8. Posplošeni problem lastnih vrednosti

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "8. Posplošeni problem lastnih vrednosti"

Transcript

1 8. Posplošeni problem lastnih vrednosti Bor Plestenjak NLA 13. april 2010 Bor Plestenjak (NLA) 8. Posplošeni problem lastnih vrednosti 13. april / 15

2 Matrični šop Dani sta kvadratni n n matriki A in B. Definicija Množico vseh matrik oblike A λb, kjer je λ C, imenujemo matrični šop in označimo z (A, B) ali A λb. Karakteristični polinom matričnega šopa (A, B) je p(λ) = det(a λb). Če polinom p ni identično enak 0, je matrični šop regularen, sicer pa singularen. Če je matrični šop (A, B) regularen in je Ax = λbx za x 0, potem pravimo, da je λ (končna) lastna vrednost in x (desni) lastni vektor. Podobno je y 0 levi lastni vektor za λ, če je y H A = λy H B. Problemu iskanja lastnih vrednosti matričnega šopa pravimo posplošeni problem lastnih vrednosti (GEP). Bor Plestenjak (NLA) 8. Posplošeni problem lastnih vrednosti 13. april / 15

3 Definiten primer Dan je posplošen problem lastnih vrednosti Ax = λbx, kjer je A simetrična in B simetrična pozitivno definitna. Če je B nesingularna, lahko sicer res rešujemo ekvivalenten navaden problem lastnih vrednosti B 1 Ax = λx, a s tem izgubimo simetrično stukturo. Če uporabimo razcep Choleskega B = VV T matrike B, dobimo Ax = λvv T x V 1 Ax = λv T x V 1 AV T V T x = λv T x To je simetričen problem lastnih vrednosti Cy = λy za C = V 1 AV T in y = V T x. Posladica: v primeru A = A T in B s.p.d. ima šop (A, B) realne lastne vrednosti. Bor Plestenjak (NLA) 8. Posplošeni problem lastnih vrednosti 13. april / 15

4 Posplošitev Rayleighovega kvocienta Za Ax = λbx, kjer je A = A T in B s.p.d., definiramo ρ(x, A, B) = x T Ax x T Bx. Podobno kot za simetričen problem velja λ n ρ(x, A, B) λ 1. Lema Posplošeni Rayleighov kvocient ρ(x, A, B) vrne skalar λ, ki minimizira Ax λbx B 1, kjer je z 2 B 1 = zt B 1 z. Posplošena Rayleighova iteracija izberi x 0 0 k = 0, 1,... ρ k = x T k Ax k x T k Bx k reši (A ρ k B)y k+1 = Bx k x k+1 = y k+1 / y k+1 Bor Plestenjak (NLA) 8. Posplošeni problem lastnih vrednosti 13. april / 15

5 Splošen regularen matrični šop Naj bo (A, B) regularen matrični šop. Potem: Končne lastne vrednosti šopa (A, B) so ničle karakterističnega polinoma p(λ) = det(a λb), ki je stopnje m n. V primeru m < n ima šop še lastno vrednost z večkratnostjo n m. Zgled V primeru 1 A λb = λ 0 1 dobimo p(λ) = (2λ 1)λ, torej so lastne vrednosti λ 1 = 1/2, λ 2 = 0, λ 3 =. Neskončne lastne vrednosti se pojavijo natanko takrat, ko je matrika B singularna. Vsak vektor iz ker(b) je desni lastni vektor za lastno vrednost. Bor Plestenjak (NLA) 8. Posplošeni problem lastnih vrednosti 13. april / 15

6 Ekvivalentni matrični šopi Izrek Za regularen matrični šop (A, B) velja: 1) Če je B nesingularna, so vse lastne vrednosti šopa (A, B) končne in enake lastnim vrednostim B 1 A ali AB 1. 2) Če je B singularna, ima šop (A, B) lastno vrednost z večkratnostjo n rang(b). 3) Če je A nesingularna, so lastne vrednosti šopa (A, B) recipročne lastne vrednosti A 1 B oziroma BA 1, kjer lastna vrednost 0 ustreza neskončni lastni vrednosti (A, B). Če sta matriki U in V nesingularni, sta šopa (A, B) in (UAV, UBV ) ekvivalentna. Izrek Ekvivalentna regularna matrična šopa (A, B) in (UAV, UBV ) imata enake lastne vrednosti. Velja: x je lastni vektor za (A, B) V 1 x je lastni vektor za (UAV, UBV ), y je levi lastni vektor za (A, B) U H x je levi lastni vektor za (UAV, UBV ). Bor Plestenjak (NLA) 8. Posplošeni problem lastnih vrednosti 13. april / 15

7 Weierstrassova forma Izrek Za vsak regularen matrični šop A λb obstajata nesingularni matriki U in V, da je U(A λb)v = diag(j n1 (λ 1 ) λi n1,..., J nk (λ k ) λi nk, N m1,..., N mk ), kjer je λ i 1 1 λ J ni (λ i ) =... 1, N m i (λ i ) =... λ. λi 1 Opazimo lahko, da je N mi = I mi λj mi (0). Weierstrassova forma je posplošitev Jordanove forme in je podobno neprimerna za numerično računanje. Bor Plestenjak (NLA) 8. Posplošeni problem lastnih vrednosti 13. april / 15

8 Posplošena Schurova forma Izrek Za vsak regularen matrični šop A λb obstajata unitarni matriki Q in Z, da je Q H (A λb)z = S λt, kjer sta matriki S in T zgoraj trikotni matriki. Lastne vrednosti so potem kvocienti λ i = t ii /s ii za s ii 0 in v primeru s ii = 0. Situacija s ii = t ii = 0 je možna le, če je šop (A, B) singularen. Če sta matriki A in B realni, potem obstaja realna posplošena Schurova forma, kjer sta matriki Q in Z ortogonalni, S je kvazi zgornja trikotna, T pa zgornja trikotna matrika. Bor Plestenjak (NLA) 8. Posplošeni problem lastnih vrednosti 13. april / 15

9 Občutljivost lastnih vrednosti Da lahko vključimo v analizo enakovredno še neskončne lastne vrednosti, uporabljamo ločno razdaljo, definirano kot χ(α, β) = α β 1 + α β 2. V limiti dobimo χ(α, ) = α 2. Izrek Naj bo λ enostavna lastna vrednost šopa (A, B) z normiranim desnim lastnim vektorjem x in levim y. Če je λ ustrezna lastna vrednost zmotenega šopa (Ã, B), kjer je A Ã 2 ɛ, B B 2 ɛ, potem je χ(λ, λ) ɛ y H Ax 2 + y H Bx 2 + O(ɛ2 ). Bor Plestenjak (NLA) 8. Posplošeni problem lastnih vrednosti 13. april / 15

