Προσεγγιστικοί Αλγόριθμοι βασισμένοι σε Γραμμικό Προγραμματισμό

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Προσεγγιστικοί Αλγόριθμοι βασισμένοι σε Γραμμικό Προγραμματισμό"

Transcript

1 Προσεγγιστικοί Αλγόριθμοι βασισμένοι σε Γραμμικό Προγραμματισμό ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

2 Αντιμετώπιση NP- υσκολίας Αν P NP, όχι αλγόριθμος που για όλαταστιγμιότυπα NP-δύσκολου προβλήματος υπολογίζει βέλτιστη λύση σε πολυωνυμικό χρόνο. Ευρετικές τεχνικές: συχνά γρήγορα βέλτιστη λύση αλλά και δύσκολα στιγμιότυπα (αργά ή / και όχι βέλτιστη λύση). Τοπική αναζήτηση. Simulated annealing. Γενετικοί αλγόριθμοι. Branch-and-Bound, Branch-and-Cut. Θεωρία Υπολογισμού (Άνοιξη 2012) Προσεγγιστικοί Αλγόριθμοι 2

3 Αντιμετώπιση NP- υσκολίας «Εύκολες» περιπτώσεις. Ανάλυση μέσης περίπτωσης / πιθανοτική ανάλυση. Γρήγοροι σε στιγμιότυπα που εμφανίζονται συχνότερα (αργοί μόνο για στιγμιότυπα με μικρή πιθανότητα). ιαφορά από ευρετικές τεχνικές: θεωρητική ανάλυση. Γνωρίζουμε πιθανότητα και πότε καλή / κακή απόδοση. Αλγόριθμοι προσέγγισης [Johnson, Sahni and Gonzalez,, 70 s] Αλγόριθμοι πολυωνυμικού χρόνου (χ.π.). Όχι (πάντα) βέλτιστη λύση. Ανάλυσηχειρότερηςπερίπτωσηςωςπροςποιότηταλύσης. Θεωρία Υπολογισμού (Άνοιξη 2012) Προσεγγιστικοί Αλγόριθμοι 3

4 Προσεγγιστικοί Αλγόριθμοι Απόδοση χειρότερης περίπτωσης γνωστών ευρετικών αλγόριθμων (αρχικά κυρίως άπληστων). Σχεδιασμός poly-time αλγόριθμων που συμπεριφέρονται αποδεδειγμένα καλά για κάθε στιγμιότυπο. Λόγος προσέγγισης Αλγόριθμου Α για πρόβλημα Π: Προβλήματος Π: Θεωρία Υπολογισμού (Άνοιξη 2012) Προσεγγιστικοί Αλγόριθμοι 4

5 Κάλυμμα Συνόλου (Set Cover) Σύνολο στοιχείων Μη-κενά υποσύνολα του Κόστος υποσυνόλων: Ζητούμενο: κάλυμμα του S με ελάχιστο κόστος. Ελάχιστου κόστους συλλογή υποσυνόλων f = μέγιστο πλήθος συνόλων όπου ανήκει κάποιο στοιχείο. ΝΡ-δύσκολο πρόβλημα. Απληστία: καλύτερος προσεγγιστικός αλγόριθμος. Θεωρία Υπολογισμού (Άνοιξη 2012) Προσεγγιστικοί Αλγόριθμοι 5

6 Παράδειγμα f = μέγιστος βαθμός στοιχείου του S(= 4). S = {1, 2, 3, 4, 5, 6, 7, 8 } X 1 = {1, 2, 3}, X 2 = {2, 3, 4, 8}, X 3 = {3, 4, 5} X 4 = {4, 5, 6}, X 5 = {2, 3, 5, 6, 7}, X 6 = {1, 4, 7, 8} Βέλτιστη λύση: X 5, X 6 Θεωρία Υπολογισμού (Άνοιξη 2012) Προσεγγιστικοί Αλγόριθμοι 6

7 Άπληστος Αλγόριθμος Σύνολο U ακάλυπτων στοιχείων (αρχικά U = S). Επιλογή υποσυνόλου που ελαχιστοποιεί κόστος ανά ακάλυπτο στοιχείο που καλύπτει: Ενημέρωση U και συνέχεια ενόσω U δεν είναι κενό. Θεωρία Υπολογισμού (Άνοιξη 2012) Προσεγγιστικοί Αλγόριθμοι 7

8 Αντιπαράδειγμα εν πλησιάζει τη βέλτιστη λύση! Βέλτιστη λύση έχει κόστος 1+ε. Κόστος άπληστου αλγόριθμου: Παράδειγμα: χειρότερη περίπτωση άπληστου αλγόριθμου. Θεωρία Υπολογισμού (Άνοιξη 2012) Προσεγγιστικοί Αλγόριθμοι 8

9 Ανάλυση Έστω OPT κόστος βέλτιστης λύσης. Αρχή i-οστής επανάλ.: ακάλυπτα στοιχεία (κάθε προηγούμενη επανάληψη καλύπτει 1 στοιχείο). Βέλτιστη καλύπτει στοιχεία με μέσο κόστος Άπληστη επιλογή έχει κόστος / στοιχείο Αθροίζοντας για n επαναλήψεις, κόστος άπληστου αλγ. Λόγος προσέγγισης Αποδεικνύεται ότι δεν υπάρχει αλγόριθμος πολυωνυμικού χρόνου με καλύτερο λόγο προσέγγισης (εκτός αν NP (quasi)p). Θεωρία Υπολογισμού (Άνοιξη 2012) Προσεγγιστικοί Αλγόριθμοι 9

10 Γενική Προσέγγιση ιατυπώνουμε το πρόβλημα ως Ακέραιο Γραμμικό Πρόγραμμα (IP). Set Cover IP: «Χαλαρώνουμε» το IP σε Γραμμικό Πρόγραμμα (LP). Set Cover LP: Integrality gap: Θεωρία Υπολογισμού (Άνοιξη 2012) Προσεγγιστικοί Αλγόριθμοι 10

11 Γενική Προσέγγιση Χρησιμοποιούμε τη βέλτιστη λύση του LP ή/και ιδιότητες της για να κατασκευάσουμε (σε πολυωνυμικό χρόνο) εφικτή λύση για το IP και να αναλύσουμε το λόγο προσέγγισης. «Στρογγυλοποίηση» βέλτιστης λύσης LP: (deterministic και) randomized rounding. υϊκότητα και χρέωση κόστους σε dual variables: dual fitting. υϊκότητα και complementary slackness: primal-dual. Ανάλυση (προβλήματα ελαχιστοποίησης): Άνω φράγμα στο κόστος εφικτής λύσης. Κάτω φράγμα στο κόστος βέλτιστης λύσης: βέλτιστη λύση LP ή εφικτή λύση για το δυϊκό. Λόγος προσέγγισης integrality gap. Μέθοδος δίνει (συχνά καλύτερο) άνω φράγμα στο λόγο προσέγγισης για κάθε συγκεκριμένο instance. Θεωρία Υπολογισμού (Άνοιξη 2012) Προσεγγιστικοί Αλγόριθμοι 11

12 Set Cover: Στρογγυλοποίηση Έστω x βέλτιστη λύση LP με κόστος OPT Επιλέγουμε κάθε σύνολο j με x j 1/f Ηλύσημαςείναιεφικτή: στοιχείο i, αντίστοιχος περιορισμός έχει #μετ/τών f Αφού άθροισμα 1, τουλάχιστον μία μετ/τή έχει τιμή 1/f Κάτω φράγμα: Κόστος βέλτιστης (ακέραιης) λύσης OPT Άνω φράγμα: Στρογγυλοποίηση αυξάνει τιμές μετ/των κατά παράγοντα f Κόστος εφικτής λύσης f OPT Λόγος προσέγγισης f Λόγος προσέγγισης 2 για vertex cover. Θεωρία Υπολογισμού (Άνοιξη 2012) Προσεγγιστικοί Αλγόριθμοι 12

13 Set Cover: Randomized Rounding Έστω x βέλτιστη λύση LP με κόστος OPT Επιλέγουμε κάθε σύνολο j ανεξάρτητα, με πιθανότητα x j Επαναλαμβάνουμε cln(n) φορές, σταθερά c 2 Ηλύσημαςείναιεφικτή (με μεγάλη πιθανότητα): στοιχείο i, πιθανότητα να μην καλυφθεί το i 1/n c Πιθανότητα να υπάρχει στοιχείο ακάλυπτο 1/n c 1 Κάτω φράγμα: Κόστος βέλτιστης (ακέραιης) λύσης OPT Θεωρία Υπολογισμού (Άνοιξη 2012) Προσεγγιστικοί Αλγόριθμοι 13

14 Set Cover: Randomized Rounding Έστω x βέλτιστη λύση LP με κόστος OPT Επιλέγουμε κάθε σύνολο j ανεξάρτητα, με πιθανότητα x j Επαναλαμβάνουμε cln(n) φορές, σταθερά c 2 Άνω φράγμα (στο αναμενόμενο κόστος μιας εφικτής λύσης): Αναμενόμενο κόστος «λύσης» (μπορεί μη εφικτή) c ln(n) OPT Αναμενόμενο κόστος εφικτής λύσης c ln(n) OPT / Pr[λύση εφικτή] Λόγος προσέγγισης 2c ln(n) Μετατροπή του αλγόριθμου σε ντετερμινιστικό (derandomization) με την μέθοδο των conditional probabilities. Θεωρία Υπολογισμού (Άνοιξη 2012) Προσεγγιστικοί Αλγόριθμοι 14

