Στόχος µαθήµατος: Παράδειγµα 1: µελέτη ασθενών-µαρτύρων ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Στόχος µαθήµατος: Παράδειγµα 1: µελέτη ασθενών-µαρτύρων ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ"

Transcript

1 ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ , 3ο εξάµηνο ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ ΜΑΘΗΜΑ 5 ΕΡΓΑΣΤΗΡΙΟ 1 ΜΕΤΡΑ ΚΙΝ ΥΝΟΥ & ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ ΜΕ ΤΗΝ ΧΡΗΣΗ SPSS Ι. Μαρκάκη Στόχος µαθήµατος: Περιγραφή δίτιµων κατηγορικών δεδοµένων Υπολογισµός βασικών µέτρων κινδύνου (αποδιδόµενος κίνδυνος, σχετικός κίνδυνος, λόγος σχετικών πιθανοτήτων) Έλεγχος ανεξαρτησίας των δύο µεταβλητών (χ 2 του Pearson, έλεγχος µέγιστης πιθανοφάνειας, ακριβής έλεγχος ανεξαρτησίας του Fisher) ΧΡΗΣΗ ΥΟ ΠΡΟΓΡΑΜΜΑΤΩΝ: SPSS & StatXact 3 Από την θεωρία... στην πράξη... Παράδειγµα 1: µελέτη ασθενών-µαρτύρων Μυοκαρδιακή Ανεπάρκεια και Αντισύλληψη (Μελέτη Μαρτύρων- Ασθενών) Τα δεδοµένα του 2x2 Πίνακα που ακολουθούν, προέρχονται από την ερευνητική δουλειά των Mann et.al (1975, Brit.J.Med.). Στη έρευνα αυτή 58 γυναίκες κάτω των 45 χρονών µε µυοκαρδιακή ανεπάρκεια εξετάσθηκαν ως προς τη χρήση ή όχι αντισυλληπτικού χαπιού. Το δείγµα προερχόταν από δύο νοσοκοµεία της Αγγλίας και της Ουαλίας ενώ από τα ίδια νοσοκοµεία επιλέχθηκαν 166 µάρτυρες που δεν είχαν την νόσο της µυοκαρδιακής ανεπάρκειας, και ερωτήθηκαν ως προς τη χρήση ή όχι αντισυλληπτικού χαπιού. ( εδοµένα: Categorical Data Analysis, Agresti (1990) σελ )

2 Παράδειγµα 1 (συνέχεια): µελέτη ασθενών-µαρτύρων Πίνακας 1: Πίνακας διπλής εισόδου παραδείγµατος 1: Μυοκαρδιακή Ανεπάρκεια και Αντισυλληπτικό χάπι (Mann et al, 1975) Χ: Αντισυλ. Χάπι 1: Ναι 2: Όχι Περ. Κατ Υ Y: Μυοκαρδιακή Ανεπάρκεια 1: Ναι : Όχι Περ. Κατ. Χ Ο δεύτερος τρόπος εισαγωγής, εφόσον έχουµε στη διάθεσή µας τον πίνακα 2x2, είναι µέσω της χρήσης του weight cases θέτοντας την µεταβλητή counts ως βάρος Εισαγωγή δεδοµένων στο SPSS 2. «Προετοιµασία» δεδοµένων Ο πρώτος τρόπος εισαγωγής των στοιχείων στο SPSS είναι εισάγοντας για κάθε άτοµο τις τιµές των δύο µεταβλητών 23 φορές Απαραίτητα / Χρήσιµα διευκρινιστικά στοιχεία: Όνοµα µεταβλητής Τύπος µεταβλητής Μήκος-δεκαδικά «Ταµπέλα» µεταβλητής & κωδικοποίησή της (SOS!) «Ταµπέλα» µεταβλητής Αντιστοιχία τιµών µεταβλ.. 34 φορές, κ.ο.κ

3 3α. Ανάλυση πίνακα διπλής εισόδου Αnalyze> Descriptive Stats> Crosstabs 1. Χρήση Αντισυλ. ως γραµµές 2. Νόσος ως στήλες 3γ. εσµευµένη συνάρτηση πιθανότητας Στόχος: Σύγκριση της κατανοµής της νόσου ανάµεσα στις γυναίκες που χρησιµοποιούν αντισύλληψη, µε την αντίστοιχη κατανοµή ανάµεσα στις γυναίκες που δεν χρησιµοποιούν αντισύλληψη. Αλλιώς: επιθυµούµε να συγκρίνουµε τις πιθανότητες (ή ποσοστά) εµφάνισης της νόσου µεταξύ των δύο οµάδων β. Από κοινού συνάρτηση πιθανότητας 3δ. εσµευµένη συνάρτηση πιθανότητας Από το cells επιλέγουµε την εµφάνιση «percentages: Total» Όµως: Στο παραπάνω πρόβληµα η κατανοµή της µεταβλητής απόκρισης (µυοκαρδιακής ανεπάρκειας) είναι σταθερή (προκαθορισµένη) από το σχεδιασµό του πειράµατος µελέτης (αναδροµική µελέτη ή αλλιώς «µελέτη ασθενών-µαρτύρων»). Αυτό όµως που µπορούµε να ελέγξουµε, χωρίς να µπορεί να µας µεταφέρει όλη την επιθυµητή πληροφορία, είναι οι κατανοµές P(X Y), εφόσον το Χ είναι όντως τυχαίο

4 3ε. εσµευµένη συνάρτηση πιθανότητας 3ζ. εσµευµένη συνάρτηση πιθανότητας Στόχος, εποµένως, στις µελέτες ασθενών-µαρτύρων είναι ο έλεγχος της κατανοµής της Χ (δηλ. του παράγοντα), µε δεδοµένη την µεταβλ. απόκρισης Υ (δηλ. τη νόσο) P(X Y). Εν συνεχεία, µε την χρήση του θεωρήµατος του Bayes µπορούµε να υπολογίσουµε τις δεσµευµένες κατανοµές P(Y X) που µας ενδιαφέρουν, µε απαραίτητη προϋπόθεση να γνωρίζουµε το ποσοστό της ασθένειας στον πληθυσµό (δείκτη επιπολασµού) στ. εσµευµένη συνάρτηση πιθανότητας Επιθυµούµε δηλαδή να συγκρίνουµε την κατανοµή της χρήσης χαπιού στις γυναίκες που νοσούν, µε την αντίστοιχη κατανοµή στις γυναίκες που δεν νοσούν Ο συγκεκριµένος πίνακας συνάφειας που µας ενδιαφέρει, εποµένως, είναι αυτός που παίρνουµε από το SPSS µε την επιλογή των ποσοστών ως προς την στήλη (Υ) (δεσµευµένες κατανοµές της χρήσης χαπιού ως προς την εµφάνιση της νόσου) 4α. Εκτίµηση ΛΣΠ και σχετικού κινδύνου Από το statistics επιλέγουµε το Risk CONTRAC * MYOCARD Crosstabulation MYOCARD 1.00 yes 2.00 no Total CONTRAC 1.00 yes Count % within MYOCAR 39.7% 20.5% 25.4% 2.00 no Count % within MYOCAR 60.3% 79.5% 74.6% Total Count % within MYOCAR 100.0% 100.0% 100.0%

5 4β. Εκτίµηση ΛΣΠ ερµηνεία 1 4γ. Εκτίµηση ΛΣΠ ερµηνεία 2 OR= = odds(x=1)/odds(x=2) = 2.55 Ερµηνεία 1: η σχετική πιθανότητα µια γυναίκα να έχει την νόσο (Υ=1) όταν παίρνει το χάπι (Χ=1) είναι 2.55 την αντίστοιχη πιθανότητα µιας γυναίκας που δεν λαµβάνει το χάπι (Χ=2) Ερµηνεία 2: η σχετική πιθαν. µη εµφάνισης της νόσου σε µία γυναίκα που δεν λαµβάνει το χάπι είναι 2.55 την αντίστοιχη πιθανότητα µιας γυναίκας που λαµβάνει το χάπι Παρατήρηση: Η ταυτόχρονη αντιστροφή των κατηγοριών των δύο µεταβλητών δεν αλλάζει το αποτέλεσµα 4δ.Συµπέρασµα για το ΛΣΠ «Πείραµα»: Αλλάξτε την κωδικοποίηση της κατηγορίας «όχι» από 2 σε 0 και παρακολουθείστε τι θα γίνει. Στη συνέχεια υπολογίστε τον κίνδυνο (Risk) Οποιαδήποτε ερµηνεία και αν ακολουθήσουµε συµπεραίνουµε ότι η χρήση αντισυλληπτικού χαπιού αυξάνει την (σχετική) πιθανότητα (ή τον κίνδυνο εµφάνισης) µυοκαρδιακής ανεπάρκειας, δηλαδή η χρήση του χαπιού αποτελεί παράγοντα κινδύνου για την νόσο. Παρατήρηση: 95% Ε του OR στατιστικά σηµαντικό (δεν συµπεριλαµβάνεται η µονάδα)

