pri razpenjanju pa mu jo je treba dovajati. Odgovor: Ko počasi stisnemo 1 dm 3 zraka z začetnim tlakom 1 bar pri stalni temperaturi 20 C na prostornino 0,9 dm 3, odda pri tem toploto 10,5 J. Notranja energija se mu pri stiskanju ne spremeni, končni tlak pa je 1,1 bara. V 1 ) ; V 2 4

6 5. (Naloga 14) *Kako pa je, če zrak iz prejšnje naloge tako hitro stisnemo, da lahko računamo, kakor da je toplotno izoliran? Za koliko se zrak segreje? Kolikšen je končni tlak? Podatki: V z = 1 dm 3, p z = 1 bar, T z = 20 C, V k = 0,9 dm 3 ; T =?, p k =? Energijski zakon pove, da je sprememba notranje energije sistema enaka vsoti dovedenega dela in toplote (II, 65, 70): dw n = da + dq. Pri adiabatnih spremembah, pri katerih sistem ne prejme in ne odda nič toplote, je dq = 0 in dw n = da. Sprememba notranje energije je (II, 71) dw n = mc V dt, delo tlaka pa je (II, 29, 70) da = pdv. Tako ostane m c V dt = p dv. (13.1) Izrazimo tlak p iz enačbe stanja (I, 120): pv = (m/m)rt in p = m(r/m)(t/v ). To vstavimo v (13.1): m c V dt = m(r/m)(t/v )dv. Enačbo krajšajmo z m in preuredimo, pa dobimo c V dt T = (R/M) dv V. (13.2) Uporabimo zvezo c p c V = R/M (II, 71) in označimo κ = c p /c V. Ko delimo enačbo (13.2) na obeh straneeh s c V, dobimo dt T = (κ 1) dv V. (13.3) Enačba (13.3) povezuje relativno spremembo temperature z relativno spremembo prostornine. Ker poznamo le začetno temperaturo zraka (T z ), temperatura pa se pri stiskanju spreminja, bomo celotno spremembo temperature T izračunali tako, da bomo stiskanje od začetne prostornine V z do končne prostornine V k razdelili na več delov in za vsakega izračunali dt in novo temperaturo T. Celotno spremembo prostornine V k V z = 0,1 dm 3 razdelimo npr. na 5 delov, tako da je dv = 0,02 dm 3. Prvi prostorninski podinterval gre tako od V z V 1 = 1 dm 3 do V 2 = 0,98 dm 3, drugi gre od V 2 = 0,98 dm 3 do V 3 = 0,96 dm 3 itn. V kvocientu dv/v bomo jemali prostornino na 5

7 sredini teh podintervalov: za prvega je V 1,s = 0,99 dm 3, za drugega V 2,s = 0,97 dm 3 itn. Temperaturo bomo računali iz enačbe (13.3). Najprej bomo izračunali dt za zaporedne korake, dt = (κ 1) T (dv/v ). Sprememba temperature, ko zrak prvič stisnemo za en dv, je dt 1 = (κ 1) T 1 (dv/v 1,s ) (pri tem je T 1 = T z začetna temperatura), tako da je nova temperatura T 2 = T 1 + dt 1. Ko stisnemo zrak še za dv, se temperatura spremeni za dt 2 = (κ 1) T 2 (dv/v 2,s ) in nova temperatura je T 3 = T 2 + dt 2. Tako nadaljujemo; pri n-tem koraku je dt n = (κ 1) T n (dv/v n,s ) in T n+1 = T n + dt n. Izračun je podrobno prikazan v spodnji tabeli. n V n,s [dm 3 ] T n [K] dt n [K] 1 0, ,37 2 0,97 295,37 2,49 3 0,95 297,85 2,51 4 0,93 300,36 2,58 5 0,91 302,95 2, ,61 Pri računanju smo vzeli (II, 71) κ = c p /c V = 1010 J kg 1 K 1 /720 J kg 1 K 1 = 1,4 (ob tem omenimo, da je κ = 7/5 za vse dvoatomne pline). Po petih korakih smo prišli do končne temperature T k = T 6 = 305,6 K = 32,6 C. Sprememba temperature pa je T = T k T z = 12,6 K. Končni tlak izračunamo iz enačbe stanja (I, 120) pv/t = const: od koder dobimo p k = p z ( Tk T z p z V z T z ) ( ) Vz = 1 bar V k 6 = p k V k T k, ( ) ( ) 305,6 K 1 dm 3 = 1,16 bar. 293 K 0,9 dm 3

8 Dodatek: Če znamo integrirati, si računanje poenostavimo. Ko enačbo (13.3) integriramo, tako da na obeh straneh izhajamo iz začetnega in končamo v končnem stanju, dobimo Tk T z dt T = (κ 1) Vk V z dv V, ln(t k /T z ) = (κ 1) ln(v k /V z ) = ln(v z /V k ) κ 1. Logaritma sta enaka, če sta enaka njuna argumenta: T k /T z = (V z /V k ) κ 1, kar prepišemo kot T k Vk κ 1 = T z Vz κ 1. (13.4) Odtod takoj dobimo končno temperaturo ( ) ( ) κ 1 Vz 1 dm 3 1,4 1 T k = T z = 293 K V k 0,9 dm 3 = 305,6 K = 32,6 C. Če temperaturi v enačbi (13.4) izrazimo z enačbo stanja, T z = p z V z M/mR in T k = p k V k M/mR, pa dobimo p z V κ z Odtod lahko neposredno izračunamo končni tlak: = p k V κ k. (13.5) ( ) ( ) κ Vz 1 dm 3 1,4 p k = p z = 1 bar V k 0,9 dm 3 = 1,16 bar. Odgovor: Ko zrak s temperaturo 20 C in pri tlaku 1 bar stisnemo od prostornine 1 dm 3 na prostornino 0,9 dm 3 tako hitro hitro, da lahko računamo, kakor da je toplotno izoliran, se zrak segreje za 12,6 K, tlak pa se mu poveča na 1,16 bara. 6. (Naloga 16) V 2 kg vode, ki ima 50 C, primešaj 0,5 kg ledu s temperaturo 10 C. Kolikšna je končna temperatura? Podatki: m v = 2 kg, T v = 50 C, m l = 0,5 kg, T l = 10 C; T =? 7