15 Βασική Ιδέα (ελαχιστοποίηση) Ξεκινάμε από κάτω φράγμα στο κόστος βέλτιστης λύσης. Γενικά, κάτω φράγμα εκφράζεται σαν συνάρτηση κάποιων παραμέτρων του στιγμιότυπου εισόδου. LP-based αλγόριθμοι: κάτω φράγμα προκύπτει από βέλτιστη λύση στο LP relaxation ή εφικτή λύση στο δυϊκό. (Πολυωνυμικός) αλγόριθμος: εφικτή λύση με κόστος μιας συνάρτησης των παραμέτρων στο κάτω φράγμα. Για LP-based αλγόριθμους: Στρογγυλοποίηση βέλτιστης (κλασματικής) λύσης LP relaxation σε ακέραια λύση. «Μετάφραση» (μέσω complementary slackness) μιας εφικτής λύσης στο δυϊκό σε εφικτή ακέραια λύση για το πρωτεύον. Σύγκριση κάτω και άνω φράγματος δίνει (άνω φράγμα στο) λόγο προσέγγισης. Θεωρία Υπολογισμού (Άνοιξη 2012) Προσεγγιστικοί Αλγόριθμοι 15

16 MAX-CUT Μη κατευθυνόμενο γράφημα G(V, E, w) με m ακμές, κάθε ακμή {u, v} έχει βάρος w uv 0. Τομή: διαμέριση κορυφών (S, V \ S) με S V. Σύνολο ακμών που αφαίρεσή τους δημιουργεί τουλ. 2 συνεκτικές συνιστώσες. Βάρος τομής Πρόβλημα: υπολογισμός μιας τομής μέγιστου βάρους. NP-complete, αλγόριθμος με λόγο προσέγγισης [Goemans, Williamson, 94], randomized rounding σε SDP. NP-complete η προσέγγισή του με λόγο > 16/17! Θεωρία Υπολογισμού (Άνοιξη 2012)

17 MAX-CUT Άνω φράγμα στη βέλτιστη λύση: συνολικό βάρος ακμών W. (Απλός) αλγόριθμος: κάθε κορυφή u εντάσσεται στο S ανεξάρτητα με πιθανότητα 1/2 (διαφορετικά στο V \ S). Χ βάρος ακμών στην τομή (S, V \ S) (τυχαία μεταβλητή). Ακμή {u, v} «διασχίζει» τομή (S, V \ S) με πιθανότητα 1/2. Αναμενόμενο βάρος ακμών στην τομή (S, V \ S): Ε[Χ] = W/2 (γραμμικότητα μέσης τιμής). Λόγος προσέγγισης 1/2. Μετατροπή σε ντετερμινιστικό με conditional probabilities. Ποιος είναι ο αντίστοιχος ντετερμινιστικός αλγόριθμος; Γενίκευση για MAX-k-CUT, λόγος προσέγγισης 1 1/k. Θεωρία Υπολογισμού (Άνοιξη 2012) Προσεγγιστικοί Αλγόριθμοι 17

18 MAX-SAT και MAX-k-SAT ΜΑΧ-k-SAT: Λογικές μεταβλητές p 1,, p n Όροι C 1,, C m με βάρη w 1,, w m Κάθε όρος είναι μια διάζευξη k μετ/τών ή αρνήσεών τους. Στόχος: αποτίμηση μεταβλητών που ικανοποιεί όρους με μέγιστο συνολικό βάρος. MAX-SAT (χωρίς περιορισμό στο #literals κάθε όρου): Κάθε όρος είναι μια διάζευξη μιας ή περισσότερων μετ/τών ή αρνήσεών τους. MAX-SAT και MAX-k-SAT, k 2, είναι NP-complete προβλήματα. MAX-3-SAT έχει λόγο προσέγγισης 7/8 (εκτός αν P = NP)! MAX-k-SAT έχει λόγο προσέγγισης 1 2 k MAX-SAT έχει λόγο προσέγγισης 3/4 Θεωρία Υπολογισμού (Άνοιξη 2012) Προσεγγιστικοί Αλγόριθμοι 18

19 MAX-SAT και MAX-k-SAT: (Απλοϊκό) Randomized Rounding μεταβλητή p i τίθεται στο 1 ανεξάρτητα, με πιθανότητα 1/2 (Κάθε) λύση είναι εφικτή. Άνω φράγμα για βέλτιστη λύση: συνολικό βάρος W των όρων. Κάτω φράγμα στο βάρος της λύσης μας: Έστω p, 0 < p < 1, τ.ω. όρο C j, Pr[C j satisfied] p Λόγω γραμμικότητας μέσης τιμής, συνολικό βάρος λύσης p W MAX-k-SAT: όρο C j, Pr[C j satisfied] = 1 2 k Λόγος προσέγγισης 1 2 k MAX-SAT: όρο C j, Pr[C j satisfied] 1/2, αφού C j 1 Λόγος προσέγγισης 1/2 Derandomization με μέθοδο conditional probabilities. Θεωρία Υπολογισμού (Άνοιξη 2012) Προσεγγιστικοί Αλγόριθμοι 19

20 MAX-SAT: Randomized Rounding Χρειαζόμαστε καλύτερο άνω φράγμα στη βέλτιστη λύση! ιατύπωση ως IP και «χαλάρωση» σε LP. Έστω (x, z) βέλτιστη λύση LP με βάρος μεταβλητή p i τίθεται στο 1 ανεξάρτητα, με πιθανότητα x i Άνω φράγμα για βέλτιστη λύση: OPT Κάτω φράγμα στο βάρος της λύσης μας: Έστω p, 0 < p < 1, τ.ω. όρο C j, C j = k j, Pr[C j satisfied] p z j Λόγω γραμμικότητας μέσης τιμής, συνολικό βάρος λύσης p OPT Θεωρία Υπολογισμού (Άνοιξη 2012) Προσεγγιστικοί Αλγόριθμοι 20

21 MAX-SAT: Randomized Rounding μεταβλητή p i τίθεται στο 1 ανεξάρτητα, με πιθανότητα x i Έστω p, 0 < p < 1, τ.ω. όρο C j, C j = k j, Pr[C j satisfied] p z j Θεωρία Υπολογισμού (Άνοιξη 2012) Προσεγγιστικοί Αλγόριθμοι 21

22 MAX-SAT: Randomized Rounding μεταβλητή p i τίθεται στο 1 ανεξάρτητα, με πιθανότητα x i Έστω p, 0 < p < 1, τ.ω. όρο C j, C j = k j, Pr[C j satisfied] p z j Πιο προσεκτική ανάλυση: Κάτω φράγμα στο βάρος της λύσης μας: (1 1/e) OPT Λόγος προσέγγισης 1 1/e Θεωρία Υπολογισμού (Άνοιξη 2012) Προσεγγιστικοί Αλγόριθμοι 22

23 MAX-SAT: Συνδυασμένο Randomized Rounding «Απλοϊκό» rand. rounding: LP-based rand. rounding: Συμπληρωματική συμπεριφορά: «απλοϊκό» καλύτερο για μεγάλους όρους, LP-based καλύτερο για μικρούς όρους! Επιστρέφουμε την καλύτερη από τις λύσεις των δύο αλγόριθμων. Έστω W 1 και W 2 αναμενόμενο βάρος από «απλοϊκό» και LP-based. Αναμενόμενο βάρος λύσης: Ε[max(W 1, W 2 )] E[(W 1 +W 2 )/2] Κάθε όρος C j συνεισφέρει στο E[(W 1 +W 2 )/2] βάρος τουλάχιστον: Από γραμμικότητα μέσης τιμής, αναμενόμενο βάρος λύσης 3OPT/4 Λόγος προσέγγισης 3/4 Θεωρία Υπολογισμού (Άνοιξη 2012) Προσεγγιστικοί Αλγόριθμοι 23

24 MAX-SAT: Συνδυασμένο Randomized Rounding Γραφική απόδειξη ότι Θεωρία Υπολογισμού (Άνοιξη 2012) Προσεγγιστικοί Αλγόριθμοι 24

25 Set Cover: Άπληστος Αλγόριθμος Σύνολο U ακάλυπτων στοιχείων (αρχικά U = S). Επιλογή υποσυνόλου που ελαχιστοποιεί κόστος ανά ακάλυπτο στοιχείο που καλύπτει: Ενημέρωση U και συνέχεια ενόσω U δεν είναι κενό. Θεωρία Υπολογισμού (Άνοιξη 2012) Προσεγγιστικοί Αλγόριθμοι 25

26 Set Cover: Dual Fitting Set Cover LP και το δυϊκό του. «Οικονομική» ερμηνεία του δυϊκού: Κάθε στοιχείο i «πληρώνει» y i για να καλυφθεί. Μεγιστοποίηση πληρωμών, υπό την προϋπόθεση ότι κανένα σύνολο δεν πληρώνεται περισσότερο από όσο κοστίζει. Ισχυρή δυϊκότητα: κόστος λύσης = άθροισμα πληρωμών. Επιμερίζουμε κόστος άπληστου αλγόριθμου στα στοιχεία: στοιχείο i, z i = κόστος κάλυψης i από άπληστο αλγόριθμο. Aν επιλογή X j κάλυψε n j στοιχεία, μεταξύ αυτών και το i, z i = w j / n j Κόστος άπληστου αλγόριθμου = άθροισμα των z i Θεωρία Υπολογισμού (Άνοιξη 2012) Προσεγγιστικοί Αλγόριθμοι 26