6 4ε. Εκτίµηση σχετικού κινδύνου 4ζ. Εκτίµηση σχετικού κινδύνου Τι κάναµε λάθος στην παραπάνω ανάλυση??? 23 RR (myocard( myocard=1) = = = 1.93 (διαφάνεια 3γ.) Ερµηνεία: Η πιθανότητα µυοκαρδιακής ανεπάρκειας για µια γυναίκα που χρησιµοποιεί αντισυλληπτικό χάπι είναι 93% υψηλότερη από την αντίστοιχη πιθανότητα µιας γυναίκας που δεν χρησιµοποιεί αυτό το είδος αντισύλληψης Ανάλυση σχετικού κινδύνου ΛΑΘΟΣ Μελέτη ασθενών-µαρτύρων: η κατανοµή της νόσου (Υ) είναι προκαθορισµένη. Καλή προσέγγιση του σχετικού κινδύνου: εκτίµηση του ΛΣΠ (OR), εάν δείκτης επιπολασµού της νόσου στο γενικό πληθυσµό µικρός στ. Εκτίµηση σχετικού κινδύνου 34 RR (myocard( myocard=2) ) = = = (διαφάνεια 3γ.) Ερµηνεία: Η πιθανότητα να µην εµφανίσει την νόσο µυοκαρδιακής ανεπάρκειας µια γυναίκα που χρησιµοποιεί αντισυλληπτικό χάπι είναι 24% µικρότερη από την αντίστοιχη πιθανότητα µιας γυναίκας που δεν χρησιµοποιεί αυτό το είδος αντισύλληψης 5. Έλεγχος ανεξαρτησίας χ 2 του Pearson Έλεγχος της υπόθεσης: Η 0 «Ανεξαρτησία µεταξύ Νόσου (Υ) και Αντισυλληπτικού χαπιού (Χ)», Vs. Η 1 «Νόσος (Υ) και Αντισυλληπτικό χάπι (Χ) εξαρτηµένες µεταβλητές»

7 5α. Έλεγχος Ανεξαρτησίας χ 2 του Pearson (στο SPSS) Αnalyze> Descriptive Stats> Crosstabs Και µέσα από το: Statistics Chi-square 5γ. Επιπλέον έλεγχοι ανεξαρτησίας Στον ίδιο πίνακα βλέπουµε και: a) χ 2 µε διόρθωση του Yates b) Έλεγχο µέγιστης πιθανοφάνειας (LRT) [προϋπόθεση n/(i.j) >=5 ] a b β. Αποτελέσµατα ελέγχου ανεξαρτησίας P-value < 0.05 => απορρίπτουµε την υπόθεση της ανεξαρτησίας των δύο µεταβλητών (προϋπόθεση για Pearson s χ 2 : αναµενόµενες τιµές των κελιών >=5) 5γ. Επιπλέον έλεγχοι ανεξαρτησίας Στον ίδιο πίνακα βλέπουµε και: c) Ακριβή έλεγχο ανεξαρτησίας του Fisher (όταν έχουµε αναµενόµενες τιµές κελιών <5) c

8 6.Συµπεράσµατα Παραδείγµατος 1 Από το OR: η χρήση αντισυλληπτικού χαπιού αυξάνει, στατιστικά σηµαντικά, τον κίνδυνο εµφάνισης µυοκαρδιακής ανεπάρκειας κατά 155%. Από τους ελέγχους ανεξαρτησίας: η χρήση αντισυλληπτικού χαπιού συσχετίζεται στατιστικά σηµαντικά µε την µυοκαρδιακή ανεπάρκεια Παράδειγµα 2: προοπτική µελέτη Επίδραση καπνίσµατος στην επιβίωση ασθενών µε καρδιακό επεισόδιο Σε µια προοπτική µελέτη εξετάσθηκαν 368 άνδρες, καπνιστές, ηλικίας κάτω των 60 ετών οι οποίοι έπαθαν καρδιακή προσβολή και επιβίωσαν. (Daly et al 1991, p 185) Μετά από 2 έτη εξετάσθηκαν πόσοι από αυτούς είχαν επιβιώσει και χωρίστηκαν ανάλογα µε το εάν είχαν σταµατήσει το τσιγάρο ή όχι. Εδώ µας ενδιαφέρει να εξετάσουµε αν το σταµάτηµα του καπνίσµατος (Χ) είχε ευνοϊκή επίδραση στην επιβίωση µετά από δύο έτη (Υ). Τα δεδοµένα δίνονται στον 2x2 Πίνακα που ακολουθεί Ανάλυση του παραδείγµατος 1 µε τη χρήση του StatXact (αλλαγή αρχείου) Παράδειγµα 2: δεδοµένα Πίνακας 2: Πίνακας διπλής εισόδου παραδείγµατος 2: Κάπνισµα και επιβίωση σε ασθενείς καρδιακής ανεπάρκειας (Daly et al, 1983) Χ: Συνέχιση καπνίσµατος Y: Επιβίωση σε δύο χρόνια 1: Απεβίωσε 2: Εν ζωή Περ. Κατ. Χ 1: Ναι : Όχι Περ. Κατ Υ

9 1/ Εισαγωγή στοιχείων στο SPSS 1. εδοµένα 2. Ονοµασία µεταβλητών 3. Ονοµασία κατηγοριών 2/ Προβολή 2x2 πίνακα Επιλογή σωστών ποσοστών (υπενθύµιση: το είδος της µελέτης) εδοµένα στο SPSS 3α/ Στατιστική Ανάλυση a. Αποδιδόµενος ή Αποδοτέος κίνδυνος (διαφορά µεταξύ των ρυθµών επίπτωσης -ή δεικτών θνησιµότηταςτων οµάδων µε άτοµα εκτεθειµένα και µη εκτεθειµένα σε ένα παράγοντα κινδύνου) Ποσοστό εµφάνισης της νόσου όταν υπάρχει έκθεση στον κίνδυνο ποσοστό εµφάνισης της νόσου όταν δεν υπάρχει έκθεση στον κίνδυνο = 12.3% - 7% = 5.3% ΣΥΜΠΕΡΑΣΜΑ: ΑΣΘΕΝΕΙΣ ΠΟΥ ΣΥΝΕΧΙΖΟΥΝ ΝΑ ΚΑΠΝΙΖΟΥΝ ΜΕΤΑ ΤΟ ΚΑΡ ΙΑΚΟ ΕΠΕΙΣΟ ΙΟ ΠΑΡΟΥΣΙΑΖΟΥΝ ΜΕΓΑΛΥΤΕΡΗ ΠΙΘΑΝΟΤΗΤΑ ΘΑΝΑΤΟΥ ΣΕ ΣΧΕΣΗ ΜΕ ΟΣΟΥΣ ΙΕΚΟΨΑΝ ΤΟ ΚΑΠΝΙΣΜΑ, ΚΑΤΑ 5.3 ΠΟΣΟΣΤΙΑΙΕΣ ΜΟΝΑ ΕΣ

10 3β/ Στατιστική Ανάλυση 3γ/ Στατιστική Ανάλυση (συνέχεια) β. Ποσοστιαίος αποδοτέος κίνδυνος [«Πιθανότητα νόσου έκθεση στον παράγοντα» - «πιθαν νόσου όχι έκθεση στον παράγοντα») / «Πιθανότητα νόσου έκθεση στον παράγοντα»] Εδώ: (0.053/0.123)*100=43.1% ΣΥΜΠΕΡΑΣΜΑ: ΤΟ 43% ΤΟΥ ΚΙΝ ΥΝΟΥ ΘΑΝΑΤΟΥ ΠΟΥ ΙΑΤΡΕΧΕΙ ΕΝΑΣ ΑΣΘΕΝΗΣ ΠΟΥ ΣΥΝΕΧΙΖΕΙ ΤΟ ΚΑΠΝΙΣΜΑ, ΜΠΟΡΕΊ ΝΑ ΑΠΟ ΟΘΕΙ ΣΤΗΝ ΣΥΝΕΧΙΣΗ ΤΟΥ ΚΑΠΝΙΣΜΑΤΟΣ. ΑΛΛΙΩΣ, ΤΟ 43% ΤΩΝ ΘΑΝΑΤΩΝ (2 ΕΤΗ ΜΕΤΑ ΤΟ 1ο ΕΠΕΙΣΟ ΙΟ) ΌΣΩΝ ΣΥΝΕΧΙΖΑΝ ΝΑ ΚΑΠΝΙΖΟΥΝ (δηλ 19*43%=8 άτοµα) ΘΑ ΜΠΟΡΟΥΣΕ ΝΑ ΕΙΧΕ ΑΠΟΦΕΥΓΘΕΙ ΑΝ ΕΙΧΑΝ ΣΤΑΜΑΤΗΣΕΙ ΤΟ ΚΑΠΝΙΣΜΑ Από τα δύο RR που υπολογίζει το SPSS µας ενδιαφέρει ο σχετικός κίνδυνος της νόσου (δηλαδή το πρώτο RR) Όταν η ασθένεια είναι σπάνια, αναµένουµε το 2ο RR να είναι κοντά στη µονάδα, καθώς επίσης οι τιµές του σχετικού κινδύνου της νόσου (το 1ο RR) και του ΛΣΠ να είναι πολύ κοντά γ/ Στατιστική Ανάλυση γ. Σχετικός Κίνδυνος RR= / = Κίνδυνος θανάτου για ασθενείς που συνέχισαν το κάπνισµα είναι 1.76 φορές (ή 76% µεγαλύτερος από) τον ίδιο κίνδυνο ασθενών που σταµάτησαν το κάπνισµα. 38 3δ/ Στατιστική Ανάλυση δ. Λόγος Σχετικών Πιθανοτήτων 19 OR= = (19x199)/(15x135) = Η σχετική πιθανότητα θανάτου για τους ασθενείς που συνέχισαν το κάπνισµα είναι 86% µεγαλύτερη από την πιθανότητα θανάτου ασθενών που σταµάτησαν το κάπνισµα