9 Vodo in led obravnavamo kot en toplotno izoliran sistem. Sistem tako z okolico ne izmenja nič toplote. Se pa toplota znotraj sistema preliva med deli, ki imajo različno temperaturo. Toplotni tokovi zamrejo, ko se po celem sistemu vzpostavi enaka (končna) temperatura. Topla voda z maso m v toploto oddaja in se ohladi od začetne temperature T v = 50 C do končne temperature T. Topota, ki jo odda voda, je Q v = m v c v (T T v ), c v je specifična toplota vode. Toplota Q v je negativna, ker jo toplota odda. Led z maso m l toploto prejema, najprej toliko, da se segreje od začetne temperature T l = 10 C na T 0 = 0 C. Ta toplota znaša Q l,1 = m l c l (T 0 T v ), c l je specifična toplota ledu. Ko pri temperaturi T 0 = 0 C ledu še naprej dovajamo toploto, se začne (pri stalni temperaturi) taliti, dokler se ves ne stali. Pri tem prejme toploto Q l,2 = m l q t, q t je talilna toplota ledu. Ko se ves led stali in nastala voda še vedno prejema toploto, se segreva, dokler ne doseže končne temperature T. Toplota, ki jo prejme, je Q l,3 = m l c v (T T 0 ). Toplote Q l,1, Q l,2 in Q l,3 so pozitivne, ker jih led oz. nastala voda prejemajo. V celoti je med deli sistema izmenjana toplota enaka nič, Q v + Q l,1 + Q l,2 + Q l,3 = 0 oziroma m v c v (T T v ) + m l c l (T 0 T l ) + m l q t + m l c v (T T 0 ) = 0. (16.1) Enačbo preuredimo. Najprej zapišimo in to vstavimo (16.1): T T v = (T T 0 ) + (T 0 T v ) m v c v [(T T 0 ) + (T 0 T v )] + m l c l (T 0 T l ) + m l q t + m l c v (T T 0 ) = 0. Zberimo člene s faktorjem T T 0 : (m v c v + m l c v )(T T 0 ) + m v c v (T 0 T v ) + m l c l (T 0 T l ) + m l q t = 0. (16.2) Temperaturni razliki T v T 0 in T 0 T l, ki nastopata v gornji enačbi, sta T v T 0 = 50 C 0 C = 50 C = 50 K in T 0 T l = 0 C ( 10 C) = 10 C = 10 K. 8

10 Sedaj iz (16.2) izrazimo temperaturno razliko T T 0 : T T 0 = m v c v (T v T 0 ) m l c l (T 0 T l ) m l q t (m v + m l ) c v = 2 kg 4200 J kg 1 K 1 50 K 0,5 kg (2100 J kg 1 K 1 10 K J kg 1 ) (2 kg + 0,5 kg) 4200 J kg 1 K 1 = 23 K = 23 C. Končna temperatura je potemtakem T = T K = 0 C + 23 C = 23 C. Opomba: Enačbo (16.2) lahko zelo nazorno interpretiramo. Najprej jo nekoliko preuredimo: m v c v (T v T 0 ) m l c l (T 0 T l ) m l q t = (m v + m l ) c v (T T 0 ). (16.2 ) Na levi strani (16.2 ) je toplota, ki jo voda odda, ko jo v mislih ohladimo na 0 C (prvi člen); od te toplote odštejemo toploto, ki je potrebna za segrevanje ledu na 0 C (drugi čen) in toploto, ki je potrebna za taljenje ledu (tetji člen). Na desni strani je toplota, ki se porabi za segrevanje prvotne vode in vode, ki je nastala iz ledu, od 0 C do končne temperature T. Odgovor: Ko v 2 kg vode s temperaturo 50 C stresemo 0,5 kg ledu s temperaturo 10 C, dobimo vodo s končno temperaturo 23 C. 7. Koliko pare s temperaturo 100 C moraš napeljati v 1 kg ledeno mrzle vode, da se segreje do 100 C? Podatki: T p = 100 C, m v = 1 kg, T 0 = 0 C, T v = T p ; m p =? Ledenomrzla voda z maso m v se mora segreti do T p = 100 C na račun toplote, ki jo prejme od vodne pare z maso m, ki se pri temperaturi 100 C ravno vsa utekočini, tako da imamo na koncu maso m v +m vode pri 100 C. Torej imamo m v c p (T p T 0 ) = mq i, 9

11 c p = 4200 J/kg K in q i = 2,26 MJ/kg sta specifična toplota in izparilna toplota vode (tabela 13.3, II, 74). Temperaturna razlika T p T 0 znaša 100 C 0 C = 100 C = 100 K, tako da dobimo za neznano maso m m = m v c p (T p T 0 ) q i = 1 kg 4200 J kg 1 K K 2, J kg 1 = 0,186 kg. Odgovor: Da se 1 kg ledenomrzle vode segreje do 100 C, moramo vanjo napeljati 0,186 kg vodne pare s temperaturo 100 C. 10

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja

Διαβάστε περισσότερα

Tretja vaja iz matematike 1

Tretja vaja iz matematike 1 Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +

Διαβάστε περισσότερα

0,00275 cm3 = = 0,35 cm = 3,5 mm.

