ΤΕΧΝΙΚΕΣ ΟΡΘΟΓΩΝΙΚΗΣ ΠΟΛΥΠΛΕΞΙΑΣ ΜΕ ΠΟΛΛΑΠΛΑ ΦΕΡΟΝΤΑ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΤΕΧΝΙΚΕΣ ΟΡΘΟΓΩΝΙΚΗΣ ΠΟΛΥΠΛΕΞΙΑΣ ΜΕ ΠΟΛΛΑΠΛΑ ΦΕΡΟΝΤΑ"

Transcript

1 ΤΕΧΝΙΚΕΣ ΟΡΘΟΓΩΝΙΚΗΣ ΠΟΛΥΠΛΕΞΙΑΣ ΜΕ ΠΟΛΛΑΠΛΑ ΦΕΡΟΝΤΑ (Orthogonal Frequency Division Multiplexing) Alexandros-Apostolos A. Boulogeorgos WCS GROUP, EE Dept, AUTH

2 SINGLE CARRIER VS MULTICARRIER Single Carrier Multi-Carrier Wireless Channel N Wireless Channel

3 ΤΙ ΕΙΝΑΙ Η ΠΟΛΥΠΛΕΞΙΑ; ΤΕΧΝΙΚΕΣ ΠΟΛΥΠΛΕΞΙΑΣ Time Division Multiplexing (TDM) Frequency Division Multiplexing (FDM) Code Division Multiplexing (CDM)

4 ΜΕΤΑΔΟΣΗ ΠΟΛΛΑΠΛΩΝ ΦΕΡΟΝΤΩΝ Βασική αρχή της μετάδοσης πολλαπλών φερόντων: Διαχωρισμός του διαθέσιμο για την μετάδοση εύρους ζώνης σε πολλά στενής ζώνης υπο-κανάλια τα οποία μπορούν να μεταδίδουν πληροφορία ταυτόχρονα. Ιδανικά το κάθε υποκανάλι θα πρέπει να μπορεί να θεωρηθεί κανάλι επίπεδων διαλείψεων. Το συνολικό περιβάλλον μετάδοσης είναι συχνοεπιλεκτικό. Η χρονική διασπορά στην περίπτωση των multicarrier συστημάτων μειώνεται σημαντικά καθώς η διάρκεια του κάθε συμβόλου αυξάνεται.

5 SINGLE CARRIER VS MULTI-CARRIER

6 FDM

7 ΠΟΜΠΟΣ ΣΥΣΤΗΜΑΤΟΣ ΠΟΛΛΑΠΛΩΝ ΦΕΡΟΝΤΩΝ Αν το φίλτρο εκπομπής είναι ανυψωμένου συνημιτόνου με roll off factor β, τότε η περίοδος του σήματος θα είναι ίση με T N = 1+ B N όπου BN το εύρος ζώνης του κάθε φέροντος.

8 ΠΟΜΠΟΣ ΣΥΣΤΗΜΑΤΟΣ ΠΟΛΛΑΠΛΩΝ ΦΕΡΟΝΤΩΝ Το σήμα στην έξοδο του πομπού θα είναι s(t) = NX 1 i=0 s i g(t) cos(2 f i t + i )

9 ΠΟΜΠΟΣ ΣΥΣΤΗΜΑΤΟΣ ΠΟΛΛΑΠΛΩΝ ΦΕΡΟΝΤΩΝ Για να μην υπάρχει επικάλυψη μεταξύ των γειτονικών φερόντων θα πρέπει f i = f 0 + ib N, i =0, 1,...,N 1 Στην περίπτωση αυτή, το συνολικό εύρος ζώνης και ο ρυθμός μετάδοσης είναι B = NB N R = NR N

10 ΔΕΚΤΗΣ ΣΥΣΤΗΜΑΤΟΣ ΠΟΛΛΑΠΛΩΝ ΦΕΡΟΝΤΩΝ Για να διαχωρίσουμε τα φέροντα πρέπει το σήμα να περάσει από διαφορετικά φίλτρα στενής ζώνης. Το σήμα στο φέρον k θα έχει επηρεαστεί επιπλέον από fading, του οποίου το ισοδύναμο συμβολίζουμε με hk. Η υλοποίηση αυτή είναι αρκετά δύσκολη, λόγω τον πολλών BPFs.

11 Interference FDM

12 OFDM Orthogonal Frequency Division Multiplexing Ειδική περίπτωση FDM

13 OFDM-Η ΒΑΣΙΚΗ ΙΔΕΑ Ο ρυθμός μετάδοσης σε κανάλι πολλαπλών οδεύσεων περιορίζεται από την rms εξάπλωση καθυστέρησης (rms delay spread) του καναλιού. Δηλαδή πρέπει να ισχύει: τ rms << Τ Στέλνοντας παράλληλα από N φέροντα με εύρος ζώνης B/N, όπου B το συνολικό διαθέσιμο εύρος ζώνης, η διάρκεια του συμβόλου αυξάνεται από έναν παράγοντα ανάλογο του N. Για δεδομένο delay spread η διάρκεια του συμβόλου γίνεται N φορές μεγαλύτερη, ενώ ο ρυθμός μετάδοσης διατηρείται μέσω της παράλληλης μετάδοσης σε πολλαπλά φέροντα.

14 FDM VS OFDM (a) FDM (b) OFDM Το OFDM έχει μεγαλύτερη ανοχή σε παρεμβολές Εάν γίνει ατύχημα: Στο FDM χάνεται το 100% της πληροφορίας Στο OFDM (4 φορτηγά) το 25% Ανοχή του OFDM στις διαλείψεις

15 Η ΕΝΝΟΙΑ ΤΗΣ ΟΡΘΟΓΩΝΙΚΟΤΗΤΑΣ Πολυπλεξία Συχνότητας - FDM Το διαθέσιμο εύρος ζώνη μοιράζεται σε 4 μη επικαλυπτόμενα κανάλια f 0 f 1 f 2 f 3 Ορθογωνική Πολυπλεξία Συχνότητας - OFDM Το διαθέσιμο εύρος ζώνη μοιράζεται σε 8 επικαλυπτόμενα κανάλια f 0 f 1 f 2 f 3 f 4 f 5 f 6 f 7 Εξοικονόμηση περίπου 50% του διαθέσιμου εύρους ζώνης

16 Η ΣΗΜΑΣΙΑ ΤΗΣ ΟΡΘΟΓΩΝΙΚΟΤΗΤΑΣ Το OFDM στηρίζεται στην ιδιότητα της ορθογωνικότητας δύο υπο-φερόντων (sub-carriers) Το ολοκλήρωμα μιας περιόδου ενός ημιτονικού ή συνημιτονικού κύματος είναι ίσο με 0.

17 Η ΣΗΜΑΣΙΑ ΤΗΣ ΟΡΘΟΓΩΝΙΚΟΤΗΤΑΣ Ας θεωρήσουμε ένα ημιτονικό κύμα που το πολλαπλασιάζουμε με ένα ημίτονο, συχνοτήτων m και n αντίστοιχα, όπου m και n ακέραιοι. f(t) = sin(mωt)sin(nωt) = 1 2 cos ((m n)ωt ) 1 2 cos ((m + n)ωt ) 2π f(ωt)d(ωt) = 0 0 = 0 0

18 Η ΣΗΜΑΣΙΑ ΤΗΣ ΟΡΘΟΓΩΝΙΚΟΤΗΤΑΣ Καταλήγουμε ότι αν ολοκληρώσουμε το γινόμενο δύο ημιτονοειδών σημάτων συχνοτήτων m και n (διαφορετικών), τότε το αποτέλεσμα θα είναι ίσο με 0. Οι συχνότητες αυτές ονομάζονται αρμονικές. Αν m=n τότε το αποτέλεσμα της ολοκλήρωσης είναι διάφορο του 0. Αυτή είναι και η βασική ιδέα του OFDM: Η ορθογωνικότητα επιτρέπει την συνεχή μετάδοση σε πολλά sub-carriers σε στενές επικαλυπτόμενες περιοχές του εύρους ζώνης, χωρίς παρεμβολές της μιας στην άλλη περιοχή.

19 ΑΡΧΗ ΤΗΣ ΟΡΘΟΓΩΝΙΚΟΤΗΤΑΣ Δυο σήματα Ψk και Ψm είναι ορθογώνια όταν ισχύει: T s Ψ k Ψ m = Ψ k (t) Ψ m * (t)dt 0 = cδ ( k l) Τέτοια ορθογώνια σήματα είναι {Ψk(t)}, k=0,1,...,n-1 1 e j2πf kt,t [0,T s ] Ψ k (t) = T s 0, αλλου

20 ΤΟ OFDM ΣΑΝ ΜΙΑ ΕΙΔΙΚΗ ΠΕΡΙΠΤΩΣΗ FDM FDM Τι θα συμβεί όμως αν για τις συχνότητες ισχύει: c n = nc 1 Τότε οι συχνότητες είναι αρμονικές και άρα ισχύει η ιδιότητα της ορθογωνικότητας. OFDM

21 ΑΠΛΟΠΟΙΗΜΕΝΟ ΜΟΝΤΕΛΟ ΠΟΜΠΟΥ FDM- OFDM

22 ΤΟ OFDM ΜΕΣΑ ΑΠΟ ΕΝΑ ΠΑΡΑΔΕΙΓΜΑ Έστω ότι θέλουμε να μεταδώσουμε την (Ρυθμός δειγματοληψίας: 1 sample/sec) (Ρυθμός συμβόλου: 1 symbol/sec) Τα πρώτα bits της ακολουθίας είναι: bits

23 ΤΟ OFDM ΜΕΣΑ ΑΠΟ ΕΝΑ ΠΑΡΑΔΕΙΓΜΑ bits c1 c2 c3 c Βήμα 1: Από σειριακά σε παράλληλα για να τα φορτώσουμε στις 4 φέρουσες.

