Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων"

Transcript

1 Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ

2 Εισαγωγή Στα προβλήματα ανάλυσης δικτύων απαιτείται ο υπολογισμός ενός συνόλου άγνωστων παραμέτρων από μετρήσεις άλλων παρατηρήσιμων μεγεθών. Γενικά, για το σκοπό αυτό χρειάζονται τα εξής: o Μαθηματικό μοντέλο σύστημα εξισώσεων που συνδέει τις παραμέτρους του προβλήματος με τα παρατηρούμενα μεγέθη. o Μεθοδολογία εκτίμησης με ποια κριτήρια και αλγοριθμική διαδικασία θα γίνει ο προσδιορισμός των παραμέτρων από τις μετρήσεις ; o Ποιοτική αξιολόγηση αποτελεσμάτων έλεγχος της ακρίβειας και αξιοπιστίας της λύσης μέσω στατιστικών εργαλείων.

3 Μαθηματικό μοντέλο Γενική μορφή f( x, y) 0 Μοντέλο μεικτών εξισώσεων x: διάνυσμα παραμέτρων y: διάνυσμα παρατηρούμενων μεγεθών f( ): σύνολο αλγεβρικών σχέσεων μεταξύ των x και y Ειδική μορφή y f( x) Μοντέλο εξισώσεων παρατηρήσεων

4 Μαθηματικό μοντέλο y f ( x 1, x 2,..., x 1 1 m ) y f( x) y f ( x 1, x 2,..., x 2 2 m ) y n f n ( x, x2,..., x 1 m ) Το μοντέλο εξισώσεων παρατηρήσεων είναι το πλέον συνηθισμένο σε γεωδαιτικές & τοπογραφικές εφαρμογές

5 Τα μοντέλα μπορεί να είναι απλά, π.χ. S ( x x ) ( y y ) 2 2 ik i k i k ή πιο σύνθετα, π.χ. k( t) rk( tk ) δrk( tk ) ( r ( t) δr ( t)) i i i i i Ik Tk + δmk c dt ( t) dt k ( t k ) i i i i i c ( t) k ( t k ) ( t o ) k ( t o ) i i i Nk k i i

6 Η βασική μεθοδολογία που χρησιμοποιείται όμως για τη συνόρθωσή τους είναι, σε μεγάλο βαθμό, παρόμοια!

7 Το ευθύ πρόβλημα Γνωστές τιμές παραμέτρων (x) Εξισώσεις μαθηματικού μοντέλου y f( x) Υπολογισμένες τιμές για τα παρατηρούμενα μεγέθη (y) Ύπαρξη μοναδικής λύσης

8 Παράδειγμα Από τις γνωστές συντεταγμένες τριών σημείων, να προσδιοριστούν τα μήκη όλων των πλευρών του σχηματιζόμενου τριγώνου. S S 12 y ( 2 x x ) ( y y ( 2 x x ) ( y ) ) 2 2 y Σ 1 S 23 y ( 2 x x ) ( y ) 2 Σ 2 Σ 3 x

9 Το αντίστροφο πρόβλημα Γνωστές τιμές για τα παρατηρούμενα μεγέθη (y) Εξισώσεις μαθηματικού μοντέλου y f( x) Υπολογισμένες τιμές παραμέτρων (x) Μη-ύπαρξη μοναδικής λύσης (εκτός από πολύ ειδικές περιπτώσεις)

10 Από τις γνωστές τιμές για τα μήκη των πλευρών και τις γωνίες σε ένα τρίγωνο, να προσδιοριστούν οι συντεταγμένες των κορυφών του. S S S ω ω ω f ( x, y, x y2 ) , f ( x, y, x y3 ) , f ( x, y, x y3 ) , f ( x, y, x, y, x y3 ) , f ( x, y, x, y, x y3 ) , f Παράδειγμα ( x, y, x, y, x y3 ) , y Σ 1 Σ 2 Σ 3 Μη-ύπαρξη μοναδικής λύσης x

11 Αντίστροφα προβλήματα Τα προβλήματα της μορφής: y = f (x) x = g(y) δεν έχουν συνήθως (μία μοναδική) λύση. Αυτό μπορεί να συμβαίνει για τους εξής λόγους: o οι διαθέσιμες παρατηρήσεις είναι λιγότερες από τον αριθμό των άγνωστων παραμέτρων o οι διαθέσιμες παρατηρήσεις είναι ίσες ή περισσότερες από τον αριθμό των άγνωστων παραμέτρων, αλλά δεν είναι συμβατές με το μαθηματικό μοντέλο του προβλήματος λόγω ύπαρξης σφαλμάτων επιπλέον, μπορεί να μην περιέχουν ικανή πληροφορία για τον προσδιορισμό των παραμέτρων του μοντέλου

12 Διεύρυνση μοντέλου Οι διαθέσιμες τιμές των παρατηρούμενων μεγεθών δεν είναι γενικά συμβατές με το θεωρητικό μαθηματικό μοντέλο λόγω της ύπαρξης διαφόρων σφαλμάτων. y f( x) y f( x) v Απλουστευμένη περιγραφή φυσικής πραγματικότητας (θεωρητικό μοντέλο) Ρεαλιστική περιγραφή φυσικής πραγματικότητας (διευρυμένο μοντέλο)

13 Διεύρυνση μοντέλου y f( x) y f( x) v Κανένα θεωρητικό μοντέλο δεν είναι τέλειο! (ή μήπως, κανένα σετ μετρήσεων δεν είναι τέλειο ;)

14 Η έννοια των σφαλμάτων Η εισαγωγή του όρου v στο μαθηματικό μοντέλο y f( x) v έχει τις εξής ερμηνείες: δεν μπορούμε να μετρήσουμε αυτό που απαιτεί το μοντέλο (συστηματικά σφάλματα). μπορούμε να μετρήσουμε αυτό που απαιτεί το μοντέλο, αλλά με κάποια αβεβαιότητα (τυχαία σφάλματα). χρησιμοποιούμε ένα απλουστευμένο μοντέλο σε σχέση με τη Ανάλυση δικτύου συμπεριφορά των μετρήσεων, προκειμένου να προσδιορίσουμε (συνόρθωση) μόνο την κυρίαρχη τάση των διαθέσιμων δεδομένων.

15 Νέο αντίστροφο πρόβλημα Γνωστές τιμές για τα παρατηρούμενα μεγέθη (y) Εξισώσεις διευρυμένου μαθηματικού μοντέλου y f( x) v Υπολογισμένες τιμές παραμέτρων (x) και σφαλμάτων (v) Ύπαρξη άπειρων λύσεων

16 Τι είναι η συνόρθωση ; Είναι η διαδικασία εύρεσης μίας μοναδικής λύσης για τις τιμές των αγνώστων παραμέτρων y f( x) v xˆ g( y) που οδηγεί σε μία αντίστοιχη εκτίμηση των σφαλμάτων σύμφωνα με κάποιο κριτήριο βελτιστοποίησης vˆ yf( xˆ) ( vˆ ) minimum και σε νέες (βελτιωμένες) τιμές των παρατηρούμενων μεγεθών που είναι συμβατές με το θεωρητικό μοντέλο yˆ f( xˆ ) y vˆ

17 Γραμμικοποίηση μοντέλου Γραμμικοποίηση κατά Taylor y f( x) v f x o o y f( x ) ( xx )... v o Α δx o yf( x ) A δx v b b Aδx v (*) ο όρος v περιέχει τώρα και σφάλματα γραμμικοποίησης

18 Μέθοδος ελαχίστων τετραγώνων Χρησιμοποιείται ευρύτατα στις φυσικές επιστήμες για την επίλυση συστημάτων της μορφής: b Aδx v σύμφωνα με το κριτήριο βελτιστοποίησης T min v Pv min ( b Aδx) P( b Aδx) δx δx T ( δx) όπου P είναι ένας πίνακας βάρους που σχετίζεται με την ποιότητα των μετρήσεων και το βαθμό συνεισφοράς τους στον υπολογισμό της λύσης.

