ΠΙΝΑΚΑΣ 3-1 Προσομοιωση και Βελτιστοποιηση Συστηματος (Haimes, 1977) ΠΡΑΓΜΑΤΙΚΗ ΑΠΟΚΡΙΣΗ ΦΥΣΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΜΑΘΗΜΑΤΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΟΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΠΙΝΑΚΑΣ 3-1 Προσομοιωση και Βελτιστοποιηση Συστηματος (Haimes, 1977) ΠΡΑΓΜΑΤΙΚΗ ΑΠΟΚΡΙΣΗ ΦΥΣΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΜΑΘΗΜΑΤΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΟΣ"

Transcript

1 3 ΤΕΧΝΙΚΕΣ ΑΝΑΛΥΣΗΣ 3.1 Εισαγωγη ΣΥΣΤΗΜΑΤΩΝ Τα συστηματα εφαρμοζονται σε αναπτυξιακα προγραμματα, σε μελετες σχεδιασμου εργων, σε προγραμματα διατηρησης ή προστασιας περιβαλλοντος και υδατικων πορων και προσφερονται για την αναλυση πολλων αποψεων ενος προβληματος. Σαν μοντελο συστηματος οριζεται ενα σετ εξισωσεων που περιγραφει και αναπαριστα το φυσικο συστημα. Το συστημα των εξισωσεων περιγραφει τις διαφορες οψεις του προβληματος, προσδιοριζει τις συναρτησιακες σχεσεις αναμεσα στα στοιχεια (παραμετρους) του συστηματος και του περιβαλλοντος του, και κατ' αυτον τον τροπο, προσφερει μια ποιοτικη και ποσοτικη διαπραγματευση του προβληματος, ενω συγχρονως υποδεικνυει ποια στοιχεια πρεπει να συλλεγουν για την ποσοτικοποιηση του προβληματος. Οι εξισωσεις του συστηματος μπορει να ειναι αλγεβρικες, διαφορικες ή αλλες, γεγονος που εξαρταται απο τη φυση του μοντελαρισμενου συστηματος. Ο Πινακας 3-1 (Haimes, 1977) αναπαριστα μια διαδικασια μοντελοποιησης και βελτιστοποιησης ενος φυσικου συστηματος. Το πραγματικο συστημα προσομοιωνεται με ενα μαθηματικο μοντελο. Η ιδια εισοδος (input) πραγματικου συστηματος και μαθηματικου μοντελου οδηγει σε δυο διαφορετικες αποκρισεις (system output, model output). Αν οι δυο αποκρισεις ειναι ταυτοσημες, τοτε το μοντελο που προσομοιωνει το συστημα ειναι αξιοπιστο και μπορει να θεωρηθει σχεδον τελειο. Συνηθως οι δυο αποκρισεις δεν ειναι ταυτοσημες, και ετσι δημιουργειται ενα σφαλμα. Σκοπος μιας μαθηματικης αναλυσης ειναι η καταστρωση ενος μοντελου που ελαχιστοποιει το σφαλμα αυτο. Η σχεση των δυο αποκρισεων εκφραζει την καταλληλοτητα και την αξιοπιστια (validity) του μοντελου. Ο Πινακας 3-1 αναπαριστα επισης τις στρατηγικες επιλυσης ή τις τεχνικες βελτιστοποιησης και προσομοιωσης του μαθηματικου μοντελου. Βελτιστη θεωρειται η αποφαση που τελικα θα εφαρμοστει για το φυσικο συστημα. ΠΙΝΑΚΑΣ 3-1 Προσομοιωση και Βελτιστοποιηση Συστηματος (Haimes, 1977) ΠΡΑΓΜΑΤΙΚΗ ΑΠΟΚΡΙΣΗ ΦΥΣΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΜΑΘΗΜΑΤΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΟΣ ΠΡΑΓΜΑΤΙΚΟ ΦΥΣΙΚΟ ΣΥΣΤΗΜΑ ΜΑΘΗΜΑΤΙΚΟ ΜΟΝΤΕΛΟ ΑΠΡΟΣΟΜΟΙΩΤΗ ΕΙΣΟΔΟΣ ΠΡΟΣΟΜΟΙΩΜΕΝΗ ΕΙΣΟΔΟΣ ΛΥΣΗ/ΣΤΡΑΤΗΓΙΚΗ (βελτιστοποιηση) \\eps_srv\07-ntua\00-academia-emp\books\systems optimization\03-tenikes-analysis\3-tenik.doc Σελιδα 1 απο 6

2 Το συστημα εξισωσεων του μαθηματικου μοντελου περιλαμβανει μια ή περισσοτερες αντικειμενικες συναρτησεις (objective functions) που εκφραζουν τον στοχο (objective) και τους περιορισμους (constraints) του προβληματος. Διαδικασια βελτιστοποιησης (optimization procedure) καλειται η επιλογη σετ μεταβλητων αποφασης (decision variables) που μεγιστοποιουν ή ελαχιστοποιουν την αντικειμενικη συναρτηση κατω απο τους περιορισμους που επελεγησαν. 3.2 Θεωρια Σταδια Αναλυσης Συστηματος Κυρια σταδια αναλυσης και μαθηματιης προσομοιωσης ενος συστηματος ειναι τα: Λεπτομερειακη αναλυση των στοιχειων του φυσικου συστηματος και συγκεντρωση δεδομενων. Καταστρωση του μαθηματικου μοντελου και επιλογη της τεχνικης επιλυσης. Αναλυση των σχεσεων των υποσυστηματων και συνδεση τους με το κυριο συστημα. Επιλυση του μοντελου με τα δεδομενα με τα ακολουθα βηματα: Καταστρωση αλγοριθμου για την υπολογιστικη επιλυση του προβληματος Προγραμματισμος, σε υπολογιστη της τεχνικης βελτιστοπιησης. Ελεγχος αξιοπιστιας μοντελου και εγκατασταση σημειου ελεγχου στην επιλυση με τα ακολουθα βηματα: Παραμετρικος ελεγχος και αναλυση ευαισθησιας μοντελου (ευσταθεια λυσης, stability) Αναλυση σφαλματος (error analysis) Βελτιστοποιηση στοιχειων εισοδου. Επιβεβαιωση λειτουργικοτητας (validation) προσομοιωσης. Εισοδος της επιλυσης στο φυσικο προβλημα και εφαρμογη. Καταστρωση σεναριων μελλοντικης συμπεριφορας συνιστωσων φυσικου συστηματος και υποδειξεις για τη βελτιστη διαχειριση αυτου Μαθηματικος Ορισμος Προβληματος Το γενικο προβλημα βελτιστοποιησης τιθεται ως εξης: Προσδιορισμος σετ μεταβλητων αποφασης 1, 2,..., n (Σετ λυσης) που μεγιστοποιει (ή ελαχιστοποιει) την αντικειμενικη συναρτηση f ( 1, 2,..., n ), δηλαδη: ma f ( 1, 2,..., n ) 1,..., n s.t.: (subject to) με τους περιορισμους (3-1) g1 ( 1, 2,..., n ) b1 g2 ( 1, 2,..., n ) b2... gn ( 1, 2,..., n ) bn \\eps_srv\07-ntua\00-academia-emp\books\systems optimization\03-tenikes-analysis\3-tenik.doc Σελιδα 2 απο 6