24 ΤΟ OFDM ΜΕΣΑ ΑΠΟ ΕΝΑ ΠΑΡΑΔΕΙΓΜΑ c Κάθε στήλη αναπαριστά τα bits που θα φορτωθούν σε ένα υπο-φέρον Ποια θα πρέπει να είναι η συχνότητα του c1; Θέλουμε 1 symbol/sec. Σε κάθε sec θα στείλουμε 4 sub-carriers Δηλαδή bit rate: 1/4 per sub-carrier Από Θεώρημα Nyquist πρέπει c1 > 2 * 1/4 = 1/2. Επιλέγω 1Hz.

25 ΤΟ OFDM ΜΕΣΑ ΑΠΟ ΕΝΑ ΠΑΡΑΔΕΙΓΜΑ Θεωρώ BPSK Το c1 θα έχει τη μορφή: c

26 ΤΟ OFDM ΜΕΣΑ ΑΠΟ ΕΝΑ ΠΑΡΑΔΕΙΓΜΑ c Η συχνότητα του c2 θα είναι η πρώτη αρμονική του c1, δηλαδή: 2Hz

27 ΤΟ OFDM ΜΕΣΑ ΑΠΟ ΕΝΑ ΠΑΡΑΔΕΙΓΜΑ c c Συχνότητα: 3Hz Συχνότητα: 4Hz

28 ΤΟ OFDM ΜΕΣΑ ΑΠΟ ΕΝΑ ΠΑΡΑΔΕΙΓΜΑ Βήμα 2: Προσθέτουμε τα 4 αυτά διαμορφωμένα φέροντα για να φτιάξουμε το OFDM σήμα. Το OFDM σήμα στο χρόνο

29 ΤΟ OFDM ΜΕΣΑ ΑΠΟ ΕΝΑ ΠΑΡΑΔΕΙΓΜΑ Μαθηματικά μπορούμε να εκφράσουμε την παραπάνω διαδικασία ως: c(t) = N i=1 m n (t)sin(2πnt) Που δεν είναι κάτι παραπάνω από έναν αντίστροφο μετασχηματισμό Fourrier (IFFT).

30 Η ΧΡΗΣΗ ΤΟΥ IFFT ΓΙΑ ΤΗΝ ΔΗΜΙΟΥΡΓΙΑ ΤΟΥ OFDM ΣΗΜΑΤΟΣ Ο μετασχηματισμός Fourier: Πολλαπλασιάζει ένα τυχαίο σήμα με μιγαδικά εκθετικά σε όλο το εύρος συχνοτήτων. Προσθέτει όλους τους όρους (συνιστώσες) Δίνει τα αποτελέσματα σαν συνάρτηση της συχνότητας x(k) = N 1 n=0 x(n)sin 2πkn N + j x(n)cos 2πkn N Οι συντελεστές ονομάζονται φασματική ισχύ και δείχνουν το ποσοστό της συχνότητα που εμφανίζεται στο σήμα εισόδου. N 1 n=0

31 Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER x(k) = N 1 n=0 x(n)sin 2πkn N + j N 1 n=0 x(n)cos 2πkn N

32 Ο ΑΝΤΙΣΤΡΟΦΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER Μεταφέρει το σήμα από το πεδίο της συχνότητας σε αυτό του χρόνου. X(n) = N 1 n=0 x(k)sin 2πkn N j N 1 n=0 x(k)cos 2πkn N Οι διαδικασίες FFT και IFFT είναι γραμμικά ζεύγη!

33 FFT ΚΑΙ IFFT

34 FFT ΚΑΙ IFFT

35 FFT ΚΑΙ IFFT

36 ΤΟ OFDM ΜΕΣΑ ΑΠΟ ΕΝΑ ΠΑΡΑΔΕΙΓΜΑ Η πρώτη στήλη του πίνακα μπορεί να θεωρηθεί ότι αναπαριστά πλάτη ημιτονικών σημάτων συγκεκριμένου εύρους. c1 c2 c3 c Ο IFFT θα σχηματίσει τα σήματα στο πεδίο του χρόνου.

37 ΤΟ OFDM ΜΕΣΑ ΑΠΟ ΕΝΑ ΠΑΡΑΔΕΙΓΜΑ c1 c2 c3 c

38 ΤΟ OFDM ΣΥΣΤΗΜΑ ΠΟΜΠΟΥ - ΔΕΚΤΗ (ΒΑΣΙΚΗ ΙΔΕΑ)

39 ΔΙΑΛΕΙΨΕΙΣ

40 ΔΙΑΛΕΙΨΕΙΣ K 1 k=0 h c (t) = a k δ (t τ k ) a k : Complex Path Gain τ 0 : Normalized Path Delay to LOS Δ k = τ k τ 0 differrence in path time

41 ΤΟ ΣΗΜΑ ΣΤΟ ΔΕΚΤΗ y(t) = h c (t)*x(t) + n(t) Συνέλιξη

42

43 INTER-BLOCK INTERFERENCE

44 ΕΞΑΠΛΩΣΗ ΚΑΘΥΣΤΕΡΗΣΗΣ ΚΑΙ Η ΧΡΗΣΗ ΚΥΚΛΙΚΟΥ ΠΡΟΘΕΜΑΤΟΣ (CYCLIC PREFIX - CP) ΓΙΑ ΤΗΝ ΑΝΤΙΜΕΤΩΠΙΣΗ ΤΗΣ Αυτοκίνητο 1 Αυτοκίνητο 2 Κόβουμε ταχύτητα για να αφήσουμε μεγαλύτερη απόσταση από το μπροστινό

45 ΕΞΑΠΛΩΣΗ ΚΑΘΥΣΤΕΡΗΣΗΣ ΚΑΙ Η ΧΡΗΣΗ ΚΥΚΛΙΚΟΥ ΠΡΟΘΕΜΑΤΟΣ (CYCLIC PREFIX - CP) ΓΙΑ ΤΗΝ ΑΝΤΙΜΕΤΩΠΙΣΗ ΤΗΣ Ας κάνουμε το ίδιο και με τα σήματα: Απομακρύνουμε το ένα σήμα από το άλλο δημιουργώντας μία κενή περιοχή μεταξύ δύο διαδοχικών συμβόλων. Αυτό, όμως, θα προκαλέσει intercarrier interference (ICI), καθώς δεν υπάρχει ακέραιο πλήθος κυκλικών διαφορών ανάμεσα στα υπο-φέροντα εντός της διάρκειας του FFT.

46 ΕΞΑΠΛΩΣΗ ΚΑΘΥΣΤΕΡΗΣΗΣ ΚΑΙ Η ΧΡΗΣΗ ΚΥΚΛΙΚΟΥ ΠΡΟΘΕΜΑΤΟΣ (CYCLIC PREFIX - CP) ΓΙΑ ΤΗΝ ΑΝΤΙΜΕΤΩΠΙΣΗ ΤΗΣ Σαν πρώτη λύση: Ας αφήσουμε το σήμα να τρέξει περισσότερο, ώστε να καλύψει το κενό. Το πραγματικό σύμβολο διαρκεί περισσότερο από μία περίοδο. Η αρχή του συμβόλου βρίσκεται πάλι στην επικίνδυνη περιοχή

47 ΕΞΑΠΛΩΣΗ ΚΑΘΥΣΤΕΡΗΣΗΣ ΚΑΙ Η ΧΡΗΣΗ ΚΥΚΛΙΚΟΥ ΠΡΟΘΕΜΑΤΟΣ (CYCLIC PREFIX - CP) ΓΙΑ ΤΗΝ ΑΝΤΙΜΕΤΩΠΙΣΗ ΤΗΣ Δεν θέλουμε: η αρχή του συμβόλου να πέφτει εντός της επικίνδυνης ζώνης. να υπάρχει κενή περιοχή Συνεπώς θα πρέπει να γεμίσουμε την κενή περιοχή με κάτι.

48 ΕΞΑΠΛΩΣΗ ΚΑΘΥΣΤΕΡΗΣΗΣ ΚΑΙ Η ΧΡΗΣΗ ΚΥΚΛΙΚΟΥ ΠΡΟΘΕΜΑΤΟΣ (CYCLIC PREFIX - CP) ΓΙΑ ΤΗΝ ΑΝΤΙΜΕΤΩΠΙΣΗ ΤΗΣ Αντιγράφουμε το τελευταίο τμήμα του σήματος και το επικολλούμε στην αρχή. Επεκτείνουμε το σήμα ώστε να είναι 1.25 φορές το αρχικό

49 ΕΞΑΠΛΩΣΗ ΚΑΘΥΣΤΕΡΗΣΗΣ ΚΑΙ Η ΧΡΗΣΗ ΚΥΚΛΙΚΟΥ ΠΡΟΘΕΜΑΤΟΣ (CYCLIC PREFIX - CP) ΓΙΑ ΤΗΝ ΑΝΤΙΜΕΤΩΠΙΣΗ ΤΗΣ Πρέπει να κάνουμε CP σε κάθε carrier; Το OFDM αποτελεί γραμμικό συνδυασμό των σημάτων των carriers. Άρα αρκεί να κάνω CP μία φορά στο σύνθετο OFDM σήμα. Το πρόθεμα μπορεί να είναι μεταξύ 10% και 25% του συμβόλου.

