Συστήματα Ελέγχου με Μικροϋπολογιστές (h9p://courseware.mech.ntua.gr/ml23259/)
|
|
- Τυρώ Ζέρβας
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Συστήματα Ελέγχου με Μικροϋπολογιστές (h9p://courseware.mech.ntua.gr/ml23259/) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h9p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1
2 Δομή της Ύλης του Μαθήματος Θεωρία (7) Βέλτιστος Έλεγχος (6) Εκτίμηση Κατάστασης το Φίλτρο KALMAN (1) Εισαγωγή στην Υλοποίηση Συστημάτων Ελέγχου (7) Ενσωματωμένα Συστήματα (2) Γλώσσα C (4) Προγραμματισμός Ενσωματωμένων Συστημάτων & Εργαστήριο (1) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 2
3 Βέλτιστος Έλεγχος Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 3
4 Εισαγωγή στο Βέλτιστο Έλεγχο Παρουσίαση της δοµής ενός γενικευµένου προβλήµατος βελτίστου ελέγχου Εξειδίκευση στο πρόβληµα τετραγωνικού ρυθµιστή για ΓΧΑΣ Εισαγωγή στο Λογισµό των µεταβολών Η στατική βελτιστοποίηση ως πρόβληµα βελτιστοποπίηση πεπερασµένης διάστασης Λογισµός των µεταβολών Το πρόβληµα ελάχιστης ενέργειας. Ο Γραµµικός Τετραγωνικός Ρυθµιστής. Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 4
5 Παράδειγμα Βελτίστου Ελέγχου Οριζόντια Κίνηση «Πυραύλου» Thrust: u mass: x 3 velocity: x 2 posi)on: x 1 Ανισοτικός Περιορισμός: H ώθηση είναι φραγμένη Ισοτικός Περιορισμός: Το μοντέλλο κίνησης του!x πυραύλου 1 x 2!x 2!x 3 = Αρχικές Τελικές Συνθήκες:!s!υ!m = 1 u 1 x 3 2 Aρc x 2 w 2 α u [ ] u Ω = 0,F max = s a υ a m a x 0 Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 5 x t f T = s b υ b free T
6 Παράδειγμα Βελτίστου Ελέγχου Οριζόντια Κίνηση «Πυραύλου» Thrust: u mass: x 3 velocity: x 2 posi)on: x 1 Το πρόβλημα του Βελτίστου Ελέγχου: Να ευρεθεί η (κατά τμήματα συνεχής) συνάρτηση της ώθησης u : 0,t f [ 0,F max ] που ικανοποιεί όλους τους περιορισμούς, ισοτικούς- ανισοτικούς- αρχικούς- τελικούς, και ελαχιστοποιεί την κατανάλωση t f καυσίμου: J ( u) = u( t) t 0 Εναλλακτικά, αλλά ισοδύναμα, θα μπορούσε να χρησιμοποιηθεί το κριτήριο J ( u) = x 3 t f x = s υ m T Γιατί το J εξαρτάται μόνο το απο το u ενώ εμπεριέχει μόνο το x 3 (t f )? Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 6
7 Το Πρόβλημα του Βελτίστου Ελέγχου Στην πιο γενική περίπτωση, θεωρούµε τη ΔΕ που περιγράφει την δυναµική της εγκατάστασης Εισάγουµε την έννοια του Δείκτη Απόδωσης (performance inex) ή Συνάρτησης Κόστους (cost function) ή Αντικειµενικής Συνάρτησης (objective function) η οποία πρέπει να ελαχιστοποιηθεί: Η «Συνάρτηση Απώλειας» (Loss Function) αντιπροσωπεύει κάποια ποινή που: Εξαρτάται από τη κατάσταση, την είσοδο ή από συνδυασµό τους, και Αναφορικα µε το χρόνο, είναι στατική ή χρονικά εξαρτώµενη. Παραδείγµατα: L x( t),u( t),t = 1 : ελαχιστοποίηση χρόνου, L x( t),u( t),t = u 2 ( t) : ελαχιστοποίηση ενέργειας, L x( t),u( t),t = u( t) : ελαχιστοποίηση καυσίµου Μπορεί να υπάρχουν και περιορισµοί (constraints) που συνδέουν είτε τη κατάσταση, είτε την είσοδο ή και τις 2, συνδυασµένα. Μπορεί να είναι : Ισοτικοί D( x( t), u( t), t) = 0 t t0, t f Ανισοτικοί C x( t) u( t) t t t t 0,, 0, f L x t, u t, t Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 7
8 Το Πρόβλημα του Βελτίστου Ελέγχου Κατά συνέπεια, το πρόβληµα βελτιστοποιήσεως έγγυται στην ανεύρεση εκείνης της συνάρτησης εισόδου u(t) t [t 0,t f ] η οποία : u * (t) Ελαχιστοποιεί (min) την αντικειµενική συνάρτηση J(u) και Υπόκειται (subject to s.t.) σε περιορισµούς : τόσο κατάστασης-εισόδου (ισοτικοί/ανισοτικοί) όσο και αυτούς που εισάγει η ΔΕ της δυναµικής του συστήµατος Αυτό το πρόβληµα βελτιστοποίησης εφράζεται µαθηµατικά ως min u J u Η προκύπτουσα ελαχιστοποιούσα συνάρτηση συµβολίζεται ως u (t) t [t 0,t f ] Προφανώς αυτή η βέλτιστη συνάρτηση εισόδου u (t) t [t 0,t f ], όταν εισαχθεί στη ΔΕ της δυναµικής του συστήµατος και αυτή συνεπώς επιλυθεί, οδηγεί στη βέλτιστη πορεία x (t) t [t 0,t f ], x (t 0 )=x 0 του συστήµατος! = 0 = 0 x 0 st.. x f x, u, t x t x D x t, u t, t = 0 C x t, u t, t 0 x * (t) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 8