19 Λύση ελαχίστων τετραγώνων Η εφαρμογή του κριτηρίου ελαχίστων τετραγώνων στο γραμμικοποιημένο σύστημα εξισώσεων παρατήρησης b Aδx v οδηγεί στο σύστημα κανονικών εξισώσεων T T ( A PA) δxˆ A Pb ή Nδxˆ u Αν ο πίνακας Ν είναι αντιστρέψιμος, τότε έχουμε την ακόλουθη λύση: ˆ ( ) T 1 T δx A PA A Pb xˆ δxˆ x o

20 Με απλά λόγια o Η μέθοδος ελαχίστων τετραγώνων έχει την εξής λογική: βρες τις παραμέτρους του μοντέλου που δίνουν την καλύτερη δυνατή προσαρμογή στα διαθέσιμα δεδομένα. o Ο πίνακας βάρους Ρ δίνει τη δυνατότητα στον χρήστη να καθορίσει τον βαθμό συνεισφοράς κάθε παρατήρησης στον υπολογισμό της λύσης. o Η αριθμητική κατάσταση του πίνακα Ν δείχνει τη δυνατότητα των συγκεκριμένων παρατηρήσεων να προσδιορίσουν τις παραμέτρους του μοντέλου.

21 Παράδειγμα y y x i, y i x i, y i Ο πίνακας Ν αντιστρέφεται εύκολα x Ο πίνακας Ν αντιστρέφεται δύσκολα x Βέλτιστη προσαρμογή ευθείας yi a bxi vi i 1, 2,..., n

22 Παράδειγμα y x i, y i y x i, y i Ο πίνακας Ν αντιστρέφεται εύκολα x Ο πίνακας Ν αντιστρέφεται δύσκολα x Βέλτιστη προσαρμογή ευθείας yi a bxi vi i 1, 2,..., n

23 Παράδειγμα y x i, y i y x i, y i Ο πίνακας Ν είναι σχεδόν ανώμαλος x Ο πίνακας Ν αντιστρέφεται δύσκολα x Βέλτιστη προσαρμογή ευθείας yi a bxi vi i 1, 2,..., n

24 Παράδειγμα y y y x i, y i x i, y i x i, y i P = I x P I x P I x Βέλτιστη προσαρμογή ευθείας yi a bxi vi i 1, 2,..., n

25 Σφάλματα και πίνακας βάρους Πίνακας βάρους Γεωμετρική Ερμηνεία μεγέθους σφαλμάτων Αξιολόγηση σφαλμάτων P = I v n v v v Όλες οι παρατηρήσεις έχουν την ίδια συνεισφορά στη μέτρηση του συνολικού μήκους του v P I v T v Pv Διαφορετικές παρατηρήσεις έχουν διαφορετικό βαθμό συνεισφοράς στη μέτρηση του συνολικού μήκους του v

26 Ανοιχτά ζητήματα Επιλογή χρήστη για τον πίνακα βάρους Ρ. Πρακτική αξιολόγηση για την ποιότητα των αποτελεσμάτων της συνόρθωσης. Έλεγχος διαφόρων μηδενικών υποθέσεων σχετικά με το μοντέλο του προβλήματος. Τα παραπάνω ζητήματα μπορούν να αντιμετωπιστούν μέσω μιας στατιστικής προσέγγισης στη διαδικασία συνόρθωσης (βλέπε παρακάτω διαφάνειες).

27 Μέθοδος βέλτιστης εκτίμησης άγνωστων παραμέτρων Εναλλακτικά, ο υπολογισμός των παραμέτρων στο μαθηματικό μοντέλο εξισώσεων παρατήρησης: b Aδx v μπορεί να γίνει μέσω μιας στατιστικής μεθοδολογίας χρησιμοποιώντας κάποιο στοχαστικό μοντέλο για την συμπεριφορά των σφαλμάτων των μετρήσεων: E{ v } 0 T E{ vv } C v ~ (, ) v 0 C v

28 Μέθοδος βέλτιστης εκτίμησης άγνωστων παραμέτρων Εναλλακτικά, ο υπολογισμός των παραμέτρων στο μαθηματικό μοντέλο εξισώσεων παρατήρησης: b Aδx v μπορεί να γίνει μέσω μιας επιδράσεις στατιστικής σφάλματα μεθοδολογίας χρησιμοποιώντας κάποιο στοχαστικό των μετρήσεων. μοντέλο για την συμπεριφορά των σφαλμάτων των μετρήσεων: E{ v } 0 T E{ vv } C v Δεν υπάρχουν συστηματικές Περιγράφει το πιθανό μέγεθος και τη συσχέτιση των τυχαίων σφαλμάτων στο σύνολο των μετρήσεων. v ~ ( 0, C v )

29 Μέθοδος βέλτιστης εκτίμησης άγνωστων παραμέτρων b Aδx v ~ (, ) v 0 C v Βέλτιστη γραμμική ανεπηρέαστη εκτίμηση (BLUE) Γραμμική εκτίμηση: δxˆ Qb d Ανεπηρέαστη εκτίμηση: E{ δxˆ } δx Βέλτιστη εκτίμηση: e δxˆ δx E{ ee} E{ e e e m } T min. σφάλματα εκτίμησης παραμέτρων

30 Μέθοδος βέλτιστης εκτίμησης άγνωστων παραμέτρων b Aδx v v ( 0, C v ) Βέλτιστη γραμμική ανεπηρέαστη εκτίμηση (BLUE) Ελαχιστοποίηση του μέσου τετραγωνικού σφάλματος Γραμμική εκτίμηση: για την εκτίμηση των αγνώστων παραμέτρων. Ανεπηρέαστη εκτίμηση: Είναι ισοδύναμο με την ελαχιστοποίηση του ίχνους του πίνακα συμ-μεταβλ των εκτιμήσεων των παραμέτρων δxˆ Qb d trace C ˆ E{ δxˆ δx } δx min. Βέλτιστη εκτίμηση: e δxˆ δx E{ ee} E{ e e e m } T min. σφάλματα εκτίμησης παραμέτρων

31 Λύση BLUE Η βέλτιστη γραμμική ανεπηρέαστη εκτίμηση στο (γραμμικ.) μοντέλο των εξισώσεων παρατήρησης b Aδx v v ~ ( 0, C v ) οδηγεί στο σύστημα κανονικών εξισώσεων ˆ T T ( A C A ) δx A C b ή Nδx ˆ 1 1 v v u Αν ο πίνακας Ν είναι αντιστρέψιμος, τότε έχουμε την ακόλουθη λύση: δxˆ ( A C A) A C b T 1 1 T 1 v v xˆ δxˆ x o

32 Γραμμικά μοντέλα Gauss-Markov Στα περισσότερα προβλήματα το στοχαστικό μοντέλο των εξισώσεων παρατήρησης εκφράζεται ως εξής: b Aδx v 2 o 1 v ~ ( 0, P ) και οδηγεί στο σύστημα κανονικών εξισώσεων: A C A δxˆ T ( ) T A C b 1 1 v v C v το οποίο είναι ισοδύναμο με το σύστημα: ˆ T ( A PA) δx T A Pb

33 Τι είναι η μεταβλητότητα αναφοράς ; 2 Η ποσότητα o ονομάζεται a-priori μεταβλητότητα αναφοράς (ή μεταβλητότητα της μονάδας βάρους) b Aδx v 2 o 1 v ~ ( 0, P ) C v Εκφράζει έναν (γνωστό ή άγνωστο) συντελεστή που καθορίζει την απόλυτη ακρίβεια των μετρήσεων. Συνήθως, προσδιορίζεται μια a-posteriori εκτίμησή της με βάση τα αποτελέσματα της συνόρθωσης.