27 Set Cover: Dual Fitting Επιμερίζουμε κόστος άπληστου αλγόριθμου στα στοιχεία: στοιχείο i, z i = κόστος κάλυψης i από άπληστο αλγόριθμο. Aν επιλογή X j κάλυψε n j στοιχεία, μεταξύ αυτών και το i, z i = w j / n j Κόστος άπληστου αλγόριθμου = άθροισμα των z i Θδο y i = z i / H n είναι εφικτή λύση για το δυϊκό. Αφού OPT άθροισμα των y i, λόγος προσέγγισης H n Έστω αυθαίρετο σύνολο X j, X j = k j. Αριθμούμε στοιχεία Χ j = {1, 2,..., k j } με τη σειρά που καλύπτονται. λ(i) = #ακάλυπτα στοιχεία του X j όταν καλύπτεται το i k j i + 1. Άπληστο κριτήριο: i X j, z i w j / λ(i) w j / (k j i+1) Συνεπώς: Θεωρία Υπολογισμού (Άνοιξη 2012) Προσεγγιστικοί Αλγόριθμοι 27

28 Set Cover: Dual Rounding Set Cover LP και το δυϊκό του. Βέλτιστη λύση y στο δυϊκό με «κέρδος» OPT. tight δυϊκό περιορισμό j, επιλέγουμε το σύνολο X j στο cover. Εφικτή λύση: στοιχείο i ακάλυπτο: κανένας περιορισμός με y i δεν είναι tight! Άτοπο: αυξάνουμε (λίγο) το y i, χωρίς παραβίασης περιορισμών, και βελτιώνουμε «κέρδος» δυϊκής λύσης. Κάτω φράγμα για βέλτιστη λύση: OPT = άθροισμα των y i Θεωρία Υπολογισμού (Άνοιξη 2012) Προσεγγιστικοί Αλγόριθμοι 28

29 Set Cover: Dual Rounding Βέλτιστη λύση y στο δυϊκό με «κέρδος» OPT. tight δυϊκό περιορισμό j, επιλέγουμε το σύνολο X j στο cover. Κάτω φράγμα για βέλτιστη λύση: OPT = άθροισμα των y i Άνω φράγμα στο κόστος της λύσης μας: Λόγος προσέγγισης f Άσκηση: νδο για κάθε στιγμιότυπο, κόστος dual rounding κόστος deterministic rounding. Θεωρία Υπολογισμού (Άνοιξη 2012) Προσεγγιστικοί Αλγόριθμοι 29

30 Set Cover: Primal-Dual Set Cover LP και το δυϊκό του. Αντί βέλτιστης dual λύσης, μια (κατάλληλη) εφικτή λύση που «πληρώνει» για το primal κόστος (βλ. complementary slackness). Συνθήκες πρωτεύοντος (α-χαλαρωμένες): Επιλογή μόνο α-tight συνόλων. Συνθήκες δυϊκού (β-χαλαρωμένες): Κάθε στοιχείο που «πληρώνει», καλύπτεται το πολύ β φορές. Κάθε τέτοιο ζεύγος (x, y) δίνει λόγο προσέγγισης αβ. Θεωρία Υπολογισμού (Άνοιξη 2012) Προσεγγιστικοί Αλγόριθμοι 30

31 Set Cover: Primal-Dual Συνθήκες πρωτεύοντος: Επιλογή μόνο tight συνόλων. Συνθήκες δυϊκού (f-χαλαρωμένες): Κάθε στοιχείο καλύπτεται το πολύ f φορές. Κάθε τέτοιο ζεύγος (x, y) δίνει λόγο προσέγγισης f Θεωρία Υπολογισμού (Άνοιξη 2012) Προσεγγιστικοί Αλγόριθμοι 31

32 Set Cover: Primal-Dual Εφικτή λύση: Συνθήκη τερματισμού: δεν υπάρχουν ακάλυπτα στοιχεία. Κάτω φράγμα για βέλτιστη λύση: άθροισμα των y i Άνω φράγμα στο κόστος της λύσης μας: Λόγος προσέγγισης f Θεωρία Υπολογισμού (Άνοιξη 2012) Προσεγγιστικοί Αλγόριθμοι 32

33 Set Cover: Primal-Dual Λόγος προσέγγισης = f Θεωρία Υπολογισμού (Άνοιξη 2012) Προσεγγιστικοί Αλγόριθμοι 33

34 Χωροθέτηση Υπηρεσιών (Facility Location) Μετρικός χώρος (μη αρνητικές συμμετρικές αποστάσεις d(i, j) που ικανοποιούν την τριγωνική ανισότητα). Θέσεις υπηρεσιών F με κόστος εγκατάστασης f i, i F. Θέσεις πελατών D, και αποστάσεις d(j, i), j D, i F. Θεωρία Υπολογισμού (Άνοιξη 2012) Προσεγγιστικοί Αλγόριθμοι 34

35 Χωροθέτηση Υπηρεσιών (Facility Location) Θέσεις εγκατάστασης υπηρεσιών F * F με ελάχιστο κόστος εγκατάστασης + κόστος εξυπηρέτησης Θεωρία Υπολογισμού (Άνοιξη 2012) Προσεγγιστικοί Αλγόριθμοι 35

36 Εφαρμογές Έχει μελετηθεί εκτενώς (π.χ. [Mirchandani, Francis, 90]): Χωροθέτηση υπηρεσιών κοινής ωφέλειας: σχολεία, νοσοκομεία, κλπ. Εταιρικός σχεδιασμός: χωροθέτηση εργοστασίων, αποθηκών, καταστημάτων, κλπ. Πρόσφατο ενδιαφέρον (π.χ. [Shmoys, 00], [Guha, 00]): Σχεδιασμός δικτύων: χωροθέτηση ενεργών συσκευών. Ομαδοποίηση δεδομένων: k-ενδιάμεσων (k-median). Μεγάλα και δυναμικά μεταβαλλόμενα στιγμιότυπα. Θεωρία Υπολογισμού (Άνοιξη 2012) Προσεγγιστικοί Αλγόριθμοι 36

37 Προσεγγισιμότητα Λόγος προσέγγισης (πολυων. χρ.) [Guha, Khuller, SODA 98]. Πολυωνυμικός αλγόριθμος με λόγο προσέγγισης 1.52 [Mahdian, Ye, Zhang, APPROX 02]. Πολυωνυμικός αλγόριθμος με λόγο προσέγγισης 1.5 [Byrka, APPROX 07]. Πολυωνυμικός αλγόριθμος με λόγο προσέγγισης [Li, ICALP 12]. Τεχνικές: τοπική αναζήτηση, primal-dual, στρογγυλοποίηση λύσεων ΓΠ, και συνδυασμοί τους. Θεωρία Υπολογισμού (Άνοιξη 2012) Προσεγγιστικοί Αλγόριθμοι 37

38 Linear Programming Relaxation ιατυπώνουμε αντίστοιχο IP και LP relaxation: ιατυπώνουμε δυϊκό του LP relaxation: Θεωρία Υπολογισμού (Άνοιξη 2012) Προσεγγιστικοί Αλγόριθμοι 38

39 Ερμηνεία υϊκού α j : τι πληρώνει ηαπαίτησηj για να «ικανοποιηθεί». d ij : κόστος σύνδεσης σε facility i. β ij : συνεισφορά στο κόστος του facility i. Για κάθε facility i, συνολική συνεισφορά δεν ξεπερνά κόστος f i. Primal complementary slackness συνθήκες: Αν απαίτηση j συνδέεται σε facility i, τότε j συνεισφέρει στο κόστος f i Αν facility i ανοίγει, τότε η συνολική συνεισφορά είναι ίση με κόστος f i Dual complementary slackness συνθήκες: Απαίτηση j δεν συνεισφέρει σε facility που δεν χρησιμοποιεί (πλήρως) Όποιος πληρώνει εξυπηρετείται Θεωρία Υπολογισμού (Άνοιξη 2012) Προσεγγιστικοί Αλγόριθμοι 39

40 Rounding Βέλτιστες λύσεις (x, y) και (α, β) για primal και dual. Κάτω φράγμα στο κόστος βέλτιστης λύσης: κόστος OPT της (x, y). απαίτ. j, N(j) = { i F: x ij > 0 } (γειτονικά facilities του j). Ενόσω υπάρχουν απαιτήσεις που δεν εξυπηρετούνται: Έστω j απαίτηση που δεν εξυπηρετείται με ελάχιστο α j. Άνοιξε φθηνότερη facility i N(j), και εξυπηρέτησε από αυτή κάθε μη εξυπηρετούμενη απαίτηση k με N(k) N(j). Αλγόριθμος παράγει εφικτή λύση. Συνολικό κόστος για άνοιγμα facilities Απαίτ. j ανοίγει facility i με ελάχιστο κόστος στο N(j): Αν απαιτ. j και j ανοίγουν facilities i και i, N(j) N(j ) =. Θεωρία Υπολογισμού (Άνοιξη 2012) Προσεγγιστικοί Αλγόριθμοι 40