3 οπου b 1, b2,..., bn γνωστες τιμες παραμετρων. Ετσι το προβλημα βελτιστοποιησης μορφωνεται διανυσματικα: ma f ( ) s.t: g j ( ) b j, j = 1,2,..., n (3-2) T με = [,..., ] Ο εκθετης Τ υποδηλωνει το αναστροφο του ανυσματος σειρας. 1 n Ειδη Μαθηματικων Μοντελων Αναλογα με τη φυση της αντικειμενικης συναρτησης και των περιορισμων τα προβληματα βελτιστοποιησης κατατασσονται (Haimes, 1977) σε: 1. Γραμμικα ή μη-γραμμικα (linear vs. nonlinear) 2. Ντετερμινιστικα ή πιθανολογικα (deterministic vs. probabilistic/stochastic) 3. Στατικα ή δυναμικα (static vs. dynamic) 4. Διανεμημενων ή ενιαιων παραμετρων (distributed vs. lumped parameters). 1. Γραμμικα-Μη Γραμμικα: Ενα γραμμικο μοντελο αντιπροσωπευεται μονον απο γραμμικες εξισωσεις, δηλαδη ολοι οι περιορισμοι και η αντικειμενικη συναρτηση ειναι γραμμικες συναρτησεις. Ενα μη-γραμμικο μοντελο αντιπροσωπευεται κατα ενα μερος ή εξ'ολοκληρου απο μη γραμμικες συναρτησεις. Παραδειγμα: Γραμμικη εξισωση: y = Μη γραμμικες εξισωσεις: y = y = log 1 y = sin 1 + log 2 2. Ντετερμινιστικα-Στοχαστικα: Ντετερμινιστικο μοντελο ή στοιχειο μοντελου ειναι εκεινο για το οποιο σε καθε μεταβλητη και παραμετρο μπορει να εκχωρηθει ενας συγκεκριμενος αριθμος ή σειρα αριθμων υπο ορισμενες συνθηκες (αιτιο-αποτελεσμα). Στα στοχαστικα ή πιθανολογικα (probabilistic) μοντελα εισαγεται η αρχη της αβεβαιοτητας. Καμμια απο τις μεταβλητες ή τις παραμετρους που χρησιμοποιουνται για να περιγραφουν οι σχεσεις inputoutput του συστηματος δεν ειναι με ακριβεια γνωστες. Παραδειγμα: "Η τιμη του ειναι ( a± b) με 90% πιθανοτητα" σημαινει οτι μακροχρονια η τιμη του θα ειναι μεγαλυτερη απο (a+b) ή μικροτερη απο (a-b) στο 10% των περιπτωσεων. 3. Στατικα-Δυναμικα: Στατικα μοντελα ειναι εκεινα στα οποια δεν λαμβανονται σαφως υποψη μεταβλητες που εχουν σχεση με το χρονο. Τα δυναμικα μοντελα περιλαμβανουν διαφορισεις των παραμετρων εξοδου ως προς το χρονο. Παραδειγμα: t min F( 1,..., N ; u1,..., um ; t) dt u1,..., u M 0 (3-3) \\eps_srv\07-ntua\00-academia-emp\books\systems optimization\03-tenikes-analysis\3-tenik.doc Σελιδα 3 απο 6

4 d s.t. i = Gi ( 1,..., N ; u1,..., um ; t) i = 1,2,..., N dt o i ( to) = i, i = 1,2,..., N Τα στατικα προβληματα βελτιστοποιησης ειναι γνωστα και σαν προβληματα μαθηματικου προγραμματισμου (mathematical programming), ενω τα δυναμικα ειναι γνωστα σαν προβληματα βελτιστου ελεγχου (optimal control problems). 4. Διανεμημενων-Ενιαιων Παραμετρων: Ενα μοντελο διανεμημενων παραμετρων λαμβανει υποψη τις λεπτομερεις μεταβολες του συστηματος απο σημειο σε σημειο. Για ενα μοντελο ενιαιων παραμετρων θεωρουμε οτι οι μεταβολες αγνοουνται και οι διαφοροι παραμετροι και εξηρτημενες μεταβλητες μπορουν να θεωρηθουν ομογενεις σε ολοκληρο το συστημα. Παραδειγμα: Τα περισσοτερα προβληματα φυσικων συστηματων ειναι διανεμημενων παραμετρων, οπως π.χ. το προβλημα διαχυσης που περιγραφεται απο την: 1/ r p T = ± 0 ( / ) S r r p r t Τεχνικες Βελτιστοποιησης Eυρεως διαδεδομενες τεχνικες βελτιστοποιησης ειναι οι: 1. Λογισμος (Calculus) 2. Γραμμικος Προγραμματισμος (Linear Programming) 3. Μη Γραμμικος Προγραμματισμος (Non Linear Programming) α. Κατευθειαν Αναζητηση (Direct Search) β. Πολλαπλασιαστες Lagrange (Lagrange Multipliers) γ. Συναρτησεις Ποινης (Penalty Functions) δ. Γεωμετρικος Προγραμματισμος Geometric Programming) ε. Μεθοδοι κλισεων (Gradient Methods) στ. Αλλες Μεθοδοι 4. Δυναμικος Προγραμματισμος (Dynamic Programming) 5. Αναπαραγωγη (Simulation) 6. Αναλυση και Πολυεπιπεδη Προσεγγιση (Decomposition and Multilevel Approach) 7. Πολυστοχικος Προγραμματισμος (Multiobjective Optimization) Μεθοδοι επιλυσης των μοντελων που σχετιζονται με τις παραπανω τεχνικες βελτιστοποιησης ειναι οι: 1. Θεωρια Σειρων (Queuing Theory) 2. θεωρια Παιχνιδιων (Game Theory) 3. Θεωρια Δικτυωματος (Network Theory) 4. Λογισμος Μεταβολων Calculus Variations) 5. Αρχη Μεγιστου (Maimum Principle) \\eps_srv\07-ntua\00-academia-emp\books\systems optimization\03-tenikes-analysis\3-tenik.doc Σελιδα 4 απο 6

5 6. Γραμμικοποιηση (Qualsilinearization) 7. Αναλυση και πολυεπιπεδη προσεγγιση (Decomposition and multilevel approach) Τεχνικες Βελτιστοποιησης Μαθηματικα προβληματα προγραμματισμου, που συνηθως αναφερονται σε στατικα θεματα βελτιστοποιησης, ταξινομουνται οπως παρακατω: 1. Προβλημα χωρις περιορισμους (unconstraint problem) minf ( ) 2. Κλασσικο προβλημα ισων περιορισμων (classical equality constrainti problem) minf ( ), ετσι ωστε g j ( ) = 0 j = 1,2,..., m (ιδιαιτερα οταν ολες οι συναρτησεις ειναι διαφορισιμες). 3. Μη γραμμικος προγραμματισμος (nonlinear programming) min f ( ) ετσι ωστε g j ( ) 0 j = 1,2,..., m οπου f() ή/και g j () μη γραμμικες συναρτησεις. 4. Γραμμικος προγραμματισμος (linear programming) min c T ετσι ωστε A b οπου Α μητρωα συντελεστων, και b το διανυσμα περιορισμων. 5. Τετραγωνικος προγραμματισμος (quadratic programming) οπου Α και Q μητρωα συντελεστων. T T min Q + c ετσι ωστε A b 6. Xωριζομενος προγραμματισμος (separable programming) n min fi ( i ) ετσι ωστε A b 0 i = 1 7. Διακεκριμενος προγραμματισμος (discrete programming) Οι παραπανω κατηγοριες προγραμματισμου αναπτυσσονται στα παρακατω κεφαλαια Εφαρμογη Η αναλυση που εγινε στην λεκανη του ποταμου Delaware αποτελει ενα εξαιρετικο παραδειγμα εφαρμογης της προτεινομενης διαδικασιας αναλυσης συστηματων (απο βιβλιο de Neufville): \\eps_srv\07-ntua\00-academia-emp\books\systems optimization\03-tenikes-analysis\3-tenik.doc Σελιδα 5 απο 6