11 3ε/ Έλεγχοι ανεξαρτησίας ΑΣΚΗΣΗ ΓΙΑ ΤΟ ΣΠΙΤΙ Μη στατιστικά σηµαντικό p- value, άρα δεν απορρίπτουµε ανεξαρτησία µεταβλητών Με βάση την Ιατρική βιβλιογραφία υπάρχουν ενδείξεις ότι ο καρκίνος του µαστού στις γυναίκες σχετίζεται µε την ηλικία κατά την πρώτη γέννα. Συγκεκριµένα έχει αναφερθεί ότι ο κίνδυνος της νόσου αυξάνει µε την αύξηση της ηλικίας της εγκύου κατά την 1η κύηση. Το 1970 πραγµατοποιήθηκε διεθνής πολυκεντρική µελέτη (MacMachon et al, 1970) (ΗΠΑ, Ελλάδα, Γιουγκοσλαβία, Βραζιλία, Ταϊβάν, Ιαπωνία) /Συµπεράσµατα Παραδείγµατος 2 Άσκηση για το σπίτι (συνέχεια) Από το OR: Η συνέχιση του καπνίσµατος µετά από την επιβίωση από καρδιακό επεισόδιο, αυξάνει τον κίνδυνο θανάτου τα επόµενα δύο χρόνια κατά 86%, χωρίς όµως να είναι στατιστικά σηµαντικός Από τον έλεγχο ανεξαρτησίας: η πιθανότητα επιβίωσης µετά από δύο έτη δεν σχετίζεται στατιστικά σηµαντικά µε την συνέχιση του καπνίσµατος µετά την επιβίωση από καρδιακό επεισόδιο 42 Περιπτώσεις καρκινοπαθών επιλέχθηκαν από τα συγκεκριµένα νοσοκοµεία στις παραπάνω χώρες. Οι µάρτυρες επιλέχθηκαν από τα ίδια νοσοκοµεία έτσι ώστε να είναι συγκρίσιµης ηλικίας και να µην έχουν καρκίνο µαστού ή άλλα σχετικά νοσήµατα. Όλες οι γυναίκες χωρίστηκαν σε δύο οµάδες κινδύνου ανάλογα µε την ηλικία τους κατά την πρώτη κύηση (Ε: Χ 30, : Χ 29). Λεπτοµέρειες σχετικά µε το παράδειγµαβλrosner 1994, σελ 346. Τα δεδοµένα βρίσκονται στον ακόλουθο πίνακα

12 Άσκηση για το σπίτι (συνέχεια) Ηλικία εγκύου κατά την 1η κύηση Καρκίνος του µαστού (1) 30 (2) 29 Περ. Κατ. Υ 1: Ασθενής : Μάρτυρας Περ. Κατ Χ Άσκηση για το σπίτι (συνέχεια) 1. Τι µελέτη είναι και γιατί; 2. Να υπολογίσετε όλα τα µέτρα κινδύνου µόνοι σας και να τα ερµηνεύσετε. Ποια από αυτά είναι κατάλληλα για τη συγκεκριµένη µελέτη και γιατί; 3. Χρησιµοποιείστε επιπλέον για την ανάλυσή σας το SPSS και το StatXact. Εκτυπώστε τα αποτελέσµατά σας. ιατυπώστε τα συµπεράσµατά σας

Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n..

Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n.. Μέτρα Κινδύνου για Δίτιμα Κατηγορικά Δεδομένα Σε αυτή την ενότητα θα ορίσουμε δείκτες μέτρησης του κινδύνου εμφάνισης μίας νόσου όταν έχουμε δίτιμες κατηγορικές μεταβλητές. Στην πιο απλή περίπτωση μας

Διαβάστε περισσότερα

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. Α1.2 Παράδειγµα 1 (συνέχεια) Α1. ΙΤΙΜΕΣ ΚΑΤΗΓΟΡΙΚΕΣ ΜΕΤΑΒΛΗΤΕΣ ΣΕ ΕΞΑΡΤΗΜΕΝΑ ΕΙΓΜΑΤΑ Παράδειγµα 1: αρτηριακή πίεση

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. Α1.2 Παράδειγµα 1 (συνέχεια) Α1. ΙΤΙΜΕΣ ΚΑΤΗΓΟΡΙΚΕΣ ΜΕΤΑΒΛΗΤΕΣ ΣΕ ΕΞΑΡΤΗΜΕΝΑ ΕΙΓΜΑΤΑ Παράδειγµα 1: αρτηριακή πίεση ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 20062007, 3ο εξάµηνο ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ ΜΑΘΗΜΑ 9 ΕΡΓΑΣΤΗΡΙΟ 2 ΑΝΑΛΥΣΗ ΜΕΤΑΒΛΗΤΩΝ ΓΙΑ 2 ΕΞΑΡΤΗΜΕΝΑ ΕΙΓΜΑΤΑ & ΓΙΑ ΠΙΝΑΚΕΣ

Διαβάστε περισσότερα

ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ. Βιοστατική ΙΙ

ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ. Βιοστατική ΙΙ Κεφάλαιο 3: είκτες Νοσηρότητας, Μέτρα Κινδύνου και ιαγνωστικού Ελέγχου 42 ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ Βιοστατική ΙΙ Ενότητα 3 είκτες Νοσηρότητας, Μέτρα

Διαβάστε περισσότερα

Ενότητα 4: Πίνακες συνάφειας (Contingency tables)

Ενότητα 4: Πίνακες συνάφειας (Contingency tables) Ενότητα 4: Πίνακες συνάφειας (Cotigecy tables Σε αρκετές εφαρµογές παρουσιάζεται η ανάγκη ελέγχου της σχέσης µεταξύ δυο κατηγορικών µεταβλητών (Ordial ή omial. Π.χ. θέλουµε να διερευνήσουµε τη σχέση µεταξύ

Διαβάστε περισσότερα

ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ. Βιοστατική ΙΙ

ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ. Βιοστατική ΙΙ 1 Κεφάλαιο 3: είκτες Νοσηρότητας, Μέτρα Κινδύνου και ιαγνωστικού Ελέγχου 3 ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ Βιοστατική ΙΙ Ενότητα 3 είκτες Νοσηρότητας, Μέτρα

Διαβάστε περισσότερα

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1. Απλή γραµµική παλινδρόµηση. 1.2 Παράδειγµα 6 (συνέχεια)

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1. Απλή γραµµική παλινδρόµηση. 1.2 Παράδειγµα 6 (συνέχεια) ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 2006-2007, 3ο εξάµηνο ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. Απλή γραµµική παλινδρόµηση Παράδειγµα 6: Χρόνος παράδοσης φορτίου ΜΑΘΗΜΑ

Διαβάστε περισσότερα

Μέθοδος μέγιστης πιθανοφάνειας

Μέθοδος μέγιστης πιθανοφάνειας Μέθοδος μέγιστης πιθανοφάνειας Αν x =,,, παρατηρήσεις των Χ =,,,, τότε έχουμε διαθέσιμο ένα δείγμα Χ={Χ, =,,,} της κατανομής F μεγέθους με από κοινού σ.κ. της Χ f x f x Ορισμός : Θεωρούμε ένα τυχαίο δείγμα

Διαβάστε περισσότερα

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1. Πολλαπλή γραµµική παλινδρόµηση. 1.2 Παράδειγµα 7 (συνέχεια)

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1. Πολλαπλή γραµµική παλινδρόµηση. 1.2 Παράδειγµα 7 (συνέχεια) ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 2006-2007, 3ο εξάµηνο ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ ΜΑΘΗΜΑ 12β ΕΡΓΑΣΤΗΡΙΟ 4β ΠΟΛΛΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ ΜΕ ΤΗΝ ΧΡΗΣΗ SPSS

Διαβάστε περισσότερα

Στατιστικό κριτήριο χ 2

Στατιστικό κριτήριο χ 2 18 Μεθοδολογία Επιστηµονικής Έρευνας & Στατιστική Στατιστικό κριτήριο χ 2 Ο υπολογισµός του κριτηρίου χ 2 γίνεται µέσω του µενού [Statistics => Summarize => Crosstabs...]. Κατά τη συγκεκριµένη διαδικασία

Διαβάστε περισσότερα

Περιεχόµενα ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1.2 Παράδειγµα 1 δύο χηµειοθεραπείες. 1.1 Ανάλυση δίτιµων κατηγορικών µεταβλητών σε εξαρτηµένα δείγµατα

Περιεχόµενα ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1.2 Παράδειγµα 1 δύο χηµειοθεραπείες. 1.1 Ανάλυση δίτιµων κατηγορικών µεταβλητών σε εξαρτηµένα δείγµατα ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 2006-2007, 3ο εξάµηνο ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ ΜΑΘΗΜΑ 7 ΑΝΑΛΥΣΗ ΜΕΤΑΒΛΗΤΩΝ ΓΙΑ 2 ΕΞΑΡΤΗΜΕΝΑ ΕΙΓΜΑΤΑ & ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ ΓΙΑ

Διαβάστε περισσότερα

Για να ελέγξουµε αν η κατανοµή µιας µεταβλητής είναι συµβατή µε την κανονική εφαρµόζουµε το test Kolmogorov-Smirnov.