9 Το Πρόβλημα του Βελτίστου Ελέγχου Το προηγούµενο γενικευµένο πρόβληµα µπορεί να αναχθεί σε απλούστερες µορφές όπου π.χ. το σύστηµα είναι γραµµικό ή οι ισοτικοί /ανισοτικοί περιορισµοί είναι απλά φράγµατα της κατάστασης ή της εισόδου κλπ. Σε αυτό το µάθηµα θα δοθεί έµφαση (αλλά όχι αποκλειστικότητα) σε µία από τις απλούστερες δυνατές µορφές, όπου: Το σύστηµα είναι ΓΧΑΣ Δεν υπάρχουν ισοτικοί / ανισοτικοί περιορισµοί εισόδων-καταστάσεων, και Η αντικειµενική συνάρτηση είναι τετραγωνική Ό όρος τεραγωνική πηγάζει από το ότι τόσο η Loss Function όσο και το τελικό κόστος είναι τετραγωνικοί όροι Παρατηρούµε ότι: Η Loss Function επιβαρύνει «µεγάλες καταστάσεις» και µεγάλη «κατανάλωση ενέργειας» Το τελικό κόστος επιβαρύνει την απόκλιση από τη µηδενική κατάσταση Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 9
10 min X s.t. = 0 0 J X Εισαγωγή στο Λογισμό των Μεταβολών Βελτιστοποίηση Βελτιστοποίηση πεπερασµένης διάστασης άπειρης διάστασης G X (δηλ. Χ R ) (δηλ. u(t) t [t 0,t f ] ) F X Η επίλυση των διατυπωθέντων προβληµάτων βελτίστου ελέγχου απαιτεί τη χρήση εννοιών πέρα της κλασσικής θεωρίας (στατικής) βελτιστοποίησης. Θα εισαχθούν έννοιες από τη περιοχή του Λογισµού των Μεταβολών (Calculus of Variations). Προφανώς, δεδοµένου ότι η εδώ παρουσίαση θα είναι εισαγωγική ( light ) θα την δούµε απλοποιηµένα θεωρώντας τα εξης: Όλες οι συναρτήσεις που ορίζονται εδώ έχουν συνεχείς µερικές παραγώγους, σε όλο το πεδίο ορισµού τους, ως πρός όλες τις µεταβλητές τους (εκτός αν ξεκάθαρα ορίζεται το αντίθετο), και Το πρόβληµα βελτιστοποίσης ορίζεται εδώ στην συνολική (global) µορφή του και δεν υπάρχουν ανισοτικοί περιορισµοί που το περιορίζουν. min u J u st.. x! = f x, u, t x t = x D x t, u t, t = 0 C x t, u t, t Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 10
11 Εισαγωγή στο Λογισμό των Μεταβολών : Βελτιστοποίηση σε Πεπερασμένες Διαστάσεις Θεωρούµε τη συνάρτηση f :!! την οποία θέλουµε να ελαχιστοποιήσουµε σε όλο το πεδίο ορισµού της z!, δηλαδή ψάχνουµε : Την ελάχιστη τιµή της συνάρτησης : min f ( z), και z! Το σηµείο του πεδίου ορισµού που επιτυγχάνεται η ελαχιστοποίηση: z = arg min f ( z) z! Αναζητούµε τις αναγκαίες συνθήκες ώστε το z* να ελαχιστοπoιεί την f (z). Προφανώς: ( ) f ( z ) υ!, υ 0 f z + υ > Δηλαδή η κατευθυνόµενη πάραγωγος (irectional erivative) της f (z) στο z*, ώς προς την κατεύθυνση του υ, είναι µηδενική που σηµαίνει ότι... f(z * +υ) f(z * f(z ) * +υ) f(z * ) z * +υ z * +υ z Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ * z * 11 11
12 Εισαγωγή στο Λογισμό των Μεταβολών : Βελτιστοποίηση σε Πεπερασμένες Διαστάσεις ( + ε υ) f z f z f ( z ) υ = lim 0 + ε f ( z ± ε υ) > f ( z ) ε > 0 f ( z f ( z ε υ) f ( z ) f ( z ) ( υ) = f ( z ) υ = lim 0 + ε 0 ε Τ f ( z + ε υ) f ( z ) f ( z ) υ = lim 0 + ε 0 ε 0 f ( z ) υ = 0 Τ Τ f ( z ε υ) f ( z ) f ( z ) ( υ) = f ( z ) υ = lim 0 + ε 0 ε ε 0 ( z + ε υ) f ( z ) 0 ε Τ f ( z ) υ = 0 f ( z ε υ) f ( z ) = lim 0 + ε 0 ε f(z * +υ) f(z * ) z * +υ z * 0 Επειδή αυτό ισχύει για κάθε υ, τότε f z = Όλα τα σηµεία z* που ικανοποιούν αυτή τη σχέση λέγοντα «κρίσιµα σηµεία». Αν ένα σηµείο z* ελαχιστοπoιεί την f (z) τότε είναι και κρίσιµο σηµείο της. Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 12
13 Εισαγωγή στο Λογισμό των Μεταβολών : Βελτιστοποίηση σε Πεπερασμένες Διαστάσεις Ένα κρίσιµο σηµείο µίας συνάρτησης ΔΕΝ την ελαχιστοποιεί όµως αναγκαστικά π.χ.: [ ] T [ ] 2 2 f. z = z1 + z2 2 f z = z1 z2 z = 0 0 το µοναδικό κρίσιµο σηµείο ΔΕΝ ελαχιστοποιεί τη συνάρτηση ΑΛΛΑ... την µεγιστοποιεί. T z * [ ] [ ] 2 2 f. z = z1 z2 2 f z = z1 z T 2 z = 0 0 το µοναδικό κρίσιµο σηµείο ΔΕΝ ελαχιστοποιεί τη συνάρτηση ΑΛΛΑ είναι «σηµείο σάγµατος». T Η εξαγωγή συµπερασµάτων για το είδος του κρίσιµου σηµείου απαιτεί την θεώριση της 2 ης παραγώγου (Hessian). z * Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 13
14 Παράδειγμα Έστω η συνάρτηση f ( z) = 1 όπου,, 2 zt Qz + S T z z R 2 Q = Q T = T q 12 q 22 και S = s 1 s 2. Για τα κρίσιμα σημεία f ( z) = 0 Qz + S = 0 z = Q 1 S H Hessian είναι 2 f z = Q. Άρα για τα κρίσιμα σημεία z * έχουμε: Αντιστοιχούν σε ελάχιστα αν: 2 f(z) > 0 Q > 0 (o πίνακας Q είναι θετικά ορισμένος (Posi ve Definite - p) Αντιστοιχούν σε μεγιστα άν: 2 f(z) < 0 Q < 0 (o πίνακας Q είναι αρνητικά ορισμένος (Nega ve Definite - n) q 11 q 12 Αντιστοιχούν σε σημεία σάγματος αν: 2 f(z) (δηλ. ο πίνακας Q) είναι ακαθόριστος (Inefinite i). Αντιστοιχούν σε ιδιόμορφα σημεία αν: 2 f(z) =0 (δηλ. Q = 0) χρειζει περαιτέρω ανάλυσης για να καθορισθεί η «φύση» του κρίσιμου σημείου). Αν δέν έχουμε περίπτωση ιδιομορφίας τότε μπορούμε να έχουμε = 1 2 zt Qz + S T z f z z = Q 1 S T Q( Q 1 S) + S T ( Q 1 S) = 1 2 ST QS Γιατί? = 1 2 Q 1 S Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 14