0,00275 cm3 = = 0,35 cm = 3,5 mm. 1. Za koliko se bo dvignil alkohol v cevki termometra s premerom 1 mm, če se segreje za 5 stopinj? Prostorninski temperaturni razteznostni koeficient alkohola je 11 10 4 K 1. Volumen alkohola v termometru

Διαβάστε περισσότερα

PONOVITEV SNOVI ZA 4. TEST

PONOVITEV SNOVI ZA 4. TEST PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki

Διαβάστε περισσότερα

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2 Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

Numerično reševanje. diferencialnih enačb II

Numerično reševanje. diferencialnih enačb II Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma

Διαβάστε περισσότερα

Termodinamika vlažnega zraka. stanja in spremembe

Termodinamika vlažnega zraka. stanja in spremembe Termodinamika vlažnega zraka stanja in spremembe Termodinamika vlažnega zraka Najpogostejši medij v sušilnih procesih konvektivnega sušenja je VLAŽEN ZRAK Obravnavamo ga kot dvokomponentno zmes Suhi zrak

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA Državni izpitni center *M16141113* SPOMLADANSKI IZPITNI ROK FIZIKA NAVODILA ZA OCENJEVANJE Petek, 1. junij 16 SPLOŠNA MATURA RIC 16 M161-411-3 M161-411-3 3 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

Slika 5: Sile na svetilko, ki je obešena na žici.

Slika 5: Sile na svetilko, ki je obešena na žici. 4. poglavje: Sile 5. Cestna svetilka visi na sredi 10 m dolge žice, ki je napeta čez cesto. Zaradi teže svetilke (30 N) se žica za toliko povesi, da pride sredina za 30 cm niže kot oba konca. Kako močno

Διαβάστε περισσότερα

13. Jacobijeva metoda za računanje singularnega razcepa

13. Jacobijeva metoda za računanje singularnega razcepa 13. Jacobijeva metoda za računanje singularnega razcepa Bor Plestenjak NLA 25. maj 2010 Bor Plestenjak (NLA) 13. Jacobijeva metoda za računanje singularnega razcepa 25. maj 2010 1 / 12 Enostranska Jacobijeva

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena

Διαβάστε περισσότερα

Matematika 2. Diferencialne enačbe drugega reda

Matematika 2. Diferencialne enačbe drugega reda Matematika 2 Diferencialne enačbe drugega reda (1) Reši homogene diferencialne enačbe drugega reda s konstantnimi koeficienti: (a) y 6y + 8y = 0, (b) y 2y + y = 0, (c) y + y = 0, (d) y + 2y + 2y = 0. Rešitev:

Διαβάστε περισσότερα

8. Diskretni LTI sistemi

8. Diskretni LTI sistemi 8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z

Διαβάστε περισσότερα

Delovna točka in napajalna vezja bipolarnih tranzistorjev

Delovna točka in napajalna vezja bipolarnih tranzistorjev KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.

Διαβάστε περισσότερα

Booleova algebra. Izjave in Booleove spremenljivke

Booleova algebra. Izjave in Booleove spremenljivke Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre

Διαβάστε περισσότερα

p 1 ENTROPIJSKI ZAKON

p 1 ENTROPIJSKI ZAKON ENROPIJSKI ZAKON REERZIBILNA srememba: moža je obrjea srememba reko eakih vmesih staj kot rvota srememba. Po obeh sremembah e sme biti obeih trajih srememb v bližji i dalji okolici. IREERZIBILNA srememba:

Διαβάστε περισσότερα

Najprej zapišemo 2. Newtonov zakon za cel sistem v vektorski obliki:

Najprej zapišemo 2. Newtonov zakon za cel sistem v vektorski obliki: NALOGA: Po cesi vozi ovornjak z hirosjo 8 km/h. Tovornjak je dolg 8 m, širok 2 m in visok 4 m in ima maso 4 on. S srani začne pihai veer z hirosjo 5 km/h. Ob nekem času voznik zaspi in ne upravlja več

Διαβάστε περισσότερα

Kotne in krožne funkcije

Kotne in krožne funkcije Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete

Διαβάστε περισσότερα

diferencialne enačbe - nadaljevanje

diferencialne enačbe - nadaljevanje 12. vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 diferencialne enačbe - nadaljevanje Ortogonalne trajektorije Dana je 1-parametrična družina krivulj F(x, y, C) = 0. Ortogonalne

Διαβάστε περισσότερα

1. Trikotniki hitrosti

1. Trikotniki hitrosti . Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca

Διαβάστε περισσότερα

Jan Kogoj. . Ko vstavimo podano odvisnost pospeška od hitrosti, moramo najprej ločiti spremenljivke - na eno stran denemo v, na drugo pa v(t)

Jan Kogoj. . Ko vstavimo podano odvisnost pospeška od hitrosti, moramo najprej ločiti spremenljivke - na eno stran denemo v, na drugo pa v(t) Naloge - Živilstvo 2013-2014 Jan Kogoj 18. 4. 2014 1. Plavamo čez 5 m široko reko, ki teče s hitrostjo 2 m/s. Hitrost našega plavanja je 1 m/s. (a) Pod katerim kotom glede na tok reke moramo plavati, da