41 Rounding Συνολικό κόστος εξυπηρέτησης Απαίτηση j ανοίγει facility i. Κόστος σύνδεσης j d ij α j d ij α j : x ij > 0, και primal complementary slackness. Μη εξυπηρετούμενη απαίτ. k με N(k) N(j), που συνδέεται στο i. Facility q N(k) N(j). Κόστος σύνδεσης k: Επιλογή ελάχιστου α j. Λόγος προσέγγισης 4. i q j d ij a j Θεωρία Υπολογισμού (Άνοιξη 2012) Προσεγγιστικοί Αλγόριθμοι 41 k

42 Randomized Rounding Μέσο κόστος σύνδεσης απαίτησης j: Ενόσω υπάρχουν απαιτήσεις που δεν εξυπηρετούνται: Έστω j απαίτηση που δεν εξυπηρετείται με ελάχιστο α j +D j. Άνοιξε facility i N(j) με πιθανότητα x ij, και εξυπηρέτησε από αυτή κάθε μη εξυπηρετούμενη απαίτηση k με N(k) N(j). Αναμενόμενο κόστος για άνοιγμα facilities Αναμεν. κόστος εξυπηρέτησης Απαίτηση j ανοίγει facility. Αναμενόμενο κόστος σύνδεσης j = D j Μη εξυπηρετούμενη απαίτ. k με N(k) N(j) : Facility q N(k) N(j). Αναμενόμενο κόστος σύνδεσης k: Λόγος προσέγγισης 3. Γιατί δεν ανοίγουμε κάθε facility ανεξάρτητα με πιθανότητα y i ; Θεωρία Υπολογισμού (Άνοιξη 2012) Προσεγγιστικοί Αλγόριθμοι 42

43 Primal-Dual Έστω μια εφικτή λύση (α, β) για dual. Κάτω φράγμα στο κόστος βέλτιστης λύσης: άθροισμα των α j. απαίτ. j, N(j) = { i F: α j d ij } (γειτονικά facilities του j). fac. i, N(i) = { j D: α j d ij } (γειτονικές απαιτήσεις του i). Θεωρία Υπολογισμού (Άνοιξη 2012) Προσεγγιστικοί Αλγόριθμοι 43

44 S: μη εξυπηρετούμενες απαιτήσεις Τ: προσωρινά ανοικτές facilities Primal-Dual N j i β ij N i u j β ij d ij diu d ij qj j a j ik i t qj q d pj p ik k d iv v

45 Primal-Dual S: μη εξυπηρετούμενες απαιτήσεις Τ: προσωρινά ανοικτές facilities O: facilities που ανοίγει ο αλγόριθμος C(i): σύνολο απαιτήσεων που συνεισφέρουν σε κόστος fac i Τα σύνολα C(i), i O, είναι ξένα μεταξύ τους! Χρόνος εκτέλεσης Ο(mlogm). Θεωρία Υπολογισμού (Άνοιξη 2012) Προσεγγιστικοί Αλγόριθμοι 45

46 Primal-Dual: «Μείωση» ΤσεΟ Στο τέλος του αλγόριθμου: j = 1,, n+1, α j = 2, facility 1 στο Τ. j = n+2,, 2n, α j = 3, facilities 2,, n στο T. Κόστος για facilities στο Τ = n(n+1)+n 1. Αλλά OPT = 5n 1. Τελικά μόνο μία facility στο O. Συνολικό κόστος αλγόριθμου 5n.

47 Primal-Dual: Παράδειγμα Στο τέλος του αλγόριθμου: α 1 = 1+ε, β 11 = β 12 = ε. j 2, α j = 1+nε/(n-1), β j1 = β j2 = nε/(n-1). OPT = άθροισμα των α j = n + (n+1)ε. Αλγόριθμος μπορεί να ανοίξει facility 1, με κόστος 3n 2+ε. Λόγος προσέγγισης > 3 δ, δ > 0. n c 1 c 2 f 1 ε f 2 n ε c 3 Θεωρία Υπολογισμού (Άνοιξη 2012) Προσεγγιστικοί Αλγόριθμοι 47 c n

48 Primal-Dual: Ανάλυση Συνολικό κόστος για facilities i O και σύνδεση των απαιτήσεων σε κάθε C(i) στο αντίστοιχο facility i: Τα σύνολα C(i), i O, είναι ξένα μεταξύ τους. Θα δείξουμε ακόμη ότι: Άρα: Λόγος προσέγγισης = 3. Facility κόστος «πληρώνεται» 1-1 με OPT! Θεωρία Υπολογισμού (Άνοιξη 2012) Προσεγγιστικοί Αλγόριθμοι 48

49 Primal-Dual: Ανάλυση απαίτηση k Z, υπάρχει facility i O: d(o, k) = d ik 3α k Αύξηση α k σταματά όταν k γείτονας προσωρινά ανοικτού fac. q Τ. Συνεπώς: d kq α k Αφού k Z, υπάρχει facility i O και απαίτηση j: β ij > 0 και β qj > 0. Συνεπώς: d ij α j και d qj α j Κόστος σύνδεσης k: Μένει να δείξουμε ότι α j α k : t q = χρονική στιγμή που q προστέθηκε στο Τ. Αύξηση α k σταματά όχι αργότερα από t q : t q α k j d ij a j i q Επειδή β qj > 0, t q = α j Θεωρία Υπολογισμού (Άνοιξη 2012) Προσεγγιστικοί Αλγόριθμοι 49 k

50 Μη-Προσεγγισιμότητα Προβλήματα στο ΝΡ που η προσέγγιση τους είναι ΝΡ-δύσκολη! Πλανοδιος Πωλητής χωρίς τριγωνική ανισότητα, μέγιστη κλίκα / σύνολο ανεξαρτησίας, χρωματικός αριθμός, Πρόβλημα Πλανόδιου Πωλητή χωρίς Τριγωνική Ανισότητα (ΠΠΠ): n σημεία και συμμετρικές αποστάσεις (αλλά όχι metric). Ζητούμενο: περιοδεία ελάχιστου συνολικού μήκους. Για κάθε γ, γ-προσέγγιση ΠΠΠ είναι ΝΡ-δύσκολη [Sahni και Gonzalez, 1976]. Κάθε γ-προσεγγιστικός αλγόριθμος για ΠΠΠ λύνει πρόβλημα κύκλου Hamilton! Θεωρία Υπολογισμού (Άνοιξη 2012) Προσεγγιστικοί Αλγόριθμοι 50

51 Απόδειξη Γράφημα G(V, E): υπάρχει κύκλος Hamilton στο G; Αναγωγή σε γ-προσέγγιση ΠΠΠ (για οποιοδήποτε γ > 1): Κορυφές σημεία. Αποστάσεις: Κύκλος Hamilton στο G περιοδεία μήκους V Όχι κύκλος Hamilton στο G περιοδεία μήκους γ V + V 1 > γ V γ-προσεγγιστικός αλγόριθμος για ΠΠΠ: Κύκλος Hamilton στο G περιοδεία μήκους γ V Αποφασίζει (σωστά) αν υπάρχει κύκλος Hamilton στο G. Θεωρία Υπολογισμού (Άνοιξη 2012) Προσεγγιστικοί Αλγόριθμοι 51

52 Επισκόπηση Περιοχής Σχήματα προσέγγισης: λόγος (1+ε), για κάθε ε > 0. Σακίδιο, δρομολόγηση εργασιών, γεωμετρικά προβλήματα, υναμικός προγραμματισμός και διακριτοποίηση. Σταθερός λόγος προσέγγισης. MAX-SNP-δυσκολία: ΝΡ-δύσκολο να υπάρξει σχήμα PCP Θεώρημα: NP = PCP(log n, 1). Προβλήματα σε μετρικούς χώρους: ΠΠΠ-ΤΑ, facility location, δέντρο Steiner, Προβλήματα σε γραφήματα: κάλυμμα κορυφών, μέγιστη τομή, feedback vertex set, Προβλήματα ικανοποιησιμότητας: Max-k-SAT. Θεωρία Υπολογισμού (Άνοιξη 2012) Προσεγγιστικοί Αλγόριθμοι 52

53 Επισκόπηση Περιοχής Τεχνικές για σταθερό λόγο προσέγγισης: Τοπική αναζήτηση μέθοδος απληστίας. Primal-dual μέθοδος. Dual-fitting μέθοδος. Relaxation του Ακέραιο Προγράμματος σε Γραμμικό Πρόγραμμα, επίλυση, και τυχαίο στρογγύλεμα μη-ακέραιων λύσεων. Θεωρία Υπολογισμού (Άνοιξη 2012) Προσεγγιστικοί Αλγόριθμοι 53

54 Επισκόπηση Περιοχής Λογαριθμικός λόγος προσέγγισης. Ελάχιστο κάλυμμα συνόλων Άπληστος αλγόριθμος (dual-fitting) καλύτερος δυνατός. Αραιότερη τομή, γραμμικές διατάξεις, Εμβάπτιση μετρικών χώρων σε απλούστερους χώρους όπου προβλήματα λύνονται ευκολότερα. Πολυωνυμικός λόγος προσέγγισης. Μέγιστη κλίκα / σύνολο ανεξαρτησίας, χρωματισμός γραφημάτων, PCP Θεώρημα: για κάθε ε > 0, προσέγγιση μέγιστης κλίκας σε λόγο V 1 ε είναι ΝΡ-δύσκολο πρόβλημα! Θεωρία Υπολογισμού (Άνοιξη 2012) Προσεγγιστικοί Αλγόριθμοι 54