6 Η λεκανη του ποταμου Delaware ειναι ενα εκτεταμενο, συνθετο ποταμιο συστημα, αποτελουμενο απο παραποταμους, μεγαλα εργα υποδομης (π.χ. ταμιευτηρες) και κυβερνητικες εκτασεις. Επισης, 25 εκ. ανθρωποι και ενα σημαντικο κομματι της αμερικανικης βιομηχανιας βρισκονται εντος των οριων της, ενω παρεχει και νερο σε 15 εκ. κατοικους των περιοχων γυρω απο την Νεα Υορκη. Η σημασια της επομενως ειναι τεραστια και για πολλες χωρες η διαχειριση μιας τετοιας λεκανης θα αποτελουσε ενα εργο εθνικης εμβελειας. Ειναι γεγονος οτι η προστασια, χρηση και διαχειριση του ποταμιου αυτου συστηματος εχει μελετηθει πολυ προσεκτικα και για πολλα χρονια. Πρωτοποροι σε αυτη την προσπαθεια εχουν υπαρξει οι μηχανικοι του U.S. Corps of Enginners, των οποιων οι μαθηματικες αναλυσεις συνοδευτηκαν απο την καταστρωση φυσικων μοντελων της λεκανης, με τα οποια ηταν δυνατη η διερευνηση εναλλακτικων λυσεων και επιβεβαιωση των αποτελεσματων της αριθμητικης αναλυσης. Η εφαρμογη μεθοδων αναλυσης συστηματων εγινε σε μια σειρα απο: ταμιευτηρες (35 συνολικα), υδροηλεκτρικα εργαστασια (21 συνολικα), ενω αφορουσε και στην υδρευση 4 μεγαλων πολεων. Εγινε η παραδοχη δυο πιθανων μεγεθων για καθε εγκατασταση και ανγοηθηκων οι περιορισμοι στην ποιοτητα νερου και στην δυναμικοτητα των εγκαταστασεων. Παρα ολα αυτα, υπηρχαν πανω απο 500 εκ. εναλλακτικες λυσεις και στην καλυτερη περιπτωση μπορουσαν να εξετασουν μονο μερικες χιλιαδες απο αυτες. Αρχικα, η ομαδα των αναλυτων χρησιμοποιησε γραμμικο προγραμματισμο για τον προκαρκτικο εντοπισμο βελτιστων λυσεων. Οι μη γραμμικες συναρτησεις μετετραπηκαν σε κατα τμηματα γραμμικες, ενω μη κυρτες περιοχες δυνατων λυσεων επισης προσεγγιστηκαν γραμμικα. Η διαδικασια αυτη ειχε ως αποτελεσμα ενα συνολο βελτιστων λυσεων, που αφορουσαν στον σχεδιασμο και την λειτουργια εργων στην λεκανη του ποταμου Delaware. Αυτο εγινε διοτι οι αναλυτες δεχτηκαν οτι υπαρχουν μεγαλες διακυμανσεις στην βροχοπτωση και, κατα συνεπεια, και στην παροχη του ποταμου. Ετσι, τα προγραμματα γραμμικου προγραμματισμου ειχαν ως αρχικα δεδομενα (input) διαφορα σεναρια παροχων και ποσοτητων νερου, αποθηκευμενου στους ταμιευτηρες, και εδιναν καθε φορα καποια βελτιστη λυση. Στη συνεχεια, εγιναν αναλυσεις ευαισθησιας σε καθε βελτιστη λυση, καθως και λεπτομερεις αναλυσεις και προσομοιωσεις της συμπεριφορας του συστηματος, οι οποιες θα καθοριζαν τις καλυτερες βελτιστες λυσεις που εδινε το μοντελο του γραμμικου προγραμματισμου. Προκειμενου να προσδιοριστει ο βελτιστος τροπος σχεδιασμου των εργων, με βαση τα αποτελεσματα της επιλυσης μεσω γραμμικου προγραμματισμου, χρησιμοποιηθηκε ενα απλο μοντελο δυναμικου προγραμματισμου. Θεωρηθηκε οτι οι εγκαταστασεις ηταν ειτε εν λειτουργια, ειτε δεν υπηρχαν καθολου. Επισης, εγινε η παραδοχη οτι τα ωφελη απο την λειτουργια καθε εργου ηταν ανεξαρτητα μεταξυ τους. Με βαση αυτες τις παραδοχες κατεστη δυνατη η μορφωση καταλληλης επαναληπτικης διαδικασιας και η εφαρμογη δυναμικου προγραμματισμου. Η παρουσιαση των αποτελεσματων εγινε συνοδευομενη απο αναλυτικες προσομοιωσεις του ποταμιου συστηματος, οι οποιες επιβεβαιωσαν την λειτουργικοτητα και πιστοτητα του μοντελου. Η αναλυση του συστηματος οδηγησε σε βελτιστο σχεδιασμο των εργων με αντιστοιχη οικονομικη ανταποδοτικοτητα. Τα καθαρα ωφελη (net benefits) ηταν κατα 37% μεγαλυτερα σε σχεση με τα ωφελη του συμβατικου σχεδιασμου των εργων, ενω τα επιπλεον κερδη στη διαρκεια ζωης των εργων ηταν περιπου 100 φορες μεγαλυτερα απο το κοστος της αναλυσης του συστηματος. \\eps_srv\07-ntua\00-academia-emp\books\systems optimization\03-tenikes-analysis\3-tenik.doc Σελιδα 6 απο 6

Μοντελοποίηση προβληµάτων

Μοντελοποίηση προβληµάτων Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Θεωρία γράφων

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης. Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού

Πληροφοριακά Συστήματα Διοίκησης. Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού Πληροφοριακά Συστήματα Διοίκησης Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού Σημασία μοντέλου Το μοντέλο δημιουργεί μια λογική δομή μέσω της οποίας αποκτούμε μια χρήσιμη άποψη

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΩΡΙΑ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΤΗ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (1)

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΩΡΙΑ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΤΗ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (1) ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΩΡΙΑ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΤΗ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (1) 1 Προέλευση και ιστορία της Επιχειρησιακής Έρευνας Αλλαγές στις επιχειρήσεις Τέλος του 19ου αιώνα: βιομηχανική

Διαβάστε περισσότερα

Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος. Τεχνολογία Συστημάτων Υδατικών Πόρων

Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος. Τεχνολογία Συστημάτων Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Τεχνολογία Συστημάτων Υδατικών Πόρων Βελτιστοποίηση Μέρος b: Συμβατικές Μέθοδοι συνέχεια Σύνοψη προηγούμενου μαθήματος Στόχος βελτιστοποίησης:

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 15

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 15 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 13 ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 15 ΚΕΦΑΛΑΙΟ 1: ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 17 1. Εισαγωγή 17 2. Πραγματικές συναρτήσεις διανυσματικής μεταβλητής

Διαβάστε περισσότερα

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: βελτιστοποίηση με περιορισμούς Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής Διάλεξη 9-10 η /2017 Τι παρουσιάστηκε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΙΟΙΚΗΣΗ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ιδάσκων:

Διαβάστε περισσότερα

ΠΡΟΣΟΜΟΙΩΣΗ. Προσομοίωση είναι η μίμηση της λειτουργίας ενός πραγματικού συστήματος και η παρακολούθηση της εξέλιξης του μέσα στο χρόνο.

