Κατά την φόρτιση πυκνωτή (Εξ. 37 στις σημειώσεις Ηλεκτρομαγνητισμού)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Κατά την φόρτιση πυκνωτή (Εξ. 37 στις σημειώσεις Ηλεκτρομαγνητισμού)"

Transcript

1 1α Σε ένα κύκλωμα RC συνεχούς με διακόπτη, αντίσταση R = 650 Ω και πηγή 1 V όλα σε σειρά, ο διακόπτης κλείνει στο t = 0 και ο πυκνωτής είναι αρχικά αφόρτιστος. Η διαφορά δυναμικού στον πυκνωτή φτάνει στο 1/κ της οριακής της τιμής έπειτα από χρονικό διάστημα 5.5 s. Ποιά είναι η χωρητικότητα του πυκνωτή σε F εάν κ = 5; Λύση: Κατά την φόρτιση πυκνωτή (Εξ. 37 στις σημειώσεις Ηλεκτρομαγνητισμού Στο t η οριακή τιμή της V C είναι V C (t = E(1 e t/rc V C ( = E(1 e = E(1 0 = E Σύμφωνα με τα δεδομένα, σε χρονικό διάστημα 5.5 s ισχύει V C = Ε/κ επομένως: Λύνοντας Ε κ = E(1 e t/rc t C = Rln (1 1 = F κ

2 1β Κύκλωμα RC σε σειρά με C = 0 μf, τροφοδοτείται από πηγή τάσης που περιγράφεται από την μαθηματική έκφραση V S = 00sin(400t. Εάν η τάση της αντίστασης υπερτερεί της V S κατά φ = 4 0, να βρεθεί το πλάτος του ρεύματος που διαρρέει το κύκλωμα σε Α. Λύση: Από τα δεδομένα ω = 400 rad/s και έτσι Για τη γωνία ισχύει Ζ C = 1 Cω = = 15 Ω 400 tanφ = Ζ C R => R = Ζ Από τον ορισμό της ολικής εμπέδησης έχουμε C tanφ = 15 tan(4 0 = 139 Ω Ζ = Ζ C + R = = 187 Ω Από τα δεδομένα το πλάτος της τάσης της πηγής είναι V 0 = 00 V και έτσι το πλάτος του ρεύματος ισούται με: Ι 0 = V 0 Z = 00 = 1.07 A 187

3 1γ Φοιτητής χρησιμοποιεί ένα κύκλωμα RLC το οποίο έχει πυκνωτή χωρητικότητας C 1 για να ακούσει τον αγαπημένο του ραδιοφωνικό σταθμό στα 100 x FM. Λόγω βλάβης, αντικαθιστά τον πυκνωτή με ένα μικρότερο χωρητικότητας C και παρατηρεί ότι τώρα λαμβάνει σήμα από έναν άλλο σταθμό που εκπέμπει στα x FM. Να βρεθεί σε ποια FM βρίσκεται ο αγαπημένος σταθμός του φοιτητή εάν δίνονται τα C 1 = 4. μf και C = 0 μf. Λύση: Το κύκλωμα RLC χρησιμοποιείται για να ενισχύσει μόνο μια από τις ραδιοφωνικές συχνότητες. Η κυκλική συχνότητα συντονισμού βρίσκεται από την οπότε η συχνότητα δίνεται από την ω 0 = 1 LC f 0 = 1 π LC Τα FM είναι σε μεγάκυκλους, δηλαδή σε MHz. Παίρνοντας λόγους πριν-μετά την αλλαγή του πυκνωτή: f = C x => f 1 C 100 x = 4. 0 = 1.1 Λύνοντας την αλγεβρική εξίσωση παίρνουμε x = 4.8 οπότε f 1 = 100 x = 95. FM