50 Το σήμα με και χωρίς CP 25% CP

51 CYCLIC PREFIX Γενικά πρέπει να επιλέγουμε την διάρκεια του CP να είναι μεγαλύτερη από το delay-spread.

52 ΣΥΝΗΘΕΙΣ ΤΙΜΕΣ ΓΙΑ ΤΟ DELAY SPREAD Enviroment Delay Spread Home < 50 ns Office ~ 100 ns Manufactures 200~300 ns Suburband < 10 μs

53 OFDM ΠΟΜΠΟΔΕΚΤΕΣ

54 OFDM ΠΟΜΠΟΔΕΚΤΕΣ

55 OFDM ΣΥΣΤΗΜΑ ΜΕ FADING

56 ΠΑΡΑΜΕΤΡΟΙ ΤΟΥ OFDM ΣΥΣΤΗΜΑΤΟΣ

57 ΣΥΣΤΗΜΑΤΑ ΠΟΥ ΧΡΗΣΙΜΟΠΟΙΟΥΝ OFDM

58 IEEE SPECIFICATIONS

59 LTE SPECIFICATIONS

60 LTE SPECIFICATIONS

61 ΠΑΡΑΔΕΙΓΜΑ 1 Θεωρήστε ένα σύστημα πολλαπλών φερόντων με συνολικό εύρος ζώνης 1MHz. Αν το σύστημα αυτό λειτουργεί σε μία πόλη με κανάλια που το delay spread είναι 20μs. Πόσα υπο-κανάλια χρειάζονται για να μπορείτε να θεωρήσετε επίπεδες διαλείψεις σε κάθε υπο-κανάλι ; ΛΥΣΗ Το σύμφωνο εύρος ζώνης του καναλιού είναι B c = = 50 khz. Για να διασφαλίσουμε ότι το κάθε ύπο-κανάλι θα είναι επίπεδων διαλείψεων, θα πρέπει B N = B N << B c Συνεπώς επιλέγουμε B N =0.1B c = 5 khz Και άρα N = 200 Επειδή όμως το N πρέπει να είναι δύναμη του 2 (περιορισμός του DFT, IDFT), επιλέγουμε N=256.

62 ΠΑΡΑΔΕΙΓΜΑ 2 Έστω ένα σύστημα πολλαπλών φερόντων με περίοδο συμβόλου ίση με 0.2 ms, η οποία θεωρείτε κατά πολύ μεγαλύτερη του delay spread. Αν το πλήθος των φερόντων είναι ίσο με 128, το φίλτρο εκπομπής είναι ανυψωμένου συνημιτόνου με β=1, και το επιπλέον σχετικό εύρος ζώνης που απαιτείται για να εξασφαλίσουμε ελαχιστοποίησης της ισχύος εκτός του εύρους του σήματος είναι ίσο ε=0.1, ποιο είναι τότε το συνολικό εύρος ζώνης του συστήματος. ΛΥΣΗ Έστω ένα σύστημα πολλαπλών φερόντων όπου χρησιμοποιούνται φίλτρα ανυψωμένου συνημιτόνου με roll-off factor ίσο με β>0, τότε το εύρος ζώνης του κάθε φέροντος θα είναι B N = 1+ T N

63 Εξαιτίας του χρονικού παραθύρου που προστίθεται στο σήμα, το εύρος ζώνης αυξάνεται κατά ε/tn. Συνεπώς το εύρος ζώνης του κάθε φέροντος θα είναι B N = 1+ T N Το συνολικά απαιτούμενο εύρος ζώνης θα είναι + B = NB N = N 1+ T N + =1.344 MHz

64 ΠΑΡΑΔΕΙΓΜΑ 3 Ένα OFDM σύστημα χρησιμοποιεί 2048 φέροντα. Η απόσταση μεταξύ δύο διαδοχικών φερόντων είναι 250 Hz, ενώ η περιοχή φύλαξης έχει μήκος 2 msec. Η διαμόρφωση που χρησιμοποιείται σε κάθε φέρον είναι BPSK. Καθορίστε το εύρος ζώνης και το ρυθμό μετάδοσης του συστήματος. Εάν το μήκος του IDFT που χρησιμοποιείται είναι 4096, βρείτε τη συχνότητα δειγματοληψίας στο σήμα εξόδου και εκτιμήστε το πλήθος των δειγμάτων που πέφτει εντός της περιοχής φύλαξης. Η απαιτούμενη ενέργεια για ένα OFDM σύμβολο στον πομπό είναι EOFDM =1.4 W s. Ο λευκός Gaussian θόρυβος που προστίθεται στο σήμα βασικής ζώνης στον πομπό εξαιτίας του band-pass filter έχει πυκνότητα ισχύος No/2 = W s. Καθορίστε το λόγο ενέργειας σήματος προς θόρυβο (Eb/No) σε db. Καθορίστε το BER του συστήματος εκπομπής. Υπολογίστε τη μέση ισχύ που εκπέμπεται από τον πομπό. Ποιος θα ήταν ο ρυθμός μετάδοσης του συστήματος και ποιο το BER αν η διαμόρφωση που χρησιμοποιούσαμε για την πληροφορία που φορτώνεται σε κάθε φέρον ήταν QPSK. Ποια θα έπρεπε να είναι η ισχύ εκπομπής του πομπού, ώστε το BER να μην ξεπερνάει το 10-4 στην περίπτωση του BPSK και του QPSK.

65 ΛΥΣΗ Ο πομπός φαίνεται στο παρακάτω block διάγραμμα

66 Καθορίστε το εύρος ζώνης και το ρυθμό μετάδοσης του συστήματος. f f Το ενεργό εύρος ζώνης για το κάθε carrier θα είναι Το πλήθος των carriers είναι N Άρα το συνολικό εύρος ζώνης που καταλαμβάνει το OFDM σήμα θα είναι W = N f = 512 khz f

67 Η διάρκεια του OFDM συμβόλου πληροφορίας συνδέεται με την απόσταση μεταξύ δύο διαδοχικών φερόντων, μέσω της σχέσης T s = 1 f =4ms Άρα η συνολική διάρκεια του OFDM συμβόλου θα είναι T = T s + T G =6ms Στην περίπτωση του BPSK ο ρυθμός μετάδοσης δεδομένων θα είναι R = log 2(M)N T s + T G = 341 kbit/s Εάν το μήκος του IDFT που χρησιμοποιείται είναι 4096, βρείτε τη συχνότητα δειγματοληψίας στο σήμα εξόδου και εκτιμήστε το πλήθος των δειγμάτων που πέφτει εντός της περιοχής φύλαξης. Για ένα OFDM σύμβολο διάρκειας Ts χρησιμοποιήσαμε ένα IDFT Nf δειγμάτων. Άρα η συχνότητα δειγματοληψίας θα είναι f A = N f = 4048 T s 4 = 1024 khz

68 Σε ένα χρονικό διάστημα Ts λαμβάνουμε Nf δείγματα. Σε ένα χρονικό διάστημα TG λαμβάνουμε NG δείγματα. Από την απλή μέθοδο των τριών N G = N f T G T s = 2048 samples Η απαιτούμενη ενέργεια για ένα OFDM σύμβολο στον πομπό είναι EOFDM =1.4 W s. Ο λευκός Gaussian θόρυβος που προστίθεται στο σήμα βασικής ζώνης στον πομπό εξαιτίας του band-pass filter έχει πυκνότητα ισχύος No/2 = W s. Καθορίστε το λόγο ενέργειας σήματος προς θόρυβο (Eb/No) σε db. Καθορίστε το BER του συστήματος εκπομπής. Υπολογίστε τη μέση ισχύ που εκπέμπεται από τον πομπό. N o =2 N o 2 E b = E = OFDM N o log 2 (M)N}Eb E OFDM log 2 (M)NN o = db

69 Εφόσον στο σήμα εισάγεται guard interval, ένα μέρος της ισχύος χάνεται. Συνεπώς, το ενεργό SNR per bit θα μειώνεται κατά ένα συντελεστή γ 2. Το Eb/No αντιστοιχεί σε χρόνο Ts + TG Αφαιρώντας το guard interval, χάνω την ισχύ του διαστήματος TG. Άρα ο συντελεστής απωλειών εξαιτίας του guard interval θα δίνεται από την 2 = και το ενεργό SNR per bit θα είναι: T s T s + T G 2 E b N o = T s T s + T G E b N o = Συνεπώς, η πιθανότητα σφάλματος στην περίπτωση του BPSK θα είναι P b = 1 2 erfc r 2 E b N o! = Η εκπεμπόμενη ισχύ θα είναι P = E OFDM T s + T G = Watt

70 Ποιος θα ήταν ο ρυθμός μετάδοσης του συστήματος και ποιο το BER αν η διαμόρφωση που χρησιμοποιούσαμε για την πληροφορία που φορτώνεται σε κάθε φέρον ήταν QPSK. Στην περίπτωση του QPSK ο ρυθμός μετάδοσης δεδομένων θα είναι R = log 2(M)N T s + T G = 682 kbit/s Ο λόγος ενέργειας bit προς σήματος για το QPSK θα είναι E b N o = E OFDM log 2 (M)NN o = db Συνεπώς, η πιθανότητα σφάλματος στην περίπτωση του QPSK θα είναι P b = 2Q r! 2Eb 2 N o Q 2 r! 2Eb 2 N o P b =0.1561

71 Ποια θα έπρεπε να είναι η ισχύ εκπομπής του πομπού, ώστε το BER να μην ξεπερνάει το 10-4 στην περίπτωση του BPSK και του QPSK. Η πιθανότητα σφάλματος στην περίπτωση του BPSK δίνεται από την P b = 1 2 erfc P b apple 10 4 r 2 E b N o! E }2 b 6.915N o ή E b 2 N o E b Ws Η πιθανότητα σφάλματος στην περίπτωση του QPSK δίνεται από P b = 2Q r! 2Eb 2 N o Q 2 r! 2Eb 2 N o Για μεγάλες τιμές του SNR, ο δεύτερος όρος τείνει στο μηδέν, οπότε P b 2Q P b apple 10 4 r! 2Eb 2 N o }E b 7.57 N o 2 ή E b Ws

Κινητά Δίκτυα Επικοινωνιών

Κινητά Δίκτυα Επικοινωνιών Κινητά Δίκτυα Επικοινωνιών Διαμόρφωση Πολλαπλών Φερουσών και OFDM (Orthogonal Frequency Division Multiplexing) Διαμόρφωση μιας Φέρουσας Είδαμε ότι τα πραγματικά κανάλια (και ιδιαίτερα τα κινητά) εισάγουν