10 Predpriprava za QZ algoritem Na začetku šop (A, B) z ortogonalnimi ekvivalentnimi tranformacijami reduciramo na obliko, ko je prva matrika zgornja Hessenbergova, druga pa zgornja trikotna. A = B = Bor Plestenjak (NLA) 8. Posplošeni problem lastnih vrednosti 13. april / 15

11 Predpriprava za QZ algoritem Na začetku šop (A, B) z ortogonalnimi ekvivalentnimi tranformacijami reduciramo na obliko, ko je prva matrika zgornja Hessenbergova, druga pa zgornja trikotna. PA = PB = matriko B z zrcaljenji spravimo v zgornjo trikorno obliko Bor Plestenjak (NLA) 8. Posplošeni problem lastnih vrednosti 13. april / 15

12 Predpriprava za QZ algoritem Na začetku šop (A, B) z ortogonalnimi ekvivalentnimi tranformacijami reduciramo na obliko, ko je prva matrika zgornja Hessenbergova, druga pa zgornja trikotna. R T 45PA = R T 45PB = matriko A spravimo v zgornjo Hessenbergovo obliko in sproti popravljamo B Bor Plestenjak (NLA) 8. Posplošeni problem lastnih vrednosti 13. april / 15

13 Predpriprava za QZ algoritem Na začetku šop (A, B) z ortogonalnimi ekvivalentnimi tranformacijami reduciramo na obliko, ko je prva matrika zgornja Hessenbergova, druga pa zgornja trikotna. R T 45PAR 45 = R T 45PBR 45 = matriko A spravimo v zgornjo Hessenbergovo obliko in sproti popravljamo B Bor Plestenjak (NLA) 8. Posplošeni problem lastnih vrednosti 13. april / 15

14 Predpriprava za QZ algoritem Na začetku šop (A, B) z ortogonalnimi ekvivalentnimi tranformacijami reduciramo na obliko, ko je prva matrika zgornja Hessenbergova, druga pa zgornja trikotna. R T 34R T 45PAR 45 = R T 34R T 45PBR 45 = matriko A spravimo v zgornjo Hessenbergovo obliko in sproti popravljamo B Bor Plestenjak (NLA) 8. Posplošeni problem lastnih vrednosti 13. april / 15

15 Predpriprava za QZ algoritem Na začetku šop (A, B) z ortogonalnimi ekvivalentnimi tranformacijami reduciramo na obliko, ko je prva matrika zgornja Hessenbergova, druga pa zgornja trikotna. R T 34R T 45PAR 45 R 34 = R T 34R T 45PBR 45 R 34 = matriko A spravimo v zgornjo Hessenbergovo obliko in sproti popravljamo B Bor Plestenjak (NLA) 8. Posplošeni problem lastnih vrednosti 13. april / 15

16 Predpriprava za QZ algoritem Na začetku šop (A, B) z ortogonalnimi ekvivalentnimi tranformacijami reduciramo na obliko, ko je prva matrika zgornja Hessenbergova, druga pa zgornja trikotna. R T 23R T 34R T 45PAR 45 R 34 = R T 23R T 34R T 45PBR 45 R 34 = matriko A spravimo v zgornjo Hessenbergovo obliko in sproti popravljamo B Bor Plestenjak (NLA) 8. Posplošeni problem lastnih vrednosti 13. april / 15

17 Predpriprava za QZ algoritem Na začetku šop (A, B) z ortogonalnimi ekvivalentnimi tranformacijami reduciramo na obliko, ko je prva matrika zgornja Hessenbergova, druga pa zgornja trikotna. R T 23R T 34R T 45PAR 45 R 34 R 23 = R T 23R T 34R T 45PBR 45 R 34 R 23 = matriko A spravimo v zgornjo Hessenbergovo obliko in sproti popravljamo B Bor Plestenjak (NLA) 8. Posplošeni problem lastnih vrednosti 13. april / 15

18 Predpriprava za QZ algoritem Na začetku šop (A, B) z ortogonalnimi ekvivalentnimi tranformacijami reduciramo na obliko, ko je prva matrika zgornja Hessenbergova, druga pa zgornja trikotna. R T 45R T 23R T 34R T 45PAR 45 R 34 R 23 = R T 45R T 23R T 34R T 45PBR 45 R 34 R 23 = matriko A spravimo v zgornjo Hessenbergovo obliko in sproti popravljamo B Bor Plestenjak (NLA) 8. Posplošeni problem lastnih vrednosti 13. april / 15

19 Predpriprava za QZ algoritem Na začetku šop (A, B) z ortogonalnimi ekvivalentnimi tranformacijami reduciramo na obliko, ko je prva matrika zgornja Hessenbergova, druga pa zgornja trikotna. R T 45R T 23R T 34R T 45PAR 45 R 34 R 23 R 45 = R T 45R T 23R T 34R T 45PBR 45 R 34 R 23 R 45 = matriko A spravimo v zgornjo Hessenbergovo obliko in sproti popravljamo B Bor Plestenjak (NLA) 8. Posplošeni problem lastnih vrednosti 13. april / 15

20 Predpriprava za QZ algoritem Na začetku šop (A, B) z ortogonalnimi ekvivalentnimi tranformacijami reduciramo na obliko, ko je prva matrika zgornja Hessenbergova, druga pa zgornja trikotna. R T 34R T 45R T 23R T 34R T 45PAR 45 R 34 R 23 R 45 = R T 34R T 45R T 23R T 34R T 45PBR 45 R 34 R 23 R 45 = matriko A spravimo v zgornjo Hessenbergovo obliko in sproti popravljamo B Bor Plestenjak (NLA) 8. Posplošeni problem lastnih vrednosti 13. april / 15

21 Predpriprava za QZ algoritem Na začetku šop (A, B) z ortogonalnimi ekvivalentnimi tranformacijami reduciramo na obliko, ko je prva matrika zgornja Hessenbergova, druga pa zgornja trikotna. R T 34R T 45R T 23R T 34R T 45PAR 45 R 34 R 23 R 45 R 34 = R T 34R T 45R T 23R T 34R T 45PBR 45 R 34 R 23 R 45 R 34 = matriko A spravimo v zgornjo Hessenbergovo obliko in sproti popravljamo B Bor Plestenjak (NLA) 8. Posplošeni problem lastnih vrednosti 13. april / 15