4 α Στο παρακάτω σχήμα τα τρία διαφορετικά σχήματα, δυο ορθογώνια και ένα πρίσμα (κοινώς σφήνα, είναι από διαφορετικά υλικά με δείκτες διάθλασης n, n και n όπως αναγράφονται. Ένας μέρος της προσπίπτουσας ακτίνας ΟΑ στο σημείο Α ανακλάται ενώ ένα μέρος της διαθλάται προς το σημείο Β. Παρατηρείται ότι όταν η γωνία θ ελαττωθεί αρκετά, τότε στο σημείο Β υπάρχει μόνο ανάκλαση, δηλαδή δεν εισέρχεται φως στο πάνω ορθογώνιο. Εάν η θ είναι η οριακή γωνία που παρατηρείται αυτό το φαινόμενο, τότε να βρεθεί η τιμή της εάν δίνονται τα n =, n = και n = 3 και η γωνία φ = 15 0 του πρίσματος. n Β n n Α φ θ Ο Λύση: Όπως φαίνεται στο παρακάτω σχήμα, φέρουμε μια κάθετο στη διεπιφάνεια στο σημείο Β, μια άλλη κάθετο στη διεπιφάνεια στο σημείο Α και μια τρίτη κάθετο στην κεκλιμένη επιφάνεια του πρίσματος η οποία διέρχεται από το σημείο Α. Αφού οριακά δεν εμφανίζεται διαθλώμενη ακτίνα στο σημείο Β, τότε η θ Β είναι εξ ορισμού η κρίσιμη γωνία και θα ικανοποιεί τη σχέση: n sinθ Β = n sin90 0 => sinθ Β = n n = 3 => θ Β = 60 0 Αυτή η γωνία είναι εντός-εναλλάξ με την γωνία θ Α + φ και άρα είναι ίσες μεταξύ τους δηλαδή θ Β = θ Α + φ Η γωνία φ είναι ίση με την γωνία φ = 15 0 του πρίσματος αφού οι πλευρές τους είναι κάθετες μεταξύ τους και είναι και οι δυο οξείες. Επομένως Από τον νόμο της διάθλασης στο σημείο Α θ Α = θ Β φ = = 45 0 nsinθ Α = n sinθ Α => sinθ Α = n n sinθ Α = sin450 = 1

5 οπότε θ Α = Η ζητούμενη γωνία είναι η συμπληρωματική της θ Α οπότε θ = n Β n n θ Β θ Α φ φ Α θ Α θ

6 γ Στο παρακάτω σχήμα τα τρία διαφορετικά σχήματα, δυο ορθογώνια και ένα πρίσμα (κοινώς σφήνα, είναι από διαφορετικά υλικά με δείκτες διάθλασης n, n και n όπως αναγράφονται. Ένας μέρος της προσπίπτουσας ακτίνας ΟΑ ανακλάται ενώ ένα μέρος της διαθλάται προς το σημείο Β. Παρατηρείται ότι όταν η γωνία θ ελαττωθεί αρκετά, τότε στο σημείο Β υπάρχει μόνο ανάκλαση, δηλαδή δεν εισέρχεται φως στο πάνω ορθογώνιο. Εάν η θ = 60 0 είναι η οριακή γωνία που παρατηρείται αυτό το φαινόμενο και τότε θ = 10 0, να βρεθεί η τιμή του n εάν δίνονται το n = 3 και η γωνία φ = 15 0 του πρίσματος. Β n n n θ Α φ θ Ο Λύση: Όπως φαίνεται στο παρακάτω σχήμα, φέρουμε μια κάθετο στη διεπιφάνεια στο σημείο Β, μια άλλη κάθετο στη διεπιφάνεια στο σημείο Α και μια τρίτη κάθετο στην κεκλιμένη επιφάνεια του πρίσματος η οποία διέρχεται από το σημείο Α. Αφού οριακά δεν εμφανίζεται διαθλώμενη ακτίνα στο σημείο Β, τότε η α είναι εξ ορισμού η κρίσιμη γωνία και θα ικανοποιεί τη σχέση: n sinα = n sin90 0 => sinα = n n = 3 n Από τον νόμο της ανάκλασης β = α και αφού το άθροισμά τους είναι ίσο με τη δεδομένη θ = 10 0 τότε α = β = Από τον ορισμό της κρίσιμης γωνίας παραπάνω έχουμε sin60 0 = 3 n => n = Η γωνία α είναι εντός-εναλλάξ με την γωνία θ Α + φ και άρα είναι ίσες μεταξύ τους δηλαδή α = θ Α + φ Η γωνία φ είναι ίση με την γωνία φ = 15 0 του πρίσματος αφού οι πλευρές τους είναι κάθετες μεταξύ τους και είναι και οι δυο οξείες. Επομένως