Για να ελέγξουµε αν η κατανοµή µιας µεταβλητής είναι συµβατή µε την κανονική εφαρµόζουµε το test Kolmogorov-Smirnov. A. ΈΛΕΓΧΟΣ ΚΑΝΟΝΙΚΟΤΗΤΑΣ A 1. Έλεγχος κανονικότητας Kolmogorov-Smirnov. Για να ελέγξουµε αν η κατανοµή µιας µεταβλητής είναι συµβατή µε την κανονική εφαρµόζουµε το test Kolmogorov-Smirnov. Μηδενική υπόθεση:

Διαβάστε περισσότερα

Ποιοτική και ποσοτική ανάλυση ιατρικών δεδομένων

Ποιοτική και ποσοτική ανάλυση ιατρικών δεδομένων Ποιοτική και ποσοτική ανάλυση ιατρικών δεδομένων Κωνσταντίνος Τζιόμαλος Επίκουρος Καθηγητής Παθολογίας ΑΠΘ Α Προπαιδευτική Παθολογική Κλινική, Νοσοκομείο ΑΧΕΠΑ 1 ο βήμα : καταγραφή δεδομένων Το πιο πρακτικό

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΜΕΡΟΣ Β

ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΜΕΡΟΣ Β ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΜΕΡΟΣ Β ηµήτρης Κουγιουµτζής http://users.auth.gr/dkugiu/teach/civilengineer E mail: dkugiu@gen.auth.gr 1/11/2009 2 Περιεχόµενα 1 ΠΕΡΙΓΡΑΦΙΚΗ

Διαβάστε περισσότερα

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ΚΕΦΑΛΑΙΟ 9 ο 9.1 ηµιουργία µοντέλων πρόβλεψης 9.2 Απλή Γραµµική Παλινδρόµηση 9.3 Αναλυτικά για το ιάγραµµα ιασποράς

Διαβάστε περισσότερα

Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες

Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες Πινάκες συνάφειας εξερεύνηση σχέσεων μεταξύ τυχαίων μεταβλητών. Είναι λογικό λοιπόν, στην ανάλυση των κατηγορικών δεδομένων να μας ενδιαφέρει η σχέση μεταξύ δύο ή περισσότερων κατηγορικών μεταβλητών. Έστω

Διαβάστε περισσότερα

. Τι πρακτική αξία έχουν αυτές οι πιθανότητες; (5 Μονάδες)

. Τι πρακτική αξία έχουν αυτές οι πιθανότητες; (5 Μονάδες) Εργαστήριο Μαθηματικών & Στατιστικής Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ η Πρόοδος στο Μάθημα Στατιστική //7 ο Θέμα α) Περιγράψτε τη σχέση Θεωρίας Πιθανοτήτων και Στατιστικής. β) Αν Α, Β ενδεχόμενα του δειγματικού χώρου Ω

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Πιθανότητες. Τυχαίες μεταβλητές - Κατανομές ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2

ΠΕΡΙΕΧΟΜΕΝΑ. Πιθανότητες. Τυχαίες μεταβλητές - Κατανομές ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2 ΠΕΡΙΕΧΟΜΕΝΑ ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 1 Πιθανότητες 1.1 Πιθανότητες και Στατιστική... 5 1.2 ειγματικός χώρος Ενδεχόμενα... 7 1.3 Ορισμοί και νόμοι των πιθανοτήτων... 10 1.4 εσμευμένη πιθανότητα Ολική

Διαβάστε περισσότερα

Στατιστικοί Έλεγχοι Υποθέσεων. Σαλαντή Γεωργία Εργαστήριο Υγιεινής και Επιδημιολογίας Ιατρική Σχολή

Στατιστικοί Έλεγχοι Υποθέσεων. Σαλαντή Γεωργία Εργαστήριο Υγιεινής και Επιδημιολογίας Ιατρική Σχολή Στατιστικοί Έλεγχοι Υποθέσεων Σαλαντή Γεωργία Εργαστήριο Υγιεινής και Επιδημιολογίας Ιατρική Σχολή Τι θέλουμε να συγκρίνουμε; Δύο δείγματα Μέση αρτηριακή πίεση σε δύο ομάδες Πιθανότητα θανάτου με δύο διαφορετικά

Διαβάστε περισσότερα

Βασικές αρχές της θεωρίας των πιθανοτήτων και η εφαρµογή τους στην εκτίµηση των ασφαλιστικών κινδύνων

Βασικές αρχές της θεωρίας των πιθανοτήτων και η εφαρµογή τους στην εκτίµηση των ασφαλιστικών κινδύνων Βασικές αρχές της θεωρίας των πιθανοτήτων και η εφαρµογή τους στην εκτίµηση των ασφαλιστικών κινδύνων Αθηνά Λινού Αναπληρώτρια Καθηγήτρια Ιατρική Σχολή, Πανεπιστήµιο Αθηνών Βασικές αρχές της θεωρίας των

Διαβάστε περισσότερα

2. Στοιχεία Πολυδιάστατων Κατανοµών

2. Στοιχεία Πολυδιάστατων Κατανοµών Στοιχεία Πολυδιάστατων Κατανοµών Είναι φανερό ότι έως τώρα η µελέτη µας επικεντρώνεται κάθε φορά σε πιθανότητες που αφορούν µία τυχαία µεταβλητή Σε αρκετές όµως περιπτώσεις ενδιαφερόµαστε να εξετάσουµε

Διαβάστε περισσότερα

1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος

1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος Έλεγχοι Υποθέσεων 1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος µ = 100 Κάθε υπόθεση συνοδεύεται από µια εναλλακτική: Ο

Διαβάστε περισσότερα

Εισαγωγή στη Στατιστική

Εισαγωγή στη Στατιστική Εισαγωγή στη Στατιστική Μετεκπαιδευτικό Σεμινάριο στην ΨΥΧΟΚΟΙΝΩΝΙΚΗ ΑΠΟΚΑΤΑΣΤΑΣΗ ΨΥΧΟΚΟΙΝΩΝΙΚΕΣ ΘΕΡΑΠΕΥΤΙΚΕΣ ΠΡΟΣΕΓΓΙΣΕΙΣ Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων

Διαβάστε περισσότερα

Ανάλυση ιακύµανσης Μονής Κατεύθυνσης

Ανάλυση ιακύµανσης Μονής Κατεύθυνσης 24 Μεθοδολογία Επιστηµονικής Έρευνας & Στατιστική Ανάλυση ιακύµανσης Μονής Κατεύθυνσης Όπως ακριβώς συνέβη και στο κριτήριο t, τα δεδοµένα µας θα πρέπει να έχουν οµαδοποιηθεί χρησιµοποιώντας µια αντίστοιχη

Διαβάστε περισσότερα

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τοµέας Μαθηµατικών, Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών Επιστηµών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόµενα Εισαγωγή στη

Διαβάστε περισσότερα

1.α ιαγνωστικοί Έλεγχοι. 2.α Ευαισθησία και Ειδικότητα (εισαγωγικές έννοιες) ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. Πολύ σηµαντικό το θεώρηµα του Bayes:

1.α ιαγνωστικοί Έλεγχοι. 2.α Ευαισθησία και Ειδικότητα (εισαγωγικές έννοιες) ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. Πολύ σηµαντικό το θεώρηµα του Bayes: ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 2006-2007, 3ο εξάµηνο ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ ΜΑΘΗΜΑ 6 ΙΑΓΝΩΣΤΙΚΟΙ ΕΛΕΓΧΟΙ 1.β ιαγνωστικοί Έλεγχοι Πολύ σηµαντικό το θεώρηµα

Διαβάστε περισσότερα

Θέμα: Ασκήσεις για εύρεση ολικής, συνδυασμένης και δεσμευμένης πιθανότητας. Βιβλίο Keller Κεφάλαιο 6

Θέμα: Ασκήσεις για εύρεση ολικής, συνδυασμένης και δεσμευμένης πιθανότητας. Βιβλίο Keller Κεφάλαιο 6 ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ: ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (Πάτρας) Διεύθυνση: Μεγάλου Αλεξάνδρου, 6 ΠΑΤΡΑ Τηλ.: 60 6905, Φαξ: 60 968, email: mitro@teipat.gr Καθ η γη τ ής Ι. Μ ητ ρ

Διαβάστε περισσότερα

Θέµατα Μαθηµατικών & Στ. Στατ/κής Γενικής Παιδείας Γ Λυκείου 2000

Θέµατα Μαθηµατικών & Στ. Στατ/κής Γενικής Παιδείας Γ Λυκείου 2000 Θέµατα Μαθηµατικών & Στ. Στατ/κής Γενικής Παιδείας Γ Λυκείου 000 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα ο Α.α) ίνεται η συνάρτηση F() f() + g(). Αν οι συναρτήσεις f, g είναι παραγωγίσιµες, να αποδείξετε ότι: F () f () + g

Διαβάστε περισσότερα

Τεκµηριωµένη Ιατρική 2011-12 ΒΛΑΒΗ. Βασίλης Κ. Λιακόπουλος Λέκτορας Νεφρολογίας ΑΠΘ

Τεκµηριωµένη Ιατρική 2011-12 ΒΛΑΒΗ. Βασίλης Κ. Λιακόπουλος Λέκτορας Νεφρολογίας ΑΠΘ Τεκµηριωµένη Ιατρική 2011-12 ΒΛΑΒΗ Βασίλης Κ. Λιακόπουλος Λέκτορας Νεφρολογίας ΑΠΘ Αναλογία Λόγος Πηλίκο Αναλογία Proportion Αναλογία (Proportion) Ο αριθµητής ΣΥΜΠΕΡΙΛΑΜΒΑΝΕΤΑΙ ΑΠΑΡΑΙΤΗΤΩΣ στον παρανοµαστή

Διαβάστε περισσότερα

Κεφάλαιο 7. Έλεγχος Υποθέσεων. Ένα παράδειγµα

Κεφάλαιο 7. Έλεγχος Υποθέσεων. Ένα παράδειγµα Κεφάλαιο 7 Έλεγχος Υποθέσεων 1 Ένα παράδειγµα Ένας ερευνητής θέλησε να διαπιστώσει κατά πόσο η από απόσταση εκπαίδευση είναι καλύτερη από τη δια ζώσης εκπαίδευση. Για το σκοπό αυτό, επέλεξε δύο οµάδες

Διαβάστε περισσότερα

Μέρος Β /Στατιστική. Μέρος Β. Στατιστική. Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.