Διαβάστε περισσότερα

Μετάδοση πληροφορίας - Διαμόρφωση

Μετάδοση πληροφορίας - Διαμόρφωση ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΗΧ. Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ Μετάδοση πληροφορίας - Διαμόρφωση MYE006-ΠΛΕ065: ΑΣΥΡΜΑΤΑ ΔΙΚΤΥΑ Ευάγγελος Παπαπέτρου Διάρθρωση μαθήματος Βασικές έννοιες μετάδοσης Διαμόρφωση ορισμός

Διαβάστε περισσότερα

Μετάδοση πληροφορίας - Διαμόρφωση

Μετάδοση πληροφορίας - Διαμόρφωση Μετάδοση πληροφορίας - Διαμόρφωση MYE006: ΑΣΥΡΜΑΤΑ ΔΙΚΤΥΑ Ευάγγελος Παπαπέτρου ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΗΧ. Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ Διάρθρωση μαθήματος Μετάδοση Βασικές έννοιες Διαμόρφωση ορισμός είδη

Διαβάστε περισσότερα

Εργαστήριο 3: Διαλείψεις

Εργαστήριο 3: Διαλείψεις Εργαστήριο 3: Διαλείψεις Διάλειψη (fading) είναι η παραμόρφωση ενός διαμορφωμένου σήματος λόγω της μετάδοσης του σε ασύρματο περιβάλλον. Η προσομοίωση μίας τέτοιας μετάδοσης γίνεται με την μοντελοποίηση

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών ΙI

Συστήματα Επικοινωνιών ΙI + Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών ΙI Ψηφιακή μετάδοση στη βασική ζώνη + Ιστοσελίδα nιστοσελίδα του μαθήματος: n https://eclass.uowm.gr/courses/icte302/ +

Διαβάστε περισσότερα

Διαμόρφωση μιας Φέρουσας. Προχωρημένα Θέματα Τηλεπικοινωνιών. Διαίρεση εύρους ζώνης καναλιού. Διαμόρφωση Πολλών Φερουσών OFDM

Διαμόρφωση μιας Φέρουσας. Προχωρημένα Θέματα Τηλεπικοινωνιών. Διαίρεση εύρους ζώνης καναλιού. Διαμόρφωση Πολλών Φερουσών OFDM Διαμόρφωση μιας Φέρουσας Προχωρημένα Θέματα Τηλεπικοινωνιών Διαμόρφωση Πολλαπλών Φερουσών και OFDM (Orthogonal Frquncy Division Multiplxing) Είδαμε ότι τα πραγματικά (μη-ιδανικά) κανάλια εισάγουν διασυμβολική

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΤΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ FOURIER

ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΤΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ FOURIER ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΤΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ FOURIER Ανάλυση σημάτων και συστημάτων Ο μετασχηματισμός Fourier (DTFT και DFT) είναι σημαντικότατος για την ανάλυση σημάτων και συστημάτων Εντοπίζει

Διαβάστε περισσότερα

Υψηλοί Ρυθμοί Μετάδοσης

Υψηλοί Ρυθμοί Μετάδοσης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Η Τεχνική OFDM ως Λύση για Υψηλούς Ρυθμούς Μετάδοσης Αθανάσιος Κανάτας Καθηγητής Παν/μίου Πειραιώς Υψηλοί Ρυθμοί

Διαβάστε περισσότερα

Τμήμα Μηχανικών Η/Υ και Πληροφορικής

Τμήμα Μηχανικών Η/Υ και Πληροφορικής Τμήμα Μηχανικών Η/Υ και Πληροφορικής Εργαστήριο Επεξεργασίας Σημάτων και Τηλεπικοινωνιών Κινητά Δίκτυα Επικοινωνιών Μέρος Α: Τηλεπικοινωνιακά Θέματα: Τεχνικές Ψηφιακής Διαμόρφωσης και Μετάδοσης Tο γενικό

Διαβάστε περισσότερα

Γιατί Διαμόρφωση; Μια κεραία για να είναι αποτελεσματική πρέπει να είναι περί το 1/10 του μήκους κύματος

Γιατί Διαμόρφωση; Μια κεραία για να είναι αποτελεσματική πρέπει να είναι περί το 1/10 του μήκους κύματος Γιατί Διαμόρφωση; Μετάδοση ενός σήματος χαμηλών συχνοτήτων μέσω ενός ζωνοπερατού καναλιού Παράλληλη μετάδοση πολλαπλών σημάτων πάνω από το ίδιο κανάλι - Διαχωρισμός συχνότητας (Frequency Division Multiplexing)

Διαβάστε περισσότερα

Ραδιοτηλεοπτικά Συστήματα Ενότητα 7: Κωδικοποίηση και Διαμόρφωση

Ραδιοτηλεοπτικά Συστήματα Ενότητα 7: Κωδικοποίηση και Διαμόρφωση ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ραδιοτηλεοπτικά Συστήματα Ενότητα 7: Κωδικοποίηση και Διαμόρφωση Δρ. Νικόλαος- Αλέξανδρος Τάτλας Τμήμα Ηλεκτρονικών Μηχανικών

Διαβάστε περισσότερα

ΔΕΚΤΕΣ ΔΙΑΦΟΡΙΚΗΣ ΛΗΨΗΣ

ΔΕΚΤΕΣ ΔΙΑΦΟΡΙΚΗΣ ΛΗΨΗΣ ΔΕΚΤΕΣ ΔΙΑΦΟΡΙΚΗΣ ΛΗΨΗΣ (Diversity Receivers) Alexandros-Apostolos A. Boulogeorgos e-mail: ampoulog@auth.gr WCS GROUP, EE Dept, AUTH ΑΝΑΓΚΑΙΟΤΗΤΑ ΔΙΑΦΟΡΙΣΜΟΥ Η ισχύς σε κάθε όδευση παρουσιάζει διακυμάνσεις

Διαβάστε περισσότερα

1.4 OFDM OFDM-IM 17 3 FQAM 29

1.4 OFDM OFDM-IM 17 3 FQAM 29 Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Τομέας Τηλεπικοινωνιών Σταύρος Δομουχτσίδης ΑΕΜ: 7425 ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Βελτιωμένες OFDM τεχνικές για συστήματα

Διαβάστε περισσότερα

Ευρυζωνικά δίκτυα (2) Αγγελική Αλεξίου

Ευρυζωνικά δίκτυα (2) Αγγελική Αλεξίου Ευρυζωνικά δίκτυα (2) Αγγελική Αλεξίου alexiou@unipi.gr 1 Σήματα και πληροφορία Βασικές έννοιες 2 Αναλογικά και Ψηφιακά Σήματα Στις τηλεπικοινωνίες συνήθως χρησιμοποιούμε περιοδικά αναλογικά σήματα και

Διαβάστε περισσότερα

«ΜΕΛΕΤΗ ΚΑΙ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΜΕΤΡΗΣΕΙΣ ΕΝΟΣ ΠΟΜΠΟΔΕΚΤΗ ΚΥΨΕΛΩΤΟΥ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΟΥ ΣΥΣΤΗΜΑΤΟΣ»

«ΜΕΛΕΤΗ ΚΑΙ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΜΕΤΡΗΣΕΙΣ ΕΝΟΣ ΠΟΜΠΟΔΕΚΤΗ ΚΥΨΕΛΩΤΟΥ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΟΥ ΣΥΣΤΗΜΑΤΟΣ» «ΜΕΛΕΤΗ ΚΑΙ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΜΕΤΡΗΣΕΙΣ ΕΝΟΣ ΠΟΜΠΟΔΕΚΤΗ ΚΥΨΕΛΩΤΟΥ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΟΥ ΣΥΣΤΗΜΑΤΟΣ» FEASIBILITY STUDY AND LAB MEASUREMENTS OF A CELLULAR TELECOMMUNICATIONS TRANSCEIVER Δεσπότης Χρήστος Δάλατζης

Διαβάστε περισσότερα

Ευρυζωνικά δίκτυα (4) Αγγελική Αλεξίου

Ευρυζωνικά δίκτυα (4) Αγγελική Αλεξίου Ευρυζωνικά δίκτυα (4) Αγγελική Αλεξίου alexiou@unipi.gr 1 Αποτελεσματική χρήση του φάσματος Πολυπλεξία και Διασπορά Φάσματος 2 Αποτελεσματική χρήση του φάσματος Η αποτελεσματική χρήση του φάσματος έγκειται

Διαβάστε περισσότερα

Ψηφιακές Τηλεπικοινωνίες. Διαμόρφωση Παλμών κατά Πλάτος

Ψηφιακές Τηλεπικοινωνίες. Διαμόρφωση Παλμών κατά Πλάτος Ψηφιακές Τηλεπικοινωνίες Διαμόρφωση Παλμών κατά Πλάτος Διαμόρφωση Παλμών κατά Πλάτος Είπαμε ότι κατά την ψηφιακή μετάδοση μέσα από αναλογικό κανάλι κάθε σύμβολο αντιστοιχίζεται σε μια κυματομορφή σήματος

Διαβάστε περισσότερα

Παράμετροι σχεδίασης παλμών (Μορφοποίηση παλμών)

Παράμετροι σχεδίασης παλμών (Μορφοποίηση παλμών) Παράμετροι σχεδίασης παλμών (Μορφοποίηση παλμών) Κύριοι παράμετροι στη σχεδίαση παλμών είναι (στο πεδίο συχνοτήτων): Η Συχνότητα του 1ου μηδενισμού (θέλουμε μικρό BW). H ελάχιστη απόσβεση των πλαγίων λοβών

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Τμήμα Πληροφορικής και Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Εργαστήριο 9 ο : Διαμόρφωση BPSK & QPSK Βασική Θεωρία Εισαγωγή Κατά την μετάδοση ψηφιακών δεδομένων

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΜΔΕ Προηγμένα Τηλεπικοινωνιακά Συστήματα και Δίκτυα Διάλεξη 6 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst215

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 3 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst15