Διαβάστε περισσότερα

Analiza 2 Rešitve 14. sklopa nalog

Analiza 2 Rešitve 14. sklopa nalog Analiza Rešitve 1 sklopa nalog Navadne diferencialne enačbe višjih redov in sistemi diferencialnih enačb (1) Reši homogene diferencialne enačbe drugega reda s konstantnimi koeficienti: (a) 6 + 8 0, (b)

Διαβάστε περισσότερα

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij): 4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n

Διαβάστε περισσότερα

Poglavja: Navor (5. poglavje), Tlak (6. poglavje), Vrtilna količina (10. poglavje), Gibanje tekočin (12. poglavje)

Poglavja: Navor (5. poglavje), Tlak (6. poglavje), Vrtilna količina (10. poglavje), Gibanje tekočin (12. poglavje) Poglavja: Navor (5. poglavje), Tlak (6. poglavje), Vrtilna količina (10. poglavje), Gibanje tekočin (12. poglavje) V./4. Deska, ki je dolga 4 m, je podprta na sredi. Na koncu deske stoji mož s težo 700

Διαβάστε περισσότερα

= 3. Fizika 8. primer: s= 23,56 m, zaokroženo na eno decimalno vejico s=23,6 m. Povprečna vrednost meritve izračuna povprečno vrednost meritve

= 3. Fizika 8. primer: s= 23,56 m, zaokroženo na eno decimalno vejico s=23,6 m. Povprečna vrednost meritve izračuna povprečno vrednost meritve Fizika 8 Merjenje Pojasniti namen in pomen meritev pri fiziki našteje nekaj fizikalnih količin in navede enote zanje, ter priprave s katerimi jih merimo Merska Merska enota Merska priprava količina Dolžina

Διαβάστε περισσότερα

vezani ekstremi funkcij

vezani ekstremi funkcij 11. vaja iz Matematike 2 (UNI) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 ekstremi funkcij več spremenljivk nadaljevanje vezani ekstremi funkcij Dana je funkcija f(x, y). Zanimajo nas ekstremi nad

Διαβάστε περισσότερα

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost

Διαβάστε περισσότερα

Transformator. Delovanje transformatorja I. Delovanje transformatorja II

Transformator. Delovanje transformatorja I. Delovanje transformatorja II Transformator Transformator je naprava, ki v osnovi pretvarja napetost iz enega nivoja v drugega. Poznamo vrsto različnih izvedb transformatorjev, glede na njihovo specifičnost uporabe:. Energetski transformator.

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Petek, 12. junij 2015 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Petek, 12. junij 2015 SPLOŠNA MATURA Državni izpitni center *M543* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Petek,. junij 05 SPLOŠNA MATURA RIC 05 M543 M543 3 IZPITNA POLA Naloga Odgovor Naloga Odgovor Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

Tabele termodinamskih lastnosti vode in vodne pare

Tabele termodinamskih lastnosti vode in vodne pare Univerza v Ljubljani Fakulteta za strojništvo Laboratorij za termoenergetiko Tabele termodinamskih lastnosti vode in vodne pare po modelu IAPWS IF-97 izračunano z XSteam Excel v2.6 Magnus Holmgren, xsteam.sourceforge.net

Διαβάστε περισσότερα

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK 1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24

Διαβάστε περισσότερα

FAKULTETA ZA STROJNIŠTVO Matematika 4 Pisni izpit 22. junij Navodila

FAKULTETA ZA STROJNIŠTVO Matematika 4 Pisni izpit 22. junij Navodila FAKULTETA ZA STROJNIŠTVO Matematika 4 Pisni izpit 22 junij 212 Ime in priimek: Vpisna št: Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja Veljale bodo samo rešitve na papirju, kjer

Διαβάστε περισσότερα

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi

Διαβάστε περισσότερα

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d) Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2

Διαβάστε περισσότερα

Zbirka rešenih nalog s kolokvijev in izpitov iz fizike. Naravoslovnotehniška fakulteta, šolsko leto 2004/05 Avtorja: S. Fratina in J.

Zbirka rešenih nalog s kolokvijev in izpitov iz fizike. Naravoslovnotehniška fakulteta, šolsko leto 2004/05 Avtorja: S. Fratina in J. Zbirka rešenih nalog s kolokvijev in izpitov iz fizike Naravoslovnotehniška fakulteta, šolsko leto 2004/05 Avtorja: S. Fratina in J. Kotar Prosim, da kakršnekoli vsebinske ali pravopisne napake sporočite

Διαβάστε περισσότερα

Toplotni tokovi. 1. Energijski zakon Temperatura

Toplotni tokovi. 1. Energijski zakon Temperatura Toplotni tokovi 1. Energijski zakon Med količinami, ki se ohranjajo, smo poleg mase in naboja omenili tudi energijo. V okviru modula o snovnih tokovih smo vpeljali kinetično, potencialno, prožnostno in

Διαβάστε περισσότερα

UPOR NA PADANJE SONDE V ZRAKU

UPOR NA PADANJE SONDE V ZRAKU UPOR NA PADANJE SONDE V ZRAKU 1. Hitrost in opravljena pot sonde pri padanju v zraku Za padanje v zraku je odgovorna sila teže. Poleg sile teže na padajoče telo deluje tudi sila vzgona, ki je enaka teži