ΠΡΟΣΟΜΟΙΩΣΗ. Προσομοίωση είναι η μίμηση της λειτουργίας ενός πραγματικού συστήματος και η παρακολούθηση της εξέλιξης του μέσα στο χρόνο. ΠΡΟΣΟΜΟΙΩΣΗ Προσομοίωση είναι η μίμηση της λειτουργίας ενός πραγματικού συστήματος και η παρακολούθηση της εξέλιξης του μέσα στο χρόνο. δημιουργία μοντέλου προσομοίωσης ( - χρήση μαθηματικών, λογικών και

Διαβάστε περισσότερα

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Κλασικές Τεχνικές Βελτιστοποίησης Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 2 η /2017 Μαθηματική Βελτιστοποίηση Η «Μαθηματική

Διαβάστε περισσότερα

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 1 Βελτιστοποίηση Στην προσπάθεια αντιμετώπισης και επίλυσης των προβλημάτων που προκύπτουν στην πράξη, αναπτύσσουμε μαθηματικά μοντέλα,

Διαβάστε περισσότερα

ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH

ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Διοίκηση Παραγωγής & Συστημάτων Υπηρεσιών ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Περιεχόμενα

Διαβάστε περισσότερα

Το µαθηµατικό µοντέλο του Υδρονοµέα

Το µαθηµατικό µοντέλο του Υδρονοµέα Ερευνητικό έργο: Εκσυγχρονισµός της εποπτείας και διαχείρισης του συστήµατος των υδατικών πόρων ύδρευσης της Αθήνας Το µαθηµατικό µοντέλο του Υδρονοµέα Ανδρέας Ευστρατιάδης και Γιώργος Καραβοκυρός Τοµέας

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα ΕΜΠ - Τοµέας Προγραµµατισµού & ιαχείρισης Τεχνικών Έργων

Επιχειρησιακή Έρευνα ΕΜΠ - Τοµέας Προγραµµατισµού & ιαχείρισης Τεχνικών Έργων 1.1. Σύντοµη Ιστορική Αναδροµή Ο όρος (Operations Research) χρησιµοποιείται ευρέως για να περιγράψει την επιστήµη που ασχολείται µε τη βελτιστοποίηση (optimization) της απόδοσης ενός συστήµατος (Τσαντάς

Διαβάστε περισσότερα

ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ

ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ Συνδυασμένη χρήση μοντέλων προσομοίωσης βελτιστοποίησης. Η μέθοδος του μητρώου μοναδιαίας απόκρισης Νικόλαος

Διαβάστε περισσότερα

ΠΛΑΙΣΙΟ ΣΤΟΧΑΣΤΙΚΗΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΓΙΑ ΤΗΝ ΕΚΤΙΜΗΣΗ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ ΥΔΡΟΛΟΓΙΚΩΝ & ΕΝΕΡΓΕΙΑΚΩΝ ΜΕΓΕΘΩΝ

ΠΛΑΙΣΙΟ ΣΤΟΧΑΣΤΙΚΗΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΓΙΑ ΤΗΝ ΕΚΤΙΜΗΣΗ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ ΥΔΡΟΛΟΓΙΚΩΝ & ΕΝΕΡΓΕΙΑΚΩΝ ΜΕΓΕΘΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΠΜΣ ΕΠΙΣΤΗΜΗ & ΤΕΧΝΟΛΟΓΙΑ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΠΛΑΙΣΙΟ ΣΤΟΧΑΣΤΙΚΗΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΓΙΑ ΤΗΝ ΕΚΤΙΜΗΣΗ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ ΥΔΡΟΛΟΓΙΚΩΝ & ΕΝΕΡΓΕΙΑΚΩΝ ΜΕΓΕΘΩΝ ΕΚΠΟΝΗΣΗ: ΙΩΑΝΝΑ

Διαβάστε περισσότερα

Τ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

Τ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Τ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΕΙΣΗΓΗΤΗΣ: Δρ. Ιωάννης Σ. Τουρτούρας Μηχανικός Παραγωγής & Διοίκησης Δ.Π.Θ. Χρηματοδότηση Το παρόν

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Ι

Αναγνώριση Προτύπων Ι Αναγνώριση Προτύπων Ι Ενότητα 1: Μέθοδοι Αναγνώρισης Προτύπων Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΒΕΛΤΙΣΤΟΣ ΣΧΕΔΙΑΣΜΟΣ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ. Δρ. Πολ. Μηχ. Κόκκινος Οδυσσέας

ΒΕΛΤΙΣΤΟΣ ΣΧΕΔΙΑΣΜΟΣ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ. Δρ. Πολ. Μηχ. Κόκκινος Οδυσσέας ΒΕΛΤΙΣΤΟΣ ΣΧΕΔΙΑΣΜΟΣ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ Δρ. Πολ. Μηχ. Κόκκινος Οδυσσέας Σχεδιασμός αντικειμένων, διεργασιών, δραστηριοτήτων (π.χ. τεχνικά έργα, έπιπλα, σκεύη κτλ) ΠΡΟΚΑΤΑΡΚΤΙΚΗ ΜΕΛΕΤΗ (conceptual design) ΠΡΟΜΕΛΕΤΗ

Διαβάστε περισσότερα

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: βελτιστοποίηση χωρίς περιορισμούς Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 7-8 η /2017 Τι παρουσιάστηκε

Διαβάστε περισσότερα

Εισαγωγή στην υδροπληροφορική και βελτιστοποίηση συστημάτων υδατικών πόρων

Εισαγωγή στην υδροπληροφορική και βελτιστοποίηση συστημάτων υδατικών πόρων Σημειώσεις στα πλαίσια του μαθήματος: Βελτιστοποίηση Συστημάτων Υδατικών Πόρων Υδροπληροφορική Εισαγωγή στην υδροπληροφορική και βελτιστοποίηση συστημάτων υδατικών πόρων Ανδρέας Ευστρατιάδης, Χρήστος Μακρόπουλος

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ III ΒΑΣΙΚΕΣ ΜΕΘΟ ΟΙ ΑΝΑΛΥΣΗΣ

ΕΝΟΤΗΤΑ III ΒΑΣΙΚΕΣ ΜΕΘΟ ΟΙ ΑΝΑΛΥΣΗΣ ΕΝΟΤΗΤΑ III ΒΑΣΙΚΕΣ ΜΕΘΟ ΟΙ ΑΝΑΛΥΣΗΣ Βασικός τελικός στόχος κάθε επιστηµονικής τεχνολογικής εφαρµογής είναι: H γενική βελτίωση της ποιότητας του περιβάλλοντος Η βελτίωση της ποιότητας ζωής Τα µέσα µε τα

Διαβάστε περισσότερα

6. Στατιστικές μέθοδοι εκπαίδευσης

6. Στατιστικές μέθοδοι εκπαίδευσης 6. Στατιστικές μέθοδοι εκπαίδευσης Μία διαφορετική μέθοδος εκπαίδευσης των νευρωνικών δικτύων χρησιμοποιεί ιδέες από την Στατιστική Φυσική για να φέρει τελικά το ίδιο αποτέλεσμα όπως οι άλλες μέθοδοι,

Διαβάστε περισσότερα

3 η ΕΝΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ

3 η ΕΝΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ 3 η ΕΝΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ Μ. Καρλαύτης Ν. Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

(S k R n ) (C k R m )

(S k R n ) (C k R m ) KΕΦΑΛΑΙΟ 7 υναµικός Προγραµµατισµός 7.1 ΕΙΣΑΓΩΓΗ Η θεωρία αποφάσεων διακρίνεται σε δύο µεγάλες κατηγορίες, µε βάση το αν ο υπεύθυνος απόφασης είναι µοναδικός φορέας ή πολλοί φορείς. Μέχρι τώρα αναπτύχθηκαν

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΜΑΘΗΜΑΤΙΚΗ ΔΙΑΤΥΠΩΣΗ, Διαλ. 2. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 8/4/2017

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΜΑΘΗΜΑΤΙΚΗ ΔΙΑΤΥΠΩΣΗ, Διαλ. 2. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 8/4/2017 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΜΑΘΗΜΑΤΙΚΗ ΔΙΑΤΥΠΩΣΗ, Διαλ. 2 Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 8/4/2017 Αντικειμενικοί στόχοι Η μελέτη των βασικών στοιχείων που συνθέτουν ένα πρόβλημα βελτιστοποίησης

Διαβάστε περισσότερα

Εφαρμογές Επιχειρησιακής Έρευνας. Δρ. Γεώργιος Κ.Δ. Σαχαρίδης

Εφαρμογές Επιχειρησιακής Έρευνας. Δρ. Γεώργιος Κ.Δ. Σαχαρίδης Εφαρμογές Επιχειρησιακής Έρευνας Δρ. Γεώργιος Κ.Δ. Σαχαρίδης 1 Outline Introduction to mathematical programming Introduction to scheduling Flow shop optimization Scheduling of crude oil Decomposition techniques

Διαβάστε περισσότερα

Οι Εξελικτικοί Αλγόριθμοι (ΕΑ) είναι καθολικοί στοχαστικοί αλγόριθμοι βελτιστοποίησης, εμπνευσμένοι από τις βασικές αρχές της φυσικής εξέλιξης.