22 Predpriprava za QZ algoritem Na začetku šop (A, B) z ortogonalnimi ekvivalentnimi tranformacijami reduciramo na obliko, ko je prva matrika zgornja Hessenbergova, druga pa zgornja trikotna. R T 45R T 34R T 45R T 23R T 34R T 45PAR 45 R 34 R 23 R 45 R 34 = R T 45R T 34R T 45R T 23R T 34R T 45PBR 45 R 34 R 23 R 45 R 34 = matriko A spravimo v zgornjo Hessenbergovo obliko in sproti popravljamo B Bor Plestenjak (NLA) 8. Posplošeni problem lastnih vrednosti 13. april / 15

23 Predpriprava za QZ algoritem Na začetku šop (A, B) z ortogonalnimi ekvivalentnimi tranformacijami reduciramo na obliko, ko je prva matrika zgornja Hessenbergova, druga pa zgornja trikotna. R T 45R T 34R T 45R T 23R T 34R T 45PAR 45 R 34 R 23 R 45 R 34 R 45 = R T 45R T 34R T 45R T 23R T 34R T 45PBR 45 R 34 R 23 R 45 R 34 R 45 = matriko A spravimo v zgornjo Hessenbergovo obliko in sproti popravljamo B Bor Plestenjak (NLA) 8. Posplošeni problem lastnih vrednosti 13. april / 15

24 Predpriprava za QZ algoritem Na začetku šop (A, B) z ortogonalnimi ekvivalentnimi tranformacijami reduciramo na obliko, ko je prva matrika zgornja Hessenbergova, druga pa zgornja trikotna. R T 45R T 34R T 45R T 23R T 34R T 45P } {{ } U1 H A R 45 R 34 R 23 R 45 R 34 R 45 }{{} V H 1 R T 45R T 34R T 45R T 23R T 34R T 45PBR 45 R 34 R 23 R 45 R 34 R 45 = = 0 0 = A = B Časovna zahtevnost: 8n 3 za izračun A 1 in B 1, še dodatnih 7n 3 za izračun Q 1 in Z 1. Bor Plestenjak (NLA) 8. Posplošeni problem lastnih vrednosti 13. april / 15

25 QZ algoritem Izvajamo implicitno QR metodo na C = AB 1, ki je zgornja Hessenbergova. V enem koraku metode posodobimo A k λb k v kjer Q k in Z k določimo tako, da A k+1 λb k+1 = Q k (A k λb k )Z k, je A k+1 zgornja Hessenbergova in B k+1 zgornja trikotna, se A k+1 B 1 k+1 ujema z matriko, ki bi jo dobili z enim korakom QR iz A kb 1 k. Velja A k+1 B 1 k+1 = Q k(a k B 1 k )Qk T. Če je A k+1 zgornja Hessenbergova, B k+1 zgornja trikotna in se prvi stolpec Q k ujema s prvim stolpcem ustrezne matrike pri QR iteraciji za A k B 1 k, nam izrek o implicitnem Q zagotavlja, da je to ekvivalentno metodi QR na AB 1. Za dvojni premik potrebujemo sled in determinanto 2 2 matrike R = C(n 1 : n, n 1 : n), kar lahko izračunamo v O(1) operacij. Bor Plestenjak (NLA) 8. Posplošeni problem lastnih vrednosti 13. april / 15

26 Preganjanje grbe Naj bo v 1 prvi stolpec matrike C 2 sled(r)c + det(r)i. Izračunamo ga lahko v O(1) operacij. Bor Plestenjak (NLA) 8. Posplošeni problem lastnih vrednosti 13. april / 15

27 Preganjanje grbe Naj bo v 1 prvi stolpec matrike C 2 sled(r)c + det(r)i. Izračunamo ga lahko v O(1) operacij. Vzamemo Householderjevo zrcaljenje P 1, ki v 1 prezrcali v smer e 1 in dobimo A = B = Bor Plestenjak (NLA) 8. Posplošeni problem lastnih vrednosti 13. april / 15

28 Preganjanje grbe Naj bo v 1 prvi stolpec matrike C 2 sled(r)c + det(r)i. Izračunamo ga lahko v O(1) operacij. Vzamemo Householderjevo zrcaljenje P 1, ki v 1 prezrcali v smer e 1 in dobimo P 1 A = P 1 B = Bor Plestenjak (NLA) 8. Posplošeni problem lastnih vrednosti 13. april / 15

29 Deflacija V primeru, ko je a k+1,k = 0 oziroma b kk = 0, lahko izvedemo deflacijo in nadaljujemo z matriko manjše velikosti. Pri situaciji a k+1,k = 0 problem preprosto razdelimo na dva manjša posplošena problema lastnih vrednosti velikosti k k in (n k) (n k). V primeru b kk = 0 pa z ustreznimi ortogonalnimi transformacijami pridemo do a n,n 1 = 0, b nn = 0, potem pa lahko nadaljujejemo samo z vodilno podmatriko velikosti (n 1) (n 1). V tem primeru smo izločili lastno vrednost. Bor Plestenjak (NLA) 8. Posplošeni problem lastnih vrednosti 13. april / 15

30 Inverzna iteracija Naj bo σ izračunana lastna vrednost šopa (A, B). Do lastnega vektorja lahko pridemo s posplošitvijo inverzne iteracije: Inverzna iteracija za GEP izberi začetni vektor q 0 k = 1, 2,... reši (A σb)z k = Bq k 1 q k = z k / z k Bor Plestenjak (NLA) 8. Posplošeni problem lastnih vrednosti 13. april / 15

31 Inverzna iteracija Naj bo σ izračunana lastna vrednost šopa (A, B). Do lastnega vektorja lahko pridemo s posplošitvijo inverzne iteracije: Inverzna iteracija za GEP izberi začetni vektor q 0 k = 1, 2,... reši (A σb)z k = Bq k 1 q k = z k / z k V primeru, ko je B nesingularna, je to ekvivalentno inverzni iteraciji za B 1 A. Bor Plestenjak (NLA) 8. Posplošeni problem lastnih vrednosti 13. april / 15

32 Singularni šopi V primeru, ko je det(a λb) 0, je šop singularen. Sedaj pravimo, da je µ lastna vrednost šopa, če velja rang(a µb) < max rang(a λb). λ C To pomeni, da pri lastnih vrednostih pade rang šopa. Ta definicija je dobra tudi za regularen primer, saj tam pri lastnih vrednostih matrika A λb ni polnega ranga, sicer pa je. Bor Plestenjak (NLA) 8. Posplošeni problem lastnih vrednosti 13. april / 15