Διαβάστε περισσότερα

Zbirka rešenih nalog s kolokvijev in izpitov iz fizike

Zbirka rešenih nalog s kolokvijev in izpitov iz fizike 1 Zbirka rešenih nalog s kolokvijev in izpitov iz fizike Naravoslovnotehniška fakulteta, šolsko leto 2004/05 in 2005/06 Avtorji: S. Fratina, A. Gomboc in J. Kotar Verzija: 6. februar 2007 Prosim, da kakršnekoli

Διαβάστε περισσότερα

Logatherm WPL 14 AR T A ++ A + A B C D E F G A B C D E F G. kw kw /2013

Logatherm WPL 14 AR T A ++ A + A B C D E F G A B C D E F G. kw kw /2013 WP 14 R T d 9 10 11 53 d 2015 811/2013 WP 14 R T 2015 811/2013 WP 14 R T Naslednji podatki o izdelku izpolnjujejo zahteve uredb U 811/2013, 812/2013, 813/2013 in 814/2013 o dopolnitvi smernice 2010/30/U.

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )

Διαβάστε περισσότερα

IZPIT IZ ANALIZE II Maribor,

IZPIT IZ ANALIZE II Maribor, Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,

Διαβάστε περισσότερα

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:

Διαβάστε περισσότερα

Vsebina MERJENJE. odstopanje 271,2 273,5 274,0 273,3 275,0 274,6

Vsebina MERJENJE. odstopanje 271,2 273,5 274,0 273,3 275,0 274,6 Vsebina MERJENJE... 1 GIBANJE... 2 ENAKOMERNO... 2 ENAKOMERNO POSPEŠENO... 2 PROSTI PAD... 2 SILE... 2 SILA KOT VEKTOR... 2 RAVNOVESJE... 2 TRENJE IN LEPENJE... 3 DINAMIKA... 3 TLAK... 3 DELO... 3 ENERGIJA...

Διαβάστε περισσότερα

Energije in okolje 1. vaja. Entalpija pri kemijskih reakcijah

Energije in okolje 1. vaja. Entalpija pri kemijskih reakcijah Entalpija pri kemijskih reakcijah Pri obravnavi energijskih pretvorb pri kemijskih reakcijah uvedemo pojem entalpije, ki popisuje spreminjanje energije sistema pri konstantnem tlaku. Sistemu lahko povečamo

Διαβάστε περισσότερα

Reševanje sistema linearnih

Reševanje sistema linearnih Poglavje III Reševanje sistema linearnih enačb V tem kratkem poglavju bomo obravnavali zelo uporabno in zato pomembno temo linearne algebre eševanje sistemov linearnih enačb. Spoznali bomo Gaussovo (natančneje

Διαβάστε περισσότερα

RANKINOV KROŽNI PROCES Seminar za predmet JTE

RANKINOV KROŽNI PROCES Seminar za predmet JTE RANKINOV KROŽNI PROCES Seminar za predmet JTE Rok Krpan 16.12.2010 Mentor: izr. prof. Iztok Tiselj Carnotov krožni proces Iz štirih sprememb: dveh izotermnih in dveh izentropnih (reverzibilnih adiabatnih)

Διαβάστε περισσότερα

Naloge iz vaj: Sistem togih teles C 2 C 1 F A 1 B 1. Slika 1: Sile na levi in desni lok.

Naloge iz vaj: Sistem togih teles C 2 C 1 F A 1 B 1. Slika 1: Sile na levi in desni lok. 1 Rešene naloge Naloge iz vaj: Sistem togih teles 1. Tročleni lok s polmerom R sestavljen iz lokov in je obremenjen tako kot kaže skica. Določi sile podpor. Rešitev: Lok razdelimo na dva loka, glej skico.

Διαβάστε περισσότερα

MERITVE LABORATORIJSKE VAJE. Študij. leto: 2011/2012 UNIVERZA V MARIBORU. Skupina: 9

MERITVE LABORATORIJSKE VAJE. Študij. leto: 2011/2012 UNIVERZA V MARIBORU. Skupina: 9 .cwww.grgor nik ol i c NVERZA V MARBOR FAKTETA ZA EEKTROTEHNKO, RAČNANŠTVO N NFORMATKO 2000 Maribor, Smtanova ul. 17 Študij. lto: 2011/2012 Skupina: 9 MERTVE ABORATORJSKE VAJE Vaja št.: 4.1 Določanj induktivnosti

Διαβάστε περισσότερα

Navadne diferencialne enačbe

Navadne diferencialne enačbe Navadne diferencialne enačbe Navadne diferencialne enačbe prvega reda V celotnem poglavju bo y = dy dx. Diferencialne enačbe z ločljivima spremeljivkama Diferencialna enačba z ločljivima spremeljivkama

Διαβάστε περισσότερα

Tokovi v naravoslovju za 6. razred

Tokovi v naravoslovju za 6. razred Tokovi v naravoslovju za 6. razred Bojan Golli in Nada Razpet PeF Ljubljana 7. december 2007 Kazalo 1 Fizikalne osnove 2 1.1 Energija in informacija............................... 3 2 Projekti iz fizike

Διαβάστε περισσότερα

DELO SILE,KINETIČNA IN POTENCIALNA ENERGIJA ZAKON O OHRANITVI ENERGIJE

DELO SILE,KINETIČNA IN POTENCIALNA ENERGIJA ZAKON O OHRANITVI ENERGIJE Seinarska naloga iz fizike DELO SILE,KINETIČNA IN POTENCIALNA ENERGIJA ZAKON O OHRANITVI ENERGIJE Maja Kretič VSEBINA SEMINARJA: - Delo sile - Kinetična energija - Potencialna energija - Zakon o ohraniti