Οι Εξελικτικοί Αλγόριθμοι (ΕΑ) είναι καθολικοί στοχαστικοί αλγόριθμοι βελτιστοποίησης, εμπνευσμένοι από τις βασικές αρχές της φυσικής εξέλιξης. Οι Εξελικτικοί Αλγόριθμοι (ΕΑ) είναι καθολικοί στοχαστικοί αλγόριθμοι βελτιστοποίησης, εμπνευσμένοι από τις βασικές αρχές της φυσικής εξέλιξης. Ένα από τα γνωστότερα παραδείγματα των ΕΑ είναι ο Γενετικός

Διαβάστε περισσότερα

Σύγχρονα συστήµατα προβλέψεων και µοντελοποίησης. Τµήµα Στατιστικής και Αναλογιστικών Χρηµατοοικονοµικών Μαθηµατικών

Σύγχρονα συστήµατα προβλέψεων και µοντελοποίησης. Τµήµα Στατιστικής και Αναλογιστικών Χρηµατοοικονοµικών Μαθηµατικών Σύγχρονα συστήµατα προβλέψεων και µοντελοποίησης Τµήµα Στατιστικής και Αναλογιστικών Χρηµατοοικονοµικών Μαθηµατικών 2 Εργαλεία διαχείρισης Για κάθε µελλοντική εξέλιξη και απόφαση, η πρόβλεψη αποτελεί το

Διαβάστε περισσότερα

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: μέθοδοι μονοδιάστατης ελαχιστοποίησης Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 6 η /2017 Τι παρουσιάστηκε

Διαβάστε περισσότερα

Βιομαθηματικά BIO-156. Ντίνα Λύκα. Εισαγωγικές έννοιες. Εαρινό Εξάμηνο, 2016

Βιομαθηματικά BIO-156. Ντίνα Λύκα. Εισαγωγικές έννοιες. Εαρινό Εξάμηνο, 2016 Βιομαθηματικά BIO-156 Εισαγωγικές έννοιες Ντίνα Λύκα Εαρινό Εξάμηνο, 2016 lika@biology.uoc.gr Μαθηματικά Μοντέλα στη Βιολογία Ένα μαθηματικό μοντέλο είναι ένα σύνολο υποθέσεων για κάποιο βιολογικό σύστημα

Διαβάστε περισσότερα

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» 2 ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα ελάχιστης συνεκτικότητας δικτύου Το πρόβλημα της ελάχιστης

Διαβάστε περισσότερα

Τ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Τ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Τ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΙΣΗΓΗΤΗΣ: Δρ. Ιωάννης Σ. Τουρτούρας Μηχανικός Παραγωγής & Διοίκησης Δ.Π.Θ. Χρηματοδότηση Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

On line αλγόριθμοι δρομολόγησης για στοχαστικά δίκτυα σε πραγματικό χρόνο

On line αλγόριθμοι δρομολόγησης για στοχαστικά δίκτυα σε πραγματικό χρόνο On line αλγόριθμοι δρομολόγησης για στοχαστικά δίκτυα σε πραγματικό χρόνο Υπ. Διδάκτωρ : Ευαγγελία Χρυσοχόου Επιβλέπων Καθηγητής: Αθανάσιος Ζηλιασκόπουλος Τμήμα Μηχανολόγων Μηχανικών Περιεχόμενα Εισαγωγή

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΜΕΘΟΔΟΣ SIMPLEX, διαλ. 3. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 29/4/2017

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΜΕΘΟΔΟΣ SIMPLEX, διαλ. 3. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 29/4/2017 ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΜΕΘΟΔΟΣ SIMPLEX, διαλ. 3 Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 29/4/2017 ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Bέλτιστος σχεδιασμός με αντικειμενική συνάρτηση και περιορισμούς

Διαβάστε περισσότερα

Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων

Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών

Διαβάστε περισσότερα

Η μέθοδος Simplex. Χρήστος Γκόγκος. Χειμερινό Εξάμηνο ΤΕΙ Ηπείρου

Η μέθοδος Simplex. Χρήστος Γκόγκος. Χειμερινό Εξάμηνο ΤΕΙ Ηπείρου Η μέθοδος Simplex Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 1 / 17 Η μέθοδος Simplex Simplex Είναι μια καθορισμένη σειρά επαναλαμβανόμενων υπολογισμών μέσω των οποίων ξεκινώντας από ένα αρχικό

Διαβάστε περισσότερα

ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH

ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Διοίκηση Παραγωγής & Συστημάτων Υπηρεσιών ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Περιεχόμενα

Διαβάστε περισσότερα

ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ

ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ Εφαρμογές μαθηματικού προγραμματισμού στη διαχείριση των υδατικών πόρων Νικόλαος Θεοδοσίου- Αν. καθηγήτης Α.Π.Θ

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING)

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING) ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING) Δρ. Βασιλική Καζάνα Αναπλ. Καθηγήτρια ΤΕΙ Καβάλας, Τμήμα Δασοπονίας & Διαχείρισης Φυσικού Περιβάλλοντος Δράμας Εργαστήριο Δασικής Διαχειριστικής

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX Θεμελιώδης αλγόριθμος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού που κάνει χρήση της θεωρίας της Γραμμικής Άλγεβρας Προτάθηκε από το Dantzig (1947) και πλέον

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Κεφάλαιο 3 3.1 Γενικά Τις τελευταίες δεκαετίες ένας μεγάλος αριθμός μεθόδων βελτιστοποίησης έχει αναπτυχθεί με βάση τη θεωρία του μαθηματικού λογισμού. Οι διάφοροι μαθηματικοί

Διαβάστε περισσότερα

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ ΜΕΡΟΣ ΙΙ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ 36 ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ Πολλές από τις αποφάσεις

Διαβάστε περισσότερα

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2 Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Version Εκφράζοντας τον ταξινομητή Bayes (a) Με χρήση συναρτήσεων διάκρισης (discriminant functions) - Έστω g q (x)=f(p(ω q )p(x ω q )), q=,,m, όπου f γνησίως

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Έργων (Y100)

Ποσοτικές Μέθοδοι στη Διοίκηση Έργων (Y100) Μεταπτυχιακό Πρόγραμμα Σπουδών Διοίκηση και Διαχείριση Έργων και Προγραμμάτων Ποσοτικές Μέθοδοι στη Διοίκηση Έργων (Y100) Μέρος ΙΙ Τεχνικές Μαθηματικού Προγραμματισμού Μαθηματικά Μοντέλα Εισαγωγή Μεθοδολογία

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων Ι Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων Ι Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων Ι Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ με το EXCEL

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ με το EXCEL ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ με το EXCEL ΠΡΟΒΛΗΜΑ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ( Μαθηματικών Γ Γυμνασίου έκδοση ΙΑ 99 σελ. 236 / Έχει γίνει μετατροπή των δρχ. σε euro.) Ένας κτηνοτρόφος πρόκειται να αγοράσει

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Επιχειρησιακή Έρευνα Ενότητα #6: Στοχαστικός Γραμμικός Προγραμματισμός Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα

Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων

Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2017-2018 Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων

Διαβάστε περισσότερα

Διαχείριση Υδατικών Πόρων Εισαγωγή στη βελτιστοποίηση συστημάτων υδατικών πόρων

Διαχείριση Υδατικών Πόρων Εισαγωγή στη βελτιστοποίηση συστημάτων υδατικών πόρων Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Διαχείριση Υδατικών Πόρων Εισαγωγή στη βελτιστοποίηση συστημάτων υδατικών πόρων Δημήτρης Κουτσογιάννης Σχολή Πολιτικών Μηχανικών Άδεια