7 θ Α = α φ = = 45 0 Η γωνία θ είναι η συμπληρωματική της θ Α οπότε θ Α = Από τον νόμο της διάθλασης στο σημείο Α και άρα n = nsinθ Α = n sinθ Α => n = n sinθ Α = sinθ Α n n β Β α n θ Α φ Α θ Α θ φ

8 β Στο παρακάτω σχήμα τα τρία διαφορετικά σχήματα, δυο ορθογώνια και ένα πρίσμα (κοινώς σφήνα, είναι από διαφορετικά υλικά με δείκτες διάθλασης n, n και n όπως αναγράφονται. Ένας μέρος της προσπίπτουσας ακτίνας ΟΑ ανακλάται ενώ ένα μέρος της διαθλάται προς το σημείο Β. Να βρεθεί η τιμή της γωνίας θ μεταξύ της ανακλώμενης και της διαθλώμενης ακτίνας στο σημείο Β εάν δίνονται οι τιμές θ = 60 0, n =, n = και n = 3 και η γωνία φ = 15 0 του πρίσματος.. θ Β n n n Α φ θ Ο Λύση: Όπως φαίνεται στο παρακάτω σχήμα, φέρουμε μια κάθετο στη διεπιφάνεια στο σημείο Β, μια άλλη κάθετο στη διεπιφάνεια στο σημείο Α και μια τρίτη κάθετο στην κεκλιμένη επιφάνεια του πρίσματος η οποία διέρχεται από το σημείο Α. Η γωνία θ είναι η συμπληρωματική της θ Α οπότε θ Α = Από τον νόμο της διάθλασης στο σημείο Α ή nsinθ Α = n sinθ Α => sinθ Α = nsinθ Α n θ Α = 45 0 = 1 = Η γωνία φ είναι ίση με την γωνία φ = 15 0 του πρίσματος αφού οι πλευρές τους είναι κάθετες μεταξύ τους και είναι και οι δυο οξείες. Επίσης η γωνία πρόσπτωσης α είναι εντός-εναλλάξ με την γωνία θ Α + φ και άρα είναι ίσες μεταξύ τους δηλαδή α = θ Α + φ = = 60 0 Από τον νόμο της ανάκλασης β = α = Από τον νόμο της διάθλασης στο σημείο Β

9 n sinθ Β = n sinα => sinθ Β = n sinα n = = 1 οπότε θ Β = Στο σημείο Β οι τρεις γωνίες από την μια μεριά της καθέτου ξεκινούν και τελειώνουν σε μια ευθεία οπότε πρέπει να δίνουν άθροισμα δηλαδή: β + θ + θ Β = => θ Β = = 90 0 β θ θ Β α Β n n n θ Α φ Α θ Α φ θ