Προσεγγιστικοί Αλγόριθμοι βασισμένοι σε Γραμμικό Προγραμματισμό

Προσεγγιστικοί Αλγόριθμοι βασισμένοι σε Γραμμικό Προγραμματισμό Προσεγγιστικοί Αλγόριθμοι βασισμένοι σε Γραμμικό Προγραμματισμό ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γενική Προσέγγιση ιατυπώνουμε το πρόβλημα

Διαβάστε περισσότερα

Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα

Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια

Διαβάστε περισσότερα

για NP-Δύσκολα Προβλήματα

για NP-Δύσκολα Προβλήματα Προσεγγιστικοί Αλγόριθμοι για NP-Δύσκολα Προβλήματα Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

Διαβάστε περισσότερα

Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα

Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αντιμετώπιση NP- υσκολίας Αν P NP, όχι αλγόριθμος

Διαβάστε περισσότερα

Αλγόριθµοι Προσέγγισης για NP- ύσκολα Προβλήµατα

Αλγόριθµοι Προσέγγισης για NP- ύσκολα Προβλήµατα Αλγόριθµοι Προσέγγισης για NP- ύσκολα Προβλήµατα Παύλος Σπυράκης Πανεπιστήµιο Πατρών Τοµέας Θεµελιώσεων και Εφαρµογών της Επιστήµης των Υπολογιστών Ερευνητικό Ακαδηµαϊκό Ινστιτούτο Τεχνολογίας Υπολογιστών

Διαβάστε περισσότερα

Προσεγγιστικοί Αλγόριθμοι

Προσεγγιστικοί Αλγόριθμοι Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. http://xkcd.com/287/ Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. Πως μπορούμε να αντιμετωπίσουμε το γεγονός ότι είναι απίθανη(;)

Διαβάστε περισσότερα

Υπολογιστική Πολυπλοκότητα

Υπολογιστική Πολυπλοκότητα Υπολογιστική Πολυπλοκότητα ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Πολυπλοκότητα Γιατί κάποια (επιλύσιμα) προβλήματα είναι δύσκολο

Διαβάστε περισσότερα

Πιθανοτικοί Αλγόριθμοι

Πιθανοτικοί Αλγόριθμοι Πιθανοτικοί Αλγόριθμοι ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πιθανοτικοί Αλγόριθμοι Πιθανοτικός

Διαβάστε περισσότερα

υναμικός Προγραμματισμός

υναμικός Προγραμματισμός υναμικός Προγραμματισμός ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιωνυμικοί Συντελεστές ιωνυμικοί

Διαβάστε περισσότερα

Κεφάλαιο 8. NP και Υπολογιστική Δυσεπιλυσιμότητα. Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Κεφάλαιο 8. NP και Υπολογιστική Δυσεπιλυσιμότητα. Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. Κεφάλαιο 8 NP και Υπολογιστική Δυσεπιλυσιμότητα Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 πρόβλημα αναζήτησης (search problem) Ένα πρόβλημα αναζήτησης είναι ένα πρόβλημα στο

Διαβάστε περισσότερα

NP-πληρότητα. Λεωνίδας Παληός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων

NP-πληρότητα. Λεωνίδας Παληός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων NP-πληρότητα Λεωνίδας Παληός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων Πολυωνυμικός μετασχηματισμός Ένας πολυωνυμικός μετασχηματισμός από την L 1 Σ 1 * στην L 2 Σ 2 * είναι μια συνάρτηση

Διαβάστε περισσότερα

υναμικός Προγραμματισμός

υναμικός Προγραμματισμός υναμικός Προγραμματισμός ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιακριτό Πρόβλημα Σακιδίου ίνονται n αντικείμενα και σακίδιο μεγέθους Β. Αντικείμενο

Διαβάστε περισσότερα

Πιθανότητες και Αλγόριθμοι

Πιθανότητες και Αλγόριθμοι Πιθανοτικοί Αλγόριθμοι Πιθανότητες και Αλγόριθμοι Διδάσκοντες: E. Ζάχος, Α. Παγουρτζής, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο

Διαβάστε περισσότερα

Δυναμικός Προγραμματισμός

Δυναμικός Προγραμματισμός Τρίγωνο του Pascal Δυναμικός Προγραμματισμός Διωνυμικοί συντελεστές Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός

Γραμμικός Προγραμματισμός Μια εταιρεία παράγει κέικ δύο κατηγοριών, απλά και πολυτελείας: Ένα απλό κέικ αποδίδει κέρδος 1 ευρώ. Ένα κέικ πολυτελείας αποδίδει κέρδος 6 ευρώ. Η καθημερινή ζήτηση του απλού κέικ είναι 200. Η καθημερινή

Διαβάστε περισσότερα

Μη Ντετερμινισμός και NP-Πληρότητα

Μη Ντετερμινισμός και NP-Πληρότητα Μη Ντετερμινισμός και P-Πληρότητα ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μη Ντετερμινιστικές Μηχανές Turing Μη ντετερμινιστική Μηχ. Turing (ΝTM)

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ Ενότητα 13: Πολυωνυμική αναγωγή Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

Επίπεδα Γραφήματα : Προβλήματα και Υπολογιστική Πολυπλοκότητα

Επίπεδα Γραφήματα : Προβλήματα και Υπολογιστική Πολυπλοκότητα Αλγόριθμοι πολυωνυμικού χρόνου Ένας αλγόριθμος πολυωνυμικού χρόνου έχει χρόνο εκτέλεσης όπου είναι μία (θετική) σταθερά Κλάση πολυπλοκότητας : περιλαμβάνει τα προβλήματα που επιδέχονται λύση σε πολυωνυμικό

Διαβάστε περισσότερα

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

Διαβάστε περισσότερα

Ακέραιος Γραµµικός Προγραµµατισµός

Ακέραιος Γραµµικός Προγραµµατισµός Μέγιστο Ανεξάρτητο Σύνολο Μέγιστο Ανεξάρτητο Σύνολο Εφαρµογές : Παράλληλη εκτέλεση εργασιών Χρονοπρογραµµατισµός (scheduling) Ανάθεση πόρων (resource allocation) Πρόβληµα k-ϐασιλισσών Τηλεπικοινωνίες Μέγιστο

Διαβάστε περισσότερα

Κεφάλαιο 1. Πέντε Αντιπροσωπευτικά Προβλήματα. Έκδοση 1.4, 30/10/2014. Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Κεφάλαιο 1. Πέντε Αντιπροσωπευτικά Προβλήματα. Έκδοση 1.4, 30/10/2014. Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. Κεφάλαιο 1 Πέντε Αντιπροσωπευτικά Προβλήματα Έκδοση 1.4, 30/10/2014 Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 1.2 Πέντε Αντιπροσωπευτικά Προβλήματα 1. Χρονοπρογραμματισμός Διαστημάτων

Διαβάστε περισσότερα

Τομές Γραφήματος. Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών. Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα

Τομές Γραφήματος. Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών. Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα Τομές Γραφήματος Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα και 12 26 20 10 9 7 17 14 4 Τομές Γραφήματος Γράφημα (μη κατευθυνόμενο)

Διαβάστε περισσότερα

Chapter 7, 8 : Time, Space Complexity

Chapter 7, 8 : Time, Space Complexity CSC 314: Switching Theory Chapter 7, 8 : Time, Space Complexity 12 December 2008 1 1 Υπολογίσιμα και Εφικτά Υπολογίσιμα Προβλήματα Είδαμε ότι 1. Οτιδήποτεμπορούμεναπεριγράψουμεμεένααλγόριθμο μπορεί να

Διαβάστε περισσότερα

Ασυμπτωτικός Συμβολισμός

Ασυμπτωτικός Συμβολισμός Ασυμπτωτικός Συμβολισμός ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Πολυπλοκότητα Υπολογιστική πολυπλοκότητα αλγόριθμου Α: Ποσότητα

Διαβάστε περισσότερα

Θεωρία Αποφάσεων και Βελτιστοποίηση

Θεωρία Αποφάσεων και Βελτιστοποίηση Θεωρία Αποφάσεων και Βελτιστοποίηση http://www.di.uoa.gr/ telelis/opt.html Ορέστης Τελέλης telelis@di.uoa.gr Τµήµα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήµιο Αθηνών Θεωρία Αποφάσεων και Βελτιστοποίηση

Διαβάστε περισσότερα

max c 1 x 1 + c 2 x c n x n υπό a 11 x 1 + a 12 x a 1n x n b 1 a 21 x 1 + a 22 x a 2n x n b 2 a m1 x 1 + a m2 x a mn x n b m

max c 1 x 1 + c 2 x c n x n υπό a 11 x 1 + a 12 x a 1n x n b 1 a 21 x 1 + a 22 x a 2n x n b 2 a m1 x 1 + a m2 x a mn x n b m Υπολογιστικές Μέθοδοι στη Θεωρία Αποφάσεων Ενότητα 10 Εισαγωγή στον Ακέραιο Προγραμματισμό Αντώνης Οικονόμου Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Προπτυχιακό πρόγραμμα σπουδών 29 Φεβρουαρίου 2016 Προβλήματα

Διαβάστε περισσότερα

Πολυπλοκότητα. Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης. Απαιτούμενοι πόροι, π.χ. μνήμη, εύρος ζώνης. Προσπάθεια υλοποίησης

Πολυπλοκότητα. Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης. Απαιτούμενοι πόροι, π.χ. μνήμη, εύρος ζώνης. Προσπάθεια υλοποίησης Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης Απαιτούμενοι πόροι, π.χ. μνήμη, εύρος ζώνης Προσπάθεια υλοποίησης Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης Απαιτούμενοι

Διαβάστε περισσότερα

Υπολογιστικό Πρόβληµα

Υπολογιστικό Πρόβληµα Υπολογιστικό Πρόβληµα Μετασχηµατισµός δεδοµένων εισόδου σε δεδοµένα εξόδου. Δοµή δεδοµένων εισόδου (έγκυρο στιγµιότυπο). Δοµή και ιδιότητες δεδοµένων εξόδου (απάντηση ή λύση). Τυπικά: διµελής σχέση στις

Διαβάστε περισσότερα

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών έντρα ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο έντρα έντρο: πρότυπο ιεραρχικής δομής.