34 Εκτίμηση της μεταβλητότητας αναφοράς Από τα αποτελέσματα της συνόρθωσης: b Aδx v 2 o 1 v ~ ( 0, P ) ˆ ( ) T 1 T δx A PA A Pb vˆ b Aδxˆ μπορεί να υπολογιστεί η εξής ανεπηρέαστη εκτίμηση της μεταβλητότητας αναφοράς: 2 ˆo f T vˆ Pvˆ ( nm) Που χρειάζεται ;

35 Χρήση της μεταβλητότητας αναφοράς Η εκτίμηση της μεταβλητότητας αναφοράς T 2 ˆ ˆ ˆo v Pv f Χρησιμοποιείται στον ολικό έλεγχο αξιοπιστίας των αποτελεσμάτων της συνόρθωσης. Χρησιμοποιείται συνήθως για την τελική αξιολόγηση της ακρίβειας των αποτελεσμάτων, π.χ. ˆ ( ) C T 1 T δx A PA A Pb ˆ δx ˆ ( A PA) 2 T 1 o

36 Χρήση της μεταβλητότητας αναφοράς Σε περιπτώσεις ασυσχέτιστων παρατηρήσεων του ίδιου τύπου και της ίδιας ακρίβειας, δηλαδή b Aδx v 2 o v ~ ( 0, I) τότε η a-posteriori μεταβλητότητα αναφοράς: T 2 ˆ ˆ ˆo v v f αποτελεί μια ανεπηρέαστη εκτίμηση της ακρίβειας των διαθέσιμων μετρήσεων!

37 Τι τιμές έχει η μεταβλητότητα αναφοράς και πως αξιολογούνται ; Ο πίνακας βάρους P που χρησιμοποιείται στη συνόρθωση περιλαμβάνει συνήθως όλη τη διαθέσιμη πληροφορία για την ακρίβεια των μετρήσεων. Σε τέτοιες περιπτώσεις, η τιμή της μεταβλητότητας αναφοράς είναι θεωρητικά ίση με τη μονάδα. b Aδx v 2 o 1 v ~ ( 0, P ) 2 o 1 Η a-posteriori εκτίμηση της μεταβλητότητας αναφοράς θα είναι ίση (ή σχεδόν ίση) με τη μονάδα ;

38 Τι τιμές έχει η μεταβλητότητα αναφοράς και πως αξιολογούνται ; Η τιμή της a-posteriori εκτίμησης της μεταβλητότητας αναφοράς αναμένεται να είναι κοντά στην μονάδα (π.χ. 1. ή 0.9 ), όταν: Το στοχαστικό μοντέλο των παρατηρήσεων είναι ορθό. (δηλ. ο πίνακας βάρους που χρησιμοποιείται στη συνόρθωση εκφράζει τις ρεαλιστικές ακρίβειες των μετρήσεων) Τα σφάλματα των παρατηρήσεων είναι τυχαία. (δηλ. δεν υπάρχουν χονδροειδή ή συστηματικά σφάλματα στις μετρήσεις ή άλλα σφάλματα μοντέλου )

39 Τι τιμές έχει η μεταβλητότητα αναφοράς και πως αξιολογούνται ; Γενικά, πολύ μεγάλες ή πολύ μικρές τιμές για την a-posteriori εκτίμηση της μεταβλητότητας αναφοράς 2 1 ˆ o 2 1 ˆ o μπορεί να οφείλονται: σε μεγάλες τιμές των συνορθωμένων σφαλμάτων που δεν δικαιολογούνται από την ακρίβεια των μετρήσεων. στη χρήση λανθασμένων βαρών για τις παρατηρήσεις.

40 Συμπερασματικά Δεν είναι υποχρεωτικό για την τιμή της a-posteriori εκτίμησης της μεταβλητότητας αναφοράς να είναι κοντά στο 1! Αυτό που έχει σημασία είναι να αξιολογηθεί και να ελεγχθεί η τιμή της, ώστε να γίνουν (αν χρειάζεται) οι απαραίτητες διορθώσεις στο αρχικό μοντέλο της συνόρθωσης!

41 Λίγα λόγια για την αξιολόγηση της ακρίβειας

42 Ακρίβεια αποτελεσμάτων συνόρθωσης Τι εκφράζει ; Την επίδραση των τυχαίων σφαλμάτων των μετρήσεων στις εκτιμήσεις των παραμέτρων ή/και άλλων ποσοτήτων που θα προσδιοριστούν μέσω των παραμέτρων. Πως υπολογίζεται ; Μέσω στατιστικών δεικτών που λαμβάνονται από πίνακες συμ-μεταβλητοτήτων για τις παρατηρήσεις και τα αποτελέσματα της συνόρθωσης. Βασικό εργαλείο: νόμος μετάδοσης σφαλμάτων.

43 Αξιολόγηση ακρίβειας αποτελεσμάτων συνόρθωσης b Aδx v 2 o 1 v ~ ( 0, P ) Αποτελέσματα: ˆ ( ) T 1 T δx A PA A Pb vˆ b Aδxˆ yˆ y vˆ xˆ δxˆ x o Ακρίβεια αποτελεσμάτων: C C... C C ˆ ˆ yˆ v ˆ x δx

44 Τι είναι ο νόμος μετάδοσης συμ-μεταβλητοτήτων ; Έστω ότι κάποιο μέγεθος υπολογίζεται μέσω γνωστής αναλυτικής σχέσης από κάποια άλλα μεγέθη: y f ( x, x,..., x m ) 1 2 x Ζητείται ο υπολογισμός της ακρίβειας του y με βάση τη γνωστή ακρίβεια των στοιχείων του x.

45 Νόμος μετάδοσης συμ-μεταβλητοτήτων y f (x) 2 σ y a T C x a όπου το διάνυσμα a περιλαμβάνει τις μερικές παραγώγους της συνάρτησης f( ) ως προς τα στοιχεία του x, δηλαδή a f x 1 f x f x m

46 Νόμος μετάδοσης συμ-μεταβλητοτήτων Στη γενικότερη περίπτωση μας ενδιαφέρει ο προσδιορισμός της ακρίβειας ενός συνόλου μεγεθών που υπολογίζονται μέσω γνωστών αναλυτικών σχέσεων από άλλα μεγέθη: y f( x) C y AC x T A όπου Α είναι ο Ιακωβιανός πίνακας με στοιχεία: A[ i, j] y x i j

47 Νόμος μετάδοσης συμ-μεταβλητοτήτων Στη γενικότερη περίπτωση μας ενδιαφέρει ο προσδιορισμός της ακρίβειας ενός συνόλου μεγεθών που υπολογίζονται μέσω γνωστών αναλυτικών σχέσεων από άλλα μεγέθη: y Qx C y QC Q x T (*) για γραμμικές σχέσεις.

48 Εφαρμογή στα αποτελέσματα συνόρθωσης b Aδx v ˆ ( ) T 1 T δx A PA A Pb 2 o v ~ ( 0, Q ) C v v Επιλογή χρήστη για πίνακα βάρους P P C Q 1 v 1 v οποιαδήποτε άλλη επιλογή C Ακρίβεια εκτίμησης παραμέτρων T 1 C x ˆ ( A PA) 2 T 1 C x ˆ σo ( A PA) T 1 T T 1 xˆ ( A PA) A P Cv PA( A PA)

49 Αξιολόγηση ακρίβειας (άλλα σχόλια) ˆ... x ˆx Τιμή εκτίμησης Τυπική απόκλιση εκτίμησης (standard error) Ασφαλέστερη αξιολόγηση ακρίβειας: xˆ... ˆx 3 (επίπεδο ακρίβειας 3σ) Σχετική ακρίβεια εκτίμησης: xˆ xˆ (π.χ. 2 ppm ή )

50 Να θυμάστε ότι Οι στατιστικοί δείκτες που προκύπτουν από τον ΝΜΣ (π.χ. πίνακες συμ-μεταβλητοτήτων) αξιολογούν την εσωτερική ακρίβεια των αποτελεσμάτων συνόρθωσης. Οι δείκτες αυτοί θα περιγράφουν τη συνολική ακρίβεια των αποτελεσμάτων υπό την αυστηρή προϋπόθεση ότι οι παρατηρήσεις δεν έχουν συστηματικά σφάλματα.