10 3α Ένας φοιτητής εκτελεί ένα πείραμα περίθλασης με μια απλή ορθογώνια σχισμή μικροσκοπικού πλάτους και μακροσκοπικού ύψους a ρίχνοντάς της από την μια μεριά φως laser μήκους κύματος λ και παρατηρώντας από την άλλη μεριά την εικόνα της περίθλασης που σχηματίζεται σε ένα πέτασμα σε απόσταση D 1 από αυτή (θεωρούμε ότι τα και λ είναι της ίδιας τάξης μεγέθους. Με τη βοήθεια ενός φωτοκυττάρου, ο φοιτητής μετράει την μέγιστη ένταση I 0 του φωτός επάνω στο πέτασμα στο σημείο Ο και μετά τοποθετεί το φωτοκύτταρο επάνω στο σημείο Κ που βρίσκεται σε απόσταση Δx από το Ο κατά μήκος της εικόνας περίθλασης και παρατηρεί ότι η ένταση εκεί Ι = 0. Ακολούθως αλλάζει την απόσταση σχισμής-πετάσματος σε D = 4D 1 και παρατηρεί ότι στο νέο μέγιστο στο σημείο Μ το φωτοκύτταρο μετράει μικρότερη ένταση Ι 0 = 9I 0 /16. Πόση ένταση θα μετρήσει τώρα το φωτοκύτταρο εάν τοποθετηθεί στο σημείο Λ το οποίο απέχει την ίδια απόσταση Δx κατά μήκος της νέας εικόνας περίθλασης από το Μ; Θεωρήστε ότι D 1 Δx εικόνα περίθλασης Ο Κ Δx Laser Σχισμή Ο Κ Δx Λ Μ D D 1 Πέτασμα (αρχική θέση Πέτασμα (τελική θέση Λύση: Επειδή D 1 Δx, η κατανομή της έντασης της ακτινοβολίας του αρχικού διαγράμματος περίθλασης δίνεται προσεγγιστικά από την σχέση: όπου Τα ελάχιστα εμφανίζονται εκεί όπου δηλαδή εκεί όπου Ι Ι 0 ( sinξ ξ ξ = π λd 1 x sinξ = sin ( π λd 1 x = 0

11 π λd 1 x = nπ με το n να είναι ακέραιος με εξαίρεση το n = 0 επειδή λόγω του νόμου του De l Hospital δίνει μέγιστο της μορφής 0/0 1. Έτσι τα ελάχιστα εμφανίζονται στις θέσεις x n = n λd 1 με n = ±1, ±, ±3 Από τη δεδομένη εικόνα περίθλασης, το Κ φαίνεται να είναι στο τρίτο ελάχιστο, δηλαδή n = 3 και Δx = x 3 = 3 λd 1 Όταν η απόσταση σχισμής-πετάσματος αλλάξει σε D, τότε το ξ αλλάζει σε ξ = π λd x και άρα η κατανομή της έντασης της ακτινοβολίας γίνεται: sin ( π x λd Ι Ι 0 ( π x λd (προσέξτε ότι άλλαξε και η μέγιστη τιμή της έντασης από Ι 0 σε Ι 0. Αντικαθιστώντας το παραπάνω Δx και λαμβάνοντας υπόψιν ότι Ι 0 = 9Ι 0 /16 και D = 4D 1, οδηγεί στο αποτέλεσμα ή Ι = 9Ι π sin ( 3 λd ( λd π 3 λd 1 λd = 9Ι D sin (3π ( D 3π D 1 D Ι = 9Ι / ( 3π = 4 Ι 0 π = 9Ι 0 16 (sin ( 3π 4 3π 4

12 3β Ένας φοιτητής εκτελεί ένα πείραμα περίθλασης με μια απλή ορθογώνια σχισμή μικροσκοπικού πλάτους και μακροσκοπικού ύψους a ρίχνοντάς της από την μια μεριά φως laser μήκους κύματος λ 1 και παρατηρώντας από την άλλη μεριά την εικόνα της περίθλασης που σχηματίζεται σε ένα πέτασμα σε απόσταση D από αυτή (θεωρούμε ότι τα και λ 1 είναι της ίδιας τάξης μεγέθους. Με τη βοήθεια ενός φωτοκυττάρου, ο φοιτητής βρίσκει για την ένταση διαδοχικά Ι = 0 στα σημεία Κ και Λ. Ακολούθως αντικαταστεί την πηγή laser με μια πιο ασθενή αλλά και με διαφορετικό μήκος κύματος λ = 1.λ 1. Ποιος θα είναι τώρα ο λόγος των εντάσεων Ι(Κ/Ι(Λ στα σημεία Κ και Λ; Θεωρήστε ότι το D είναι τάξεις μεγέθους μεγαλύτερο από οποιαδήποτε απόσταση μετράει ο φοιτητής επάνω στο πέτασμα. Χρήσιμα νούμερα: sin(π/0. = 0, sin(π/0.4 = 1, sin(π/0.6 = 3/, sin(π/0.8 = / εικόνα περίθλασης Ο Κ Λ Laser Σχισμή Λ Κ Ο D Πέτασμα Λύση: Επειδή το D είναι μεγάλο, η κατανομή της έντασης της ακτινοβολίας του αρχικού διαγράμματος περίθλασης δίνεται προσεγγιστικά από την σχέση όπου Τα ελάχιστα εμφανίζονται εκεί όπου δηλαδή εκεί όπου Ι Ι 0 ( sinξ ξ ξ = π λ 1 D x sinξ = sin ( π λ 1 D x = 0