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Εφαρμογές της Ανάλυσης Fourier Αθανάσιος

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Σχολή Θετικών Επιστημών Τεχνολογίας Τηλεπικοινωνιών Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ ΙI Εργαστήριο 7 ο : Διαμόρφωση BPSK & QPSK

Διαβάστε περισσότερα

ΤΕΙ ΚΡΗΤΗΣ ΤΜ. ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡ/ΚΗΣ & ΠΟΛΥΜΕΣΩΝ ΔΙΔΑΣΚΩΝ: Δρ. Γ. ΓΑΡΔΙΚΗΣ. Επίγεια ψηφιακή τηλεόραση

ΤΕΙ ΚΡΗΤΗΣ ΤΜ. ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡ/ΚΗΣ & ΠΟΛΥΜΕΣΩΝ ΔΙΔΑΣΚΩΝ: Δρ. Γ. ΓΑΡΔΙΚΗΣ. Επίγεια ψηφιακή τηλεόραση ΤΕΙ ΚΡΗΤΗΣ ΤΜ. ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡ/ΚΗΣ & ΠΟΛΥΜΕΣΩΝ ΔΙΔΑΣΚΩΝ: Δρ. Γ. ΓΑΡΔΙΚΗΣ 5 Επίγεια ψηφιακή τηλεόραση Επίγεια τηλεόραση: Η ασύρματη εκπομπή και λήψη του τηλεοπτικού σήματος αποκλειστικά από επίγειους

Διαβάστε περισσότερα

Κινητά Δίκτυα Επικοινωνιών

Κινητά Δίκτυα Επικοινωνιών Κινητά Δίκτυα Επικοινωνιών Ενότητα 4: Διαμόρφωση Πολλαπλών Φερουσών και OFDM Καθ. Κώστας Μπερμπερίδης Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Η εξοικείωση του φοιτητή με τις

Διαβάστε περισσότερα

Εργαστήριο 8: Τεχνικές πολλαπλής πρόσβασης στα Δίκτυα Κινητών Επικοινωνιών

Εργαστήριο 8: Τεχνικές πολλαπλής πρόσβασης στα Δίκτυα Κινητών Επικοινωνιών Εργαστήριο 8: Τεχνικές πολλαπλής πρόσβασης στα Δίκτυα Κινητών Επικοινωνιών Σε ένα σύστημα τηλεπικοινωνιών πολλών χρηστών, όπου περισσότεροι από ένας χρήστες στέλνουν πληροφορίες μέσω ενός κοινού καναλιού,

Διαβάστε περισσότερα

Μάθηµα 12 ο : Πολλαπλή πρόσβαση µε διαίρεση κώδικα (CDMA, code division multiple access)

Μάθηµα 12 ο : Πολλαπλή πρόσβαση µε διαίρεση κώδικα (CDMA, code division multiple access) Μάθηµα 2 ο : Πολλαπλή πρόσβαση µε διαίρεση κώδικα (CDMA, code division multiple access) Στόχοι: Στο τέλος αυτού του µαθήµατος ο σπουδαστής θα γνωρίζει: Τa λειτουργικά χαρακτηριστικά της τεχνικής πολλαπλής

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ ΚΑΙ ΜΗΧ. ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ, ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ ΚΑΙ ΜΗΧ. ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ, ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ ΚΑΙ ΜΗΧ. ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ, ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΚΤΥΑ ΚΙΝΗΤΩΝ ΚΑΙ ΠΡΟΣΩΠΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Ασκήσεις για το ασύρματο

Διαβάστε περισσότερα

ΕΠΙΚΟΙΝΩΝΙΕΣ, ΔΙΚΤΥΑ & ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ

ΕΠΙΚΟΙΝΩΝΙΕΣ, ΔΙΚΤΥΑ & ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ, ΔΙΚΤΥΑ & ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ ΚΕΦΑΛΑΙΟ 2ο ΑΝΑΛΟΓΙΚΑ - ΨΗΦΙΑΚΑ ΣΗΜΑΤΑ & ΑΡΧΕΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Πληροφορία Επικοινωνία συντελείται με τη μεταβίβαση μηνυμάτων από ένα πομπό σε ένα δέκτη. Μήνυμα

Διαβάστε περισσότερα

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Εισαγωγή στα Συστήματα Τηλεπικοινωνιών Συστήματα Παλμοκωδικής Διαμόρφωσης

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Εισαγωγή στα Συστήματα Τηλεπικοινωνιών Συστήματα Παλμοκωδικής Διαμόρφωσης Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Εισαγωγή στα Συστήματα Τηλεπικοινωνιών Συστήματα Παλμοκωδικής Διαμόρφωσης Καθηγητής Ι. Τίγκελης itigelis@phys.uoa.gr ΚΒΑΝΤΙΣΗ Διαδικασία με την

Διαβάστε περισσότερα

Εξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης

Εξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης Πανεπιστήμιο Πατρών Τμήμα Μηχ. Η/Υ & Πληροφορικής Ακαδημαϊκό Έτος 009-010 Ψ Η Φ Ι Α Κ Ε Σ Τ Η Λ Ε Π Ι Κ Ο Ι Ν Ω Ν Ι ΕΣ η Εργαστηριακή Άσκηση: Εξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης Στην άσκηση

Διαβάστε περισσότερα

Συναρτήσεις Συσχέτισης

Συναρτήσεις Συσχέτισης Συναρτήσεις Συσχέτισης Για ένα σήµα ενέργειας ορίζεται η συνάρτηση αυτοσυσχέτισης R + ( τ = ( τ ( τ = ( ( τ d = ( + τ + ( d Για ένα σήµα ισχύος ορίζεται η µέση χρονική συνάρτηση αυτοσυσχέτισης R ( τ =

Διαβάστε περισσότερα

Ψηφιακές Τηλεπικοινωνίες. Δισδιάστατες Κυματομορφές Σήματος

Ψηφιακές Τηλεπικοινωνίες. Δισδιάστατες Κυματομορφές Σήματος Ψηφιακές Τηλεπικοινωνίες Δισδιάστατες Κυματομορφές Σήματος Εισαγωγή Στα προηγούμενα μελετήσαμε τη διαμόρφωση PAM δυαδικό και Μ-αδικό, βασικής ζώνης και ζωνοπερατό Σε κάθε περίπτωση προέκυπταν μονοδιάστατες

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΤΕ 10 Δορυφορικές Επικοινωνίες Θερινό εξάμηνο 2008 Διάλεξη 5 η Επίκουρος Καθηγητής Νικόλαος Χ. Σαγιάς Webpage: http://eclass.uop.gr/courses/tst207

Διαβάστε περισσότερα

Ήχος. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 04-1

Ήχος. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 04-1 Ήχος Χαρακτηριστικά του ήχου Ψηφιοποίηση με μετασχηματισμό Ψηφιοποίηση με δειγματοληψία Κβαντοποίηση δειγμάτων Παλμοκωδική διαμόρφωση Συμβολική αναπαράσταση μουσικής Τεχνολογία Πολυμέσων και Πολυμεσικές

Διαβάστε περισσότερα

Ο μετασχηματισμός Fourier

Ο μετασχηματισμός Fourier Ο μετασχηματισμός Fourier είναι από τα διαδεδομένα εργαλεία μετατροπής δεδομένων και συναρτήσεων (μιας ή περισσοτέρων διαστάσεων) από αυτό που ονομάζεται περιοχή χρόνου (time domain) στην περιοχή συχνότητας

Διαβάστε περισσότερα

Δίκτυα Απευθείας Ζεύξης

Δίκτυα Απευθείας Ζεύξης Δίκτυα Απευθείας Ζεύξης Επικοινωνία μεταξύ δύο υπολογιστώνοιοποίοιείναι απευθείας συνδεδεμένοι Φυσικό Επίπεδο. Περίληψη Ζεύξεις σημείου προς σημείο (point-to-point links) Ανάλυση σημάτων Μέγιστη χωρητικότητα

Διαβάστε περισσότερα

Πολυπλεξία. http://diktya-epal-b.ggia.info Creative Commons License 3.0 Share-Alike

Πολυπλεξία. http://diktya-epal-b.ggia.info Creative Commons License 3.0 Share-Alike Πολυπλεξία Ανάλυση σημάτων στο πεδίο χρόνου, συχνότητας, πολυπλεξία διαίρεσης συχνότητας, πολυπλεξία διαίρεσης χρόνου (1.6 ενότητα σελ 19-20, 29-30 και στοιχεία από 2.1 ενότητα σελ. 52-58). http://diktya-epal-b.ggia.info

Διαβάστε περισσότερα

Θεώρημα δειγματοληψίας

Θεώρημα δειγματοληψίας Δειγματοληψία Θεώρημα δειγματοληψίας Ένα βαθυπερατό σήμα πεπερασμένης ενέργειας που δεν περιέχει συχνότητες μεγαλύτερες των W Hertz μπορεί να περιγραφθεί πλήρως από τις τιμές του σε χρονικές στιγμές ισαπέχουσες

Διαβάστε περισσότερα

Κωδικοποίηση Χώρου-Χρόνου. Χρόνου

Κωδικοποίηση Χώρου-Χρόνου. Χρόνου Κωδικοποίηση Χώρου-Χρόνου Χρόνου Μέρος Ι: Σχήμα Alamouti Ομάδα Ασύρματων Τηλεπικοινωνιακών Συστημάτων Τμήμα Ηλεκτρολόγων Μηχανικών & Μ/Υ Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Γιώργος Καραγιαννίδης Βασίλειος

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΔΙΔΑΚΤΙΚΗΣ ΤΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΚΑΤΕΥΘΥΝΣΗ : ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΚΑΙ ΔΙΚΤΥΑ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Μελέτη εκτίμησης καναλιού συστημάτων OFDM

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΠΛΗΡΟΦΟΡΙΑΣ. Μελέτη

ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΠΛΗΡΟΦΟΡΙΑΣ. Μελέτη ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝΜ Ν ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΔΟΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ Μελέτη και Προσομοίωση Συστήματος Ορθογώνιας Πολύπλεξης