51 Να θυμάστε ότι Ο πίνακας συμ-μεταβλητοτήτων της εκτίμησης δεν μπορεί να διακρίνει μεταξύ των δύο περιπτώσεων! ˆx ˆx ˆx Με συστηματικά σφάλματα στις μετρήσεις Χωρίς συστηματικά σφάλματα στις μετρήσεις

52 Λίγα λόγια για τους στατιστικούς ελέγχους

53 Γενικά Σχόλια Η υλοποίηση της συνόρθωσης και η εκτίμηση παραμέτρων στο μοντέλο των εξισώσεων παρατήρησης: b Aδx v 2 o 1 v ~ ( 0, P ) δεν απαιτεί καμία γνώση της συνάρτησης κατανομής που ακολουθούν τα τυχαία σφάλματα των μετρήσεων. Η συνάρτηση κατανομής των σφαλμάτων (καθώς και άλλων ποσοτήτων που υπολογίζονται μέσω της συνόρθωσης) είναι απαραίτητη για την εκτέλεση στατιστικών ελέγχων και την ανάλυση αξιοπιστίας των αποτελεσμάτων της συνόρθωσης.

54 Τυχαία μεταβλητή: v Προσδοκία: Ε {v} = μ Μεταβλητότητα: Ε {(v-μ) 2 } = σ 2 f v (v) Κανονική κατανομή (κατανομή Gauss) P(v i ) =? μ-3σ μ-2σ μ-σ μ+σ μ+2σ μ+3σ μ v

55 Από τις βέλτιστες εκτιμήσεις στους στατιστικούς ελέγχους. b Aδx v 2 o 1 v ~ ( 0, P ) ΓΕΝΙΚΟ ΜΟΝΤΕΛΟ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ˆ ( ) T 1 T δx A PA A Pb vˆ b Aδxˆ ΣΧΕΣΕΙΣ ΓΙΑ ΤΗ ΣΥΝΟΡΘΩΣΗ ΠΑΡΑΤΗΡΗΣΕΩΝ ΚΑΙ ΤΗΝ ΕΚΤΙΜΗΣΗ ΠΑΡΑΜΕΤΡΩΝ ˆ ( ) T 1 T δx δx A PA A Pv T 1 T ˆ ( ( ) ) v I A A PA A P v ΙΣΟΔΥΝΑΜΕΣ ΣΧΕΣΕΙΣ ΠΟΥ ΑΠΟΤΕΛΟΥΝ ΤΗΝ ΒΑΣΗ ΓΙΑ ΤΗΝ ΕΦΑΡΜΟΓΗ ΣΤΑΤΙΣΤΙΚΩΝ ΕΛΕΓΧΩΝ ΚΑΙ ΤΗΝ ΜΕΛΕΤΗ ΑΞΙΟΠΙΣΤΙΑΣ ΤΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΣΥΝΟΡΘΩΣΗΣ

56 Συνάρτηση κατανομής πιθανότητας της εκτίμησης Η γενική φιλοσοφία των στατιστικών ελέγχων Αληθινή τιμή παραμέτρου Αξιολόγηση αξιοπιστίας Εκτίμηση παραμέτρου Πόσο σημαντική είναι αυτή η διαφορά; Αξιολόγηση εσωτερικής ακρίβειας

57 Γενικά Σχόλια Oι στατιστικοί έλεγχοι στα αποτελέσματα της συνόρθωσης αποσκοπούν στον έλεγχο ορθότητας για τα εξής χαρακτηριστικά: του μαθηματικού μοντέλου του προβλήματος (π.χ. ύπαρξη συστηματικών ή χονδροειδών σφαλμάτων) του στοχαστικού μοντέλου του προβλήματος (π.χ. λανθασμένη επιλογή πίνακα βάρους) της εξωτερικής πληροφορίας που έχει χρησιμοποιηθεί για την υλοποίηση της συνόρθωσης (π.χ. λανθασμένες συντεταγμένες τριγωνομετρικών σημείων)

58 Ο απλούστερος στατιστικός έλεγχος y y v 2 i i v ~ N(0, ) i 1, 2,.., i n Έλεγχος μη-τυχαίων σφαλμάτων δείγματος (3-σ τεστ, ~ 99% συντελεστής εμπιστοσύνης) y 3 y y 3 i 3 3 y

59 Να θυμάστε ότι Τα αποτελέσματα των στατιστικών ελέγχων δεν συνιστούν απόλυτες απαντήσεις. Είναι απλά ενδείξεις με προκαθορισμένους συντελεστές εμπιστοσύνης!

Τοπογραφικά Δίκτυα & Υπολογισμοί

Τοπογραφικά Δίκτυα & Υπολογισμοί ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 2: Ανασκόπηση θεωρίας εκτίμησης παραμέτρων και συνόρθωσης παρατηρήσεων Χριστόφορος Κωτσάκης Άδειες

Διαβάστε περισσότερα

Ανάλυση αξιοπιστίας δικτύων (μέρος Ι)

Ανάλυση αξιοπιστίας δικτύων (μέρος Ι) Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Ανάλυση αξιοπιστίας δικτύων (μέρος Ι) Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Η έννοια

Διαβάστε περισσότερα

Μερικά διδακτικά παραδείγματα

Μερικά διδακτικά παραδείγματα Τοπογραφικά Δίκτυα και Υπολογισμοί ο εξάμηνο, Ακαδημαϊκό Έτος 206-207 Μερικά διδακτικά παραδείγματα Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Περιεχόμενα Παράδειγμα

Διαβάστε περισσότερα

Ανάλυση αξιοπιστίας δικτύων (μέρος ΙΙ)

Ανάλυση αξιοπιστίας δικτύων (μέρος ΙΙ) Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 16-17 Ανάλυση αξιοπιστίας δικτύων (μέρος ΙΙ) Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Περιεχόμενα

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις,

Διαβάστε περισσότερα

Τοπογραφικά Δίκτυα & Υπολογισμοί

Τοπογραφικά Δίκτυα & Υπολογισμοί ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 8: Αλγόριθμοι συνόρθωσης δικτύων Χριστόφορος Κωτσάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Αξιολόγηση ακρίβειας στη συνόρθωση δικτύων (μέρος Ι)

Αξιολόγηση ακρίβειας στη συνόρθωση δικτύων (μέρος Ι) Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Αξιολόγηση ακρίβειας στη συνόρθωση δικτύων (μέρος Ι) Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή,

Διαβάστε περισσότερα

Παράδειγμα συνόρθωσης οριζόντιου δικτύου

Παράδειγμα συνόρθωσης οριζόντιου δικτύου Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 216-217 Παράδειγμα συνόρθωσης οριζόντιου δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Οριζόντιο

Διαβάστε περισσότερα

Βέλτιστη παρεμβολή και πρόγνωση άγνωστης συνάρτησης με τη μέθοδο της σημειακής προσαρμογής

Βέλτιστη παρεμβολή και πρόγνωση άγνωστης συνάρτησης με τη μέθοδο της σημειακής προσαρμογής Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 2016-2017 Βέλτιστη παρεμβολή και πρόγνωση άγνωστης συνάρτησης με τη μέθοδο της σημειακής προσαρμογής (Least squares collocation) Χριστόφορος

Διαβάστε περισσότερα

Τοπογραφικά Δίκτυα & Υπολογισμοί

Τοπογραφικά Δίκτυα & Υπολογισμοί ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 11: Ανάλυση αξιοπιστίας δικτύου Χριστόφορος Κωτσάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Παραδείγματα ανάλυσης αξιοπιστίας τοπογραφικού δικτύου

Παραδείγματα ανάλυσης αξιοπιστίας τοπογραφικού δικτύου Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 016-017 Παραδείγματα ανάλυσης αξιοπιστίας τοπογραφικού δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή,