33 Singularni šopi V primeru, ko je det(a λb) 0, je šop singularen. Sedaj pravimo, da je µ lastna vrednost šopa, če velja rang(a µb) < max rang(a λb). λ C To pomeni, da pri lastnih vrednostih pade rang šopa. Ta definicija je dobra tudi za regularen primer, saj tam pri lastnih vrednostih matrika A λb ni polnega ranga, sicer pa je. Zgled Šop A λb = [ ] [ ] λ je singularen. Edina lastna vrednost je λ = Bor Plestenjak (NLA) 8. Posplošeni problem lastnih vrednosti 13. april / 15

34 Singularni šopi V primeru, ko je det(a λb) 0, je šop singularen. Sedaj pravimo, da je µ lastna vrednost šopa, če velja rang(a µb) < max rang(a λb). λ C To pomeni, da pri lastnih vrednostih pade rang šopa. Ta definicija je dobra tudi za regularen primer, saj tam pri lastnih vrednostih matrika A λb ni polnega ranga, sicer pa je. Zgled Šop A λb = [ ] [ ] λ je singularen. Edina lastna vrednost je λ = Tako lahko definiramo lastne vrednosti tudi za šope pravokotnih matrik. Bor Plestenjak (NLA) 8. Posplošeni problem lastnih vrednosti 13. april / 15

11. Posplošeni problemi lastnih vrednosti

11. Posplošeni problemi lastnih vrednosti 11. Posplošeni problemi lastnih vrednosti Dani sta kvadratni n n matriki A in B. Množico vseh matrik oblike A λb, kjer je λ C, imenujemo matrični šop in označimo z (A, B) ali A λb. Karakteristični polinom

Διαβάστε περισσότερα

13. Jacobijeva metoda za računanje singularnega razcepa

13. Jacobijeva metoda za računanje singularnega razcepa 13. Jacobijeva metoda za računanje singularnega razcepa Bor Plestenjak NLA 25. maj 2010 Bor Plestenjak (NLA) 13. Jacobijeva metoda za računanje singularnega razcepa 25. maj 2010 1 / 12 Enostranska Jacobijeva

Διαβάστε περισσότερα

Problem lastnih vrednosti

Problem lastnih vrednosti Problem lastnih vrednosti Naj bo A R n n. Iščemo lastni par, da zanj velja Ax = λx, kjer je x C n, x 0 (desni) lastni vektor, λ C pa lastna vrednost. Vektor y 0, pri katerem je y H A = λy H, je levi lastni

Διαβάστε περισσότερα

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij): 4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n

Διαβάστε περισσότερα

Problem lastnih vrednosti 1 / 20

Problem lastnih vrednosti 1 / 20 Problem lastnih vrednosti 1 / 20 2 / 20 1 Uvod 2 Potenčna metoda 3 Inverzna iteracija 4 QR iteracija 5 Metode za simetrične matrike Sturmovo zaporedje Jacobijeva iteracija 3 / 20 Uvod Naj bo A R n n. Paru

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki

Διαβάστε περισσότερα

Numerične metode 2 (finančna matematika)

Numerične metode 2 (finančna matematika) Bor Plestenjak Numerične metode 2 (finančna matematika) delovna verzija verzija:. februar 203 Kazalo Nesimetrični problem lastnih vrednosti 5. Uvod............................................ 5.2 Schurova

Διαβάστε περισσότερα

Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik

Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik Podobnost matrik Matematika II (FKKT Kemijsko inženirstvo) Matjaž Željko FKKT Kemijsko inženirstvo 14 teden (Zadnja sprememba: 23 maj 213) Matrika A R n n je podobna matriki B R n n, če obstaja obrnljiva

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,

Διαβάστε περισσότερα

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2 Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a

Διαβάστε περισσότερα

Lastne vrednosti in lastni vektorji

Lastne vrednosti in lastni vektorji Poglavje VIII Lastne vrednosti in lastni vektorji V tem poglavju bomo privzeli, da so skalarji v vektorskih prostorih, koeficienti v matrikah itd., kompleksna števila. Algebraične operacije seštevanja,

Διαβάστε περισσότερα

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja

Διαβάστε περισσότερα

Kvadratne forme. Poglavje XI. 1 Definicija in osnovne lastnosti

Kvadratne forme. Poglavje XI. 1 Definicija in osnovne lastnosti Poglavje XI Kvadratne forme V zadnjem poglavju si bomo ogledali še eno vrsto preslikav, ki jih tudi lahko podamo z matrikami. To so tako imenovane kvadratne forme, ki niso več linearne preslikave. Kvadratne

Διαβάστε περισσότερα

Osnove linearne algebre

Osnove linearne algebre Osnove linearne algebre Matrike Matrika razsežnosti n m je A = a 1 1 a 1 2 a 1 m a 2 1 a 2 2 a 2 m a n 1 a n 2 a n m Če je n = m, tedaj matriko imenujemo kvadratna matrika Elementi matrike so lahko realna

Διαβάστε περισσότερα

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013 Numerične metode, sistemi linearnih enačb B. Jurčič Zlobec Numerične metode FE, 2. december 2013 1 Vsebina 1 z n neznankami. a i1 x 1 + a i2 x 2 + + a in = b i i = 1,..., n V matrični obliki zapišemo:

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,

Διαβάστε περισσότερα

Oznake in osnovne definicije

Oznake in osnovne definicije Oznake in osnovne definicije B Plestenjak, JKozak: Numerične metode 2011-2012 1 / 53 Sistem n linearnih enačb z n neznankami a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b

Διαβάστε περισσότερα

Tretja vaja iz matematike 1

Tretja vaja iz matematike 1 Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +

Διαβάστε περισσότερα

Dodatna poglavja iz linearne algebre za 1. letnik finančne matematike na FMF. Primož Moravec

Dodatna poglavja iz linearne algebre za 1. letnik finančne matematike na FMF. Primož Moravec Dodatna poglavja iz linearne algebre za 1 letnik finančne matematike na FMF Primož Moravec 13 september 2017 1 CIP - Kataložni zapis o publikaciji Narodna in univerzitetna knjižnica, Ljubljana 51264(0758)

Διαβάστε περισσότερα

Reševanje sistemov linearnih enačb

Reševanje sistemov linearnih enačb 1 / 37 Reševanje sistemov linearnih enačb Meteorologija z geofiziko, I. stopnja http://ucilnica.fmf.uni-lj.si/ 2 / 37 Matrični zapis sistema linearnih enačb Sistem m linearnih enačb z n neznankami a 11