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών ΙI

Συστήματα Επικοινωνιών ΙI + Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών ΙI Συστήματα διαμόρφωσης παλμών Πολυπλεξία + Ιστοσελίδα nιστοσελίδα του μαθήματος: n https://eclass.uowm.gr/courses/icte302/

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Πλάτους - 1

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Πλάτους - 1 ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Πλάτους - 1 3.2: Διαμόρφωση Πλάτους (Amplitude Modulation, AM) 3.3: Διαμόρφωση Πλευρικής Ζώνης με Καταπιεσμένο

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 8 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst15

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ. Κεφάλαιο 4 : Σήματα Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων

ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ. Κεφάλαιο 4 : Σήματα Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 4 : Σήματα Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα ομιλίας Είδη /Κατηγορίες Σημάτων Στοιχειώδη Σήματα Χαρακτηριστικές Τιμές Σημάτων Τεχνικές

Διαβάστε περισσότερα

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων. Διάλεξη 22: Γρήγορος Μετασχηματισμός Fourier Ανάλυση σημάτων/συστημάτων με το ΔΜΦ

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων. Διάλεξη 22: Γρήγορος Μετασχηματισμός Fourier Ανάλυση σημάτων/συστημάτων με το ΔΜΦ HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 22: Γρήγορος Μετασχηματισμός Fourier Ανάλυση σημάτων/συστημάτων με το ΔΜΦ Γρήγορος Μετασχηματισμός Fourier Το ζεύγος εξισώσεων που ορίζουν το

Διαβάστε περισσότερα

Προχωρημένα Θέματα Ασυρμάτων Επικοινωνιών (2) Αγγελική Αλεξίου

Προχωρημένα Θέματα Ασυρμάτων Επικοινωνιών (2) Αγγελική Αλεξίου Προχωρημένα Θέματα Ασυρμάτων Επικοινωνιών (2) Αγγελική Αλεξίου alexiou@unipi.gr 1 Diversity (Ποικιλότητα) 2 Non-Coherent Detection (Ασύμφωνη ανίχνευση) Θεωρούμε το πρόβλημα ασύμφωνης ανίχνευσης (ανίχνευση

Διαβάστε περισσότερα

Τα ηλεκτρονικά σήματα πληροφορίας διακρίνονται ανάλογα με τη μορφή τους σε δύο κατηγορίες : Αναλογικά σήματα Ψηφιακά σήματα

Τα ηλεκτρονικά σήματα πληροφορίας διακρίνονται ανάλογα με τη μορφή τους σε δύο κατηγορίες : Αναλογικά σήματα Ψηφιακά σήματα ΕΝΟΤΗΤΑ 2 2.0 ΗΛΕΚΤΡΙΚΑ ΣΗΜΑΤΑ ΚΑΙ ΑΡΧΕΣ ΕΠΙΚΟΙΝΩΝΙΑΣ ΕΙΣΑΓΩΓΗ Ηλεκτρικό σήμα ονομάζεται η τάση ή το ρεύμα που μεταβάλλεται ως συνάρτηση του χρόνου. Στα ηλεκτρονικά συστήματα επικοινωνίας, οι πληροφορίες

Διαβάστε περισσότερα

Κεφάλαιο 7. Ψηφιακή Διαμόρφωση

Κεφάλαιο 7. Ψηφιακή Διαμόρφωση Κεφάλαιο 7 Ψηφιακή Διαμόρφωση Ψηφιακή Διαμόρφωση 2 Διαμόρφωση βασικής ζώνης H ψηφιακή πληροφορία μεταδίδεται απ ευθείας με τεχνικές διαμόρφωσης παλμών βασικής ζώνης, οι οποίες δεν απαιτούν τη χρήση ημιτονοειδούς

Διαβάστε περισσότερα

Σταθερή περιβάλλουσα (Constant Envelope)

Σταθερή περιβάλλουσα (Constant Envelope) Διαμόρφωση ολίσθησης φάσης (Phase Shift Keying-PSK) Σταθερή περιβάλλουσα (Constant Envelope) Ίση Ενέργεια συμβόλων 1 Binary Phase Shift keying (BPSK) BPSK 2 Quaternary Phase Shift Keying (QPSK) 3 Αστερισμός-Διαγράμματα

Διαβάστε περισσότερα

Συμπίεση Δεδομένων

Συμπίεση Δεδομένων Συμπίεση Δεδομένων 2013-2014 Κωδικοποίηση ζωνών συχνοτήτων Δρ. Ν. Π. Σγούρος 2 Φαινόμενο Μπλόκ (Blocking Artifact) Η χρήση παραθύρων για την εφαρμογή των μετασχηματισμών δημιουργεί το φαινόμενο μπλόκ Μειώνεται

Διαβάστε περισσότερα

Διάλεξη 6. Fourier Ανάλυση Σημάτων. (Επανάληψη Κεφ. 10.0-10.2 Κεφ. 10.3, 10.5-7) Ανάλυση σημάτων. Τι πρέπει να προσέξουμε

Διάλεξη 6. Fourier Ανάλυση Σημάτων. (Επανάληψη Κεφ. 10.0-10.2 Κεφ. 10.3, 10.5-7) Ανάλυση σημάτων. Τι πρέπει να προσέξουμε University of Cyprus Biomedical Imaging & Applied Optics Διάλεξη (Επανάληψη Κεφ. 10.0-10. Κεφ. 10.3, 10.5-7) Ανάλυση σημάτων Τι πρέπει να προσέξουμε Επαρκής ψηφιοποίηση στο χρόνο (Nyquist) Αναδίπλωση (aliasing)

Διαβάστε περισσότερα

Ασκήσεις στα Συστήµατα Ηλεκτρονικών Επικοινωνιών Κεφάλαιο 3 ο : ΕΙΣΑΓΩΓΗ στις ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΚΥΜΑ και ΤΕΧΝΙΚΕΣ ΙΑΜΟΡΦΩΣΗΣ

Ασκήσεις στα Συστήµατα Ηλεκτρονικών Επικοινωνιών Κεφάλαιο 3 ο : ΕΙΣΑΓΩΓΗ στις ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΚΥΜΑ και ΤΕΧΝΙΚΕΣ ΙΑΜΟΡΦΩΣΗΣ Κεφάλαιο 3 ο : ΕΙΣΑΓΩΓΗ στις ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΚΥΜΑ και ΤΕΧΝΙΚΕΣ ΙΑΜΟΡΦΩΣΗΣ 1. Ποµπός ΑΜ εκπέµπει σε φέρουσα συχνότητα 1152 ΚΗz, µε ισχύ φέροντος 10KW. Η σύνθετη αντίσταση της κεραίας είναι

Διαβάστε περισσότερα

Διαμόρφωση Παλμών. Pulse Modulation

Διαμόρφωση Παλμών. Pulse Modulation Διαμόρφωση Παλμών Pulse Modulation Συστήματα διαμόρφωσης παλμών Είδη διαμόρφωσης παλμών Pulse Amplitude Modulation (PAM): A m(t) Pulse Position Modulation (PPM): T d m(t) Pulse Duration Modulation (PDM)

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Σχολή Θετικών Επιστημών Τεχνολογίας Τηλεπικοινωνιών Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ ΙI Εργαστήριο 3 ο : Πολυπλεξία με διαίρεση

Διαβάστε περισσότερα

Παραµετρικές Τεχνικές Εκτίµησης Καναλιού σε συστήµατα µετάδοσης OFDM

Παραµετρικές Τεχνικές Εκτίµησης Καναλιού σε συστήµατα µετάδοσης OFDM ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ιατµηµατικό Πρόγραµµα Μεταπτυχιακών Σπουδών Συστήµατα Επεξεργασίας Σηµάτων και Εικόνας: Θεωρία, Υλοποιήσεις, Εφαρµογές Μεταπτυχιακή ιπλωµατική Εργασία Παραµετρικές Τεχνικές Εκτίµησης

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών

Συστήματα Επικοινωνιών Συστήματα Επικοινωνιών Ενότητα 11: Ψηφιακή Διαμόρφωση Μέρος Α Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Περιγραφή διαμόρφωσης παλμών κατά

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΗΧ. Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ. Ασύρματη Διάδοση MYE006: ΑΣΥΡΜΑΤΑ ΔΙΚΤΥΑ. Ευάγγελος Παπαπέτρου

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΗΧ. Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ. Ασύρματη Διάδοση MYE006: ΑΣΥΡΜΑΤΑ ΔΙΚΤΥΑ. Ευάγγελος Παπαπέτρου ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΗΧ. Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ Ασύρματη Διάδοση MYE006: ΑΣΥΡΜΑΤΑ ΔΙΚΤΥΑ Ευάγγελος Παπαπέτρου Διάρθρωση μαθήματος Εισαγωγή στην ασύρματη διάδοση Κεραίες διάγραμμα ακτινοβολίας, κέρδος,

Διαβάστε περισσότερα

Μάθημα Επισκόπηση των Τηλεπικοινωνιών

Μάθημα Επισκόπηση των Τηλεπικοινωνιών Μάθημα Επισκόπηση των Τηλεπικοινωνιών Τεχνικές Μετάδοσης ΙI: Πολυπλεξία, Πρόσβαση, Spread Spectrum, OFDM Μάθημα 7 ο (Β Μέρος) ΕΘΝΙΚΟ & ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τομέας Επικοινωνιών και Επεξεργασίας

Διαβάστε περισσότερα

Ασύρματη Διάδοση. Διάρθρωση μαθήματος. Ασύρματη διάδοση (1/2)

Ασύρματη Διάδοση. Διάρθρωση μαθήματος. Ασύρματη διάδοση (1/2) ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΗΧ. Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ Διάρθρωση μαθήματος Ασύρματη Διάδοση MYE006: ΑΣΥΡΜΑΤΑ ΔΙΚΤΥΑ Ευάγγελος Παπαπέτρου Εισαγωγή στην ασύρματη διάδοση Κεραίες διάγραμμα ακτινοβολίας, κέρδος,