Διαβάστε περισσότερα

Προ-επεξεργασία και έλεγχος μετρήσεων δικτύου

Προ-επεξεργασία και έλεγχος μετρήσεων δικτύου Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Προ-επεξεργασία και έλεγχος μετρήσεων δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ

Διαβάστε περισσότερα

Αλγόριθμοι συνόρθωσης δικτύων

Αλγόριθμοι συνόρθωσης δικτύων Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Αλγόριθμοι συνόρθωσης δικτύων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Εισαγωγή Μου τη

Διαβάστε περισσότερα

ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ

ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Μηχανικών ΤΕ και Μηχανικών Τοπογραφίας & Γεωπληροφορικής ΤΕ κατεύθυνση Μηχανικών Τοπογραφίας και Γεωπληροφορικής ΤΕ Τοπογραφικά και

Διαβάστε περισσότερα

ΛΥΣΕΙΣ AΣΚΗΣΕΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο

ΛΥΣΕΙΣ AΣΚΗΣΕΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο ΛΥΣΕΙΣ ΣΚΗΣΕΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο Άσκηση (α) Οι συνορθωμένες συντεταγμένες του σημείου P είναι: ˆ 358.47 m, ˆ 4.46 m (β) Η a-psteriri εκτίμηση της μεταβλητότητας

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο

ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο Επιλέξτε μία σωστή απάντηση σε κάθε ένα από τα παρακάτω ερωτήματα. 1) Η χρήση απόλυτων δεσμεύσεων για την συνόρθωση ενός τοπογραφικού

Διαβάστε περισσότερα

Σύντομος οδηγός του προγράμματος DEROS

Σύντομος οδηγός του προγράμματος DEROS Τοπογραφικά Δίκτυα και Υπολογισμοί Σύντομος οδηγός του προγράμματος DEROS Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών Πολυτεχνική Σχολή ΑΠΘ SUPPLEMENTARY COURSE NOTES Για περισσότερες λεπτομέρειες

Διαβάστε περισσότερα

Παραδείγματα ανάλυσης ακρίβειας συντεταγμένων από συνορθώσεις δικτύου

Παραδείγματα ανάλυσης ακρίβειας συντεταγμένων από συνορθώσεις δικτύου Τοπογραφικά Δίκτυα και Υπολογισμοί ο εξάμηνο, Ακαδημαϊκό Έτος 06-07 Παραδείγματα ανάλυσης ακρίβειας συντεταγμένων από συνορθώσεις δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική

Διαβάστε περισσότερα

AΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο

AΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο AΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο Άσκηση 10 Σε ένα κατακόρυφο δίκτυο έχουν μετρηθεί, μέσω διπλής γεωμετρικής χωροστάθμησης, οι υψομετρικές διαφορές μεταξύ όλων των σημείων

Διαβάστε περισσότερα

Μέθοδος αιχμηρής εκτίμησης σε ασταθή γραμμικά μοντέλα

Μέθοδος αιχμηρής εκτίμησης σε ασταθή γραμμικά μοντέλα Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 216-217 Μέθοδος αιχμηρής εκτίμησης σε ασταθή γραμμικά μοντέλα (Ridge regression) Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών

Διαβάστε περισσότερα

Η έννοια και χρήση των εσωτερικών δεσμεύσεων

Η έννοια και χρήση των εσωτερικών δεσμεύσεων Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Η έννοια και χρήση των εσωτερικών δεσμεύσεων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Η

Διαβάστε περισσότερα

AΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο

AΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο AΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο Άσκηση 1 Για τον υπολογισμό των συντεταγμένων ενός σημείου P μετρήθηκαν οι οριζόντιες αποστάσεις προς τρία γνωστά σημεία (βλέπε σχήμα).

Διαβάστε περισσότερα

Τοπογραφικά Δίκτυα & Υπολογισμοί

Τοπογραφικά Δίκτυα & Υπολογισμοί ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 7: Γενική λύση συνόρθωσης δικτύου Χριστόφορος Κωτσάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Τοπογραφικά Δίκτυα & Υπολογισμοί

Τοπογραφικά Δίκτυα & Υπολογισμοί ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 9: Η έννοια και η χρήση των εσωτερικών δεσμεύσεων Χριστόφορος Κωτσάκης Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Τοπογραφικά Δίκτυα & Υπολογισμοί

Τοπογραφικά Δίκτυα & Υπολογισμοί ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 5: Προ επεξεργασία και έλεγχος μετρήσεων δικτύου Χριστόφορος Κωτσάκης Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΕΓΧΕΙΡΙΔΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ ΟΜΟΙΟΤΗΤΑΣ

ΕΓΧΕΙΡΙΔΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ ΟΜΟΙΟΤΗΤΑΣ ΕΓΧΕΙΡΙΔΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ ΟΜΟΙΟΤΗΤΑΣ Για το μάθημα των Ασκήσεων Υπαίθρου (και όχι μόνο..) Χ. Κωτσάκης ΤΑΤΜ ΑΠΘ Ιούλιος 2016 ΠΕΡΙΕΧΟΜΕΝΑ Εισαγωγή Βασικές σχέσεις.3 Γραμμική vs. μη-γραμμική προσέγγιση του

Διαβάστε περισσότερα

Σύντομη σύγκριση μεθόδων ένταξης δικτύου

Σύντομη σύγκριση μεθόδων ένταξης δικτύου Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Σύντομη σύγκριση μεθόδων ένταξης δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Bασικές

Διαβάστε περισσότερα

Παράδειγμα δημιουργίας συστήματος εξισώσεων παρατηρήσεων & πίνακα βάρους σε οριζόντιο δίκτυο

Παράδειγμα δημιουργίας συστήματος εξισώσεων παρατηρήσεων & πίνακα βάρους σε οριζόντιο δίκτυο Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Παράδειγμα δημιουργίας συστήματος εξισώσεων παρατηρήσεων & πίνακα βάρους σε οριζόντιο δίκτυο Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων

Διαβάστε περισσότερα

Σύγκριση λύσεων δικτύου μέσω μετασχηματισμού συντεταγμένων

Σύγκριση λύσεων δικτύου μέσω μετασχηματισμού συντεταγμένων Σεμιναριακό Μάθημα Ασκήσεων Υπαίθρου (Ιούλιος 2016) Σύγκριση λύσεων δικτύου μέσω μετασχηματισμού συντεταγμένων Χ. Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Εισαγωγή Έστω

Διαβάστε περισσότερα

Γενική λύση συνόρθωσης δικτύου

Γενική λύση συνόρθωσης δικτύου Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Γενική λύση συνόρθωσης δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Πως ξεπερνάμε το

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΟΡΙΖΟΝΤΙΩΝ ΔΙΚΤΥΩΝ (ΤΟ ΣΥΣΤΗΜΑ ΤΩΝ ΚΑΝΟΝΙΚΩΝ ΕΞΙΣΩΣΕΩΝ)

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΟΡΙΖΟΝΤΙΩΝ ΔΙΚΤΥΩΝ (ΤΟ ΣΥΣΤΗΜΑ ΤΩΝ ΚΑΝΟΝΙΚΩΝ ΕΞΙΣΩΣΕΩΝ) ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΟΡΙΖΟΝΤΙΩΝ ΔΙΚΤΥΩΝ (ΤΟ ΣΥΣΤΗΜΑ ΤΩΝ ΚΑΝΟΝΙΚΩΝ ΕΞΙΣΩΣΕΩΝ) Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ 3ο εξάμηνο http://eclass.teiath.gr

Διαβάστε περισσότερα

Τοπογραφικά Δίκτυα & Υπολογισμοί

Τοπογραφικά Δίκτυα & Υπολογισμοί ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 4: Μοντέλα Ανάλυσης και Εξισώσεις Παρατηρήσεων Δικτύων Χριστόφορος Κωτσάκης Άδειες Χρήσης Το