15 Παράδειγμα Έστω η περίπτωση όπου Q = Q T = 1 2 Τότε επειδή Q > 0 (γιατί?) το ακρότατο z = Q 1 S = αντιστοιχεί σε ελάχιστο, = 1 2 και f z Οι ισοϋψείς της f(z) έχουν τη 1 1 μορφή ελλείψεων. Τα «βέλη» δείχνουν την κατεύθυνση 1 της κλισης f ( z) = Qz + S στο αντιστοιχο σημείο και είναι κάθετα στις ισοϋψείς. 0 1 = 0 1 S = 0 1 T Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 15
16 Εισαγωγή στο Λογισμό των Μεταβολών : Βελτιστοποίηση σε Πεπερασμένες Διαστάσεις Όπως είδαµε από τα προηγούµενα παραδείγµατα, η εξαγωγή συµπεράσµατος για το είδος του κρίσιµου σηµείου έγινε µέσω της 2 ης παραγώγου (Hessian). Εναλλακτικά: Μιά συνάρτηση f :!! λέµε ότι είναι : κυρτή (convex) άν f ( z+ υ) f ( z) f ( z) υ z, υ! αυστηρά κυρτή (strictly convex) άν είναι κυρτή και ισχύει f ( z υ) f ( z) f ( z) υ υ 0 + = =! f(z)+ f(z) υ f(z+υ) f(z) z+υ υ z f(z ) υ z z +υ f(z +υ )=f(z )+ f(z ) υ f(z ) 0 Έστω z* κρίσιµο σηµείο της αυστηρά κυρτής f (z) δηλαδή f z =. Εποµένως f z υ f z f z υ υ f z υ f z υ + > = 0 0! + > 0! Συµπέρασµα: Ένα κρίσιµο σηµείο z* µιάς αυστηρά κυρτής συνάρτησης f (z) την ελαχιστοποιεί, δηλαδή z = arg min f ( z) z! 16
Συστήματα Ελέγχου με Μικροϋπολογιστές (h9p://courseware.mech.ntua.gr/ml23259/)
Συστήματα Ελέγχου με Μικροϋπολογιστές (h9p://courseware.mech.ntua.gr/ml23259/) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h9p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή της Ύλης του
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/)
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h>p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/)
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h>p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (http://)
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (http://) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (http://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή της Ύλης του Μαθήματος Εισαγωγη
Εισαγωγή στο Λογισμό των Μεταβολών : Βελτιστοποίηση σε Πεπερασμένες Διαστάσεις
Εισαγωγή στο Λογισμό των Μεταβολών : Βελτιστοποίηση σε Πεπερασμένες Διαστάσεις Όπως είδαµε στα προηγούµενα παραδείγµατα, η εξαγωγή συµπεράσµατος για το είδος του κρίσιµου σηµείου έγινε µέσω της 2 ης παραγώγου
Εισαγωγή στο Λογισμό των Μεταβολών : Βελτιστοποίηση σε Πεπερασμένες Διαστάσεις & Ισοτικοί Περιορισμοί
Βελτιστοποίηση σε Πεπερασμένες Διαστάσεις & Ισοτικοί Περιορισμοί Τι θα γίνει όμως αν μας ζητηθεί να ελαχιστοποιήσουμε ως προς το R την f ( ) = Q + S Q = Q = S = με ταυτόχρονη ικανοποίηση της g( ) = c b
Έλεγχος «Ελάχιστης Ενέργειας»
Έλεγχος «Ελάχιστης Ενέργειας» Σε πολλές εφαρµογές, τόσο της αεροδιαστηµικής όσο και άλλων µορφών της τεχνολογίας µεταφορών κλπ, η βελτιστοποίηση επικεντρώνεται στο ζήτηµα της ενέργειας κατά την επίτευξη
Το Πρόβλημα Ελευθέρων Αρχικών & Τελικών: Χρόνου & Οριακών Συνθηκών
ο Πρόβλημα Ελευθέρων Αρχικών & ελικών: Χρόνου & Οριακών Συνθηκών Θεωρούμε το πρόβλημα της εύρεσης ακροτάτων του t συναρτησιακού f F = F(z) = f ( z( t), z ( t),t) dt Θεωρούμε την «γενική» περίπτωση όπου
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/)
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml2347/) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h>p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ Δομή της
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/)
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h>p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/)
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h>p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/)
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h>p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/)
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h>p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://)
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h>p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή της Ύλης του Μαθήματος Εισαγωγη
Έλεγχος «Ελάχιστης Ενέργειας»
Έλεγχος «Ελάχιστης Ενέργειας» Σε πολλές εφαρµογές, τόσο της αεροδιαστηµικής όσο και άλλων µορφών της τεχνολογίας µεταφορών κλπ, η βελτιστοποίηση επικεντρώνεται στο ζήτηµα της ενέργειας κατά την επίτευξη
2. Ανάλυση Γραμμικών Χρονικά Αμετάβλητων Συστημάτων (ΓΧΑΣ) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1