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Κεφάλαιο 5ο: Ακέραιος προγραμματισμός

Κεφάλαιο 5ο: Ακέραιος προγραμματισμός Κεφάλαιο 5ο: Ακέραιος προγραμματισμός 5.1 Εισαγωγή Ο ακέραιος προγραμματισμός ασχολείται με προβλήματα γραμμικού προγραμματισμού στα οποία μερικές ή όλες οι μεταβλητές είναι ακέραιες. Ένα γενικό πρόβλημα

Διαβάστε περισσότερα

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων Επιχειρησιακή Έρευνα Τυπικό Εξάμηνο: Δ Αλέξιος Πρελορέντζος Εισαγωγή Ορισμός 1 Η συστηματική εφαρμογή ποσοτικών μεθόδων, τεχνικών

Διαβάστε περισσότερα

Διαχείριση Υδατικών Πόρων Πολυκριτηριακή ανάλυση

Διαχείριση Υδατικών Πόρων Πολυκριτηριακή ανάλυση Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Διαχείριση Υδατικών Πόρων Πολυκριτηριακή ανάλυση Ανδρέας Ευστρατιάδης & Δημήτρης Κουτσογιάννης Σχολή Πολιτικών Μηχανικών, Αθήνα Άδεια

Διαβάστε περισσότερα

Κύρια σημεία. Η έννοια του μοντέλου. Έρευνα στην εφαρμοσμένη Στατιστική. ΈρευναστηΜαθηματικήΣτατιστική. Αντικείμενο της Μαθηματικής Στατιστικής

Κύρια σημεία. Η έννοια του μοντέλου. Έρευνα στην εφαρμοσμένη Στατιστική. ΈρευναστηΜαθηματικήΣτατιστική. Αντικείμενο της Μαθηματικής Στατιστικής Κύρια σημεία Ερευνητική Μεθοδολογία και Μαθηματική Στατιστική Απόστολος Μπουρνέτας Τμήμα Μαθηματικών ΕΚΠΑ Αναζήτηση ερευνητικού θέματος Εισαγωγή στην έρευνα Ολοκλήρωση ερευνητικής εργασίας Ο ρόλος των

Διαβάστε περισσότερα

Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου

Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Προϋποθέσεις Εφαρμογής

Διαβάστε περισσότερα

Κεφάλαιο 12: Υδραυλική ανάλυση δικτύων διανομής

Κεφάλαιο 12: Υδραυλική ανάλυση δικτύων διανομής Κεφάλαιο 12: Υδραυλική ανάλυση δικτύων διανομής Εννοιολογική αναπαράσταση δίκτυων διανομής Σχηματοποίηση: δικτυακή απεικόνιση των συνιστωσών του φυσικού συστήματος ως συνιστώσες ενός εννοιολογικού μοντέλου

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης. Εισαγωγή στον Γραμμικό Προγραμματισμό

Πληροφοριακά Συστήματα Διοίκησης. Εισαγωγή στον Γραμμικό Προγραμματισμό Πληροφοριακά Συστήματα Διοίκησης Εισαγωγή στον Γραμμικό Προγραμματισμό Τι είναι ο Γραμμικός Προγραμματισμός; Είναι το σημαντικότερο μοντέλο στη Λήψη Αποφάσεων Αντικείμενό του η «άριστη» κατανομή περιορισμένων

Διαβάστε περισσότερα

Δυναμική Ηλεκτρικών Μηχανών

Δυναμική Ηλεκτρικών Μηχανών Δυναμική Ηλεκτρικών Μηχανών Ενότητα 1: Εισαγωγή Βασικές Αρχές Επ. Καθηγήτρια Τζόγια Χ. Καππάτου Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

z = c 1 x 1 + c 2 x c n x n

z = c 1 x 1 + c 2 x c n x n Τεχνολογικό Εκπαιδευτικό Ιδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Γραμμικός Προγραμματισμός & Βελτιστοποίηση Δρ. Δημήτρης Βαρσάμης Καθηγητής Εφαρμογών Δρ. Δημήτρης Βαρσάμης Μάρτιος

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 12., στο ίδιο σύστημα

ΔΙΑΓΩΝΙΣΜΑ 12., στο ίδιο σύστημα Μέρος Α ΔΙΑΓΩΝΙΣΜΑ 1 1. (4 μονάδες) α). Η συνάρτηση () έχει το παραπλεύρως γράφημα. () Να βρεθούν τα γραφήματα της μέσης τιμής: A() = () / και του οριακού ρυθμού: M() = (), στο ίδιο σύστημα συντεταγμένων.

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Ενότητα: Αναγνώριση Διεργασίας - Προσαρμοστικός Έλεγχος (Process Identification) Αλαφοδήμος Κωνσταντίνος

Διαβάστε περισσότερα

Φ. Δογάνης I. Bafumba Χ. Σαρίμβεης. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Χημικών Μηχανικών Μονάδα Αυτόματης Ρύθμισης και Πληροφορικής

Φ. Δογάνης I. Bafumba Χ. Σαρίμβεης. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Χημικών Μηχανικών Μονάδα Αυτόματης Ρύθμισης και Πληροφορικής Αριστοποίηση παραγωγής ηλεκτρικής ενέργειας από συντονισμένη αξιοποίηση υδροηλεκτρικών και συμβατικών μονάδων ηλεκτροπαραγωγής με χρήση μικτού ακέραιου τετραγωνικού προγραμματισμού. Φ. Δογάνης I. Bafumba

Διαβάστε περισσότερα

Επιστημονικοί Υπολογισμοί (ή Υπολογιστική Επιστήμη)

Επιστημονικοί Υπολογισμοί (ή Υπολογιστική Επιστήμη) Επιστημονικοί Υπολογισμοί (ή Υπολογιστική Επιστήμη) Ασχολoύνται με την κατασκευή μαθηματικών μοντέλων και με τεχνικές ποσοτικής ανάλυσης και τη χρήση υπολογιστών για την ανάλυση και την επίλυση επιστημονικών

Διαβάστε περισσότερα

Γιατί μας ενδιαφέρει; Αντιπλημμυρική προστασία. Παροχή νερού ύδρευση άρδευση

Γιατί μας ενδιαφέρει; Αντιπλημμυρική προστασία. Παροχή νερού ύδρευση άρδευση Ζαΐμης Γεώργιος Γιατί μας ενδιαφέρει; Αντιπλημμυρική προστασία Παροχή νερού ύδρευση άρδευση Πλημμύρες Ζημίες σε αγαθά Απώλειες ανθρώπινης ζωής Αρχικά εμπειρικοί μέθοδοι Μοναδιαίο υδρογράφημα Συνθετικά

Διαβάστε περισσότερα

Αστικά υδραυλικά έργα

Αστικά υδραυλικά έργα Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Αστικά υδραυλικά έργα Υδραυλική ανάλυση δικτύων διανομής Δημήτρης Κουτσογιάννης, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Άδεια Χρήσης

Διαβάστε περισσότερα

Συστήματα Ελέγχου με Μικροϋπολογιστές (h9p://courseware.mech.ntua.gr/ml23259/)

Συστήματα Ελέγχου με Μικροϋπολογιστές (h9p://courseware.mech.ntua.gr/ml23259/) Συστήματα Ελέγχου με Μικροϋπολογιστές (h9p://courseware.mech.ntua.gr/ml23259/) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h9p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή της Ύλης του

Διαβάστε περισσότερα

ΜΕΘΟΔΟΙ ΑΕΡΟΔΥΝΑΜΙΚΗΣ

ΜΕΘΟΔΟΙ ΑΕΡΟΔΥΝΑΜΙΚΗΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Εργαστήριο Θερμικών Στροβιλομηχανών Μονάδα Παράλληλης ης Υπολογιστικής Ρευστοδυναμικής & Βελτιστοποίησης ΜΕΘΟΔΟΙ ΑΕΡΟΔΥΝΑΜΙΚΗΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ (7 ο Εξάμηνο Σχολής Μηχ.Μηχ. ΕΜΠ)

Διαβάστε περισσότερα

Συνδυαστική Βελτιστοποίηση

Συνδυαστική Βελτιστοποίηση Διδάσκων: Ξενίδης Δημήτριος (xenides@uop.gr) Τόπος Διδασκαλίας: Αίθουσα Υ5 Ημέρα και Ώρα Διδασκαλίας: Παρασκευή 10:00-14:00 Βιβλίο Μαθήματος: Elementary Linear Programming with Applications Σελίδα στο

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 1

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 1 i ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 1 ΚΕΦΑΛΑΙΟ 1 Αριθµοί και Μεταβλητές... 5 1.1. Το σύνολο των φυσικών αριθµών Φ... 5 1.2. Το σύνολο Φ 0 των ακέραιων της Αριθµητικής... 7 1.3. Το σύνολο των σύµµετρων αριθµών Σ...