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutra@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε

Διαβάστε περισσότερα

Οδηγός λύσης θέματος 3

Οδηγός λύσης θέματος 3 Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 216-217 Οδηγός λύσης θέματος 3 Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ ανά 5 λεπτά ανά 1 λεπτό

Διαβάστε περισσότερα

ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ

ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Μηχανικών ΤΕ και Μηχανικών Τοπογραφίας & Γεωπληροφορικής ΤΕ κατεύθυνση Μηχανικών Τοπογραφίας και Γεωπληροφορικής ΤΕ Τοπογραφικά και

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2 013 [Κεφάλαιο ] ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο Μάθημα Εαρινού Εξάμηνου 01-013 M.E. OE0300 Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής Ανάπτυξης [Οικονομετρία 01-013] Μαρί-Νοέλ

Διαβάστε περισσότερα

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΙI (ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ) (ΟΔΕ 2116)

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΙI (ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ) (ΟΔΕ 2116) Σελίδα 1 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΜΑΘΗΜΑ: ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΙΙ (ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ) (ΟΔΕ 2116) ΠΑΝΕΠΙΣΤΗΜΙΑΚΟΣ ΥΠΟΤΡΟΦΟΣ ΠΑΝΑΓΙΩΤΗΣ

Διαβάστε περισσότερα

Σύντομος οδηγός του μαθήματος

Σύντομος οδηγός του μαθήματος Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 2016-2017 Σύντομος οδηγός του μαθήματος Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Γενικές πληροφορίες

Διαβάστε περισσότερα

Εισαγωγή στα Δίκτυα. Τοπογραφικά Δίκτυα και Υπολογισμοί. 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2015-2016. Χριστόφορος Κωτσάκης

Εισαγωγή στα Δίκτυα. Τοπογραφικά Δίκτυα και Υπολογισμοί. 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2015-2016. Χριστόφορος Κωτσάκης Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2015-2016 Εισαγωγή στα Δίκτυα Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Εισαγωγή Τι είναι δίκτυο;

Διαβάστε περισσότερα

Χημική Τεχνολογία. Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων. Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε.

Χημική Τεχνολογία. Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων. Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Χημική Τεχνολογία Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. Άδειες Χρήσης

Διαβάστε περισσότερα

Αυτοματοποιημένη χαρτογραφία

Αυτοματοποιημένη χαρτογραφία ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑ ΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αυτοματοποιημένη χαρτογραφία Ενότητα # 4: Ψηφιακός χάρτης - Διαχείριση 2o μέρος Ιωάννης Γ. Παρασχάκης Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ Συντελεστής συσχέτισης (εκτιμητής Person: r, Y ( ( Y Y xy ( ( Y Y x y, όπου r, Y (ισχυρή θετική γραμμική συσχέτιση όταν, ισχυρή αρνητική

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΟΙ ΜΕΤΡΗΣΕΙΣ ΤΩΝ ΑΠΟΣΤΑΣΕΩΝ - ΠΡΟΕΠΕΞΕΡΓΑΣΙΑ

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΟΙ ΜΕΤΡΗΣΕΙΣ ΤΩΝ ΑΠΟΣΤΑΣΕΩΝ - ΠΡΟΕΠΕΞΕΡΓΑΣΙΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΟΙ ΜΕΤΡΗΣΕΙΣ ΤΩΝ ΑΠΟΣΤΑΣΕΩΝ - ΠΡΟΕΠΕΞΕΡΓΑΣΙΑ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr

Διαβάστε περισσότερα

9. Παλινδρόμηση και Συσχέτιση

9. Παλινδρόμηση και Συσχέτιση 9. Παλινδρόμηση και Συσχέτιση Παλινδρόμηση και Συσχέτιση Υπάρχει σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές; Αν ναι, ποια είναι αυτή η σχέση; Πως μπορεί αυτή η σχέση να χρησιμοποιηθεί για να προβλέψουμε

Διαβάστε περισσότερα

Χ. Εμμανουηλίδης, 1

Χ. Εμμανουηλίδης, 1 Εφαρμοσμένη Στατιστική Έρευνα Απλό Γραμμικό Υπόδειγμα AΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟ ΕΙΓΜΑ Δρ. Χρήστος Εμμανουηλίδης Αν. Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εφαρμοσμένη Στατιστική, Τμήμα Ο.Ε. ΑΠΘ Χ. Εμμανουηλίδης,

Διαβάστε περισσότερα

Περιεχόμενα. σελ. Πρόλογος 1 ης Έκδοσης... ix Πρόλογος 2 ης Έκδοσης... xi Εισαγωγή... xiii

Περιεχόμενα. σελ. Πρόλογος 1 ης Έκδοσης... ix Πρόλογος 2 ης Έκδοσης... xi Εισαγωγή... xiii Περιεχόμενα Πρόλογος 1 ης Έκδοσης... ix Πρόλογος 2 ης Έκδοσης... xi Εισαγωγή... xiii 1. Ειδικές συναρτήσεις 1.0 Εισαγωγή... 1 1.1 Εξίσωση του Laplace Συστήματα συντεταγμένων... 2 1.2 Συνάρτηση δ του Dirac...

Διαβάστε περισσότερα

Απλή Παλινδρόμηση και Συσχέτιση

Απλή Παλινδρόμηση και Συσχέτιση Απλή Παλινδρόμηση και Συσχέτιση Πωλήσεις, Δαπάνες Διαφήμισης και Αριθμός Πωλητών Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) 98 050 6 3 989

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

HMY 799 1: Αναγνώριση Συστημάτων

HMY 799 1: Αναγνώριση Συστημάτων HMY 799 : Αναγνώριση Συστημάτων Διάλεξη Γραμμική παλινδρόμηση (Linear regression) Εμπειρική συνάρτηση μεταφοράς Ομαλοποίηση (smoothing) Y ( ) ( ) ω G ω = U ( ω) ω +Δ ω γ ω Δω = ω +Δω W ( ξ ω ) U ( ξ) G(

Διαβάστε περισσότερα

7.1.1 Η Μέθοδος των Ελαχίστων Τετραγώνων

7.1.1 Η Μέθοδος των Ελαχίστων Τετραγώνων 7.. Η Μέθοδος των Ελαχίστων Τετραγώνων Όπως ήδη αναφέρθηκε, μία ευρύτατα διαδεδομένη μέθοδος για την εκτίμηση των σταθερών α και β είναι η μέθοδος των ελαχίστων τετραγώνων. Η μέθοδος αυτή επιλέγει εκτιμήτριες

Διαβάστε περισσότερα

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 2 Εισαγωγή Η ανάλυση παλινδρόμησης περιλαμβάνει το σύνολο των μεθόδων της στατιστικής που αναφέρονται σε ποσοτικές σχέσεις μεταξύ μεταβλητών Πρότυπα παλινδρόμησης

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium iv Στατιστική Συμπερασματολογία Ι Σημειακές Εκτιμήσεις Διαστήματα Εμπιστοσύνης Στατιστική Συμπερασματολογία (Statistical Inference) Το πεδίο της Στατιστικής Συμπερασματολογία,

Διαβάστε περισσότερα

Περιεχόμενα. 1. Ειδικές συναρτήσεις. 2. Μιγαδικές Συναρτήσεις. 3. Η Έννοια του Τελεστή. Κεφάλαιο - Ενότητα

Περιεχόμενα. 1. Ειδικές συναρτήσεις. 2. Μιγαδικές Συναρτήσεις. 3. Η Έννοια του Τελεστή. Κεφάλαιο - Ενότητα Περιεχόμενα Κεφάλαιο - Ενότητα σελ 1. Ειδικές συναρτήσεις 1.0 Εισαγωγή 1.1 Εξίσωση του Laplace Συστήματα συντεταγμένων 1.2 Συνάρτηση δ του Dirac 1.3 Συνάρτηση του Heaviside 1.4 Οι συναρτήσεις Β, Γ και