Διαβάστε περισσότερα

Πιθανότητες και Αλγόριθμοι

Πιθανότητες και Αλγόριθμοι Πιθανότητες και Αλγόριθμοι ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πιθανοτικοί Αλγόριθμοι Πιθανοτικός αλγόριθμος κάνει τυχαίες επιλογές και εξαρτά

Διαβάστε περισσότερα

Άπληστοι Αλγόριθμοι. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Άπληστοι Αλγόριθμοι. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Άπληστοι Αλγόριθμοι ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άπληστοι Αλγόριθμοι... για προβλήματα

Διαβάστε περισσότερα

Κλάση NP, NP-Complete Προβλήματα

Κλάση NP, NP-Complete Προβλήματα Κλάση NP, NP-Complete Προβλήματα Βαγγέλης ούρος douros@aueb.gr 1 11/6/2012 Αλγόριθμοι, Εαρινό Εξάμηνο 2012, Φροντιστήριο #14 Προβλήματα Απόφασης & Βελτιστοποίησης 2 Πρόβλημα Απόφασης: Κάθε πρόβλημα που

Διαβάστε περισσότερα

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Μαθηματική Επαγωγή ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Τεχνικές Απόδειξης Εξαντλητική

Διαβάστε περισσότερα

Chapter 7, 8 : Completeness

Chapter 7, 8 : Completeness CSC 314: Switching Theory Chapter 7, 8 : Completeness 19 December 2008 1 1 Αναγωγές Πολυωνυμικού Χρόνου Ορισμός. f: Σ * Σ * ονομάζεται υπολογίσιμη σε πολυνωνυμικό χρόνο αν υπάρχει μια πολυωνυμικά φραγμένη

Διαβάστε περισσότερα

Μοντελοποίηση προβληµάτων

Μοντελοποίηση προβληµάτων Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Θεωρία γράφων

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 15 Ιουνίου 2009 1 / 26 Εισαγωγή Η ϑεωρία

Διαβάστε περισσότερα

Άπληστοι Αλγόριθμοι. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Άπληστοι Αλγόριθμοι. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Άπληστοι Αλγόριθμοι ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άπληστοι Αλγόριθμοι... για προβλήματα

Διαβάστε περισσότερα

Λύσεις 4ης Σειράς Ασκήσεων

Λύσεις 4ης Σειράς Ασκήσεων Λύσεις 4ης Σειράς Ασκήσεων Άσκηση 1 Αναγάγουμε τν Κ 0 που γνωρίζουμε ότι είναι μη-αναδρομική (μη-επιλύσιμη) στην γλώσσα: L = {p() η μηχανή Turing Μ τερματίζει με είσοδο κενή ταινία;} Δοσμένης της περιγραφής

Διαβάστε περισσότερα

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων ημήτρης Φωτάκης ιακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 4 η Εργασία: Γενική Εικόνα Αντίστοιχη βαθμολογικά και ποιοτικά με την

Διαβάστε περισσότερα

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 1 Βελτιστοποίηση Στην προσπάθεια αντιμετώπισης και επίλυσης των προβλημάτων που προκύπτουν στην πράξη, αναπτύσσουμε μαθηματικά μοντέλα,

Διαβάστε περισσότερα

viii 20 Δένδρα van Emde Boas 543

viii 20 Δένδρα van Emde Boas 543 Περιεχόμενα Πρόλογος xi I Θεμελιώδεις έννοιες Εισαγωγή 3 1 Ο ρόλος των αλγορίθμων στις υπολογιστικές διαδικασίες 5 1.1 Αλγόριθμοι 5 1.2 Οι αλγόριθμοι σαν τεχνολογία 12 2 Προκαταρκτικές έννοιες και παρατηρήσεις

Διαβάστε περισσότερα

Γράφοι. Ένας γράφος ή αλλιώς γράφηµα αποτελείται απο. Εφαρµογές: Τηλεπικοινωνιακά και Οδικά ίκτυα, Ηλεκτρονικά Κυκλώµατα, Β.. κ.ά.

Γράφοι. Ένας γράφος ή αλλιώς γράφηµα αποτελείται απο. Εφαρµογές: Τηλεπικοινωνιακά και Οδικά ίκτυα, Ηλεκτρονικά Κυκλώµατα, Β.. κ.ά. Γράφοι Ένας γράφος ή αλλιώς γράφηµα αποτελείται απο πλευρές (ακµές) και κορυφές (κόµβους). Εφαρµογές: Τηλεπικοινωνιακά και Οδικά ίκτυα, Ηλεκτρονικά Κυκλώµατα, Β.. κ.ά. Graph Drawing 4 πιθανές αναπαραστάσεις

Διαβάστε περισσότερα

Κλάσεις Πολυπλοκότητας

Κλάσεις Πολυπλοκότητας Κλάσεις Πολυπλοκότητας Παύλος Εφραιμίδης pefraimi ee.duth.gr Κλάσεις Πολυπλοκότητας 1 Οι κλάσεις πολυπλοκότητας P και NP P: Polynomial ΗκλάσηP περιλαμβάνει όλα τα υπολογιστικά προβλήματα που μπορούν

Διαβάστε περισσότερα

βασικές έννοιες (τόμος Β)

βασικές έννοιες (τόμος Β) θεωρία γραφημάτων Παύλος Εφραιμίδης 1 περιεχόμενα βασικές έννοιες (τόμος Α) βασικές έννοιες (τόμος Β) 2 Θεωρία Γραφημάτων Βασική Ορολογία Τόμος Α, Ενότητα 4.1 Βασική Ορολογία Γραφημάτων Γράφημα Γ = (E,V)

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Κεφάλαιο 6. Μέθοδοι επίλυσης προβλημάτων ακέραιου προγραμματισμού

Κεφάλαιο 6. Μέθοδοι επίλυσης προβλημάτων ακέραιου προγραμματισμού Κεφάλαιο 6 Μέθοδοι επίλυσης προβλημάτων ακέραιου προγραμματισμού 1 Γραφική επίλυση Η γραφική μέθοδος επίλυσης μπορεί να χρησιμοποιηθεί μόνο για πολύ μικρά προβλήματα με δύο ή το πολύ τρεις μεταβλητές απόφασης.

Διαβάστε περισσότερα

Ασκήσεις στους Γράφους. 1 ο Σετ Ασκήσεων Βαθμός Μονοπάτια Κύκλος Euler Κύκλος Hamilton Συνεκτικότητα

Ασκήσεις στους Γράφους. 1 ο Σετ Ασκήσεων Βαθμός Μονοπάτια Κύκλος Euler Κύκλος Hamilton Συνεκτικότητα Ασκήσεις στους Γράφους 1 ο Σετ Ασκήσεων Βαθμός Μονοπάτια Κύκλος Euler Κύκλος Hamilton Συνεκτικότητα Ασκηση 1 η Να αποδείξετε ότι κάθε γράφημα περιέχει μια διαδρομή από μια κορυφή u σε μια κορυφή w αν και

Διαβάστε περισσότερα

Ελάχιστο Συνδετικό έντρο

Ελάχιστο Συνδετικό έντρο Ελάχιστο Συνδετικό έντρο ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Ελάχιστο Συνδετικό έντρο (MST) Συνεκτικό μη-κατευθ. G(V, E, w) με βάρη Βάρος

Διαβάστε περισσότερα

Μαθηματική Επαγωγή. Τεχνικές Απόδειξης. Αποδείξεις Ύπαρξης. Μαθηματική Επαγωγή

Μαθηματική Επαγωγή. Τεχνικές Απόδειξης. Αποδείξεις Ύπαρξης. Μαθηματική Επαγωγή Μαθηματική Επαγωγή Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Τεχνικές Απόδειξης Εξαντλητική

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { Μ η Μ είναι μια ΤΜ η οποία διαγιγνώσκει το πρόβλημα ΙΣΟΔΥΝΑΜΙΑ ΤΜ (διαφάνεια 9 25)} (α) Γνωρίζουμε ότι το

Διαβάστε περισσότερα

Chapter 9: NP-Complete Problems

Chapter 9: NP-Complete Problems Θεωρητική Πληροφορική Ι: Αλγόριθμοι και Πολυπλοκότητα Chapter 9: NP-Complete Problems 9.3 Graph-Theoretic Problems (Συνέχεια) 9.4 Sets and Numbers Γιώργος Αλεξανδρίδης gealexan@mail.ntua.gr Κεφάλαιο 9:

Διαβάστε περισσότερα

Μέγιστη ροή. Κατευθυνόμενο γράφημα. Συνάρτηση χωρητικότητας. αφετηρίακός κόμβος. τερματικός κόμβος. Ροή δικτύου. με τις ακόλουθες ιδιότητες