Μέρος Β /Στατιστική. Μέρος Β. Στατιστική. Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua. Μέρος Β /Στατιστική Μέρος Β Στατιστική Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.gr/gpapadopoulos) Από τις Πιθανότητες στη Στατιστική Στα προηγούμενα, στο

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5.1 5.8

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5.1 5.8 ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5. 5.8 5. Ένας υγειονοµικός σταθµός θέλει να ελέγξει αν ο µέσος αριθµός βακτηριδίων ανά µονάδα όγκου θαλασσινού νερού σε µια παραλία υπερβαίνει το επίπεδο ασφαλείας των 9 µονάδων. ώδεκα

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ι θ α ν ό τ η τ ε ς ΙΙ Πειραιάς 2007 1 2 Από κοινού συνάρτηση πυκνότητας μιας δισδιάστατης συνεχούς τυχαίας μεταβλητής Μία διδιάστατη συνεχής τυχαία μεταβλητή

Διαβάστε περισσότερα

STADYING CASES. Case Reports. Case Reports. Case reports Case-series studies Case-control studies. Περιγραφή ενδιαφέροντος περιστατικού

STADYING CASES. Case Reports. Case Reports. Case reports Case-series studies Case-control studies. Περιγραφή ενδιαφέροντος περιστατικού STADYING CASES Case reports Case-series studies Case-control studies Case Reports Περιγραφή ενδιαφέροντος περιστατικού Case Reports Ηλεπτοµερής παρουσίαση µιας περίπτωσης νοσήµατος η µικρής οµάδας οµοειδών

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 1. ΕΙ Η Ε ΟΜΕΝΩΝ, ΣΥΛΛΟΓΗ, ΚΩ ΙΚΟΠΟΙΗΣΗ ΚΑΙ ΕΙΣΑΓΩΓΗ

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 1. ΕΙ Η Ε ΟΜΕΝΩΝ, ΣΥΛΛΟΓΗ, ΚΩ ΙΚΟΠΟΙΗΣΗ ΚΑΙ ΕΙΣΑΓΩΓΗ ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 1. ΕΙ Η Ε ΟΜΕΝΩΝ, ΣΥΛΛΟΓΗ, ΚΩ ΙΚΟΠΟΙΗΣΗ ΚΑΙ ΕΙΣΑΓΩΓΗ Βασικές µορφές Ερωτήσεων - απαντήσεων Ανοιχτές Κλειστές Κλίµακας ΕΛΕΥΘΕΡΙΟΣ ΑΓΓΕΛΗΣ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΘ 2 Ανοιχτές ερωτήσεις Ανοιχτές

Διαβάστε περισσότερα

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ Στόχοι: (a) να δοθεί µια εισαγωγή στη θεωρία της στατιστικής συµπερασµατολογίας ελέγχων υποθέσεων, (b) να παρουσιάσει τις βασικές εφαρµογές αυτών των ελέγχων: µέσης τιµής, ποσοστού

Διαβάστε περισσότερα

ρ. Ευστρατία Μούρτου

ρ. Ευστρατία Μούρτου ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΩΝ ΣΧΟΛΗ ΕΠΑΓΓΕΛΜΑΤΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΕΞΑΜΗΝΟ : Ε ΑΚΑ ΗΜΑΪΚΟ ΕΤΟΣ : - ΜΑΘΗΜΑ «ΒΙΟΣΤΑΤΙΣΤΙΚΗ» ΚΕΦ. ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ρ. Ευστρατία Μούρτου

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ

ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ ιαφάνειες για το µάθηµα Information Management ΑθανάσιοςΝ. Σταµούλης 1 ΠΗΓΗ Κονδύλης Ε. (1999) Στατιστικές τεχνικές διοίκησης επιχειρήσεων, Interbooks 2 1 Γραµµική παλινδρόµηση Είναι

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα Εισαγωγή στο

Διαβάστε περισσότερα

ΕΠΕΚΤΑΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΝΟΣΗΡΟΤΗΤΑΣ ΣΤΗ ΝΗΣΟ ΜΗΛΟ ΕΚΘΕΣΗ ΠΡΟΟΔΟΥ

ΕΠΕΚΤΑΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΝΟΣΗΡΟΤΗΤΑΣ ΣΤΗ ΝΗΣΟ ΜΗΛΟ ΕΚΘΕΣΗ ΠΡΟΟΔΟΥ ΕΠΕΚΤΑΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΝΟΣΗΡΟΤΗΤΑΣ ΣΤΗ ΝΗΣΟ ΜΗΛΟ ΕΚΘΕΣΗ ΠΡΟΟΔΟΥ ΣΥΝΟΨΗ Η παρούσα μελέτη αποτελεί συνέχεια της αρχικής φάσης της μελέτης νοσηρότητας και θνησιμότητας στη νήσο Μήλο που πραγματοποιήθηκε το

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων α) Σημειοεκτιμητική β) Εκτιμήσεις Διαστήματος ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Παράδειγμα

Διαβάστε περισσότερα

Μέρος 1 Εισαγωγή στο SPSS 37. 1 Βασικές αρχές καταχώρισης δεδομένων και στατιστικής ανάλυσης με το SPSS 39

Μέρος 1 Εισαγωγή στο SPSS 37. 1 Βασικές αρχές καταχώρισης δεδομένων και στατιστικής ανάλυσης με το SPSS 39 41 Περιεχόμενα Ξενάγηση στο βιβλίο 25 Ξενάγηση στο συνοδευτικό CD 27 Εισαγωγή 29 Ευχαριστίες 33 Οι βασικές διαφορές μεταξύ του SPSS 16 και των προηγούμενων εκδόσεων 35 Μέρος 1 Εισαγωγή στο SPSS 37 1 Βασικές

Διαβάστε περισσότερα

CRAMER-RAO ΚΑΤΩ ΦΡΑΓΜΑ - ΑΠΟ ΟΤΙΚΟΙ ΕΚΤΙΜΗΤΕΣ

CRAMER-RAO ΚΑΤΩ ΦΡΑΓΜΑ - ΑΠΟ ΟΤΙΚΟΙ ΕΚΤΙΜΗΤΕΣ CRAMER-RAO ΚΑΤΩ ΦΡΑΓΜΑ - ΑΠΟ ΟΤΙΚΟΙ ΕΚΤΙΜΗΤΕΣ Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Θεώρηµα Cramer-Rao Θεώρηµα Cramer-Rao Εστω X = (X 1, X,...,X n ) ένα δείγµα µε από κοινού πυκνότητα πιθανότητας f X

Διαβάστε περισσότερα

ΣΤΟΧΟΙ ΤΗΣ ΕΝΟΤΗΤΑΣ ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΜΗ ΠΑΡΑΜΕΤΡΙΚΩΝ ΕΛΕΓΧΩΝ

ΣΤΟΧΟΙ ΤΗΣ ΕΝΟΤΗΤΑΣ ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΜΗ ΠΑΡΑΜΕΤΡΙΚΩΝ ΕΛΕΓΧΩΝ ΣΤΟΧΟΙ ΤΗΣ ΕΝΟΤΗΤΑΣ Να δοθούν οι βασικές αρχές των µη παραµετρικών ελέγχων (non-parametric tests). Να παρουσιασθούν και να αναλυθούν οι γνωστότεροι µη παραµετρικοί έλεγχοι Να αναπτυχθεί η µεθοδολογία των

Διαβάστε περισσότερα

Εισαγωγή στη Στατιστική

Εισαγωγή στη Στατιστική Εισαγωγή στη Στατιστική Μετεκπαιδευτικό Σεμινάριο στην ΨΥΧΟΚΟΙΝΩΝΙΚΗ ΑΠΟΚΑΤΑΣΤΑΣΗ ΨΥΧΟΚΟΙΝΩΝΙΚΕΣ ΘΕΡΑΠΕΥΤΙΚΕΣ ΠΡΟΣΕΓΓΙΣΕΙΣ Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων

Διαβάστε περισσότερα

Μάστερ στην Εφαρµοσµένη Στατιστική

Μάστερ στην Εφαρµοσµένη Στατιστική Μάστερ στην Εφαρµοσµένη Στατιστική Πρότυπο Πρόγραµµα Master Εξάµηνο Σπουδών Κωδικός Τίτλος Μαθήµατος ιδακτικές Μονάδες 1 ο Εξάµηνο ΜΑΣ650 Μαθηµατική Στατιστική 10 ΜΑΣ655 ειγµατοληψία 10 ΜΑΣ658 Στατιστικά

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Α Να αποδείξετε ότι η παράγωγος της συνάρτησης f(x) x είναι f (x) Β Πότε µια συνάρτηση f σε ένα διάστηµα

Διαβάστε περισσότερα

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ Έστω ότι επιθυμούμε να μελετήσουμε ένα τυχαίο πείραμα με δειγματικό χώρο Ω και έστω η πιθανότητα να συμβεί ένα ενδεχόμενο Α Ω Υπάρχουν περιπτώσεις όπου ενώ δεν γνωρίζουμε

Διαβάστε περισσότερα

Εισαγωγή στη Στατιστική

Εισαγωγή στη Στατιστική Εισαγωγή στη Στατιστική Μετεκπαιδευτικό Σεμινάριο στην ΨΥΧΟΚΟΙΝΩΝΙΚΗ ΑΠΟΚΑΤΑΣΤΑΣΗ ΨΥΧΟΚΟΙΝΩΝΙΚΕΣ ΘΕΡΑΠΕΥΤΙΚΕΣ ΠΡΟΣΕΓΓΙΣΕΙΣ, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών

Διαβάστε περισσότερα

2. ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ

2. ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ Εργαστήριο Μαθηματικών & Στατιστικής 2. ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ. Ας θεωρήσουμε ότι είναι γνωστό από στοιχεία της Παγκόσμιας Οργάνωσης Υγείας ότι οι τιμές χοληστερίνης στον πληθυσμό έχουν