Διαβάστε περισσότερα

Τεχνολογία Πολυμέσων. Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής

Τεχνολογία Πολυμέσων. Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Τεχνολογία Πολυμέσων Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το

Διαβάστε περισσότερα

ΤΕΙ Στερεάς Ελλάδας Τμ. Ηλ.γων Μηχ/κων ΤΕ. Δίκτυα Υπολογιστών. Διάλεξη 2: Επίπεδο 1 «φυσικό στρώμα»

ΤΕΙ Στερεάς Ελλάδας Τμ. Ηλ.γων Μηχ/κων ΤΕ. Δίκτυα Υπολογιστών. Διάλεξη 2: Επίπεδο 1 «φυσικό στρώμα» ΤΕΙ Στερεάς Ελλάδας Τμ. Ηλ.γων Μηχ/κων ΤΕ Δίκτυα Υπολογιστών Διάλεξη 2: Επίπεδο 1 «φυσικό στρώμα» Φυσικό στρώμα: Προσδιορίζει τις φυσικές διεπαφές των συσκευών Μηχανικό Ηλεκτρικό Λειτουργικό Διαδικαστικό

Διαβάστε περισσότερα

Ασκήσεις στο µάθηµα «Επισκόπηση των Τηλεπικοινωνιών»

Ασκήσεις στο µάθηµα «Επισκόπηση των Τηλεπικοινωνιών» Ασκήσεις στο µάθηµα «Επισκόπηση των Τηλεπικοινωνιών» Άσκηση 1 Πρόκειται να µεταδώσουµε δυαδικά δεδοµένα σε RF κανάλι µε. Αν ο θόρυβος του καναλιού είναι Gaussian - λευκός µε φασµατική πυκνότητα W, να βρεθεί

Διαβάστε περισσότερα

Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Φασματική ανάλυση χρονοσειρών

Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Φασματική ανάλυση χρονοσειρών Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Φασματική ανάλυση χρονοσειρών Δημήτρης Κουτσογιάννης Τομέας Υδατικών Πόρων και Περιβάλλοντος, Σχολή Πολιτικών Μηχανικών, Εθνικό Μετσόβιο Πολυτεχνείο Αθήνα Επανέκδοση

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 13 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Wepage: http://eclass.uop.gr/courses/tst15

Διαβάστε περισσότερα

Ψηφιακές Τηλεπικοινωνίες

Ψηφιακές Τηλεπικοινωνίες Ψηφιακές Τηλεπικοινωνίες Ψηφιακή Μετάδοση Σήματος σε Ζωνοπεριορισμένο Κανάλι AWGN (Μέχρι και τη διαφάνεια 32) Εισαγωγή Στα προηγούμενα μαθήματα θεωρήσαμε ότι ουσιαστικά το κανάλι AWGN είχε άπειρο εύρος

Διαβάστε περισσότερα

ΦΡΟΝ ΑΣΚΗΣΕΙΣ-2 ΕΙΣΑΓ. ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΦΡΟΝ ΑΣΚΗΣΕΙΣ-2 ΕΙΣΑΓ. ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΕΠΙΚΟΙΝΩΝΙΩΝ Πρόβλημα 24 a. Να υπολογίσετε το δείκτη d 2 min/eb για ένα 16-QAM. b. Να υπολογίσετε το [(d 2 min/eb)16qam/(d 2 min/eb)qpsk]db. c. Αν θεωρήσουμε ότι το μέγεθος των αστερισμών του Ερωτήματος b) έχουν επιλεγεί

Διαβάστε περισσότερα

ΜΕΘΟ ΟΙ ΕΚΤΙΜΗΣΗΣ ΚΑΝΑΛΙΟΥ ΜΕ ΧΡΗΣΗ ΠΙΛΟΤΙΚΩΝ ΥΠΟ-ΦΕΡΟΥΣΩΝ ΣΕ ΣΥΣΤΗΜΑΤΑ ΠΟΛΥΠΛΕΞΙΑΣ ΜΕ ΟΡΘΟΓΩΝΙΑ ΙΑΙΡΕΣΗ ΣΥΧΝΟΤΗΤΑΣ

ΜΕΘΟ ΟΙ ΕΚΤΙΜΗΣΗΣ ΚΑΝΑΛΙΟΥ ΜΕ ΧΡΗΣΗ ΠΙΛΟΤΙΚΩΝ ΥΠΟ-ΦΕΡΟΥΣΩΝ ΣΕ ΣΥΣΤΗΜΑΤΑ ΠΟΛΥΠΛΕΞΙΑΣ ΜΕ ΟΡΘΟΓΩΝΙΑ ΙΑΙΡΕΣΗ ΣΥΧΝΟΤΗΤΑΣ ΕΘΝΙΚΟ & ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ, ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ΕΦΑΡΜΟΓΩΝ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΗΣ ΜΕΘΟ ΟΙ ΕΚΤΙΜΗΣΗΣ ΚΑΝΑΛΙΟΥ ΜΕ ΧΡΗΣΗ ΠΙΛΟΤΙΚΩΝ ΥΠΟ-ΦΕΡΟΥΣΩΝ ΣΕ ΣΥΣΤΗΜΑΤΑ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΗΧ. Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ. Ασύρματη Διάδοση ΑΣΥΡΜΑΤΑ ΔΙΚΤΥΑ. Ευάγγελος Παπαπέτρου

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΗΧ. Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ. Ασύρματη Διάδοση ΑΣΥΡΜΑΤΑ ΔΙΚΤΥΑ. Ευάγγελος Παπαπέτρου ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΗΧ. Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ Ασύρματη Διάδοση ΑΣΥΡΜΑΤΑ ΔΙΚΤΥΑ Ευάγγελος Παπαπέτρου Διάρθρωση μαθήματος Ασύρματη διάδοση Εισαγωγή Κεραίες διάγραμμα ακτινοβολίας, κέρδος, κατευθυντικότητα

Διαβάστε περισσότερα

Αρχές Δικτύων Επικοινωνιών. Επικοινωνίες Δεδομένων Μάθημα 4 ο

Αρχές Δικτύων Επικοινωνιών. Επικοινωνίες Δεδομένων Μάθημα 4 ο Αρχές Δικτύων Επικοινωνιών Επικοινωνίες Δεδομένων Μάθημα 4 ο Τα επικοινωνιακά δίκτυα και οι ανάγκες που εξυπηρετούν Για την επικοινωνία δύο συσκευών απαιτείται να υπάρχει μεταξύ τους σύνδεση από σημείο

Διαβάστε περισσότερα

Άσκηση Να υπολογιστεί ο δείκτης διαμόρφωσης των συστημάτων ΑΜ και FM. Αναλογικές Τηλεπικοινωνίες Γ. Κ. Καραγιαννίδης Αν. Καθηγητής 14/1/2014

Άσκηση Να υπολογιστεί ο δείκτης διαμόρφωσης των συστημάτων ΑΜ και FM. Αναλογικές Τηλεπικοινωνίες Γ. Κ. Καραγιαννίδης Αν. Καθηγητής 14/1/2014 Άσκηση 4.16 Ένα ημιτνοειδές σήμα πληροφορίας με συχνότητα διαμορφώνεται κατά ΑΜ και Κατά FM. Το πλάτος του φέροντος είναι το ίδιο και στα δύο συστήματα. Η μέγιστη απόκλιση Συχνότητας στο FM είναι ίση με

Διαβάστε περισσότερα

FFT. Θα επικεντρωθούμε στο ΔΜΦ αλλά όλα ισχύουν και για τον

FFT. Θα επικεντρωθούμε στο ΔΜΦ αλλά όλα ισχύουν και για τον University of Cyprus Biomedical Imaging & Applied Optics Διάλεξη 5 και Ανάλυση με (Κεφ. 9.0-9.5, 10.0-10.2) ΟΔΜΦ Ο αντίστροφος ΔΜΦ Θα επικεντρωθούμε στο ΔΜΦ αλλά όλα ισχύουν και για τον αντίστροφο ΔΜΦ

Διαβάστε περισσότερα

Επεξεργασία Πολυµέσων. Δρ. Μαρία Κοζύρη Π.Μ.Σ. «Εφαρµοσµένη Πληροφορική» Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήµιο Θεσσαλίας

Επεξεργασία Πολυµέσων. Δρ. Μαρία Κοζύρη Π.Μ.Σ. «Εφαρµοσµένη Πληροφορική» Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήµιο Θεσσαλίας Π.Μ.Σ. «Εφαρµοσµένη Πληροφορική» Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήµιο Θεσσαλίας Ενότητα 0: Εισαγωγή στο µάθηµα 2 Διαδικαστικά Παράδοση: Παρασκευή 16:00-18:30 Διδάσκων: E-mail:

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙςΤΗΜΗς & ΤΕΧΝΟΛΟΓΙΑς ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΜΔΕ Προηγμένα Τηλεπικοινωνιακά Συστήματα και Δίκτυα Διάλεξη 2 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst233

Διαβάστε περισσότερα

Το σήμα εξόδου ενός διαμορφωτή συμβατικού ΑΜ είναι:

Το σήμα εξόδου ενός διαμορφωτή συμβατικού ΑΜ είναι: Άσκηση 1 Το σήμα εξόδου ενός διαμορφωτή συμβατικού ΑΜ είναι: i. Προσδιορίστε το σήμα πληροφορίας και το φέρον. ii. Βρείτε το δείκτη διαμόρφωσης. iii. Υπολογίστε το λόγο της ισχύος στις πλευρικές ζώνες

Διαβάστε περισσότερα

Επομένως το εύρος ζώνης του διαμορφωμένου σήματος είναι 2.