Μέγιστη ροή. Κατευθυνόμενο γράφημα. Συνάρτηση χωρητικότητας. αφετηρίακός κόμβος. τερματικός κόμβος. Ροή δικτύου. με τις ακόλουθες ιδιότητες Κατευθυνόμενο γράφημα Συνάρτηση χωρητικότητας 2 6 20 Ροή δικτύου Συνάρτηση αφετηρίακός κόμβος 0 με τις ακόλουθες ιδιότητες 9 7 τερματικός κόμβος Περιορισμός χωρητικότητας: Αντισυμμετρία: Διατήρηση ροής:

Διαβάστε περισσότερα

Αναζήτηση Κατά Πλάτος

Αναζήτηση Κατά Πλάτος Αναζήτηση Κατά Πλάτος ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα Μοντελοποίηση πολλών σημαντικών προβλημάτων (π.χ. δίκτυα συνεκτικότητα,

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης. Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού

Πληροφοριακά Συστήματα Διοίκησης. Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού Πληροφοριακά Συστήματα Διοίκησης Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού Σημασία μοντέλου Το μοντέλο δημιουργεί μια λογική δομή μέσω της οποίας αποκτούμε μια χρήσιμη άποψη

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα

Θεωρία Υπολογισμού και Πολυπλοκότητα Θεωρία Υπολογισμού και Πολυπλοκότητα Κεφάλαιο 14. Χρονική Πολυπλοκότητα 17, 20, 24 Απριλίου 2007 Δρ. Παπαδοπούλου Βίκη 1 Υπολογίσιμα και Εφικτά Υπολογίσιμα Προβλήματα Είδαμε ότι 1. Οτιδήποτε μπορούμε να

Διαβάστε περισσότερα

3.7 Παραδείγματα Μεθόδου Simplex

3.7 Παραδείγματα Μεθόδου Simplex 3.7 Παραδείγματα Μεθόδου Simplex Παράδειγμα 1ο (Παράδειγμα 1ο - Κεφάλαιο 2ο - σελ. 10): Το πρόβλημα εκφράζεται από το μαθηματικό μοντέλο: max z = 600x T + 250x K + 750x Γ + 450x B 5x T + x K + 9x Γ + 12x

Διαβάστε περισσότερα

Κεφάλαιο 5ο: Ακέραιος προγραμματισμός

Κεφάλαιο 5ο: Ακέραιος προγραμματισμός Κεφάλαιο 5ο: Ακέραιος προγραμματισμός 5.1 Εισαγωγή Ο ακέραιος προγραμματισμός ασχολείται με προβλήματα γραμμικού προγραμματισμού στα οποία μερικές ή όλες οι μεταβλητές είναι ακέραιες. Ένα γενικό πρόβλημα

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 2: Γραφήματα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 2: Γραφήματα Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 2: Γραφήματα Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης

Διαβάστε περισσότερα

Αξιολόγηση Ευριστικών Αλγορίθµων

Αξιολόγηση Ευριστικών Αλγορίθµων Προσεγγιστικοί Αλγόριθµοι Πολλές ϕορές η εύρεση της ϐέλτιστων λύσεων προβληµάτων ακέραιου γραµµικού προγραµµατισµού είναι µια χρονοβόρα διαδικασία (εκθετική πολυπλοκότητα) Προσεγγιστικοί Αλγόριθµοι Πολλές

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 9 P vs NP 1 / 13 Δυσκολία επίλυσης υπολογιστικών προβλημάτων Κάποια προβλήματα είναι εύκολα να λυθούν με

Διαβάστε περισσότερα

Βασικές Έννοιες Θεωρίας Γραφημάτων

Βασικές Έννοιες Θεωρίας Γραφημάτων Βασικές Έννοιες Θεωρίας Γραφημάτων Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Γραφήματα Μοντελοποίηση πολλών σημαντικών προβλημάτων

Διαβάστε περισσότερα

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 4 η Εργασία: Γενική Εικόνα Ενθαρρυντική εικόνα, σαφώς καλύτερη από

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός

Γραμμικός Προγραμματισμός Γραμμικός Προγραμματισμός ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραμμικός Προγραμματισμός Ελαχιστοποίηση γραμμικής αντικειμενικής συνάρτησης

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ Ενότητα 12: Μη ντετερμινιστικές μηχανές Turing Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» 2 ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα ελάχιστης συνεκτικότητας δικτύου Το πρόβλημα της ελάχιστης

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ενότητα 3 Αλγόριθµοι Γραφηµάτων Bellman Ford Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αλγόριθµοι και Πολυπλοκότητα - Ενότητα 3 Bellman

Διαβάστε περισσότερα

Βασικές Έννοιες Θεωρίας Γραφημάτων

Βασικές Έννοιες Θεωρίας Γραφημάτων Βασικές Έννοιες Θεωρίας Γραφημάτων ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα Μοντελοποίηση

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός Μέθοδος Simplex

Γραμμικός Προγραμματισμός Μέθοδος Simplex ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραμμικός Προγραμματισμός Μέθοδος Simplex Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Πρότυπη Μορφή ΓΠ 2. Πινακοποίηση

Διαβάστε περισσότερα

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ. Κεφάλαιο 3 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ. Κεφάλαιο 3 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Κεφάλαιο 3 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού 1 Σχέση γραμμικού και ακέραιου προγραμματισμού Ενα πρόβλημα ακέραιου προγραμματισμού είναι

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 8η Διάλεξη

Θεωρία Γραφημάτων 8η Διάλεξη Θεωρία Γραφημάτων 8η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 8η Διάλεξη

Διαβάστε περισσότερα

Ελάχιστο Συνδετικό Δέντρο

Ελάχιστο Συνδετικό Δέντρο Ελάχιστο Συνδετικό Δέντρο Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Ελάχιστο Συνδετικό Δέντρο

Διαβάστε περισσότερα

ΠΛΕ075: Προηγμένη Σχεδίαση Αλγορίθμων και Δομών Δεδομένων. Λουκάς Γεωργιάδης

ΠΛΕ075: Προηγμένη Σχεδίαση Αλγορίθμων και Δομών Δεδομένων. Λουκάς Γεωργιάδης ΠΛΕ075: Προηγμένη Σχεδίαση Αλγορίθμων και Δομών Δεδομένων Λουκάς Γεωργιάδης loukas@cs.uoi.gr www.cs.uoi.gr/~loukas Βασικές έννοιες και εφαρμογές Αλγόριθμος: Μέθοδος για την επίλυση ενός προβλήματος Δομή

Διαβάστε περισσότερα

Σχεδίαση & Ανάλυση Αλγορίθμων

Σχεδίαση & Ανάλυση Αλγορίθμων Σχεδίαση & Ανάλυση Αλγορίθμων Ενότητα 6 Γραμμικός Προγραμματισμός Σταύρος Δ. Νικολόπουλος Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros Γραμμικός Προγραμματισμός

Διαβάστε περισσότερα

Θεωρία Δυαδικότητας ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου. Επιχειρησιακή Έρευνα

Θεωρία Δυαδικότητας ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου. Επιχειρησιακή Έρευνα Θεωρία Δυαδικότητας Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Περιεχόμενα Παρουσίασης 1. Βασικά Θεωρήματα 2. Παραδείγματα 3. Οικονομική Ερμηνεία

Διαβάστε περισσότερα

Τυχαίοι γράφοι Η διάμετρος του G(n, 2 ln n/n) Ioannis Giotis

Τυχαίοι γράφοι Η διάμετρος του G(n, 2 ln n/n) Ioannis Giotis Τυχαίοι γράφοι Η διάμετρος του G(n, 2 ln n/n) Ioannis Giotis Θεώρημα για σφαίρες Θα δείξουμε ότι το γράφημα G(n, 2 ln n n 1 ) έχει μικρή διάμετρο Θα ξεκινήσουμε με ένα θεώρημα για το μέγεθος μιας σφαίρας

Διαβάστε περισσότερα

2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ

2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ 2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ Ο Συγκεντρωτικός Προγραμματισμός Παραγωγής (Aggregae Produion Planning) επικεντρώνεται: α) στον προσδιορισμό των ποσοτήτων ανά κατηγορία προϊόντων και ανά χρονική

Διαβάστε περισσότερα

Επιλογή. ημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο

Επιλογή. ημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο Επιλογή ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πρόβλημα Επιλογής Πίνακας Α[]με n στοιχεία (όχι ταξινομημένος). Αριθμός k, 1 k n. Υπολογισμός

Διαβάστε περισσότερα

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 10: ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΛΥΣΗΣ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΑΠΑΓΟΡΕΥΤΙΚΟ ΑΡΙΘΜΟ ΠΕΡΙΠΤΩΣΕΩΝ

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 10: ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΛΥΣΗΣ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΑΠΑΓΟΡΕΥΤΙΚΟ ΑΡΙΘΜΟ ΠΕΡΙΠΤΩΣΕΩΝ Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 10: ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΛΥΣΗΣ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΑΠΑΓΟΡΕΥΤΙΚΟ ΑΡΙΘΜΟ ΠΕΡΙΠΤΩΣΕΩΝ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 5: ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ-ΑΝΑΓΩΓΗ

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 5: ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ-ΑΝΑΓΩΓΗ Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 5: ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ-ΑΝΑΓΩΓΗ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX Θεμελιώδης αλγόριθμος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού που κάνει χρήση της θεωρίας της Γραμμικής Άλγεβρας Προτάθηκε από το Dantzig (1947) και πλέον