2. Ανάλυση Γραμμικών Χρονικά Αμετάβλητων Συστημάτων (ΓΧΑΣ) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Επίλυση Εξισώσεων Κατάστασης Δεδοµένου του ΓΧΑΣ nn nm pn pm όπου A R B R C R D R Τίθεται το ζήτηµα της επίλυσης
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://)
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h>p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή της Ύλης του Μαθήματος Εισαγωγη
min f(x) x R n b j - g j (x) = s j - b j = 0 g j (x) + s j = 0 - b j ) min L(x, s, λ) x R n λ, s R m L x i = 1, 2,, n (1) m L(x, s, λ) = f(x) +
KΕΦΑΛΑΙΟ 4 Κλασσικές Μέθοδοι Βελτιστοποίησης Με Περιορισµούς Ανισότητες 4. ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΠΕΡΙΟΡΙΣΜΟΥΣ ΑΝΙΣΟΤΗΤΕΣ Ζητούνται οι τιµές των µεταβλητών απόφασης που ελαχιστοποιούν την αντικειµενική συνάρτηση
Βέλτιστος Έλεγχος μέσω Λογισμού των. Μεταβολών ( )
Βέλτιστος Έλεγχος μέσω Λογισμού των ( ) Μεταβολών Εστω σύστημα!x ( t) = a x( t),u( t),t με t 0, x(t 0 ) καθορισμένα. Ζητείται η εύρεση κατάλληλης συνάρτησης ελέγχου u*(t) που, παράγοντας τη τροχιά x*(t)
Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange
64 Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrage Ας υποθέσουµε ότι ένας δεδοµένος χώρος θερµαίνεται και η θερµοκρασία στο σηµείο,, Τ, y, z Ας υποθέσουµε ότι ( y z ) αυτού του χώρου δίδεται από
Ενότητα 2: Εισαγωγή στη Θεωρία Βέλτιστου Ελέγχου. Νίκος Καραμπετάκης Τμήμα Μαθηματικών
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Εισαγωγή στη Θεωρία Βέλτιστου Ελέγχου Νίκος Καραμπετάκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Ο Γραμμικός Τετραγωνικός Ρυθμιστής: Ευρεση Νόμου Ελέγχου
Ο Γραμμικός Τετραγωνικός Ρυθμιστής: Ευρεση Νόμου Ελέγχου Για την ανεύρεση της µορφής των λύσεων στρεφόµαστε προς τις αναγκαίες συνθήκες, αρχικά στις Εξισώσεις Euler-Lagrange: Τ Τ Τ! f d! f = 0 t t0, t
Μοντελοποίηση προβληµάτων
Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Θεωρία γράφων
ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΜΕΘΟΔΟΣ SIMPLEX, διαλ. 3. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 29/4/2017
ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΜΕΘΟΔΟΣ SIMPLEX, διαλ. 3 Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 29/4/2017 ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Bέλτιστος σχεδιασμός με αντικειμενική συνάρτηση και περιορισμούς
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών
Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (hhp://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή της Ύλης του Μαθήματος Εισαγωγή στο Χώρο
Εισαγωγικές έννοιες. Κατηγορίες προβλημάτων (σε μια διάσταση) Προβλήματα εύρεσης μεγίστου. Συμβολισμοί
Κατηγορίες προβλημάτων (σε μια διάσταση) Εισαγωγικές έννοιες Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo Το πρόβλημα
Βασικές έννοιες και ορισµοί. Ευθεία
Βασικές έννοιες και ορισµοί Ευθεία a R n, a 0 = {x R n x = λa} Βασικές έννοιες και ορισµοί Ευθεία a R n, a 0 = {x R n x = λa} Υπερεπίπεδο α R, a R n P = {x R n ax = α} Βασικές έννοιες και ορισµοί Ευθεία
Βασικές έννοιες και ορισµοί. Ευθεία
Βασικές έννοιες και ορισµοί Ευθεία a R n, a 0 = {x R n x = λa} Βασικές έννοιες και ορισµοί Ευθεία a R n, a 0 = {x R n x = λa} Υπερεπίπεδο α R, a R n P = {x R n ax = α} Βασικές έννοιες και ορισµοί Ευθεία
ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ
ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ Χ. Τσιρώνης ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ - Εφικτός χώρος λύσεων - Συνάρτηση Lagrange - Γενικές συνθήκες ECM ΣΥΝΘΗΚΕΣ CONSTRAINED Ιδιαιτερότητες των προβλημάτων
1. Τετραγωνικές μορφές. x y 0. 0x y 0 1α 1β 2α 2β 3. 0x + y 0
Β4. ΕΣΣΙΑΝΟΣ ΠΙΝΑΚΑΣ-ΚΥΡΤΟΤΗΤΑ 1.Τετραγωνικές μορφές.χαρακτηρισμός συμμετρικών πινάκων 3.Δεύτερες μερικές παράγωγοι-εσσιανός πίνακας 4.Συνθήκες για ακρότατα 5.Κυρτές/κοίλες συναρτήσεις 6.Ολικά ακρότατα
Εισαγωγή. Οπως είδαµε για την εκκίνηση της Simplex χρειαζόµαστε µια Αρχική Βασική Εφικτή Λύση. υϊσµός
Εισαγωγή Οπως είδαµε για την εκκίνηση της Simplex χρειαζόµαστε µια Αρχική Βασική Εφικτή Λύση Εισαγωγή Οπως είδαµε για την εκκίνηση της Simplex χρειαζόµαστε µια Αρχική Βασική Εφικτή Λύση Σε περιπτώσεις
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 3: Μαθηματικό Πρότυπο, Κανονική Μορφή, Τυποποιημένη Μορφή Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Βασική Εφικτή Λύση. Βασική Εφικτή Λύση