Διαβάστε περισσότερα

ροµολόγηση πακέτων σε δίκτυα υπολογιστών

ροµολόγηση πακέτων σε δίκτυα υπολογιστών ροµολόγηση πακέτων σε δίκτυα υπολογιστών Συµπληρωµατικές σηµειώσεις για το µάθηµα Αλγόριθµοι Επικοινωνιών Ακαδηµαϊκό έτος 2011-2012 1 Εισαγωγή Οι παρακάτω σηµειώσεις παρουσιάζουν την ανάλυση του άπληστου

Διαβάστε περισσότερα

Μοντέλα Παλινδρόμησης. Άγγελος Μάρκος, Λέκτορας ΠΤ Ε, ΠΘ

Μοντέλα Παλινδρόμησης. Άγγελος Μάρκος, Λέκτορας ΠΤ Ε, ΠΘ Μοντέλα Παλινδρόμησης Άγγελος Μάρκος, Λέκτορας ΠΤ Ε, ΠΘ Εισαγωγή (1) Σε αρκετές περιπτώσεις επίλυσης προβλημάτων ενδιαφέρει η ταυτόχρονη μελέτη δύο ή περισσότερων μεταβλητών, για να προσδιορίσουμε με ποιο

Διαβάστε περισσότερα

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για τους Μέσους - Εξαρτημένα Δείγματα (Paired samples t-test) Το κριτήριο Paired samples t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε

Διαβάστε περισσότερα

Τα συστηματικά σφάλματα στις επιδημιολογικές μελέτες Κάθε επιδημιολογική μελέτη πρέπει να θεωρείται ως μια άσκηση μέτρησης

Τα συστηματικά σφάλματα στις επιδημιολογικές μελέτες Κάθε επιδημιολογική μελέτη πρέπει να θεωρείται ως μια άσκηση μέτρησης Τα συστηματικά σφάλματα στις επιδημιολογικές μελέτες Κάθε επιδημιολογική μελέτη πρέπει να θεωρείται ως μια άσκηση μέτρησης Kenneth J. Rothman, 2002 Πρόγραμμα εκπαίδευσης στην επιδημιολογική επιτήρηση και

Διαβάστε περισσότερα

Συλλογή,, αποθήκευση, ανανέωση και παρουσίαση στατιστικών δεδοµένων

Συλλογή,, αποθήκευση, ανανέωση και παρουσίαση στατιστικών δεδοµένων Συλλογή,, αποθήκευση, ανανέωση και παρουσίαση στατιστικών δεδοµένων 1. Αναζήτηση των κατάλληλων δεδοµένων. 2. Έλεγχος µεταβλητών και κωδικών για συµβατότητα. 3. Αποθήκευση σε ηλεκτρονική µορφή (αρχεία

Διαβάστε περισσότερα

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ 1. ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: Προχωρημένη Στατιστική 2. ΠΕΡΙΓΡΑΜΜΑ ΕΙΣΗΓΗΣΕΩΝ

Διαβάστε περισσότερα

Η ΥΓΕΙΑ ΤΟΥ ΕΛΛΗΝΙΚΟΥ ΠΛΗΘΥΣΜΟΥ ΚΑΙ Ο ΡΟΛΟΣ ΤΗΣ ΠΡΟΛΗΨΗΣ ΚΑΙ ΤΗΣ ΠΡΟΑΓΩΓΗΣ ΥΓΕΙΑΣ

Η ΥΓΕΙΑ ΤΟΥ ΕΛΛΗΝΙΚΟΥ ΠΛΗΘΥΣΜΟΥ ΚΑΙ Ο ΡΟΛΟΣ ΤΗΣ ΠΡΟΛΗΨΗΣ ΚΑΙ ΤΗΣ ΠΡΟΑΓΩΓΗΣ ΥΓΕΙΑΣ ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΙΑΤΡΙΚΗΣΧΟΛΗ ΕΡΓΑΣΤΗΡΙΟ ΥΓΙΕΙΝΗΣ ΚΑΙ ΕΠΙ ΗΜΙΟΛΟΓΙΑΣ ΚΕΝΤΡΟ ΜΕΛΕΤΩΝ ΥΠΗΡΕΣΙΩΝ ΥΓΕΙΑΣ Η ΥΓΕΙΑ ΤΟΥ ΕΛΛΗΝΙΚΟΥ ΠΛΗΘΥΣΜΟΥ ΚΑΙ Ο ΡΟΛΟΣ ΤΗΣ ΠΡΟΛΗΨΗΣ ΚΑΙ ΤΗΣ ΠΡΟΑΓΩΓΗΣ

Διαβάστε περισσότερα

Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι:

Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι: Κατανοµές ειγµατοληψίας 1.Εισαγωγή Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι: 1. Στατιστικής και 2. Κατανοµής ειγµατοληψίας

Διαβάστε περισσότερα

Μελέτες ασθενών-μαρτύρων

Μελέτες ασθενών-μαρτύρων Μελέτες ασθενών-μαρτύρων Η πρώτη ΜΑΜ δημοσιεύθηκε το 1920 και αφορούσε τη σχέση καπνιστικής συνήθειας και επιθηλιώματος των χειλιών (μορφή καρκίνου του δέρματος) Το 1950, δημοσιεύθηκαν οι πρώτες 4 μελέτες

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ Εισαγωγή στο P.A.S.W. Υποχρεωτικό μάθημα 4 ου εξαμήνου

Διαβάστε περισσότερα

Κεφάλαιο 17. Σύγκριση συχνοτήτων κατηγοριών: Το στατιστικό κριτήριο χ 2 17.1. ΠΡΟΫΠΟΘΕΣΕΙΣ ΓΙΑ ΤΗ ΧΡΗΣΗ ΤΟΥ ΚΡΙΤΗΡΙΟΥ 17.2.

Κεφάλαιο 17. Σύγκριση συχνοτήτων κατηγοριών: Το στατιστικό κριτήριο χ 2 17.1. ΠΡΟΫΠΟΘΕΣΕΙΣ ΓΙΑ ΤΗ ΧΡΗΣΗ ΤΟΥ ΚΡΙΤΗΡΙΟΥ 17.2. Κεφάλαιο 17 Σύγκριση συχνοτήτων κατηγοριών: Το στατιστικό κριτήριο χ 2 17.1. ΠΡΟΫΠΟΘΕΣΕΙΣ ΓΙΑ ΤΗ ΧΡΗΣΗ ΤΟΥ ΚΡΙΤΗΡΙΟΥ 17.2. ΕΙΣΑΓΩΓΗ 17.3. ΤΟ χ 2 ΓΙΑ ΜΙΑ ΠΟΙΟΤΙΚΗ ΜΕΤΑΒΛΗΤΗ 17.3.1. Ένα ερευνητικό παράδειγμα

Διαβάστε περισσότερα

Μελέτες αναλυτικής επιδημιολογίας στηδιερεύνησηεπιδημιών

Μελέτες αναλυτικής επιδημιολογίας στηδιερεύνησηεπιδημιών Μελέτες αναλυτικής επιδημιολογίας στηδιερεύνησηεπιδημιών Πρόγραμμα εκπαίδευσης στην επιδημιολογική επιτήρηση και διερεύνηση επιδημιών ΕΣΔΥ ΚΕΕΛΠΝΟ, 2010 Θοδωρής Λύτρας Φάσεις διερεύνησης επιδημίας 1) Αρχική

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 1. ΤΟ ΕΝΙΑΙΟ ΛΥΚΕΙΟ ΜΙΑ ΠΑΡΟΥΣΙΑΣΗ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ

ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 1. ΤΟ ΕΝΙΑΙΟ ΛΥΚΕΙΟ ΜΙΑ ΠΑΡΟΥΣΙΑΣΗ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 1. ΤΟ ΕΝΙΑΙΟ ΛΥΚΕΙΟ ΜΙΑ ΠΑΡΟΥΣΙΑΣΗ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ Το σχολικό έτος αναφοράς της έρευνας (2000 2001), ίσχυαν οι εξής κανόνες στο Ενιαίο Λύκειο. 1.1 ΟΙ ΤΑΞΕΙΣ ΚΑΙ ΤΑ ΜΑΘΗΜΑΤΑ Οι µαθητές

Διαβάστε περισσότερα

Ενδεικτικές ασκήσεις ΔΙΠ 50

Ενδεικτικές ασκήσεις ΔΙΠ 50 Ενδεικτικές ασκήσεις ΔΙΠ 50 Άσκηση 1 (άσκηση 1 1 ης εργασίας 2009-10) Σε ένα ράφι μιας βιβλιοθήκης τοποθετούνται με τυχαία σειρά 11 διαφορετικά βιβλία τεσσάρων θεματικών ενοτήτων. Πιο συγκεκριμένα, υπάρχουν

Διαβάστε περισσότερα

Εισαγωγή στην Βιοστατιστική και την Επιδηµιολογία

Εισαγωγή στην Βιοστατιστική και την Επιδηµιολογία Εισαγωγή στην Βιοστατιστική και την Επιδηµιολογία Ιωάννης Ντζούφρας Τµήµα Στατιστικής Οικονοµικό Πανεπιστήµιο Αθηνών Άρης Περπέρογλου Τµήµα Στατιστικής και Αναλογιστικών-Χρηµατοοικονοµικών Μαθηµατικών

Διαβάστε περισσότερα

o AND o IF o SUMPRODUCT

o AND o IF o SUMPRODUCT Πληροφοριακά Εργαστήριο Management 1 Information Συστήματα Systems Διοίκησης ΤΕΙ Τμήμα Ελεγκτικής Ηπείρου Χρηματοοικονομικής (Παράρτημα Πρέβεζας) και Αντικείµενο: Μοντελοποίηση προβλήµατος Θέµατα που καλύπτονται:

Διαβάστε περισσότερα

Άρα, Τ ser = (A 0 +B 0 +B 0 +A 0 ) επίπεδο 0 + (A 1 +B 1 +A 1 ) επίπεδο 1 + +(B 5 ) επίπεδο 5 = 25[χρονικές µονάδες]

Άρα, Τ ser = (A 0 +B 0 +B 0 +A 0 ) επίπεδο 0 + (A 1 +B 1 +A 1 ) επίπεδο 1 + +(B 5 ) επίπεδο 5 = 25[χρονικές µονάδες] Α. Στο παρακάτω διάγραµµα εµφανίζεται η εκτέλεση ενός παράλληλου αλγόριθµου που λύνει το ίδιο πρόβληµα µε έναν ακολουθιακό αλγόριθµο χωρίς πλεονασµό. Τα Α i και B i αντιστοιχούν σε ακολουθιακά υποέργα

Διαβάστε περισσότερα

Επιδημιολογία 3 ΣΧΕΔΙΑΣΜΟΣ ΜΕΛΕΤΩΝ. Ροβίθης Μ. 2006

Επιδημιολογία 3 ΣΧΕΔΙΑΣΜΟΣ ΜΕΛΕΤΩΝ. Ροβίθης Μ. 2006 Επιδημιολογία 3 ΣΧΕΔΙΑΣΜΟΣ ΜΕΛΕΤΩΝ Ροβίθης Μ. 2006 1 Τα στάδια της επιδημιολογικής έρευνας ταξινομούνται με μια λογική σειρά στην οποία κάθε φάση εξαρτάται από την προηγούμενη. Μια εκτεταμένη λίστα είναι

Διαβάστε περισσότερα

Στον πίνακα επιβίωσης θεωρούµε τον αριθµό ζώντων στην κάθε ηλικία

Στον πίνακα επιβίωσης θεωρούµε τον αριθµό ζώντων στην κάθε ηλικία ΚΕΦΑΛΑΙΟ 4 ΠΙΝΑΚΕΣ ΠΟΛΛΑΠΛΩΝ ΚΙΝ ΥΝΩΝ (MULTIPLE DECREMENT TABLES) Στον πίνακα επιβίωσης θεωρούµε τον αριθµό ζώντων στην κάθε ηλικία αρχίζοντας από µια οµάδα γεννήσεων ζώντων που αποτελεί την ρίζα του πίνακα

Διαβάστε περισσότερα

Δισδιάστατη ανάλυση. Για παράδειγμα, έστω ότι 11 άτομα δήλωσαν ότι είναι άγαμοι (Α), 26 έγγαμοι (Ε), 12 χήροι (Χ) και 9 διαζευγμένοι (Δ).

Δισδιάστατη ανάλυση. Για παράδειγμα, έστω ότι 11 άτομα δήλωσαν ότι είναι άγαμοι (Α), 26 έγγαμοι (Ε), 12 χήροι (Χ) και 9 διαζευγμένοι (Δ). Δισδιάστατη ανάλυση Πίνακες διπλής εισόδου Σε πολλές περιπτώσεις μελετάμε περισσότερες από μία μεταβλητές ταυτόχρονα. Π.χ. μία έρευνα που έγινε σε ένα δείγμα 58 ατόμων περιείχε τις ερωτήσεις «ποια είναι

Διαβάστε περισσότερα

Τι είναι Επιδηµιολογία;

Τι είναι Επιδηµιολογία; ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ Τι είναι Επιδηµιολογία; ΜΑΘΗΜΑ 2 ΕΙ ΙΚΕΣ ΙΑΤΡΙΚΕΣ ΚΑΙ ΕΠΙ ΗΜΙΟΛΟΓΙΚΕΣ ΜΕΛΕΤΕΣ Ως Επιδηµιολογία ορίζουµε την Επιστήµη που µελετάει την κατανοµή και της εξέλιξη διαφόρων νοσηµάτων ή χαρακτηριστικών

Διαβάστε περισσότερα

Πληροφοριακά Συστήµατα ιοίκησης Τµήµα Χρηµατοοικονοµικής και Ελεγκτικής Management Information Systems Εργαστήριο 4 ΤΕΙ Ηπείρου (Παράρτηµα Πρέβεζας)

Πληροφοριακά Συστήµατα ιοίκησης Τµήµα Χρηµατοοικονοµικής και Ελεγκτικής Management Information Systems Εργαστήριο 4 ΤΕΙ Ηπείρου (Παράρτηµα Πρέβεζας) Πληροφοριακά Συστήµατα ιοίκησης Τµήµα Χρηµατοοικονοµικής και Ελεγκτικής Management Information Systems Εργαστήριο 4 ΤΕΙ Ηπείρου (Παράρτηµα Πρέβεζας) ΑΝΤΙΚΕΙΜΕΝΟ: Προσοµοίωση (Simulation) και Τυχαίες µεταβλητές

Διαβάστε περισσότερα

Το κάπνισμα στην Ελλάδα

Το κάπνισμα στην Ελλάδα Το οικονομικό φορτίο του καπνίσματος για το ιατροασφαλιστικό σύστημα σε κρίση στην Ελλάδα Tσαλαπάτη Κωνσταντίνα ΒScEcon, MSc Τομέας Οικονομικών της Υγείας Εθνική Σχολή Δημόσιας Υγείας Απρίλιος 2013 Το

Διαβάστε περισσότερα

1. ΕΙΣΑΓΩΓΗ 1.1 Ο ρόλος της Στατιστικής στην Ιατρική Η εξέλιξη της Ιατρικής από το δογµατισµό, ακόµη και το µυστικισµό, στην επιστηµονική αβεβαιότητα

1. ΕΙΣΑΓΩΓΗ 1.1 Ο ρόλος της Στατιστικής στην Ιατρική Η εξέλιξη της Ιατρικής από το δογµατισµό, ακόµη και το µυστικισµό, στην επιστηµονική αβεβαιότητα . ΕΙΣΑΓΩΓΗ. Ο ρόλος της Στατιστικής στην Ιατρική Η εξέλιξη της Ιατρικής από το δογµατισµό, ακόµη και το µυστικισµό, στην επιστηµονική αβεβαιότητα ξεκίνησε τον 7 ο αιώνα. Το κλειδί σ αυτή την εξέλιξη υπήρξε

Διαβάστε περισσότερα

Εκπαιδευτική Έρευνα: Μέθοδοι Συλλογής και Ανάλυσης εδομένων Έλεγχοι Υποθέσεων

Εκπαιδευτική Έρευνα: Μέθοδοι Συλλογής και Ανάλυσης εδομένων Έλεγχοι Υποθέσεων Εκπαιδευτική Έρευνα: Μέθοδοι Συλλογής και Ανάλυσης εδομένων Έλεγχοι Υποθέσεων Ένα Ερευνητικό Παράδειγμα Σκοπός της έρευνας ήταν να διαπιστωθεί εάν ο τρόπος αντίδρασης μιας γυναίκας απέναντι σε φαινόμενα

Διαβάστε περισσότερα

Λήψη αποφάσεων κατά Bayes

Λήψη αποφάσεων κατά Bayes Λήψη αποφάσεων κατά Bayes Σημειώσεις μαθήματος Thomas Bayes (1701 1761) Στυλιανός Χατζηδάκης ECE 662 Άνοιξη 2014 1. Εισαγωγή Οι σημειώσεις αυτές βασίζονται στο μάθημα ECE662 του Πανεπιστημίου Purdue και

Διαβάστε περισσότερα

Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS

Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS Ο παρακάτω πίνακας παρουσιάζει θανάτους από καρδιακή ανεπάρκεια ανάμεσα σε άνδρες γιατρούς οι οποίοι έχουν κατηγοριοποιηθεί κατά ηλικία

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΚΥΗΣΕΩΝ ΚΑΙ ΝΕΟΓΝΩΝ

ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΚΥΗΣΕΩΝ ΚΑΙ ΝΕΟΓΝΩΝ Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 17 ου Πανελληνίου Συνεδρίου Στατιστικής (2004), σελ. 399-408 ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΚΥΗΣΕΩΝ ΚΑΙ ΝΕΟΓΝΩΝ Γεωργία Στεφάνου και Τάσος Χριστοφίδης Τµήµα Μαθηµατικών και

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 0 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιµες στο, να αποδείξετε ότι (f() + g ()) f () + g (),. Μονάδες 7 Α. Σε ένα πείραµα µε ισοπίθανα

Διαβάστε περισσότερα

Σημαντικές πληροφορίες για το κάπνισμα

Σημαντικές πληροφορίες για το κάπνισμα ΕΡΓΑΣΙΑ ΣΤΗΝ ΟΙΚΙΑΚΗ ΟΙΚΟΝΟΜΙΑ ΓΙΑ ΤΟ ΚΑΠΝΙΣΜΑ Σημαντικές πληροφορίες για το κάπνισμα Το κάπνισμα του τσιγάρου είναι η πιο διαδεδομένη μορφή κατανάλωσης του καπνού. Πρόκειται για μια συνήθεια που σε αρχικό

Διαβάστε περισσότερα

Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις

Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις ΚΕΦΑΛΑΙΟ 2 Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις 2.1 ΕΙΣΑΓΩΓΗ Όπως έχουµε δει, για να προσδιορίσουµε τις αποκρίσεις ενός κυκλώµατος, πρέπει να λύσουµε ένα σύνολο διαφορικών

Διαβάστε περισσότερα

Άν καπνίζεις... Η ιστορία του καπνίσματος

Άν καπνίζεις... Η ιστορία του καπνίσματος Άν καπνίζεις... Η ιστορία του καπνίσματος Οι πρώτοι που ανακάλυψαν τις χαλαρωτικές ιδιότητες του καπνού ήταν οι Ινδιάνοι. Συνήθιζαν να καπνίζουν πίπα ή πούρο. Με την άφιξη των πρώτων ευρωπαίων στην αμερικανική