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική

Εφαρμοσμένη Στατιστική ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Παλινδρόμηση Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis)

Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis) Μέρος V. Ανάλυση Παλινδρόμηση (Regresso Aalss) Βασικές έννοιες Απλή Γραμμική Παλινδρόμηση Πολλαπλή Παλινδρόμηση Εφαρμοσμένη Στατιστική Μέρος 5 ο - Κ. Μπλέκας () Βασικές έννοιες Έστω τ.μ. Χ,Υ όπου υπάρχει

Διαβάστε περισσότερα

Χρήση εναλλακτικών τεχνικών συνόρθωσης δικτύων μέσω στοχαστικών δεσμεύσεων και εκτίμησης συνιστωσών μεταβλητότητας αναφοράς

Χρήση εναλλακτικών τεχνικών συνόρθωσης δικτύων μέσω στοχαστικών δεσμεύσεων και εκτίμησης συνιστωσών μεταβλητότητας αναφοράς Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Πολυτεχνική Σχολή Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών Μεταπτυχιακό Πρόγραμμα Σπουδών στη Γεωπληροφορική Κατεύθυνση: Τοπογραφικές Εφαρμογές Υψηλής Ακρίβειας Χρήση

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 4A: Έλεγχοι Υποθέσεων και Διαστήματα Εμπιστοσύνης Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ

Διαβάστε περισσότερα

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος xi 1 Αντικείμενα των Πιθανοτήτων και της Στατιστικής 1 1.1 Πιθανοτικά Πρότυπα και Αντικείμενο των Πιθανοτήτων, 1 1.2 Αντικείμενο της Στατιστικής, 3 1.3 Ο Ρόλος των Πιθανοτήτων

Διαβάστε περισσότερα

Προ-επεξεργασία, συνόρθωση και στατιστική ανάλυση δικτύων Μεταλλικού

Προ-επεξεργασία, συνόρθωση και στατιστική ανάλυση δικτύων Μεταλλικού Σεμιναριακό Μάθημα Ασκήσεων Υπαίθρου (Ιούλιος 2016) Προ-επεξεργασία, συνόρθωση και στατιστική ανάλυση δικτύων Μεταλλικού Χ. Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Δίκτυο

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες Ορισμός Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες αβεβαιότητας. Βασικές έννοιες Η μελέτη ενός πληθυσμού

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΓΕΝΙΚΑ ΠΕΡΙ ΔΙΚΤΥΩΝ

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΓΕΝΙΚΑ ΠΕΡΙ ΔΙΚΤΥΩΝ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΓΕΝΙΚΑ ΠΕΡΙ ΔΙΚΤΥΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο ΠΑΛΙΟ http://eclass.survey.teiath.gr NEO

Διαβάστε περισσότερα

Αναλυτική Φωτογραμμετρία

Αναλυτική Φωτογραμμετρία ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑ ΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αναλυτική Φωτογραμμετρία Ενότητα # 3: Μαθηματικό υπόβαθρο Αναλυτικής Φωτογραμμετρίας Καθηγήτρια Όλγα Γεωργούλα Τμήμα Αγρονόμων & Τοπογράφων

Διαβάστε περισσότερα

Εντάξεις δικτύων GPS. 6.1 Εισαγωγή

Εντάξεις δικτύων GPS. 6.1 Εισαγωγή 6 Εντάξεις δικτύων GPS 6.1 Εισαγωγή Oι απόλυτες (X, Y, Z ή σχετικές (ΔX, ΔY, ΔZ θέσεις των σηµείων, έτσι όπως προσδιορίζονται από τις µετρήσεις GPS, αναφέρονται στο γεωκεντρικό σύστηµα WGS 84 (Wrld Gedetic

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 20 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 20 2.1.1 Αβεβαιότητα

Διαβάστε περισσότερα

Αναλυτική Φωτογραμμετρία

Αναλυτική Φωτογραμμετρία ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑ ΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αναλυτική Φωτογραμμετρία Ενότητα # 5: Βασικά Φωτογραμμετρικά προβλήματα I Καθηγήτρια Όλγα Γεωργούλα Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών

Διαβάστε περισσότερα

Πίνακας 4.4 Διαστήματα Εμπιστοσύνης. Τιμές που Επίπεδο εμπιστοσύνης. Διάστημα εμπιστοσύνης

Πίνακας 4.4 Διαστήματα Εμπιστοσύνης. Τιμές που Επίπεδο εμπιστοσύνης. Διάστημα εμπιστοσύνης Σφάλματα Μετρήσεων 4.45 Πίνακας 4.4 Διαστήματα Εμπιστοσύνης. Τιμές που Επίπεδο εμπιστοσύνης Διάστημα εμπιστοσύνης βρίσκονται εκτός του Διαστήματος Εμπιστοσύνης 0.500 X 0.674σ 1 στις 0.800 X 1.8σ 1 στις

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ 10ο Σετ Ασκήσεων (Λύσεις) Γραμμικοί Μετασχηματισμοί

Εφαρμοσμένα Μαθηματικά ΙΙ 10ο Σετ Ασκήσεων (Λύσεις) Γραμμικοί Μετασχηματισμοί Εφαρμοσμένα Μαθηματικά ΙΙ ο Σετ Ασκήσεων (Λύσεις) Γραμμικοί Μετασχηματισμοί Επιμέλεια: Ι. Λυχναρόπουλος. Να εξετασθεί αν είναι γραμμικές οι ακόλουθες συναρτήσεις: a) f : R R με f b) f : R R f y, ( +, y

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Γραμμικά Συστήματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Γραμμικό Σύστημα a11x1 + a12x2 + + a1 nxn = b1 a x + a x + +

Διαβάστε περισσότερα

Διαστήματα εμπιστοσύνης, εκτίμηση ακρίβειας μέσης τιμής

Διαστήματα εμπιστοσύνης, εκτίμηση ακρίβειας μέσης τιμής Ενότητα 2 Διαστήματα εμπιστοσύνης, εκτίμηση ακρίβειας μέσης τιμής Ένας από τους βασικούς σκοπούς της Στατιστικής είναι η εκτίμηση των χαρακτηριστικών ενός πληθυσμού βάσει της πληροφορίας από ένα δείγμα.

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7 ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 1.1. Εισαγωγή 13 1.2. Μοντέλο ή Υπόδειγμα 13 1.3. Η Ανάλυση Παλινδρόμησης 16 1.4. Το γραμμικό μοντέλο Παλινδρόμησης 17 1.5. Πρακτική χρησιμότητα

Διαβάστε περισσότερα

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 2η: Απλή Γραμμική Παλινδρόμηση. Διδάσκουσα: Κοντογιάννη Αριστούλα

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 2η: Απλή Γραμμική Παλινδρόμηση. Διδάσκουσα: Κοντογιάννη Αριστούλα Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 2η: Απλή Γραμμική Παλινδρόμηση Διδάσκουσα: Κοντογιάννη Αριστούλα Πώς συσχετίζονται δυο μεταβλητές; Ένας απλός τρόπος για να αποκτήσουμε

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ 1.1 Πίνακες, κατανομές, ιστογράμματα... 1 1.2 Πυκνότητα πιθανότητας, καμπύλη συχνοτήτων... 5 1.3

Διαβάστε περισσότερα

Μέθοδοι πολυδιάστατης ελαχιστοποίησης

Μέθοδοι πολυδιάστατης ελαχιστοποίησης Μέθοδοι πολυδιάστατης ελαχιστοποίησης με παραγώγους Μέθοδοι πολυδιάστατης ελαχιστοποίησης Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc64.materials.uoi.gr/dpapageo

Διαβάστε περισσότερα

Αυτοματοποιημένη χαρτογραφία

Αυτοματοποιημένη χαρτογραφία ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑ ΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αυτοματοποιημένη χαρτογραφία Ενότητα # 8: Μοντελοποίηση Χαρτογραφικών Δεδομένων Ιωάννης Γ. Παρασχάκης Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα

Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Παράδειγμα Να βρείτε τις ιδιοτιμές και τα αντίστοιχα ιδιοδιανύσματα του πίνακα A 4. Επίσης να προσδιοριστούν οι ιδιοχώροι και οι γεωμετρικές πολλαπλότητες των ιδιοτιμών.