Αλγεβρική Μορφή Γενική Μορφή Γραµµικού Προγραµµατισµού n µεταβλητών και m περιορισµών Εστω πραγµατικοί αριθµοί a ij, b j, c i R µε 1 i m, 1 j n Αλγεβρική Μορφή Γενική Μορφή Γραµµικού Προγραµµατισµού n
Πανεπιστήμιο Ιωαννίνων ΟΙΚΟΝΟΜΙΚΑ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Διδάσκων:
Πανεπιστήμιο Ιωαννίνων ΟΙΚΟΝΟΜΙΚΑ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Διδάσκων: Φάμπιο Αντωνίου Στοιχεία Επικοινωνίας: email: fantoniou@cc.uoi.gr Τηλ:651005954 Προσωπική Ιστοσελίδα: fantoniou.wordpress.com Γραφείο: Κτίριο
Διαχείριση Εφοδιαστικής Αλυσίδας ΙΙ
Διαχείριση Εφοδιαστικής Αλυσίδας ΙΙ 1 η Διάλεξη: Αναδρομή στον Μαθηματικό Προγραμματισμό 2019, Πολυτεχνική Σχολή Εργαστήριο Συστημάτων Σχεδιασμού, Παραγωγής και Λειτουργιών Περιεχόμενα 1. Γραμμικός Προγραμματισμός
ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX
ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX Θεμελιώδης αλγόριθμος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού που κάνει χρήση της θεωρίας της Γραμμικής Άλγεβρας Προτάθηκε από το Dantzig (1947) και πλέον
3 η ΕΝΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ 3 η ΕΝΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ Μ. Καρλαύτης Ν. Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό
ή J (u * ) = 0 (2) J(u) = u 3 στο σηµείο u * = 0 J (1) = 3 u 2 = 0 J (2) = 6 u = 0 J (3) = 6 > 0
KΕΦΑΛΑΙΟ Κλασσικές Μέθοδοι Βελτιστοποίησης Χωρίς Περιορισµούς. ΕΙΣΑΓΩΓΗ Το γενικό πρόβληµα βελτιστοποίησης διατυπώνεται ως εξής: Ζητούνται οι τιµές των µεταβλητών απόφασης u που ελαχιστοποιούν την αντικειµενική
Simplex µε πίνακες Simplex µε πίνακες
Μορφή Πινάκων max z =cx s.t. Ax = b x 0 Μορφή Πινάκων max z =cx s.t. Ax = b x 0 [ A c x = b ] Μορφή Πινάκων max z =cx s.t. Ax = b x 0 A x = b [ ] c Επιλογή αντιστρέψιµου υποπίνακα m m (Βάση) Συµβολισµοί
Εφαρμοσμένη Βελτιστοποίηση
Εφαρμοσμένη Βελτιστοποίηση Ενότητα 4: Αναλυτικές μέθοδοι βελτιστοποίησης για συναρτήσεις πολλών μεταβλητών Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας
Σηµειώσεις στις σειρές
. ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Σηµειώσεις στις σειρές Στην Ενότητα αυτή παρουσιάζουµε τις βασικές-απαραίτητες έννοιες για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους. Έτσι, δίνονται συστηµατικά
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΙΟΙΚΗΣΗ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ιδάσκων:
KΕΦΑΛΑΙΟ 5 ΣΕΙΡΕΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ
KΕΦΑΛΑΙΟ 5 ΣΕΙΡΕΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ 5 Ορισµοί Εστω α δοθείσα πραγµατική ακολουθία Ορίζουµε µία νέα ακολουθία ως εξής: 3 3 = + + + = = + = + + Ορισµός 5 Εάν υπάρχει το lim + = τότε η ακολουθία καλείται
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΜΑΘΗΜΑΤΙΚΗ ΔΙΑΤΥΠΩΣΗ, Διαλ. 2. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 8/4/2017
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΜΑΘΗΜΑΤΙΚΗ ΔΙΑΤΥΠΩΣΗ, Διαλ. 2 Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 8/4/2017 Αντικειμενικοί στόχοι Η μελέτη των βασικών στοιχείων που συνθέτουν ένα πρόβλημα βελτιστοποίησης
Σημειώσεις διαλέξεων: Βελτιστοποίηση πολυδιάστατων συνεχών συναρτήσεων 1 / 20
Σημειώσεις διαλέξεων: Βελτιστοποίηση πολυδιάστατων συνεχών συναρτήσεων Ισαάκ Η Λαγαρής 1 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιον Ιωαννίνων 1 Με υλικό από το υπό προετοιμασία βιβλίο των: Βόγκλη,
3.7 Παραδείγματα Μεθόδου Simplex
3.7 Παραδείγματα Μεθόδου Simplex Παράδειγμα 1ο (Παράδειγμα 1ο - Κεφάλαιο 2ο - σελ. 10): Το πρόβλημα εκφράζεται από το μαθηματικό μοντέλο: max z = 600x T + 250x K + 750x Γ + 450x B 5x T + x K + 9x Γ + 12x
III.10 ΠΟΛΛΑΠΛΑΣΙΑΣΤΕΣ LAGRANGE
III.10 ΠΟΛΛΑΠΛΑΣΙΑΣΤΕΣ LAGRANGE 1.Ισοτικός περιορισμός.περιορισμένη στασιμότητα 3.Πολλαπλασιαστής Lagrange 4.Συνάρτηση Lagrange 5.Ερμηνεία του πολλαπλασιαστή Lagrange 6.Περιορισμένη τετραγωνική μορφή 7.
Θεωρία Παιγνίων και Αποφάσεων. Ενότητα 5: Εύρεση σημείων ισορροπίας σε παίγνια μηδενικού αθροίσματος. Ε. Μαρκάκης. Επικ. Καθηγητής
Θεωρία Παιγνίων και Αποφάσεων Ενότητα 5: Εύρεση σημείων ισορροπίας σε παίγνια μηδενικού αθροίσματος Ε. Μαρκάκης Επικ. Καθηγητής Περίληψη Παίγνια μηδενικού αθροίσματος PessimisIc play Αμιγείς max-min και
III.10 ΠΟΛΛΑΠΛΑΣΙΑΣΤΕΣ LAGRANGE
III.10 ΠΟΛΛΑΠΛΑΣΙΑΣΤΕΣ LAGRANGE 1.Ισοτικός περιορισμός.περιορισμένη στασιμότητα 3.Πολλαπλασιαστής Lagrange 4.Συνάρτηση Lagrange 5.Ερμηνεία του πολλαπλασιαστή Lagrange 6.Περιορισμένη τετραγωνική μορφή 7.