Διαβάστε περισσότερα

11.5 Metoda karakteristik za hiperbolične PDE

11.5 Metoda karakteristik za hiperbolične PDE 11.5 Metoda karakteristik za hiperbolične PDE Hiperbolična kvazi linearna PDE ima obliko au xx + bu xy + cu yy = f, (1) kjer so a, b, c, f funkcije x, y, u, u x in u y, ter velja b 2 4ac > 0. Če predpostavimo,

Διαβάστε περισσότερα

Splošno o interpolaciji

Splošno o interpolaciji Splošno o interpolaciji J.Kozak Numerične metode II (FM) 2011-2012 1 / 18 O funkciji f poznamo ali hočemo uporabiti le posamezne podatke, na primer vrednosti r i = f (x i ) v danih točkah x i Izberemo

Διαβάστε περισσότερα

5.1 Predpogojevanje. K 1 Ax = K 1 b,

5.1 Predpogojevanje. K 1 Ax = K 1 b, 5.1 Predpogojevanje Konvergenca metod podprostorov za reševanje linearnega sistema Ax = b je v veliki meri odvisna od razporeditve lastnih vrednosti (in lastnih vektorjev) matrike A. Kadar je konvergenca

Διαβάστε περισσότερα

UNIVERZA V LJUBLJANI PEDAGOŠKA FAKULTETA SANDRA BOLTA LASTNE VREDNOSTI GRAFA DIPLOMSKO DELO

UNIVERZA V LJUBLJANI PEDAGOŠKA FAKULTETA SANDRA BOLTA LASTNE VREDNOSTI GRAFA DIPLOMSKO DELO UNIVERZA V LJUBLJANI PEDAGOŠKA FAKULTETA SANDRA BOLTA LASTNE VREDNOSTI GRAFA DIPLOMSKO DELO LJUBLJANA, 2014 2 UNIVERZA V LJUBLJANI PEDAGOŠKA FAKULTETA Študijska smer: Fizika in matematika SANDRA BOLTA

Διαβάστε περισσότερα

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK 1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24

Διαβάστε περισσότερα

Reševanje sistema linearnih

Reševanje sistema linearnih Poglavje III Reševanje sistema linearnih enačb V tem kratkem poglavju bomo obravnavali zelo uporabno in zato pomembno temo linearne algebre eševanje sistemov linearnih enačb. Spoznali bomo Gaussovo (natančneje

Διαβάστε περισσότερα

V tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant.

V tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant. Poglavje IV Determinanta matrike V tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant 1 Definicija Preden definiramo determinanto,

Διαβάστε περισσότερα

DISKRETNA FOURIERJEVA TRANSFORMACIJA

DISKRETNA FOURIERJEVA TRANSFORMACIJA 29.03.2004 Definicija DFT Outline DFT je linearna transformacija nekega vektorskega prostora dimenzije n nad obsegom K, ki ga označujemo z V K, pri čemer ima slednji lastnost, da vsebuje nek poseben element,

Διαβάστε περισσότερα

Linearne preslikave. Poglavje VII. 1 Definicija linearne preslikave in osnovne lastnosti

Linearne preslikave. Poglavje VII. 1 Definicija linearne preslikave in osnovne lastnosti Poglavje VII Linearne preslikave V tem poglavju bomo vektorske prostore označevali z U,V,W,... Vsi vektorski prostori bodo končnorazsežni. Zaradi enostavnosti bomo privzeli, da je pripadajoči obseg realnih

Διαβάστε περισσότερα

Inverzni problem lastnih vrednosti evklidsko razdaljnih matrik

Inverzni problem lastnih vrednosti evklidsko razdaljnih matrik Univerza v Ljubljani Fakulteta za računalništvo in informatiko Fakulteta za matematiko in fiziko Peter Škvorc Inverzni problem lastnih vrednosti evklidsko razdaljnih matrik DIPLOMSKO DELO UNIVERZITETNI

Διαβάστε περισσότερα

Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1

Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1 Funkcije več realnih spremenljivk Osnovne definicije Limita in zveznost funkcije več spremenljivk Parcialni odvodi funkcije več spremenljivk Gradient in odvod funkcije več spremenljivk v dani smeri Parcialni

Διαβάστε περισσότερα

3.1 Reševanje nelinearnih sistemov

3.1 Reševanje nelinearnih sistemov 3.1 Reševanje nelinearnih sistemov Rešujemo sistem nelinearnih enačb f 1 (x 1, x 2,..., x n ) = 0 f 2 (x 1, x 2,..., x n ) = 0. f n (x 1, x 2,..., x n ) = 0. Pišemo F (x) = 0, kjer je x R n in F : R n

Διαβάστε περισσότερα

Osnove matematične analize 2016/17

Osnove matematične analize 2016/17 Osnove matematične analize 216/17 Neža Mramor Kosta Fakulteta za računalništvo in informatiko Univerza v Ljubljani Kaj je funkcija? Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja

Διαβάστε περισσότερα

Lastne vrednosti in vektorji

Lastne vrednosti in vektorji Poglavje Lastne vrednosti in vetorji Naloga Gerschgorinov izre Naj bo A C n n in C i = {z C i, z a ii n j=,j i a ij } rog v omplesni ravnini, za i =,, n Vse lastne vrednosti matrie A ležijo v uniji rogov

Διαβάστε περισσότερα

Uporabna matematika za naravoslovce

Uporabna matematika za naravoslovce Uporabna matematika za naravoslovce Zapiski predavanj Študijski programi: Aplikativna kineziologija, Biodiverziteta Študijsko leto 203/4 doc.dr. Barbara Boldin Fakulteta za matematiko, naravoslovje in

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )

Διαβάστε περισσότερα

Analiza 2 Rešitve 14. sklopa nalog

Analiza 2 Rešitve 14. sklopa nalog Analiza Rešitve 1 sklopa nalog Navadne diferencialne enačbe višjih redov in sistemi diferencialnih enačb (1) Reši homogene diferencialne enačbe drugega reda s konstantnimi koeficienti: (a) 6 + 8 0, (b)

Διαβάστε περισσότερα

Matrike. Poglavje II. Matrika je pravokotna tabela realnih števil. Na primer: , , , 0 1

Matrike. Poglavje II. Matrika je pravokotna tabela realnih števil. Na primer: , , , 0 1 Poglavje II Matrike Matrika je pravokotna tabela realnih števil Na primer: [ ] 1 1 1, 2 3 1 1 0 1 3 2 1, 0 1 4 [ ] 2 7, Matrika je sestavljena iz vrstic in stolpcev Vrstici matrike [ ] 1 1 1 2 3 1 [ ]

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

Izpeljava Jensenove in Hölderjeve neenakosti ter neenakosti Minkowskega

Izpeljava Jensenove in Hölderjeve neenakosti ter neenakosti Minkowskega Izeljava Jensenove in Hölderjeve neenakosti ter neenakosti Minkowskega 1. Najosnovnejše o konveksnih funkcijah Definicija. Naj bo X vektorski rostor in D X konveksna množica. Funkcija ϕ: D R je konveksna,

Διαβάστε περισσότερα

Poliedri Ines Pogačar 27. oktober 2009

Poliedri Ines Pogačar 27. oktober 2009 Poliedri Ines Pogačar 27. oktober 2009 Pri linearnem programiranju imamo opravka s končnim sistemom neenakosti in končno spremenljivkami, torej je množica dopustnih rešitev presek končno mnogo polprostorov.