Διαβάστε περισσότερα

Το κάπνισμα στην Ελλάδα

Το κάπνισμα στην Ελλάδα Εθνική Μελέτη Νοσηρότητας και Παραγόντων Κινδύνου (Ε.ΜΕ.ΝΟ.) Το κάπνισμα στην Ελλάδα Καρακατσάνη Άννα Αναπληρώτρια Καθηγήτρια Πνευμονολογίας Β Πνευμονολογική Κλινική ΕΚΠΑ ΠΓΝ«ΑΤΤΙΚΟΝ» Ε.ΜΕ.ΝΟ Είναι η πρώτη

Διαβάστε περισσότερα

ΠΡΟΓΝΩΣΤΙΚA ΣΥΣTHΜΑΤΑ

ΠΡΟΓΝΩΣΤΙΚA ΣΥΣTHΜΑΤΑ ΠΡΟΓΝΩΣΤΙΚA ΣΥΣTHΜΑΤΑ Ιωάννα Τζουλάκη Κώστας Τσιλίδης Ιωαννίδης: κεφάλαιο 2 Guyatt: κεφάλαιο 18 ΕΠΙςΤΗΜΟΝΙΚΗ ΙΑΤΡΙΚΗ Επιστήμη (θεωρία) Πράξη (φροντίδα υγείας) Γνωστικό μέρος Αιτιό-γνωση Διά-γνωση Πρό-γνωση

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 6. Πιθανότητες

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 6. Πιθανότητες ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 3 Επιλογή μοντέλου Επιλογή μοντέλου Θεωρία αποφάσεων Επιλογή μοντέλου δεδομένα επικύρωσης Η επιλογή του είδους του μοντέλου που θα χρησιμοποιηθεί σε ένα πρόβλημα (π.χ.

Διαβάστε περισσότερα

Οι δείκτες διασποράς. Ένα παράδειγµα εργασίας

Οι δείκτες διασποράς. Ένα παράδειγµα εργασίας Κεφάλαιο 5 Οι δείκτες διασποράς 1 Ένα παράδειγµα εργασίας Ένας καθηγητής µαθηµατικών έδωσε σε δύο τµήµατα µιας τάξης του σχολείου του το ίδιο τεστ. Η επίδοση των µαθητών του κάθε τµήµατος (όπως µετρήθηκε

Διαβάστε περισσότερα

Kruskal-Wallis H... 176

Kruskal-Wallis H... 176 Περιεχόμενα KΕΦΑΛΑΙΟ 1: Περιγραφή, παρουσίαση και σύνοψη δεδομένων................. 15 1.1 Τύποι μεταβλητών..................................................... 16 1.2 Κλίμακες μέτρησης....................................................

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 14 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 14 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 14 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ 1ο Α.1. Να αποδείξετε ότι για δύο ενδεχόµενα Α και Β ενός

Διαβάστε περισσότερα

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΕΙ ΠΑΤΡΑΣ ΤΕΙ ΠΑΤΡΑΣ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΏΝ ΠΑΙΓΝΙΩΝ- ΠΡΟΓΡΑΜΜΑ GAMBIT

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΕΙ ΠΑΤΡΑΣ ΤΕΙ ΠΑΤΡΑΣ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΏΝ ΠΑΙΓΝΙΩΝ- ΠΡΟΓΡΑΜΜΑ GAMBIT ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Α Κ Α Η Μ Α Ι Κ Ο Ε Τ Ο Σ 2 0 1 1-2 0 1 2 ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΏΝ ΠΑΙΓΝΙΩΝ- ΠΡΟΓΡΑΜΜΑ GAMBIT Ο συγκεκριµένος οδηγός για το πρόγραµµα

Διαβάστε περισσότερα

Εκπαιδευτική έρευνα Οργάνωση & Παρουσίαση Δεδομένων (Εργαστήριο SPSS) Άγγελος Μάρκος, Λέκτορας Δημοκρίτειο Πανεπιστήμιο Θράκης

Εκπαιδευτική έρευνα Οργάνωση & Παρουσίαση Δεδομένων (Εργαστήριο SPSS) Άγγελος Μάρκος, Λέκτορας Δημοκρίτειο Πανεπιστήμιο Θράκης Εκπαιδευτική έρευνα Οργάνωση & Παρουσίαση Δεδομένων (Εργαστήριο SPSS) Άγγελος Μάρκος, Λέκτορας Δημοκρίτειο Πανεπιστήμιο Θράκης Σύνολα Δεδομένων - Είδη Ποσοτικής Έρευνας: Παράλογες Ιδέες Γονέων (Δειγματοληπτική)

Διαβάστε περισσότερα

Περιγραφική και πειραματική έρευνα

Περιγραφική και πειραματική έρευνα 1 Ο ΓΥΜΝΑΣΙΟ ΠΕΥΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑ : ΤΕΧΝΟΛΟΓΙΑ ΕΚΠΑΙΔΕΥΤΙΚΟΣ : Τρασανίδης Γεώργιος, διπλ. Ηλεκ/γος Μηχανικός Μsc ΠΕ12 05 Περιγραφική και πειραματική έρευνα Σε μια έρευνα που περιλαμβάνει δύο μεταβλητές

Διαβάστε περισσότερα

Αιτιότητα και τυχαίο σφάλμα στις επιδημιολογικές μελέτες

Αιτιότητα και τυχαίο σφάλμα στις επιδημιολογικές μελέτες Αιτιότητα και τυχαίο σφάλμα στις επιδημιολογικές μελέτες Αιτιότητα Πρόγραμμα εκπαίδευσης στην επιδημιολογική επιτήρηση και διερεύνηση επιδημιών ΕΣΔΥ ΚΕΕΛΠΝΟ, 2007 "Ευτυχισμένος είναι αυτός που κατόρθωσε

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ. Εαρινό εξάµηνο ακαδηµαϊκού έτους 2003-2004 ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. Εργασία 4 - Ενδεικτική λύση

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ. Εαρινό εξάµηνο ακαδηµαϊκού έτους 2003-2004 ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. Εργασία 4 - Ενδεικτική λύση ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ Εαρινό εξάµηνο ακαδηµαϊκού έτους 34 ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 5 Μαΐου 4 Εργασία 4 - Ενδεικτική λύση Το κείµενο απευθύνεται στους φοιτητές και αιτιολογεί και περιγράφει

Διαβάστε περισσότερα

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ Χρήση τυχαίων µεταβλητών για την απεικόνιση εκβάσεων τυχαίου πειράµατος Κατανόηση της έννοιας κατανοµής πιθανοτήτων τυχαίας µεταβλητής Υπολογισµός της συνάρτηση κατανοµής πιθανοτήτων

Διαβάστε περισσότερα

ΟΝΟΜΑΤΕΠΩΝΥΜΟ : Αντικείμενα: περιγραφική στατιστική, γραφήματα, συναρτήσεις βάσεων δεδομένων, συγκεντρωτικοί πίνακες

ΟΝΟΜΑΤΕΠΩΝΥΜΟ : Αντικείμενα: περιγραφική στατιστική, γραφήματα, συναρτήσεις βάσεων δεδομένων, συγκεντρωτικοί πίνακες Σχολή Διοίκησης και Οικονομίας (ΣΔΟ) Τμήμα Λογιστικής και Χρηματοοικονομικής Διδάσκων: Δρ. Γκόγκος Χρήστος Μάθημα: Πληροφορική ΙI (εργαστήριο) Ακαδημαϊκό έτος 2013-2014 εαρινό εξάμηνο ΟΝΟΜΑΤΕΠΩΝΥΜΟ : ΑΡΙΘΜΟΣ

Διαβάστε περισσότερα

(Confounders) Δύο κύρια θέματα. Θα πρέπει να πιστέψω το αποτέλεσμα της μελέτης μου; Συγχυτικοί και τροποποιητικοί παράγοντες

(Confounders) Δύο κύρια θέματα. Θα πρέπει να πιστέψω το αποτέλεσμα της μελέτης μου; Συγχυτικοί και τροποποιητικοί παράγοντες Θα πρέπει να πιστέψω το αποτέλεσμα της μελέτης μου; Συγχυτικοί και τροποποιητικοί παράγοντες Κάπνισμα = 11,6 Καρκίνος παγκρέατος Πρόγραμμα εκπαίδευσης στην επιδημιολογική επιτήρηση και διερεύνηση επιδημιών

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

Άσκηση 10, σελ. 119. Για τη μεταβλητή x (άτυπος όγκος) έχουμε: x censored_x 1 F 3 F 3 F 4 F 10 F 13 F 13 F 16 F 16 F 24 F 26 F 27 F 28 F

Άσκηση 10, σελ. 119. Για τη μεταβλητή x (άτυπος όγκος) έχουμε: x censored_x 1 F 3 F 3 F 4 F 10 F 13 F 13 F 16 F 16 F 24 F 26 F 27 F 28 F Άσκηση 0, σελ. 9 από το βιβλίο «Μοντέλα Αξιοπιστίας και Επιβίωσης» της Χ. Καρώνη (i) Αρχικά, εισάγουμε τα δεδομένα στο minitab δημιουργώντας δύο μεταβλητές: τη x για τον άτυπο όγκο και την y για τον τυπικό

Διαβάστε περισσότερα

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής.

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής. 2.6 ΟΡΙΑ ΑΝΟΧΗΣ Το διάστηµα εµπιστοσύνης παρέχει µία εκτίµηση µιας άγνωστης παραµέτρου µε την µορφή διαστήµατος και ένα συγκεκριµένο βαθµό εµπιστοσύνης ότι το διάστηµα αυτό, µε τον τρόπο που κατασκευάσθηκε,

Διαβάστε περισσότερα