Διαβάστε περισσότερα

Izpeljava Jensenove in Hölderjeve neenakosti ter neenakosti Minkowskega

Izpeljava Jensenove in Hölderjeve neenakosti ter neenakosti Minkowskega Izeljava Jensenove in Hölderjeve neenakosti ter neenakosti Minkowskega 1. Najosnovnejše o konveksnih funkcijah Definicija. Naj bo X vektorski rostor in D X konveksna množica. Funkcija ϕ: D R je konveksna,

Διαβάστε περισσότερα

F A B. 24 o. Prvi pisni test (kolokvij) iz Fizike I (UNI),

F A B. 24 o. Prvi pisni test (kolokvij) iz Fizike I (UNI), Prvi pisni test (kolokvij) iz Fizike I (UNI), 5. 12. 2003 1. Dve kladi A in B, ki sta povezani z zelo lahko, neraztegljivo vrvico, vlečemo navzgor po klancu z nagibom 24 o s konstantno silo 170 N tako,

Διαβάστε περισσότερα

ZBIRKA REŠENIH PROBLEMOV IN NALOG

ZBIRKA REŠENIH PROBLEMOV IN NALOG Izr. Prof. dr. Andrej Kitanovski Asist. dr. Urban Tomc Prof. dr. Alojz Poredoš ZBIRKA REŠENIH PROBLEMOV IN NALOG Učni pripomoček pri predmetu Prenos toplote in snovi Ljubljana, 2017 V tem delu so zbrane

Διαβάστε περισσότερα

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu. Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.

Διαβάστε περισσότερα

PREZRAČEVANJE RAČUNSKE VAJE Z REŠITVAMI. Predavatelj : dr. M. K.

PREZRAČEVANJE RAČUNSKE VAJE Z REŠITVAMI. Predavatelj : dr. M. K. PREZRAČEVANJE RAČUNSKE VAJE Z REŠITVAMI Predavatelj : dr. M. K. 18.10.2006 1. naloga ( podobna naloga na strani 7, 6 naloga ) Kakšna bo temperatura na stičišču med zunanjim delom opeke in izolacijo Tv,

Διαβάστε περισσότερα

Univerza v Novi Gorici Fakulteta za znanosti o okolju Okolje (I. stopnja) Meteorologija 2013/2014. Energijska bilanca pregled

Univerza v Novi Gorici Fakulteta za znanosti o okolju Okolje (I. stopnja) Meteorologija 2013/2014. Energijska bilanca pregled Univerza v Novi Gorici Fakulteta za znanosti o okolu Okole (I. stopna) Meteorologia 013/014 Energiska bilanca pregled 1 Osnovni pomi energiski tok: P [W = J/s] gostota energiskega toka: [W/m ] toplota:q

Διαβάστε περισσότερα

Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik

Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik Podobnost matrik Matematika II (FKKT Kemijsko inženirstvo) Matjaž Željko FKKT Kemijsko inženirstvo 14 teden (Zadnja sprememba: 23 maj 213) Matrika A R n n je podobna matriki B R n n, če obstaja obrnljiva

Διαβάστε περισσότερα

UNIVERZA V LJUBLJANI, FAKULTETA ZA STROJNIŠTVO Katedra za energetsko strojništvo VETRNICA. v 2. v 1 A 2 A 1. Energetski stroji

UNIVERZA V LJUBLJANI, FAKULTETA ZA STROJNIŠTVO Katedra za energetsko strojništvo VETRNICA. v 2. v 1 A 2 A 1. Energetski stroji Katedra za energetsko strojništo VETRNICA A A A Katedra za energetsko strojništo Katedra za energetsko strojništo VETRNICA A A A Δ Δp p p Δ Katedra za energetsko strojništo Teoretična moč etrnice Določite

Διαβάστε περισσότερα

3. VAJA IZ TRDNOSTI. Rešitev: Pomik v referenčnem opisu: u = e y 2 e Pomik v prostorskem opisu: u = ey e. e y,e z = e z.

3. VAJA IZ TRDNOSTI. Rešitev: Pomik v referenčnem opisu: u = e y 2 e Pomik v prostorskem opisu: u = ey e. e y,e z = e z. 3. VAJA IZ TRDNOSTI (tenzor deformacij) (pomiki togega telesa, Lagrangev in Eulerjev opis, tenzor velikih deformacij, tenzor majhnih deformacij in rotacij, kompatibilitetni pogoji) NALOGA 1: Gumijasti

Διαβάστε περισσότερα

Osnove elektrotehnike uvod

Osnove elektrotehnike uvod Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.

Διαβάστε περισσότερα

V tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant.

V tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant. Poglavje IV Determinanta matrike V tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant 1 Definicija Preden definiramo determinanto,

Διαβάστε περισσότερα

1 Seštevanje vektorjev in množenje s skalarjem

1 Seštevanje vektorjev in množenje s skalarjem Poglavje I Vektorji Seštevanje vektorjev in množenje s skalarjem Za lažjo geometrično predstavo si najprej oglejmo, kaj so vektorji v ravnini. Vektor je usmerjena daljica, ki je natanko določena s svojo

Διαβάστε περισσότερα

Simbolni zapis in množina snovi

Simbolni zapis in množina snovi Simbolni zapis in množina snovi RELATIVNA MOLEKULSKA MASA ON MOLSKA MASA Relativna molekulska masa Ker so atomi premajhni, da bi jih merili z običajnimi tehtnicami, so ugotovili, kako jih izračunati. Izražamo

Διαβάστε περισσότερα

Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba.

Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba. 1. Osnovni pojmi Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba. Primer 1.1: Diferencialne enačbe so izrazi: y

Διαβάστε περισσότερα

Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1

Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1 Mtemtik 1 Gregor Dolinr Fkultet z elektrotehniko Univerz v Ljubljni 2. jnur 2014 Gregor Dolinr Mtemtik 1 Izrek (Izrek o povprečni vrednosti) Nj bo m ntnčn spodnj mej in M ntnčn zgornj mej integrbilne funkcije

Διαβάστε περισσότερα

Funkcije več spremenljivk

Funkcije več spremenljivk DODATEK C Funkcije več spremenljivk C.1. Osnovni pojmi Funkcija n spremenljivk je predpis: f : D f R, (x 1, x 2,..., x n ) u = f (x 1, x 2,..., x n ) kjer D f R n imenujemo definicijsko območje funkcije

Διαβάστε περισσότερα

Termodinamika in elektromagnetno polje

Termodinamika in elektromagnetno polje Termodinamika in elektromagnetno polje izbor nalog z rešitvami 1 Termodinamika 1.1 Temperaturno raztezanje 1. Kolikšna je bila končna temperatura 35 cm dolge bakrene palice, ki se je raztegnila za 0,29

Διαβάστε περισσότερα

Osnove termodinamike za medicino

Osnove termodinamike za medicino Osnove termodinamike za medicino Osnutek zapiskov s predavanj iz bio izike za s tudente medicine in dentalne medicine Jure Derganc Komentarje, pripombe in napake prosim sporoc ite na jure.derganc@mf.uni-lj.si

Διαβάστε περισσότερα

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE NEPARAMETRIČNI TESTI pregledovanje tabel hi-kvadrat test as. dr. Nino RODE Parametrični in neparametrični testi S pomočjo z-testa in t-testa preizkušamo domneve o parametrih na vzorcih izračunamo statistike,

Διαβάστε περισσότερα

Matematika vaja. Matematika FE, Ljubljana, Slovenija Fakulteta za Elektrotehniko 1000 Ljubljana, Tržaška 25, Slovenija

Matematika vaja. Matematika FE, Ljubljana, Slovenija Fakulteta za Elektrotehniko 1000 Ljubljana, Tržaška 25, Slovenija Matematika 1 3. vaja B. Jurčič Zlobec 1 1 Univerza v Ljubljani, Fakulteta za Elektrotehniko 1000 Ljubljana, Tržaška 25, Slovenija Matematika FE, Ljubljana, Slovenija 2011 Določi stekališča zaporedja a

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

ENOTE IN MERJENJA. Izpeljana enota je na primer enota za silo, newton (N), ki je z osnovnimi enotami podana kot: 1 N = 1kgms -2.

ENOTE IN MERJENJA. Izpeljana enota je na primer enota za silo, newton (N), ki je z osnovnimi enotami podana kot: 1 N = 1kgms -2. ENOTE IN MERJENJA Fizika temelji na merjenjih Vsa važnejša fizikalna dognanja in zakoni temeljijo na ustreznem razumevanju in interpretaciji meritev Tudi vsako novo dognanje je treba preveriti z meritvami

Διαβάστε περισσότερα

Kvantni delec na potencialnem skoku

Kvantni delec na potencialnem skoku Kvantni delec na potencialnem skoku Delec, ki se giblje premo enakomerno, pride na mejo, kjer potencial naraste s potenciala 0 na potencial. Takšno potencialno funkcijo zapišemo kot 0, 0 0,0. Slika 1:

Διαβάστε περισσότερα

DELO IN ENERGIJA, MOČ

DELO IN ENERGIJA, MOČ DELO IN ENERGIJA, MOČ Dvigalo mase 1 t se začne dvigati s pospeškom 2 m/s 2. Izračunaj delo motorja v prvi 5 sekunda in s kolikšno močjo vleče motor dvigalo v tem časovnem intervalu? [ P mx = 100kW ( to

Διαβάστε περισσότερα

Fizikalne osnove. Uvod. 1. Fizikalne količine Fizikalne spremenljivke, enote, merjenje Zapis količin, natančnost

Fizikalne osnove. Uvod. 1. Fizikalne količine Fizikalne spremenljivke, enote, merjenje Zapis količin, natančnost Fizikalne osnove Uvod V prvih dveh poglavjih ponovimo nekaj osnovnih fizikalnih pojmov, ki jih bomo kasneje srečevali pri obravnavi tako snovnih kot električnih in toplotnih tokov. V prvem poglavju obravnavamo

Διαβάστε περισσότερα

Gimnazija Krˇsko. vektorji - naloge

Gimnazija Krˇsko. vektorji - naloge Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor

Διαβάστε περισσότερα

Matrike. Poglavje II. Matrika je pravokotna tabela realnih števil. Na primer: , , , 0 1

Matrike. Poglavje II. Matrika je pravokotna tabela realnih števil. Na primer: , , , 0 1 Poglavje II Matrike Matrika je pravokotna tabela realnih števil Na primer: [ ] 1 1 1, 2 3 1 1 0 1 3 2 1, 0 1 4 [ ] 2 7, Matrika je sestavljena iz vrstic in stolpcev Vrstici matrike [ ] 1 1 1 2 3 1 [ ]

Διαβάστε περισσότερα

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013 Numerične metode, sistemi linearnih enačb B. Jurčič Zlobec Numerične metode FE, 2. december 2013 1 Vsebina 1 z n neznankami. a i1 x 1 + a i2 x 2 + + a in = b i i = 1,..., n V matrični obliki zapišemo:

Διαβάστε περισσότερα

Navadne diferencialne enačbe

Navadne diferencialne enačbe Navadne diferencialne enačbe (študijsko gradivo) Matija Cencelj 1. maja 2003 2 Kazalo 1 Uvod 5 1.1 Preprosti primeri......................... 8 2 Diferencialne enačbe prvega reda 11 2.1 Ločljivi spremenljivki.......................