Διαβάστε περισσότερα

Algebraične strukture

Algebraične strukture Poglavje V Algebraične strukture V tem poglavju bomo spoznali osnovne algebraične strukture na dani množici. Te so podane z eno ali dvema binarnima operacijama. Binarna operacija paru elementov iz množice

Διαβάστε περισσότερα

Navadne diferencialne enačbe

Navadne diferencialne enačbe Navadne diferencialne enačbe Navadne diferencialne enačbe prvega reda V celotnem poglavju bo y = dy dx. Diferencialne enačbe z ločljivima spremeljivkama Diferencialna enačba z ločljivima spremeljivkama

Διαβάστε περισσότερα

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi

Διαβάστε περισσότερα

IZPIT IZ ANALIZE II Maribor,

IZPIT IZ ANALIZE II Maribor, Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),

Διαβάστε περισσότερα

MATEMATIKA II TEORIJA

MATEMATIKA II TEORIJA Univerza v Mariboru, Fakulteta za elektrotehniko, računalništvo in informatiko MTEMTIK. letnik VSŠ MTEMTIK II TEORIJ Maribor, 202 Univerza v Mariboru, Fakulteta za elektrotehniko, računalništvo in informatiko

Διαβάστε περισσότερα

Poglavje 2. Sistemi linearnih enačb

Poglavje 2. Sistemi linearnih enačb Poglavje 2 Sistemi linearnih enačb Najpogostejši problem, na katerega naletimo pri numeričnem računanju, je reševanje sistema linearnih enačb Tak sistem lahko dobimo direktno iz matematične formulacije

Διαβάστε περισσότερα

UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO MATEMATIKA II

UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO MATEMATIKA II UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO Petra Žigert Pleteršek MATEMATIKA II Maribor, 2016 Kazalo Uvod v linearno algebro 1 1.1 Matrike................................ 1 1.2 Računanje

Διαβάστε περισσότερα

Kotne in krožne funkcije

Kotne in krožne funkcije Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete

Διαβάστε περισσότερα

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d) Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2

Διαβάστε περισσότερα

Numerično reševanje. diferencialnih enačb II

Numerično reševanje. diferencialnih enačb II Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke

Διαβάστε περισσότερα

Bor Plestenjak. Numerične metode. delovna verzija. verzija: 4. marec 2010

Bor Plestenjak. Numerične metode. delovna verzija. verzija: 4. marec 2010 Bor Plestenjak Numerične metode delovna verzija verzija: 4. marec 200 Kazalo Uvod 7. Numerična matematika................................. 7.2 Plavajoča vejica...................................... 0.3

Διαβάστε περισσότερα

Uvod v numerične metode (matematika)

Uvod v numerične metode (matematika) Bor Plestenjak Uvod v numerične metode (matematika) delovna verzija verzija: 5. oktober 202 Kazalo Uvod 5. Numerična matematika................................. 5.2 Plavajoča vejica......................................

Διαβάστε περισσότερα

Matematika. BF Lesarstvo. Zapiski ob predavanjih v šolskem letu 2009/2010

Matematika. BF Lesarstvo. Zapiski ob predavanjih v šolskem letu 2009/2010 Matematika BF Lesarstvo Matjaž Željko Zapiski ob predavanjih v šolskem letu 009/00 Izpis: 9 januar 00 KAZALO Kazalo Števila 5 Naravna števila 5 Cela števila 6 3 Racionalna števila 6 4 Realna števila 7

Διαβάστε περισσότερα

Zbirka rešenih izpitnih nalog iz numeričnih metod

Zbirka rešenih izpitnih nalog iz numeričnih metod Zbirka rešenih izpitnih nalog iz numeričnih metod Borut Jurčič - Zlobec Andrej Perne Univerza v Ljubljani Fakulteta za elektrotehniko Ljubljana 6 Kazalo Iterativno reševanje nelinearnih enačb 4 Navadna

Διαβάστε περισσότερα

Matematika I (VS) Univerza v Ljubljani, FE. Melita Hajdinjak 2013/14. Pregled elementarnih funkcij. Potenčna funkcija. Korenska funkcija.

Matematika I (VS) Univerza v Ljubljani, FE. Melita Hajdinjak 2013/14. Pregled elementarnih funkcij. Potenčna funkcija. Korenska funkcija. 1 / 46 Univerza v Ljubljani, FE Potenčna Korenska Melita Hajdinjak Matematika I (VS) Kotne 013/14 / 46 Potenčna Potenčna Funkcijo oblike f() = n, kjer je n Z, imenujemo potenčna. Število n imenujemo eksponent.

Διαβάστε περισσότερα

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:

Διαβάστε περισσότερα

Iterativne numerične metode v linearni algebri

Iterativne numerične metode v linearni algebri Bor Plestenja Iterativne numerične metode v linearni algebri sripta verzija: 2. januar 204 Kazalo Klasične iterativne metode za linearne sisteme 4. Uvod............................................ 4.2

Διαβάστε περισσότερα

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost

Διαβάστε περισσότερα

Booleova algebra. Izjave in Booleove spremenljivke

Booleova algebra. Izjave in Booleove spremenljivke Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre

Διαβάστε περισσότερα

1. VAJA IZ TRDNOSTI. (linearna algebra - ponovitev, Kroneckerjev δ i j, permutacijski simbol e i jk )

1. VAJA IZ TRDNOSTI. (linearna algebra - ponovitev, Kroneckerjev δ i j, permutacijski simbol e i jk ) VAJA IZ TRDNOSTI (lnearna algebra - ponovtev, Kroneckerev δ, permutacsk smbol e k ) NALOGA : Zapš vektor a = [, 2,5,] kot lnearno kombnaco vektorev e = [,,,], e 2 = [,2,3,], e 3 = [2,,, ] n e 4 = [,,,]