Διαβάστε περισσότερα

Συστήματα Ελέγχου με Μικροϋπολογιστές (h9p://courseware.mech.ntua.gr/ml23259/)

Συστήματα Ελέγχου με Μικροϋπολογιστές (h9p://courseware.mech.ntua.gr/ml23259/) Συστήματα Ελέγχου με Μικροϋπολογιστές (h9p://courseware.mech.ntua.gr/ml23259/) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h9p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή της Ύλης του

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΑΘΑΝΑΣΙΟΣ Χ. ΑΛΕΞΑΝΔΡΑΚΗΣ ΑΝ. ΚΑΘΗΓΗΤΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΜΑΚΕΔΟΝΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ Β ΤΟΜΟΣ Κάθε γνήσιο αντίτυπο φέρει την υπογραφή του συγγραφέα και τη σφραγίδα του εκδότη ISBN SET: 960-56-026-9

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος Κεφάλαιο 1: Εισαγωγή...17

Περιεχόμενα. Πρόλογος Κεφάλαιο 1: Εισαγωγή...17 Περιεχόμενα Πρόλογος...11 Κεφάλαιο 1: Εισαγωγή...17 1 Διαχείριση ενεργητικού παθητικού... 17 1.1 Δομή του μοντέλου ALM... 20 1.1.1 Αντικειμενικές συναρτήσεις... 21 1.1.1.1 Θεωρία χρησιμότητας Von Neumann-Morgenstern...

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΣΥΣΤΗΜΑΤΩΝ ΣΤΟ ΧΩΡΟ ΚΑΤΑΣΤΑΣΗΣ Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (http://)

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (http://) Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (http://) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (http://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή της Ύλης του Μαθήματος Εισαγωγη

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα 1. Εισαγωγή

Επιχειρησιακή Έρευνα 1. Εισαγωγή Επιχειρησιακή Έρευνα 1. Εισαγωγή 1 Ορολογία Operational Research (British/Europeans) Operations Research (USA) Κοινός συμβολισμός: OR Άλλοι όροι: Management Science (MS), Industrial Engineering (IE) Decision

Διαβάστε περισσότερα

Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης ΚΕΦΆΛΆΙΟ 1 Ο ρόλος της επιχειρησιακής έρευνας στη λήψη αποφάσεων ΚΕΦΆΛΆΙΟ 2.

Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης ΚΕΦΆΛΆΙΟ 1 Ο ρόλος της επιχειρησιακής έρευνας στη λήψη αποφάσεων ΚΕΦΆΛΆΙΟ 2. Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης... 11 Λίγα λόγια για βιβλίο... 11 Σε ποιους απευθύνεται... 12 Τι αλλάζει στην 5η αναθεωρημένη έκδοση... 12 Το βιβλίο ως διδακτικό εγχειρίδιο... 14 Ευχαριστίες...

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΕΥΑΓΓΕΛΙΑΣ Π. ΛΟΥΚΟΓΕΩΡΓΑΚΗ Διπλωματούχου Πολιτικού Μηχανικού ΟΛΟΚΛΗΡΩΜΕΝΟ

Διαβάστε περισσότερα

Πολυκριτηριακά Συστήματα Υποστήριξης Αποφάσεων

Πολυκριτηριακά Συστήματα Υποστήριξης Αποφάσεων Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Τομέας Ηλ. Βιομηχανικών Διατάξεων & Συστημάτων Αποφάσεων Πολυκριτηριακά Συστήματα Υποστήριξης Αποφάσεων Ε09 Πολυκριτήρια

Διαβάστε περισσότερα

Διαχείριση Ταμιευτήρα

Διαχείριση Ταμιευτήρα Διαχείριση Ταμιευτήρα Μονοκριτηριακή βελτιστοποίηση Διαχείριση υδατικών πόρων Ανάγκη σύνθεσης επιστημών Σημερινό μάθημα: έμφαση στη χρήση εννοιών και μεθόδων από την επιχειρησιακή έρευνα Κουτσογιάννης,

Διαβάστε περισσότερα

Πολυκριτηριακός Γραμμικός Προγραμματισμός. Συστήματα Αποφάσεων Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης

Πολυκριτηριακός Γραμμικός Προγραμματισμός. Συστήματα Αποφάσεων Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης Πολυκριτηριακός Γραμμικός Προγραμματισμός Πολλαπλά κριτήρια στη λήψη απόφασης Λήψη Αποφάσεων με Πολλαπλά Κριτήρια Διακριτό σύνολο επιλογών Συνεχές σύνολο επιλογών Πολυκριτηριακή Ανάλυση (ELECTRE, Promethee,

Διαβάστε περισσότερα

Κεφάλαιο 3ο: Γραμμικός Προγραμματισμός

Κεφάλαιο 3ο: Γραμμικός Προγραμματισμός Κεφάλαιο 3ο: Γραμμικός Προγραμματισμός 3.1 Εισαγωγή Πολλοί πιστεύουν ότι η ανάπτυξη του γραμμικού προγραμματισμού είναι μια από τις πιο σπουδαίες επιστημονικές ανακαλύψεις στα μέσα του εικοστού αιώνα.

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ. Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες)

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ. Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες) ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, 2016-2017 ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες) Κεφ. 2: Επίλυση συστημάτων εξισώσεων (διάρκεια: 3 εβδομάδες) 2.1 Επίλυση εξισώσεων 2.2 Επίλυση

Διαβάστε περισσότερα

ΠΟΩΤΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΔΤΝΑΜΙΚΗΣ ΜΗΧΑΝΩΝ

ΠΟΩΤΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΔΤΝΑΜΙΚΗΣ ΜΗΧΑΝΩΝ ΡΙΣΤΟΤΕΩΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΟΕΣΣΑΩΟΝΙΚΗΣ ΠΟΩΤΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΤΑΣΚΕΤΑΣΤΙΚΟΣ ΤΟΜΕΑΣ ΕΡΓΑΣΤΗΡΙΟ ΔΤΝΑΜΙΚΗΣ ΜΗΧΑΝΩΝ Γεωργία N. Γεωργίου Διπλ. Μηχανολόγος Μηχανικός A.Π.O. ΙΖΡΟΣΔΙΟΡΙΣΜΟΣ

Διαβάστε περισσότερα

1. ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

1. ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η επιχειρησιακή έρευνα επικεντρώνεται στη λήψη αποφάσεων από επιχειρήσεις οργανισμούς, κράτη κτλ. Στα πλαίσια της επιχειρησιακής έρευνας εξετάζονται οι ακόλουθες περιπτώσεις : Γραμμικός προγραμματισμός