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Συνεκτικότητα και Δισυνεκτικότητα. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Συνεκτικότητα και Δισυνεκτικότητα. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Θεωρία Γραφημάτων Ενότητα: Συνεκτικότητα και Δισυνεκτικότητα Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών Θεωρία Γραφημάτων Χάρης Παπαδόπουλος 2012, Διάλεξη Κεφαλαίου 2 Περιεχόμενα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 12: Θεωρία υπολογισµών

ΚΕΦΑΛΑΙΟ 12: Θεωρία υπολογισµών ΚΕΦΑΛΑΙΟ 12: Θεωρία υπολογισµών 1 Συναρτήσεις και ο υπολογισµός τους 2 Μηχανές Turing 3 Καθολικές γλώσσες προγραµµατισµού 4 Μια µη υπολογίσιµη συνάρτηση 5 Πολυπλοκότητα προβληµάτων 1 Συναρτήσεις Μία συνάρτηση

Διαβάστε περισσότερα

Συνδυαστική Βελτιστοποίηση Σημειώσεις. Β. Ζησιμόπουλος

Συνδυαστική Βελτιστοποίηση Σημειώσεις. Β. Ζησιμόπουλος Συνδυαστική Βελτιστοποίηση Σημειώσεις Β. Ζησιμόπουλος Ιανουάριος 2007 Περιεχόμενα 1 Εισαγωγή στη Συνδυαστική Βελτιστοποίηση 3 1.1 Προβλήματα Βελτιστοποίησης.................. 5 1.2 Πρόβλημα Πλανόδιου Πωλητή

Διαβάστε περισσότερα

Κεφάλαιο 4ο: Δικτυωτή Ανάλυση

Κεφάλαιο 4ο: Δικτυωτή Ανάλυση Κεφάλαιο ο: Δικτυωτή Ανάλυση. Εισαγωγή Η δικτυωτή ανάλυση έχει παίξει σημαντικό ρόλο στην Ηλεκτρολογία. Όμως, ορισμένες έννοιες και τεχνικές της δικτυωτής ανάλυσης είναι πολύ χρήσιμες και σε άλλες επιστήμες.

Διαβάστε περισσότερα

Ενότητα 5: Αλγόριθμοι γράφων και δικτύων

Ενότητα 5: Αλγόριθμοι γράφων και δικτύων Εισαγωγή στην Επιστήμη των Υπολογιστών ο εξάμηνο ΣΗΜΜΥ Ενότητα : Αλγόριθμοι γράφων και δικτύων Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης Παγουρτζής, Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

ΔΕΟ13(ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΛΙΟΥ )

ΔΕΟ13(ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΛΙΟΥ ) ΔΕΟ13(ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΛΙΟΥ ) ΑΣΚΗΣΗ 1 Μια εταιρεία ταχυμεταφορών διατηρεί μια αποθήκη εισερχομένων. Τα δέματα φθάνουν με βάση τη διαδικασία Poion με μέσο ρυθμό 40 δέματα ανά ώρα. Ένας υπάλληλος

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Νοέμβριος 006 Αθήνα Κεφάλαιο ο Ακέραιος και μικτός προγραμματισμός. Εισαγωγή Μια από τις

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { G,k η G είναι μια ασυμφραστική γραμματική η οποία παράγει κάποια λέξη 1 n όπου n k } (β) { Μ,k η Μ είναι

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Θεμελιώσεις Επιστήμης Η/Υ ΠΛΗ30 Τελική Εξέταση 26 Ιουνίου 2013 Ονοματεπώνυμο Φοιτητή Αριθμός Μητρώου Φοιτητή Τμήμα Υπογραφή Φοιτητή Υπογραφή Επιτηρητή Διάρκεια: 180 Ερώτημα Μονάδες Βαθμολογία 1 10+10 2

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Θεμελιώσεις Επιστήμης Η/Υ ΠΛΗ30 Τελική Εξέταση 2 Ιουλίου 2014 Ονοματεπώνυμο Φοιτητή Αριθμός Μητρώου Φοιτητή Τμήμα Υπογραφή Φοιτητή Υπογραφή Επιτηρητή Διάρκεια: 180 Ερώτημα Μονάδες Βαθμολογία 1 8+8+4 2

Διαβάστε περισσότερα

Αναζήτηση Κατά Βάθος. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Αναζήτηση Κατά Βάθος. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Αναζήτηση Κατά Βάθος ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναζήτηση Κατά Βάθος (DFS) Εξερεύνηση

Διαβάστε περισσότερα

Σχέσεις. Διμελής Σχέση. ΣτοΊδιοΣύνολο. Αναπαράσταση

Σχέσεις. Διμελής Σχέση. ΣτοΊδιοΣύνολο. Αναπαράσταση Διμελής Σχέση Σχέσεις Διδάσκοντες: Φ. Αφράτη, Δ. Επιμέλεια διαφανειών: Δ. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διατεταγμένο ζεύγος (α, β): Δύο αντικείμενα

Διαβάστε περισσότερα

Λυμένες ασκήσεις στα πλαίσια του μαθήματος «Διοίκηση Εφοδιαστικής Αλυσίδας»

Λυμένες ασκήσεις στα πλαίσια του μαθήματος «Διοίκηση Εφοδιαστικής Αλυσίδας» Λυμένες ασκήσεις στα πλαίσια του μαθήματος «Διοίκηση Εφοδιαστικής Αλυσίδας» Άσκηση 1. Έστω ότι μια επιχείρηση αντιμετωπίζει ετήσια ζήτηση = 00 μονάδων για ένα συγκεκριμένο προϊόν, σταθερό κόστος παραγγελίας

Διαβάστε περισσότερα

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός Κατευθυνόμενα γραφήματα Μαθηματικά Πληροφορικής 6ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Κατευθυνόμενο γράφημα G είναι ένα ζεύγος (V, E ) όπου V πεπερασμένο σύνολο του οποίου

Διαβάστε περισσότερα

Μετασχηματισμοί, Αναπαράσταση και Ισομορφισμός Γραφημάτων

Μετασχηματισμοί, Αναπαράσταση και Ισομορφισμός Γραφημάτων Μετασχηματισμοί, Αναπαράσταση και Ισομορφισμός Γραφημάτων ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΓΡΑΦΩΝ. 7 η Διάλεξη Συνεκτικότητα (Συνδεσμικότητα) Βασικές έννοιες και ιδιότητες Το θεώρημα του Merger Ισομορφισμός

ΘΕΩΡΙΑ ΓΡΑΦΩΝ. 7 η Διάλεξη Συνεκτικότητα (Συνδεσμικότητα) Βασικές έννοιες και ιδιότητες Το θεώρημα του Merger Ισομορφισμός ΘΕΩΡΙΑ ΓΡΑΦΩΝ 7 η Διάλεξη Συνεκτικότητα (Συνδεσμικότητα) Βασικές έννοιες και ιδιότητες Το θεώρημα του Merger Ισομορφισμός Βασικές Έννοιες Στο κεφάλαιο αυτό θα μελετηθεί ο βαθμός συνεκτικότητας (συνδεσμικότητας)

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Ροή Δικτύου Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Μοντελοποίηση Δικτύων Μεταφοράς Τα γραφήματα χρησιμοποιούνται συχνά για την μοντελοποίηση

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος Η ιοικητική Επιστήμη στην Κοινωνία της Πληροφορίας... 17

Περιεχόμενα. Πρόλογος Η ιοικητική Επιστήμη στην Κοινωνία της Πληροφορίας... 17 Πρόλογος... 13 1. Η ιοικητική Επιστήμη στην Κοινωνία της Πληροφορίας... 17 1.1. Εισαγωγή... 19 1.2. Ένα μοντέλο ανάλυσης οργανισμού... 21 1.3. Νέες τάσεις στην οργανωτική δομή των επιχειρήσεων... 23 1.4.

Διαβάστε περισσότερα

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόγχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόγχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός Κατευθυνόμενα γραφήματα Μαθηματικά Πληροφορικής 6ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Κατευθυνόμενο γράφημα G είναι ένα ζεύγος (V, E ) όπου V πεπερασμένο σύνολο του οποίου

Διαβάστε περισσότερα

Περιεχόμενα. Εισαγωγή του επιμελητή, Γιάννης Σταματίου 15 Πρόλογος 17 Εισαγωγή 23. Μέρος I. ΕΠΑΝΑΛΗΠΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΑΝΑΛΛΟΙΩΤΕΣ ΣΥΝΘΗΚΕΣ

Περιεχόμενα. Εισαγωγή του επιμελητή, Γιάννης Σταματίου 15 Πρόλογος 17 Εισαγωγή 23. Μέρος I. ΕΠΑΝΑΛΗΠΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΑΝΑΛΛΟΙΩΤΕΣ ΣΥΝΘΗΚΕΣ Περιεχόμενα Εισαγωγή του επιμελητή, Γιάννης Σταματίου 15 Πρόλογος 17 Εισαγωγή 23 Μέρος I. ΕΠΑΝΑΛΗΠΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΑΝΑΛΛΟΙΩΤΕΣ ΣΥΝΘΗΚΕΣ 1. Επαναληπτικοί αλγόριθμοι: Μέτρα προόδου και αναλλοίωτες συνθήκες.....................................................29

Διαβάστε περισσότερα