Διαβάστε περισσότερα

8. Navadne diferencialne enačbe

8. Navadne diferencialne enačbe 8. Navadne diferencialne enačbe 8.1. Začetni problem prvega reda Iščemo funkcijo y(x), ki zadošča diferencialni enačbi y = f(x, y) in začetnemu pogoju y(x 0 ) = y 0, kjer je f dana dovolj gladka funkcija

Διαβάστε περισσότερα

Uvod v numerične metode

Uvod v numerične metode Uvod v numerične metode Bor Plestenjak soba 4.04 bor.plestenjak@fmf.uni-lj.si http://www-lp.fmf.uni-lj.si/plestenjak/vaje/vaje.htm asistent: Gašper Jaklič Režim 2 sklopa domačih nalog - 20% pisne ocene

Διαβάστε περισσότερα

ZBIRKA REŠENIH NALOG IZ MATEMATIKE II

ZBIRKA REŠENIH NALOG IZ MATEMATIKE II Univerza v Ljubljani Fakulteta za elektrotehniko Andrej Perne ZBIRKA REŠENIH NALOG IZ MATEMATIKE II Skripta za vaje iz Matematike II (UNI + VSP) Ljubljana, determinante Determinanta det A je število, prirejeno

Διαβάστε περισσότερα

Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα

Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα x 2 + 1 = 0 N = {1, 2, 3....}, Z Q a, b a, b N c, d c, d N a + b = c, a b = d. a a N 1 a = a 1 = a. < > P n P (n) P (1) n = 1 P (n) P (n + 1) n n + 1 P (n) n P (n) n P n P (n) P (m) P (n) n m P (n + 1)

Διαβάστε περισσότερα

Gimnazija Krˇsko. vektorji - naloge

Gimnazija Krˇsko. vektorji - naloge Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor

Διαβάστε περισσότερα

Matematika 1. Gabrijel Tomšič Bojan Orel Neža Mramor Kosta

Matematika 1. Gabrijel Tomšič Bojan Orel Neža Mramor Kosta Matematika Gabrijel Tomšič Bojan Orel Neža Mramor Kosta 6. november 200 Poglavje 2 Zaporedja in številske vrste 2. Zaporedja 2.. Uvod Definicija 2... Zaporedje (a n ) = a, a 2,..., a n,... je predpis,

Διαβάστε περισσότερα

Afina in projektivna geometrija

Afina in projektivna geometrija fina in projektivna geometrija tožnice () kiciraj stožnico v evklidski ravnini R, ki je določena z enačbo 6 3 8 + 6 =. Rešitev: tožnica v evklidski ravnini je krivulja, ki jo določa enačba a + b + c +

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

Dragi polinom, kje so tvoje ničle?

Dragi polinom, kje so tvoje ničle? 1 Dragi polinom, kje so tvoje ničle? Vito Vitrih FAMNIT - Izlet v matematično vesolje 17. december 2010 Polinomi: 2 Polinom stopnje n je funkcija p(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, a i R.

Διαβάστε περισσότερα

Spoznajmo sedaj definicijo in nekaj osnovnih primerov zaporedij števil.

Spoznajmo sedaj definicijo in nekaj osnovnih primerov zaporedij števil. Zaporedja števil V matematiki in fiziki pogosto operiramo s približnimi vrednostmi neke količine. Pri numeričnemu računanju lahko npr. število π aproksimiramo s števili, ki imajo samo končno mnogo neničelnih

Διαβάστε περισσότερα

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu. Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.

Διαβάστε περισσότερα

Numerična analiza. Bor Plestenjak. Fakulteta za matematiko in fiziko. Jadranska 21, 4. nadstropje, soba 4.04

Numerična analiza. Bor Plestenjak. Fakulteta za matematiko in fiziko. Jadranska 21, 4. nadstropje, soba 4.04 Numerična analiza Bor Plestenjak Fakulteta za matematiko in fiziko Jadranska 21, 4. nadstropje, soba 4.04 govorilne ure: četrtek 11-12 oz. po dogovoru bor.plestenjak@fmf.uni-lj.si http://www-lp.fmf.uni-lj.si/plestenjak/vaje/vaje.htm

Διαβάστε περισσότερα

Linearna algebra. Bojan Orel Fakulteta za računalništvo in informatiko

Linearna algebra. Bojan Orel Fakulteta za računalništvo in informatiko Linearna algebra Bojan Orel Fakulteta za računalništvo in informatiko 23. februar 205 CIP - Kataložni zapis o publikaciji Narodna in univerzitetna knjižnica, Ljubljana 52.64(075.8)(0.034.2) OREL, Bojan

Διαβάστε περισσότερα

REˇSITVE. Naloga a. b. c. d Skupaj. FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost 2. kolokvij 23.

REˇSITVE. Naloga a. b. c. d Skupaj. FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost 2. kolokvij 23. Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost. kolokvij 3. januar 08 Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja. Nalog je 6,

Διαβάστε περισσότερα

Algoritmi nad grafi v jeziku linearne algebre

Algoritmi nad grafi v jeziku linearne algebre Univerza v Ljubljani Fakulteta za računalništvo in informatiko Fakulteta za matematiko in fiziko Tinkara Toš Algoritmi nad grafi v jeziku linearne algebre DIPLOMSKO DELO UNIVERZITETNI ŠTUDIJSKI PROGRAM

Διαβάστε περισσότερα

1 Seštevanje vektorjev in množenje s skalarjem

1 Seštevanje vektorjev in množenje s skalarjem Poglavje I Vektorji Seštevanje vektorjev in množenje s skalarjem Za lažjo geometrično predstavo si najprej oglejmo, kaj so vektorji v ravnini. Vektor je usmerjena daljica, ki je natanko določena s svojo

Διαβάστε περισσότερα

1. Trikotniki hitrosti

1. Trikotniki hitrosti . Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca

Διαβάστε περισσότερα

Univerza v Ljubljani Fakulteta za računalništvo in informatiko MATEMATIKA. Polona Oblak

Univerza v Ljubljani Fakulteta za računalništvo in informatiko MATEMATIKA. Polona Oblak Univerza v Ljubljani Fakulteta za računalništvo in informatiko MATEMATIKA Polona Oblak Ljubljana, 04 CIP - Kataložni zapis o publikaciji Narodna in univerzitetna knjižnica, Ljubljana 5(075.8)(0.034.) OBLAK,