(S k R n ) (C k R m )
KΕΦΑΛΑΙΟ 7 υναµικός Προγραµµατισµός 7.1 ΕΙΣΑΓΩΓΗ Η θεωρία αποφάσεων διακρίνεται σε δύο µεγάλες κατηγορίες, µε βάση το αν ο υπεύθυνος απόφασης είναι µοναδικός φορέας ή πολλοί φορείς. Μέχρι τώρα αναπτύχθηκαν
ΜΑΘΗΜΑ: ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ-ΘΕΜΑΤΑ ΕΞΕΤΑΣΤΙΚΗΣ IΟΥΝΙΟΥ 2015
ΜΑΘΗΜΑ: ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ-ΘΕΜΑΤΑ ΕΞΕΤΑΣΤΙΚΗΣ IΟΥΝΙΟΥ 2015 ΘΕΜΑ 1 ( Μονάδες 2) Μια επιχείρηση κατασκευής tablet έχει εργοστάσια σε τρεις διαφορετικές χώρες Α,Β,Γ που παράγουν αντίστοιχα 200, 260 και
III.9 ΑΚΡΟΤΑΤΑ ΣΕ ΠΕΡΙΟΧΗ
III.9 ΑΚΡΟΤΑΤΑ ΣΕ ΠΕΡΙΟΧΗ.Ολικά και τοπικά ακρότατα..εσωτερικά και συνοριακά ακρότατα 3.Χωριζόμενες μεταβλητές 4.Συνθήκες για ακρότατα 5.Ολικά ακρότατα κυρτών/κοίλων συναρτήσεων 6.Περισσότερες μεταβλητές.
Γραμμικός Προγραμματισμός Μέθοδος Simplex
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραμμικός Προγραμματισμός Μέθοδος Simplex Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Πρότυπη Μορφή ΓΠ 2. Πινακοποίηση
Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Προϋποθέσεις Εφαρμογής
Μηχανική ΙI. Μετασχηµατισµοί Legendre. της : (η γραφική της παράσταση δίνεται στο ακόλουθο σχήµα). Εάν
Τµήµα Π. Ιωάννου & Θ. Αποστολάτου 7/5/2000 Μηχανική ΙI Μετασχηµατισµοί Legendre Έστω µια πραγµατική συνάρτηση. Ορίζουµε την παράγωγο συνάρτηση της : (η γραφική της παράσταση δίνεται στο ακόλουθο σχήµα).
4.γ. μερική επανάληψη, εισαγωγή στη βελτιστοποίηση υδατικών συστημάτων. Δρ Μ.Σπηλιώτης
4.γ. μερική επανάληψη, εισαγωγή στη βελτιστοποίηση υδατικών συστημάτων Δρ Μ.Σπηλιώτης Ολοκληρωμένη διαχείριση υδατικών πόρων (integrated water resources management), έμφαση στην εξέταση όλων των πτυχών
Ακέραιος Γραµµικός Προγραµµατισµός
Μέγιστο Ανεξάρτητο Σύνολο Μέγιστο Ανεξάρτητο Σύνολο Εφαρµογές : Παράλληλη εκτέλεση εργασιών Χρονοπρογραµµατισµός (scheduling) Ανάθεση πόρων (resource allocation) Πρόβληµα k-ϐασιλισσών Τηλεπικοινωνίες Μέγιστο
ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 15
ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 13 ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 15 ΚΕΦΑΛΑΙΟ 1: ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 17 1. Εισαγωγή 17 2. Πραγματικές συναρτήσεις διανυσματικής μεταβλητής
Θεωρία Μεθόδου Simplex
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Επιχειρησιακή Έρευνα Ι Διδάσκων: Δρ. Σταύρος Τ. Πόνης Θεωρία Μεθόδου Simplex Άδεια Χρήσης
ΑΡΙΣΤΕΣ ΤΙΜΕΣ ΚΑΙ ΑΚΡΟΤΑΤΕΣ ΤΙΜΕΣ
ΑΡΙΣΤΕΣ ΤΙΜΕΣ ΚΑΙ ΑΚΡΟΤΑΤΕΣ ΤΙΜΕΣ Κοινό κριτήριο επιλογής µεταξύ εναλλακτικών τρόπων παραγωγής είναι η µεγιστοποίηση (κέρδος ήηελαχιστοποίηση (κόστος κάποιου µεγέθους. Αυτά τα προβλήµατα µεγιστοποίησης
1. Ολικά και τοπικά ακρότατα. 2. Εσωτερικά και συνοριακά ακρότατα
Β3. ΠΟΛΛΑΠΛΑΣΙΑΣΤΕΣ LAGRANGE.Ολικά και τοπικά ακρότατα.εσωτερικά και συνοριακά ακρότατα 3. Χωριζόμενες μεταβλητές 4.Ισοτικός περιορισμός 5.Περιορισμένη στασιμότητα 6.Πολλαπλασιαστής Lagrange 7.Συνάρτηση
Κεφάλαιο 2 Διαχείριση Σηµάτων σε Ψηφιακά Συστήµατα Ελέγχου
Κεφάλαιο 2 Διαχείριση Σηµάτων σε Ψηφιακά Συστήµατα Ελέγχου u Μετατροπή Αναλογικού Σήµατος σε Ψηφιακό (A/D Conversion) Ο µετασχηµατισµός Ζ u Μαθηµατική Ανάλυση της Διαδικασίας A/D Μετατροπή Ψηφιακού Σήµατος
ΚΕΦΑΛΑΙΟ 4. Ακέραια Πολύεδρα
ΚΕΦΑΛΑΙΟ 4 Ακέραια Πολύεδρα 1 Ορισμός 4.1 (Convex Hull) Έστω ένα σύνολο S C R n. Ένα σημείο x του R n είναι κυρτός συνδυασμός (convex combination) σημείων του S, αν υπάρχει ένα πεπερασμένο σύνολο σημείων
ΗΥ 111, Απειροστικός Λογισμός ΙΙ Εαρινό Εξάμηνο Διδάσκων: Κώστας Παναγιωτάκης
ΗΥ, Απειροστικός Λογισμός ΙΙ Εαρινό Εξάμηνο - Διδάσκων: Κώστας Παναγιωτάκης 5 ο Φροντιστήριο (6//). Βρείτε και χαρακτηρίστε τα κρίσιμα σημεία των συνάρτησεων a. (, ) = sin. b. (, ) = +. Υποθέστε ότι είστε
Θεωρία Δυαδικότητας ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου. Επιχειρησιακή Έρευνα
Θεωρία Δυαδικότητας Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Περιεχόμενα Παρουσίασης 1. Βασικά Θεωρήματα 2. Παραδείγματα 3. Οικονομική Ερμηνεία
Προβλήµατα Μεταφορών (Transportation)