Διαβάστε περισσότερα

Μαθηματικά Και Στατιστική Στη Βιολογία

Μαθηματικά Και Στατιστική Στη Βιολογία ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά Και Στατιστική Στη Βιολογία Ενότητα 10 : Δυναμικά Συστήματα Στέφανος Σγαρδέλης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη του Ηλεκτρολόγου Μηχανικού (και στην Τεχνολογία Υπολογιστών;)

Εισαγωγή στην Επιστήμη του Ηλεκτρολόγου Μηχανικού (και στην Τεχνολογία Υπολογιστών;) Εισαγωγή στην Επιστήμη του Ηλεκτρολόγου Μηχανικού (και στην Τεχνολογία Υπολογιστών;) Τι είναι αυτό; 1. Διαλέξεις; 2. Σεμινάριο; 3. Μάθημα; 4. Αλλο; Θεωρία Συστημάτων, Θεωρία Αποφάσεων και (αυτόματος) Έλεγχος

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

4.γ. μερική επανάληψη, εισαγωγή στη βελτιστοποίηση υδατικών συστημάτων. Δρ Μ.Σπηλιώτης

4.γ. μερική επανάληψη, εισαγωγή στη βελτιστοποίηση υδατικών συστημάτων. Δρ Μ.Σπηλιώτης 4.γ. μερική επανάληψη, εισαγωγή στη βελτιστοποίηση υδατικών συστημάτων Δρ Μ.Σπηλιώτης Ολοκληρωμένη διαχείριση υδατικών πόρων (integrated water resources management), έμφαση στην εξέταση όλων των πτυχών

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΟΡΙΖΟΝΤΙΩΝ ΔΙΚΤΥΩΝ (ΤΟ ΣΥΣΤΗΜΑ ΤΩΝ ΚΑΝΟΝΙΚΩΝ ΕΞΙΣΩΣΕΩΝ)

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΟΡΙΖΟΝΤΙΩΝ ΔΙΚΤΥΩΝ (ΤΟ ΣΥΣΤΗΜΑ ΤΩΝ ΚΑΝΟΝΙΚΩΝ ΕΞΙΣΩΣΕΩΝ) ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΟΡΙΖΟΝΤΙΩΝ ΔΙΚΤΥΩΝ (ΤΟ ΣΥΣΤΗΜΑ ΤΩΝ ΚΑΝΟΝΙΚΩΝ ΕΞΙΣΩΣΕΩΝ) Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ 3ο εξάμηνο http://eclass.teiath.gr

Διαβάστε περισσότερα

Προσδιοριστικές Μέθοδοι Επιχειρησιακής Έρευνας Πολυκριτήριος Γραμμικός Προγραμματισμός (Goal Programming)

Προσδιοριστικές Μέθοδοι Επιχειρησιακής Έρευνας Πολυκριτήριος Γραμμικός Προγραμματισμός (Goal Programming) Προσδιοριστικές Μέθοδοι Επιχειρησιακής Έρευνας Πολυκριτήριος Γραμμικός Προγραμματισμός (Goal Programming Νίκος Τσάντας ιατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών Τμήμ. Μαθηματικών Μαθηματικά των Υπολογιστών

Διαβάστε περισσότερα

Κασταλία Σύστηµα στοχαστικής προσοµοίωσης υδρολογικών µεταβλητών

Κασταλία Σύστηµα στοχαστικής προσοµοίωσης υδρολογικών µεταβλητών Εθνικό Μετσόβιο Πολυτεχνείο Τοµέας Υδατικών Πόρων, Υδραυλικών και Θαλάσσιων Έργων Κασταλία Σύστηµα στοχαστικής προσοµοίωσης υδρολογικών µεταβλητών. Κουτσογιάννης Α. Ευστρατιάδης Φεβρουάριος 2002 Εισαγωγή

Διαβάστε περισσότερα

Λεωνιδας Δριτσας PhD

Λεωνιδας Δριτσας PhD ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΠΤΥΧΙΑΚΕΣ ΕΡΓΑΣΙΕΣ ΚΑΤΕΥΘΥΝΣΗΣ ΗΛΕΚΤΡΟΛΟΓΩΝ / ΗΛΕΚΤΡΟΝΙΚΩΝ Λεωνιδας Δριτσας PhD ΑΣΠΑΙΤΕ 2015-2016 Version#1 Timestamp = 16/Nov/2015 (11.09) Προς τους Σπουδαστες που ενδιαφερονται για τις

Διαβάστε περισσότερα

Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή

Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΜΥ 795: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ Ακαδηµαϊκό έτος 2010-11 Χειµερινό Εξάµηνο Τελική εξέταση Τρίτη, 21 εκεµβρίου 2010,

Διαβάστε περισσότερα

Μαρία Χ.Γουσίδου-Κουτίτα Επίκουρη Καθηγήτρια Τμήματος Μαθηματικών Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ

Μαρία Χ.Γουσίδου-Κουτίτα Επίκουρη Καθηγήτρια Τμήματος Μαθηματικών Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ Μαρία Χ.Γουσίδου-Κουτίτα Επίκουρη Καθηγήτρια Τμήματος Μαθηματικών Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΘΕΣΣΑΛΟΝΙΚΗ 2004 Κάθε γνήσιο αντίτυπο υπογράφεται από τη συγγραφέα ΑΡΙΘΜΗΤΙΚΗ

Διαβάστε περισσότερα

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2 Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson ΜΙΑ ΣΥΜΒΑΣΗ: Προκειμένου να καταστήσουμε πιο συμπαγή το συμβολισμό H : ορίζουμε Ετσι έχουμε *=[ ] an *=[ ]. H : * * ΣΗΜΕΙΩΣΗ: Στη συνέχεια εκτός αν ορίζεται

Διαβάστε περισσότερα

Ανάλυση ευαισθησίας. Άσκηση 3 Δίνεται ο παρακάτω τελικός πίνακας Simplex. Επιχειρησιακή Έρευνα Γκόγκος Χρήστος

Ανάλυση ευαισθησίας. Άσκηση 3 Δίνεται ο παρακάτω τελικός πίνακας Simplex. Επιχειρησιακή Έρευνα Γκόγκος Χρήστος Τμήμα Μηχανικών Πληροφορικής ΤΕ Ακαδημαϊκό έτος 2016-2017 Άρτα Επιχειρησιακή Έρευνα Γκόγκος Χρήστος Μεταπτυχιακό Μηχανικών Η/Υ και Δικτύων Μεταπτυχιακό Μηχανικών Η/Υ και Δικτύων ΣΕΤ ΑΣΚΗΣΕΩΝ 3 Ανάλυση

Διαβάστε περισσότερα

min f(x) x R n (1) x g (2)

min f(x) x R n (1) x g (2) KΕΦΑΛΑΙΟ Κλασσικές Μέθοδοι Βελτιστοποίησης Με Περιορισµούς Ισότητες. ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΠΕΡΙΟΡΙΣΜΟΥΣ ΙΣΟΤΗΤΕΣ Ζητούνται οι τιµές των µεταβλητών απόφασης που ελαχιστοποιούν την αντικειµενική συνάρτηση κάτω από

Διαβάστε περισσότερα

Διάρθρωση παρουσίασης

Διάρθρωση παρουσίασης ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ, ΥΔΡΑΥΛΙΚΩΝ & ΘΑΛΑΣΣΙΩΝ ΕΡΓΩΝ Βέλτιστη Διαχείριση Συστημάτων Ταμιευτήρων Εφαρμογή στο Σύστημα Αχελώου - Θεσσαλίας Διπλωματική

Διαβάστε περισσότερα

Τοποθέτηση προβλήματος

Τοποθέτηση προβλήματος Τοποθέτηση προβλήματος Σκοπός της εργασίας Εξεταζόμενες λεκάνες απορροής ποταμού Imera Meriodionale Κρεμαστά Εύηνος Λαζάρηδες Περιστερώνα Κύρια περιοχή μελέτης: Αχελώος Έκταση: 3570 km 2 Θέση: Ανάντη φράγματος

Διαβάστε περισσότερα