Διαβάστε περισσότερα

Vektorski prostori s skalarnim produktom

Vektorski prostori s skalarnim produktom Poglavje IX Vektorski prostori s skalarnim produktom Skalarni produkt dveh vektorjev v R n smo spoznali v prvem poglavju. Sedaj bomo pojem skalarnega produkta razširili na poljuben vektorski prostor V

Διαβάστε περισσότερα

Frekvenčna analiza neperiodičnih signalov. Analiza signalov prof. France Mihelič

Frekvenčna analiza neperiodičnih signalov. Analiza signalov prof. France Mihelič Frekvenčna analiza neperiodičnih signalov Analiza signalov prof. France Mihelič Vpliv postopka daljšanja periode na spekter periodičnega signala Opazujmo družino sodih periodičnih pravokotnih impulzov

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

1 Fibonaccijeva stevila

1 Fibonaccijeva stevila 1 Fibonaccijeva stevila Fibonaccijevo število F n, kjer je n N, lahko definiramo kot število načinov zapisa števila n kot vsoto sumandov, enakih 1 ali Na primer, število 4 lahko zapišemo v obliki naslednjih

Διαβάστε περισσότερα

UVOD V LINEARNE KONTROLNE SISTEME. Bor Plestenjak

UVOD V LINEARNE KONTROLNE SISTEME. Bor Plestenjak UVOD V LINEARNE KONTROLNE SISTEME Bor Plestenjak Uvod Kontrolni sistemi nastopajo na najrazličnejših področjih. Imamo dinamični sistem, na katerega lahko vplivamo z vhodnimi podatki. Zgledi sistemov so

Διαβάστε περισσότερα

Vaje iz MATEMATIKE 8. Odvod funkcije., pravimo, da je funkcija f odvedljiva v točki x 0 z odvodom. f (x f(x 0 + h) f(x 0 ) 0 ) := lim

Vaje iz MATEMATIKE 8. Odvod funkcije., pravimo, da je funkcija f odvedljiva v točki x 0 z odvodom. f (x f(x 0 + h) f(x 0 ) 0 ) := lim Študij AHITEKTURE IN URBANIZMA, šol l 06/7 Vaje iz MATEMATIKE 8 Odvod funkcije f( Definicija: Naj bo f definirana na neki okolici točke 0 Če obstaja lim 0 +h f( 0 h 0 h, pravimo, da je funkcija f odvedljiva

Διαβάστε περισσότερα

Delovna točka in napajalna vezja bipolarnih tranzistorjev

Delovna točka in napajalna vezja bipolarnih tranzistorjev KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.

Διαβάστε περισσότερα

INTEGRALI RACIONALNIH FUNKCIJ

INTEGRALI RACIONALNIH FUNKCIJ UNIVERZA V LJUBLJANI PEDAGOŠKA FAKULTETA NIKA HREN INTEGRALI RACIONALNIH FUNKCIJ DIPLOMSKO DELO LJUBLJANA, 203 UNIVERZA V LJUBLJANI PEDAGOŠKA FAKULTETA MATEMATIKA - RAČUNALNIŠTVO NIKA HREN Mentor: izr.

Διαβάστε περισσότερα

Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba.

Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba. 1. Osnovni pojmi Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba. Primer 1.1: Diferencialne enačbe so izrazi: y

Διαβάστε περισσότερα

Funkcije dveh in več spremenljivk

Funkcije dveh in več spremenljivk Poglavje 3 Funkcije dveh in več spremenljivk 3.1 Osnovni pojmi Definicija 3.1.1. Funkcija dveh spremenljivk je preslikava, ki vsaki točki (x, y) ravninske množice D priredi realno število z = f(x, y),

Διαβάστε περισσότερα

Numerične metode za linearne sisteme upravljanja

Numerične metode za linearne sisteme upravljanja Bor Plestenjak Numerične metode za linearne sisteme upravljanja skripta verzija: 3 april 212 Kazalo 1 Uvod 6 11 Sistemi upravljanja 6 12 Lastnosti sistemov 8 13 Laplaceova transformacija 12 14 Prenosna

Διαβάστε περισσότερα

Matematika. Funkcije in enačbe

Matematika. Funkcije in enačbe Matematika Funkcije in enačbe (1) Nariši grafe naslednjih funkcij: (a) f() = 1, (b) f() = 3, (c) f() = 3. Rešitev: (a) Linearna funkcija f() = 1 ima začetno vrednost f(0) = 1 in ničlo = 1/. Definirana

Διαβάστε περισσότερα

II. LIMITA IN ZVEZNOST FUNKCIJ

II. LIMITA IN ZVEZNOST FUNKCIJ II. LIMITA IN ZVEZNOST FUNKCIJ. Preslikave med množicami Funkcija ali preslikava med dvema množicama A in B je predpis f, ki vsakemu elementu x množice A priredi natanko določen element y množice B. Važno

Διαβάστε περισσότερα

Metoda glavnih komponent

Metoda glavnih komponent Metoda glavnih komponent Metoda glavnih kompnent je ena najpogosteje uporabljenih multivariatnih metod. Osnoval jo je Karl Pearson (1901). Največ zaslug za nadaljni razvoj pa ima Hotelling (1933). Osnovna

Διαβάστε περισσότερα

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12 Predizpit, Proseminar A, 15.10.2015 1. Točki A(1, 2) in B(2, b) ležita na paraboli y = ax 2. Točka H leži na y osi in BH je pravokotna na y os. Točka C H leži na nosilki BH tako, da je HB = BC. Parabola

Διαβάστε περισσότερα

Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA

Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA. Naj bo vektorsko polje R : R 3 R 3 dano s predpisom R(x, y, z) = (2x 2 + z 2, xy + 2yz, z). Izračunaj pretok polja R skozi površino torusa

Διαβάστε περισσότερα

Univerza v Mariboru. Uporaba matematičnih metod v logistiki 1 Priročnik

Univerza v Mariboru. Uporaba matematičnih metod v logistiki 1 Priročnik Univerza v Mariboru Fakulteta za logistiko Uporaba matematičnih metod v logistiki 1 Priročnik BOJANA ZALAR Celje 2009 Izdala: Fakulteta za logistiko Univerze v Mariboru Naslov: Uporaba matematičnih metod

Διαβάστε περισσότερα

Specifični faktorji E i bodo imeli majhne variance, če so opazovane spremenljivke blizu faktorju F.

Specifični faktorji E i bodo imeli majhne variance, če so opazovane spremenljivke blizu faktorju F. Faktorska analiza Med metodami za pregledovanje podatkov smo omenili metodo glavnih komponent. Cilj te metode je določiti manjše število linearnih kombinacij merjenih spremenljivk tako, da z njimi pojasnimo

Διαβάστε περισσότερα