Διαβάστε περισσότερα

Στατιστική Ι (ΨΥΧ-1202) Διάλεξη 6 Σχέσεις μεταξύ μεταβλητών

Στατιστική Ι (ΨΥΧ-1202) Διάλεξη 6 Σχέσεις μεταξύ μεταβλητών (ΨΥΧ-1202) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com Διαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ Διάλεξη 6 Σχέσεις μεταξύ μεταβλητών ΠΑΝΕΠΙΣΤΗΜΙΟ

Διαβάστε περισσότερα

Αυτοματοποιημένη χαρτογραφία

Αυτοματοποιημένη χαρτογραφία ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αυτοματοποιημένη χαρτογραφία Ενότητα # 9: Σύγκριση ντετερμινιστικών / στοχαστικών μοντέλων Ιωάννης Γ. Παρασχάκης Τμήμα Αγρονόμων & Τοπογράφων

Διαβάστε περισσότερα

ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ

ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Μηχανικών ΤΕ και Μηχανικών Τοπογραφίας & Γεωπληροφορικής ΤΕ κατεύθυνση Μηχανικών Τοπογραφίας και Γεωπληροφορικής ΤΕ Εφαρμογές Παγκοσμίου

Διαβάστε περισσότερα

Διαχείριση Υδατικών Πόρων

Διαχείριση Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Διαχείριση Υδατικών Πόρων Γ.. Τσακίρης Μάθημα 3 ο Λεκάνη απορροής Υπάρχουσα κατάσταση Σενάριο 1: Μέσες υδρολογικές συνθήκες Σενάριο : Δυσμενείς υδρολογικές συνθήκες Μελλοντική

Διαβάστε περισσότερα

Μεθοδολογίες παρεµβολής σε DTM.

Μεθοδολογίες παρεµβολής σε DTM. Μάθηµα : Αλγοριθµικές Βάσεις στη Γεωπληροφορική ιδάσκων : Συµεών Κατσουγιαννόπουλος Μεθοδολογίες παρεµβολής σε DTM.. Μέθοδοι παρεµβολής. Η παρεµβολή σε ψηφιακό µοντέλο εδάφους (DTM) είναι η διαδικασία

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ

ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ ιαφάνειες για το µάθηµα Information Management ΑθανάσιοςΝ. Σταµούλης 1 ΠΗΓΗ Κονδύλης Ε. (1999) Στατιστικές τεχνικές διοίκησης επιχειρήσεων, Interbooks 2 1 Γραµµική παλινδρόµηση Είναι

Διαβάστε περισσότερα

Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή

Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΜΥ 795: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ Ακαδημαϊκό έτος 2010-11 Χειμερινό Εξάμηνο Practice final exam 1. Έστω ότι για

Διαβάστε περισσότερα

Κεφάλαιο 12: Υδραυλική ανάλυση δικτύων διανομής

Κεφάλαιο 12: Υδραυλική ανάλυση δικτύων διανομής Κεφάλαιο 12: Υδραυλική ανάλυση δικτύων διανομής Εννοιολογική αναπαράσταση δίκτυων διανομής Σχηματοποίηση: δικτυακή απεικόνιση των συνιστωσών του φυσικού συστήματος ως συνιστώσες ενός εννοιολογικού μοντέλου

Διαβάστε περισσότερα

Περιεχόμενα της Ενότητας. Συνεχείς Τυχαίες Μεταβλητές. Συνεχείς Κατανομές Πιθανότητας. Συνεχείς Κατανομές Πιθανότητας.

Περιεχόμενα της Ενότητας. Συνεχείς Τυχαίες Μεταβλητές. Συνεχείς Κατανομές Πιθανότητας. Συνεχείς Κατανομές Πιθανότητας. Περιεχόμενα της Ενότητας Στατιστική Ι Ενότητα 5: Συνεχείς Κατανομές Πιθανότητας Δρ. Χρήστος Εμμανουηλίδης Επίκουρος Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης. Συνεχείς Τυχαίες Μεταβλητές. Συνεχείς

Διαβάστε περισσότερα

Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου

Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Προϋποθέσεις Εφαρμογής

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ 3 ο ΦΡΟΝΤΙΣΤΗΡΙΟ ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ

ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ 3 ο ΦΡΟΝΤΙΣΤΗΡΙΟ ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ 3 ο ΦΡΟΝΤΙΣΤΗΡΙΟ ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΑΣΚΗΣΗ Σύμφωνα με στοιχεία από το Πανεπιστήμιο της Οξφόρδης η πιθανότητα ένας φοιτητής να αποφοιτήσει μέσα σε 5 χρόνια από την ημέρα εγγραφής του στο

Διαβάστε περισσότερα

Μεθοδολογία Παραβολής

Μεθοδολογία Παραβολής Μεθοδολογία Παραβολής Παραβολή είναι ο γεωμετρικός τόπος των σημείων που ισαπέχουν από μια σταθερή ευθεία, την επονομαζόμενη διευθετούσα (δ), και από ένα σταθερό σημείο Ε που λέγεται εστία της παραβολής.

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ ( Μεθοδολογία- Παραδείγματα ) Κλεομένης Γ. Τσιγάνης

Διαβάστε περισσότερα

ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ 01-013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Θέμα 1 ο Α. Έστω a ένας πραγματικός αριθμός. Να δώσετε τον ορισμό της απόλυτης

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 21 2.1.1 Αβεβαιότητα και Τυχαίο Πείραμα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι 4 ΟΚΤΩΒΡΙΟΥ 2016 ΓΡΑΜΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΕΙΣΑΓΩΓΗ Ι Κεντρική έννοια το μέτρο ή ρυθμός μεταβολής:

Διαβάστε περισσότερα

Μοντέλο μετασχηματισμού μεταξύ του ΕΓΣΑ87 και του συστήματος αναφοράς του HEPOS

Μοντέλο μετασχηματισμού μεταξύ του ΕΓΣΑ87 και του συστήματος αναφοράς του HEPOS Επιµορφωτικά Σεµινάρια ΑΤΜ Μοντέλο μετασχηματισμού μεταξύ του ΕΓΣΑ87 και του συστήματος αναφοράς του HEPOS Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ ΚΤΗΜΑΤΟΛΟΓΙΟ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 5-6 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 735468 Σε αρκετές εφαρμογές

Διαβάστε περισσότερα

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα 2: Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται οι βασικές

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔ ΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ Μεθοδολογία Κλεομένης Γ. Τσιγάνης Λέκτορας ΑΠΘ Πρόχειρες

Διαβάστε περισσότερα

Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη

Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη ΒΕΣ 6 Προσαρµοστικά Συστήµατα στις Τηλεπικοινωνίες Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη 7 Nicolas sapatsoulis Βιβλιογραφία Ενότητας Benvenuto []: Κεφάλαιo Wirow

Διαβάστε περισσότερα

Αστικά υδραυλικά έργα

Αστικά υδραυλικά έργα Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Αστικά υδραυλικά έργα Υδραυλική ανάλυση δικτύων διανομής Δημήτρης Κουτσογιάννης, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Άδεια Χρήσης

Διαβάστε περισσότερα

Εκτιμητές Μεγίστης Πιθανοφάνειας (Maximum Likelihood Estimators MLE)

Εκτιμητές Μεγίστης Πιθανοφάνειας (Maximum Likelihood Estimators MLE) Εκτιμητές Μεγίστης Πιθανοφάνειας (Maximum Likelihood Estimators MLE) Εστω τ.δ. X={x, x,, x } με κατανομή με σ.π.π. f(x;θ). Η από-κοινού σ.π.π. των δειγμάτων είναι η συνάρτηση L f x, x,, x; f x i ; και

Διαβάστε περισσότερα