Προβλήµατα Μεταφορών (Transportation) Προβλήµατα Μεταφορών (Transportation) Μέθοδος Simplex για Προβλήµατα Μεταφοράς Προβλήµατα Εκχώρησης (assignment) Παράδειγµα: Κατανοµή Νερού Η υδατοπροµήθεια µιας περιφέρεια
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων
ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων Επιχειρησιακή Έρευνα Τυπικό Εξάμηνο: Δ Αλέξιος Πρελορέντζος Εισαγωγή Ορισμός 1 Η συστηματική εφαρμογή ποσοτικών μεθόδων, τεχνικών
Τρία συνηθισµένα λάθη που κάνουν µαθητές της Γ Λυκείου σε ασκήσεις του ιαφορικού Λογισµού ρ. Παναγιώτης Λ. Θεοδωρόπουλος πρώην Σχολικός Σύµβουλος ΠΕ3 e-mail@p-thedrpuls.gr Πρόλογος Στην εργασία αυτή επισηµαίνονται
Διάλεξη 5- Σημειώσεις
Διάλεξη 5- Σημειώσεις 1 Κοίλες (concave) και κυρτές (convex) συναρτήσεις Σημείωση: Μόνο για συναρτήσεις που είναι συνεχείς σε ένα (κυρτό) διάστημα R και παραγωγίσιμες τουλάχιστον δύο φορές στο εσωτερικό
Ακέραιος Γραµµικός Προγραµµατισµός
Μέγιστο Ανεξάρτητο Σύνολο Μέγιστο Ανεξάρτητο Σύνολο Εφαρµογές : Παράλληλη εκτέλεση εργασιών Χρονοπρογραµµατισµός (scheduling) Ανάθεση πόρων (resource allocation) Πρόβληµα k-ϐασιλισσών Τηλεπικοινωνίες Μέγιστο
ΕΝΟΤΗΤΑ III ΒΑΣΙΚΕΣ ΜΕΘΟ ΟΙ ΑΝΑΛΥΣΗΣ
ΕΝΟΤΗΤΑ III ΒΑΣΙΚΕΣ ΜΕΘΟ ΟΙ ΑΝΑΛΥΣΗΣ Βασικός τελικός στόχος κάθε επιστηµονικής τεχνολογικής εφαρµογής είναι: H γενική βελτίωση της ποιότητας του περιβάλλοντος Η βελτίωση της ποιότητας ζωής Τα µέσα µε τα
Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»
Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» 2 ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα ελάχιστης συνεκτικότητας δικτύου Το πρόβλημα της ελάχιστης
Ο ΗΓΙΕΣ ΧΡΗΣΗΣ ΓΙΑ ΤΟ ΠΡΟΓΡΑΜΜΑ ΤΗΣ ΕΝΤΑΞΗΣ ΜΟΝΑ ΩΝ ΠΑΡΑΓΩΓΗΣ
Ο ΗΓΙΕΣ ΧΡΗΣΗΣ ΓΙΑ ΤΟ ΠΡΟΓΡΑΜΜΑ ΤΗΣ ΕΝΤΑΞΗΣ ΜΟΝΑ ΩΝ ΠΑΡΑΓΩΓΗΣ unit_commitment.xls Το πρόβληµα της Ένταξης Μονάδων αναφέρεται µόνο στις θερµικές µονάδες ενός συστήµατος και ορίζεται ως εξής : Για µια δεδοµένη
Τα περισσότερα προβλήματα βελτιστοποίησης είναι με περιορισμούς, αλλά οι μέθοδοι επίλυσης χωρίς περιορισμούς έχουν γενικό ενδιαφέρον.
ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΧΩΡΙΣ ΠΕΡΙΟΡΙΣΜΟΥΣ Τα περισσότερα προβλήματα βελτιστοποίησης είναι με περιορισμούς, αλλά οι μέθοδοι επίλυσης χωρίς περιορισμούς έχουν γενικό ενδιαφέρον. Μέθοδοι που απαιτούν
Θεωρία Βέλτιστου Ελέγχου Ασκήσεις
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Θεωρία Βέλτιστου Ελέγχου Νικόλαος Καραμπετάκης Τμήμα Α.Π.Θ. Θεσσαλονίκη, Οκτώβριος 3 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Cretive
A = x x 1 + 2x 2 + 4
Επιχειρησιακή Ερευνα η Σειρά Ασκήσεων Ενδεικτικές Λύσεις 1. (α ) Η συνάρτηση f(x 1, x ) = x 1 + x x 1 x + x μπορεί να γραφεί ως f( x) = x A x + b x όπου x = x 1 A = 1 1 1 x b = 0 Θα χρειαστούμε το διάνυσμα
1 Ορισµός ακολουθίας πραγµατικών αριθµών
ΜΑΣ 02. Απειροστικός Λογισµός Ι Ορισµός ακολουθίας πραγµατικών αριθµών Ορισµός.. Ονοµάζουµε ακολουθία πραγµατικών αριθµών κάθε απεικόνιση του συνόλου N των ϕυσικών αριθµών, στο σύνολο R των πραγµατικών
Κεφάλαιο 5 Ευστάθεια Ελεγξιµότητα - Παρατηρησιµότητα
Κεφάλαιο 5 Ευστάθεια Ελεγξιµότητα - Παρατηρησιµότητα u Συστήµατα από Δειγµατοληπτικά Δεδοµένα (Επανάληψη Ασκήσεις) u Στο πεδίο Συχνότητας (Συναρτήσεις Μεταφορά) u Στο πεδίο Χρόνου (Εξισώσεις Κατάστασης)
HMY 220: Σήματα και Συστήματα Ι
Σύγκλιση Σειρών Fourier Ιδιότητες Σειρών Fourier Παραδείγματα HMY 0: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #10 Σειρές Fourier: Προσέγγιση Οι Σειρές Fourier μπορούν να αναπαραστήσουν μια πολύ μεγάλη κλάση περιοδικών
( ) = inf { (, Ρ) : Ρ διαµέριση του [, ]}
7 ΙΙΙ Ολοκληρωτικός Λογισµός πολλών µεταβλητών Βασικές έννοιες στη µια µεταβλητή Έστω f :[ ] φραγµένη συνάρτηση ( Ρ = { t = < < t = } είναι διαµέριση του [ ] 0 ( Ρ ) = Μ ( ) όπου sup f ( t) : t [ t t]
ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ. Παπάνα Αγγελική
ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ 7o Μάθημα: Απλή παλινδρόμηση (ΕΠΑΝΑΛΗΨΗ) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & ΠΑΜΑΚ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
Γραμμικός Προγραμματισμός και Βελτιστοποίηση (Εργαστήριο 2)