Διαβάστε περισσότερα

8. Posplošeni problem lastnih vrednosti

8. Posplošeni problem lastnih vrednosti 8. Posplošeni problem lastnih vrednosti Bor Plestenjak NLA 13. april 2010 Bor Plestenjak (NLA) 8. Posplošeni problem lastnih vrednosti 13. april 2010 1 / 15 Matrični šop Dani sta kvadratni n n matriki

Διαβάστε περισσότερα

CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25

CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25 1 2 3 4 5 6 7 OFFMANAUTO CM707 GR Οδηγός χρήσης... 2-7 SLO Uporabniški priročnik... 8-13 CR Korisnički priručnik... 14-19 TR Kullanım Kılavuzu... 20-25 ENG User Guide... 26-31 GR CM707 ΟΔΗΓΟΣ ΧΡΗΣΗΣ Περιγραφή

Διαβάστε περισσότερα

Tema 1 Osnove navadnih diferencialnih enačb (NDE)

Tema 1 Osnove navadnih diferencialnih enačb (NDE) Matematične metode v fiziki II 2013/14 Tema 1 Osnove navadnih diferencialnih enačb (NDE Diferencialne enačbe v fiziki Večina osnovnih enačb v fiziki je zapisana v obliki diferencialne enačbe. Za primer

Διαβάστε περισσότερα

POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL

POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL Izdba aje: Ljubjana, 11. 1. 007, 10.00 Jan OMAHNE, 1.M Namen: 1.Preeri paraeogramsko praio za doočanje rezutante nezporedni si s skupnim prijemaiščem (grafično)..dooči

Διαβάστε περισσότερα

Matematika. Funkcije in enačbe

Matematika. Funkcije in enačbe Matematika Funkcije in enačbe (1) Nariši grafe naslednjih funkcij: (a) f() = 1, (b) f() = 3, (c) f() = 3. Rešitev: (a) Linearna funkcija f() = 1 ima začetno vrednost f(0) = 1 in ničlo = 1/. Definirana

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

VEKTORJI. Operacije z vektorji

VEKTORJI. Operacije z vektorji VEKTORJI Vektorji so matematični objekti, s katerimi opisujemo določene fizikalne količine. V tisku jih označujemo s krepko natisnjenimi črkami (npr. a), pri pisanju pa s puščico ( a). Fizikalne količine,

Διαβάστε περισσότερα

Če je električni tok konstanten (se ne spreminja s časom), poenostavimo enačbo (1) in dobimo enačbo (2):

Če je električni tok konstanten (se ne spreminja s časom), poenostavimo enačbo (1) in dobimo enačbo (2): ELEKTRIČNI TOK TEOR IJA 1. Definicija enote električnega toka Električni tok je gibanje električno nabitih delcev v trdnih snoveh (kovine, polprevodniki), tekočinah ali plinih. V kovinah se gibljejo prosti

Διαβάστε περισσότερα

Splošno o interpolaciji

Splošno o interpolaciji Splošno o interpolaciji J.Kozak Numerične metode II (FM) 2011-2012 1 / 18 O funkciji f poznamo ali hočemo uporabiti le posamezne podatke, na primer vrednosti r i = f (x i ) v danih točkah x i Izberemo

Διαβάστε περισσότερα

9. Notranja energija in toplota

9. Notranja energija in toplota 9. Notranja energija in toplota - Toplota je tisti del notranje energije, ki se pretaka ed dvea telesoa, ko je ed njia teperaturna razlika! - Notranja energija telesa je sestavljena iz kinetične energije

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

6.1.2 Togostna matrika linijskega elementa z ravno osjo po teoriji II. reda

6.1.2 Togostna matrika linijskega elementa z ravno osjo po teoriji II. reda 596 6 Geometrijska nelinearnost nosilcev varnost V E pa z enačbo V E = F E F dej 6.92) Z A x je označena ploščina prečnega prereza nosilca, količina i min je najmanjši vztrajnostni polmer, F dej pa je

Διαβάστε περισσότερα

Kvadratne forme. Poglavje XI. 1 Definicija in osnovne lastnosti

Kvadratne forme. Poglavje XI. 1 Definicija in osnovne lastnosti Poglavje XI Kvadratne forme V zadnjem poglavju si bomo ogledali še eno vrsto preslikav, ki jih tudi lahko podamo z matrikami. To so tako imenovane kvadratne forme, ki niso več linearne preslikave. Kvadratne

Διαβάστε περισσότερα

1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου...

1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου... ΑΠΟΖΗΜΙΩΣΗ ΘΥΜΑΤΩΝ ΕΓΚΛΗΜΑΤΙΚΩΝ ΠΡΑΞΕΩΝ ΣΛΟΒΕΝΙΑ 1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου... 3 1 1. Έντυπα αιτήσεων

Διαβάστε περισσότερα