Επομένως το εύρος ζώνης του διαμορφωμένου σήματος είναι 2. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΠΛΗ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑ Το φέρον σε ένα σύστημα DSB διαμόρφωσης είναι c t A t μηνύματος είναι το m( t) sin c( t) sin c ( t) ( ) cos 4 c και το σήμα. Το διαμορφωμένο σήμα διέρχεται

Διαβάστε περισσότερα

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 5 : Θόρυβος Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Ομιλίας Είδη θορύβου Περιγραφή θορύβου Θεώρημα Shannon Hartley Απόδοση ισχύος και εύρους

Διαβάστε περισσότερα

Επισκόπηση των Στατιστικών Πολυκαναλικών Επικοινωνιών

Επισκόπηση των Στατιστικών Πολυκαναλικών Επικοινωνιών Επισκόπηση των Στατιστικών Πολυκαναλικών Επικοινωνιών Φυσικός (Bsc), Ραδιοηλεκτρολόγος (Msc, PhD) Εργαστήριο Κινητών Επικοινωνιών, Ινστιτούτο Πληροφορικής & Τηλεπικοινωνιών, Εθνικό Κέντρο Έρευνας Φυσικών

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 9 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst215

Διαβάστε περισσότερα

Επεξεργασία Στοχαστικών Σημάτων

Επεξεργασία Στοχαστικών Σημάτων Επεξεργασία Στοχαστικών Σημάτων Ψηφιακή Μετάδοση Αναλογικών Σημάτων Σεραφείμ Καραμπογιάς Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Ψηφιακή Μετάδοση Αναλογικών Σημάτων Τα σύγχρονα συστήματα

Διαβάστε περισσότερα

Κεφάλαιο 3 Πολυπλεξία

Κεφάλαιο 3 Πολυπλεξία Κεφάλαιο 3 Πολυπλεξία Μάθημα 3.1: Μάθημα 3.2: Μάθημα 3.3: Πολυπλεξία επιμερισμού συχνότητας χρόνου Συγκριτική αξιολόγηση τεχνικών πολυπλεξίας Στατιστική πολυπλεξία Μετάδοση Δεδομένων Δίκτυα Υπολογιστών

Διαβάστε περισσότερα

Ραδιοτηλεοπτικά Συστήματα Ενότητα 3: Θεωρία Ψηφιοποίησης

Ραδιοτηλεοπτικά Συστήματα Ενότητα 3: Θεωρία Ψηφιοποίησης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ραδιοτηλεοπτικά Συστήματα Ενότητα 3: Θεωρία Ψηφιοποίησης Δρ. Νικόλαος- Αλέξανδρος Τάτλας Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε Κάντε

Διαβάστε περισσότερα

ΑΣΠΑΙΤΕ / Τμήμα Εκπαιδευτικών Ηλεκτρολόγων Μηχανικών & Εκπαιδευτικών Ηλεκτρονικών Μηχανικών

ΑΣΠΑΙΤΕ / Τμήμα Εκπαιδευτικών Ηλεκτρολόγων Μηχανικών & Εκπαιδευτικών Ηλεκτρονικών Μηχανικών 8. ΔΙΑΜΟΡΦΩΣΗ: ΓΕΝΙΚΗ ΘΕΩΡΗΣΗ 8.1. Ορισμoί Ως διαμόρφωση (modulation) χαρακτηρίζεται η μεταβολή μιας παραμέτρου (π.χ. πλάτους, συχνότητας, φάσης κλπ.) ενός σήματος που λέγεται φέρον εξαιτίας της επενέργειας

Διαβάστε περισσότερα

Δίκτυα Κινητών και Προσωπικών Επικοινωνιών

Δίκτυα Κινητών και Προσωπικών Επικοινωνιών Δίκτυα Κινητών και Προσωπικών Επικοινωνιών Ασύρματο Περιβάλλον στις Κινητές Επικοινωνίες Άγγελος Ρούσκας Τμήμα Ψηφιακών Συστημάτων Πανεπιστήμιο Πειραιώς Ραδιοδίαυλοι Απαραίτητη η γνώση των χαρακτηριστικών

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 5 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst215

Διαβάστε περισσότερα

Διακριτός Μετασχηματισμός Fourier

Διακριτός Μετασχηματισμός Fourier Διακριτός Μετασχηματισμός Fourier 1 Διακριτός Μετασχηματισμός Fourier Ο μετασχηματισμός Fourier αποτελεί τον ακρογωνιαίο λίθο της επεξεργασίας σήματος αλλά και συχνή αιτία πονοκεφάλου για όσους πρωτοασχολούνται

Διαβάστε περισσότερα

3 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΑΥΤΟΕΞΕΤΑΣΗΣ. 1) Nα αναφερθούν κάποια είδη πληροφοριών που χρησιμοποιούνται για επικοινωνία.

3 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΑΥΤΟΕΞΕΤΑΣΗΣ. 1) Nα αναφερθούν κάποια είδη πληροφοριών που χρησιμοποιούνται για επικοινωνία. 3 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΑΥΤΟΕΞΕΤΑΣΗΣ 1) Nα αναφερθούν κάποια είδη πληροφοριών που χρησιμοποιούνται για επικοινωνία. απ. Μπορεί να είναι ακουστικά μηνύματα όπως ομιλία, μουσική. Μπορεί να είναι μια φωτογραφία,

Διαβάστε περισσότερα

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Εισαγωγή στα Συστήματα Τηλεπικοινωνιών Συστήματα Διαμόρφωσης Παλμών

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Εισαγωγή στα Συστήματα Τηλεπικοινωνιών Συστήματα Διαμόρφωσης Παλμών Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Εισαγωγή στα Συστήματα Τηλεπικοινωνιών Συστήματα Διαμόρφωσης Παλμών Καθηγητής Ι. Τίγκελης itigelis@phys.uoa.gr ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Δ/ΨΙΑ) Δειγματοληψία:

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Σχολή Θετικών Επιστημών Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ Ι Μπατιστάτος Μιχάλης Εργαστήριο 3 ο : Διαμόρφωση ΑΜ-DSBSC/SSB Βασική

Διαβάστε περισσότερα

Αρχές Τηλεπικοινωνιών

Αρχές Τηλεπικοινωνιών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Αρχές Τηλεπικοινωνιών Ενότητα #11: Ψηφιακή Διαμόρφωση Χ. ΚΑΡΑΪΣΚΟΣ Τμήμα Μηχανικών Αυτοματισμών Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. ΘΕΜΑ 1ο α. Τι εννοούμε με τον όρο διαμόρφωση; Ποιο σήμα ονομάζεται φέρον, ποιο διαμορφωτικό και ποιο διαμορφωμένο;

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. ΘΕΜΑ 1ο α. Τι εννοούμε με τον όρο διαμόρφωση; Ποιο σήμα ονομάζεται φέρον, ποιο διαμορφωτικό και ποιο διαμορφωμένο; ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΙ ΙΚΕΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΠΟΦΟΙΤΩΝ Β ΚΥΚΛΟΥ ΤΕΧΝΙΚΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΕΚΠΑΙ ΕΥΤΗΡΙΩΝ ΕΥΤΕΡΑ 18 ΙΟΥΝΙΟΥ 2007 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΕΚΠΟΜΠΗ ΚΑΙ ΛΗΨΗ ΡΑ ΙΟΦΩΝΙΚΟΥ ΣΗΜΑΤΟΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:

Διαβάστε περισσότερα

Κινητές επικοινωνίες. Κεφάλαιο 6 Τεχνικές πoλυπλεξίας - CDMA

Κινητές επικοινωνίες. Κεφάλαιο 6 Τεχνικές πoλυπλεξίας - CDMA Κινητές επικοινωνίες Κεφάλαιο 6 Τεχνικές πoλυπλεξίας - CDMA 1 Πολυπλεξία Η πολυπλεξία επιτρέπει την παράλληλη μετάδοση δεδομένων από διαφορετικές πηγές χωρίς αλληλοπαρεμβολές. Τρία βασικά είδη TDM/TDMA

Διαβάστε περισσότερα

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 9 : Κανάλι-Σύστημα Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Ομιλίας Χωρητικότητα Χ ό καναλιού Το Gaussian κανάλι επικοινωνίας Τα διακριτά

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ΤΩΝ ΕΦΑΡΜΟΓΩΝ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΗΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Ιωάννης Γ. Τίγκελης και Δημήτριος Ι. Φραντζεσκάκης

Διαβάστε περισσότερα

Δημοτικότητα του Διαδικτύου. Αριθμός συνδεδεμένων Η/Υ κατά έτος

Δημοτικότητα του Διαδικτύου. Αριθμός συνδεδεμένων Η/Υ κατά έτος ΔΙΚΤΥΑ Π. Φουληράς Διαδίκτυο Σημαίνει δίκτυο που προέρχεται από την διασύνδεση επί μέρους δικτύων Μπορεί κάθε ένα από τα επί μέρους δίκτυα να είναι διαφορετικής τεχνολογίας Δημοτικότητα του Διαδικτύου

Διαβάστε περισσότερα

12 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

12 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 12 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα: ΤΑΧΥΣ Μ/Σ FOURIER Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος.

ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος. 3. ΚΕΦΑΛΑΙΟ ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος. Ορίσουµε το µετασχηµατισµό Fourier ενός µη περιοδικού

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 14 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: hp://ecla.uop.gr/coure/s15 e-mail:

Διαβάστε περισσότερα

«Υλοποίηση VLSI αρχιτεκτονικής µε ψηφιακά φίλτρα για ασύρµατο OFDM Modem»

«Υλοποίηση VLSI αρχιτεκτονικής µε ψηφιακά φίλτρα για ασύρµατο OFDM Modem» ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΙΑΤΜΗΜΑΤΙΚΟ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΟΛΟΚΛΗΡΩΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΥΛΙΚΟΥ ΛΟΓΙΣΜΙΚΟΥ» «Υλοποίηση VLSI αρχιτεκτονικής µε ψηφιακά φίλτρα για ασύρµατο

Διαβάστε περισσότερα