Τμήμα Μηχανικών Πληροφορικής Γραμμικός Προγραμματισμός και Βελτιστοποίηση (Εργαστήριο 2) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Μάρτιος 2015 Δρ. Δημήτρης Βαρσάμης Γραμμικός Προγραμματισμός (E 1) Μάρτιος
Αστικά υδραυλικά έργα
Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Αστικά υδραυλικά έργα Διαστασιολόγηση αγωγών και έλεγχος πιέσεων δικτύων διανομής Δημήτρης Κουτσογιάννης, Καθηγητής ΕΜΠ Σχολή Πολιτικών
ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING)
ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING) Δρ. Βασιλική Καζάνα Αναπλ. Καθηγήτρια ΤΕΙ Καβάλας, Τμήμα Δασοπονίας & Διαχείρισης Φυσικού Περιβάλλοντος Δράμας Εργαστήριο Δασικής Διαχειριστικής
ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ
ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ ΑΚΑΔ. ΥΠΟΤΡΟΦΟΣ Χ. Τσιρώνης ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ - Επαναληπτικές ασκήσεις - Μέθοδος Lagrange - Γενικές συνθήκες (EC) ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Θα
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson ΜΙΑ ΣΥΜΒΑΣΗ: Προκειμένου να καταστήσουμε πιο συμπαγή το συμβολισμό H : ορίζουμε Ετσι έχουμε *=[ ] an *=[ ]. H : * * ΣΗΜΕΙΩΣΗ: Στη συνέχεια εκτός αν ορίζεται
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 4: Μετασχηματισμοί Ισοδυναμίας Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Κλασικές Τεχνικές Βελτιστοποίησης Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 2 η /2017 Μαθηματική Βελτιστοποίηση Η «Μαθηματική
Διαχείριση Ταμιευτήρα
Διαχείριση Ταμιευτήρα Μονοκριτηριακή βελτιστοποίηση Διαχείριση υδατικών πόρων Ανάγκη σύνθεσης επιστημών Σημερινό μάθημα: έμφαση στη χρήση εννοιών και μεθόδων από την επιχειρησιακή έρευνα Κουτσογιάννης,
min f(x) x R n (1) x g (2)
KΕΦΑΛΑΙΟ Κλασσικές Μέθοδοι Βελτιστοποίησης Με Περιορισµούς Ισότητες. ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΠΕΡΙΟΡΙΣΜΟΥΣ ΙΣΟΤΗΤΕΣ Ζητούνται οι τιµές των µεταβλητών απόφασης που ελαχιστοποιούν την αντικειµενική συνάρτηση κάτω από
1. ΣΤΑΤΙΚΗ ΑΡΙΣΤΟΠΟΙΗΣΗ
. ΣΤΑΤΙΚΗ ΑΡΙΣΤΟΠΟΙΗΣΗ. Μέγιστα και Ελάχιστα Συναρτήσεων Χωρίς Περιορισμούς Συναρτήσεις μιας Μεταβλητής Εστω f ( x) είναι συνάρτηση μιας μόνο μεταβλητής. Εστω επίσης ότι x είναι ένα σημείο στο πεδίο ορισμού
ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH
ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Διοίκηση Παραγωγής & Συστημάτων Υπηρεσιών ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Περιεχόμενα
5 η ΕΝΟΤΗΤΑ ΠΟΛΥΚΡΙΤΗΡΙΑΚΟΣ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ 5 η ΕΝΟΤΗΤΑ ΠΟΛΥΚΡΙΤΗΡΙΑΚΟΣ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Μ. Καρλαύτης Ν. Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ
ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ Ελαχιστοποίηση κόστους διατροφής Ηεπιχείρηση ζωοτροφών ΒΙΟΤΡΟΦΕΣ εξασφάλισε µια ειδική παραγγελίααπό έναν πελάτη της για την παρασκευή 1.000 κιλών ζωοτροφής, η οποία θα πρέπει
KΕΦΑΛΑΙΟ 6 ΥΝΑΜΟΣΕΙΡΕΣ-ΣΕΙΡΕΣ TAYLOR
KΕΦΑΛΑΙΟ 6 ΥΝΑΜΟΣΕΙΡΕΣ-ΣΕΙΡΕΣ TAYLOR 6 Ορισµοί Ορισµός 6 Εστω α είναι µία πραγµατική ακολουθία και είναι πραγµατικοί αριθµοί Ένα άπειρο πολυώνυµο της µορφής: a ( ) () = καλείται δυναµοσειρά µε κέντρο το
Γραµµική Αλγεβρα Ι. Ενότητα: ιανυσµατικοί χώροι. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών
Ενότητα: ιανυσµατικοί χώροι Ευάγγελος Ράπτης Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
καθ. Βασίλης Μάγκλαρης
ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα 005 - Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π. Ενισχυτική Μάθηση - Δυναμικός Προγραμματισμός: 1. Markov Decision Processes 2. Bellman s Optimality Criterion 3. Αλγόριθμος
Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β )
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΚΥΡΙΑΚΗ /0/0 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:ΕΝΝΕΑ (9) ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΘΕΜΑ
ιατύπωση τυπικής µορφής προβληµάτων Γραµµικού
Ο αλγόριθµος είναι αλγεβρική διαδικασία η οποία χρησιµοποιείται για την επίλυση προβληµάτων (προτύπων) Γραµµικού Προγραµµατισµού (ΠΓΠ). Ο αλγόριθµος έχει διάφορες παραλλαγές όπως η πινακοποιηµένη µορφή.