13 π x = nπ λ 1 D με το n να είναι ακέραιος με εξαίρεση το n = 0 επειδή λόγω του νόμου του De l Hospital δίνει μέγιστο της μορφής 0/0 1. Έτσι τα ελάχιστα εμφανίζονται στις θέσεις x n = n λ 1D με n = ±1, ±, ±3 Από τη δεδομένη εικόνα περίθλασης, τα Κ και Λ φαίνονται να είναι στο δεύτερο και τρίτο ελάχιστο αντίστοιχα, δηλαδή στα n = και n = 3, οπότε έχουν συντεταγμένες και x Κ = λ 1D x Λ = 3 λ 1D Ομοίως όταν το μήκος κύματος αλλάξει σε λ, τότε το ξ αλλάζει σε ξ = π λ D x και η κατανομή της έντασης της ακτινοβολίας γίνεται sin ( π λ Ι Ι 0 ( D x π λ D x όπου πρέπει Ι 0 < Ι 0 αφού πρόκειται για ασθενέστερη πηγή. Μας ενδιαφέρει η ένταση στα σημεία Κ και Λ με συντεταγμένες x Κ και x Λ που είδαμε παραπάνω. Με αντικατάσταση: sin ( π λ Ι (Κ Ι 0 ( D x Κ π λ D x Κ sin ( π λ Ι (Λ Ι 0 ( D x Λ π λ D x Λ Ο ζητούμενος λόγος είναι ο sin ( π λ = Ι 0 ( D λ 1D π λ D λ 1D sin ( π λ = Ι 0 ( D 3 λ 1D π λ D 3 λ 1D π π Ι (Κ sin ( λ Ι (Λ = ( λ 1 3λ λ 1 π λ λ 1 sin ( π 3λ λ 1 Αντικαθιστώντας το λ = 1.λ 1, οδηγεί στο αποτέλεσμα sin ( π λ λ 1 = Ι 0 ( π λ λ 1 sin ( π 3λ λ 1 = Ι 0 ( π 3λ λ 1 = ( 3 sin (π λ 1 λ sin (3π λ 1 λ

14 Ι (Κ Ι (Λ = (3 sin ( π 0.6 sin ( π 0.4 = ( 3 3/ =

15 3γ Ένας φοιτητής εκτελεί ένα πείραμα περίθλασης με μια απλή ορθογώνια σχισμή μικροσκοπικού πλάτους 1 και μακροσκοπικού ύψους a 1 ρίχνοντάς της από την μια μεριά φως laser μήκους κύματος λ και παρατηρώντας από την άλλη μεριά την εικόνα της περίθλασης που σχηματίζεται σε ένα πέτασμα σε απόσταση D από αυτή (θεωρούμε ότι τα 1 και λ είναι της ίδιας τάξης μεγέθους. Με τη βοήθεια ενός φωτοκυττάρου, ο φοιτητής βρίσκει για την ένταση διαδοχικά Ι = 0 στα σημεία Κ και Λ. Ακολούθως αντικαταστεί την σχισμή με μια ίδιου ύψους a αλλά διαφορετικού πλάτους = 1 /4. Ποιος θα είναι τώρα ο λόγος των εντάσεων Ι(Κ/Ι(Λ στα σημεία Κ και Λ; Θεωρήστε ότι το D είναι τάξεις μεγέθους μεγαλύτερο από οποιαδήποτε απόσταση μετράει ο φοιτητής επάνω στο πέτασμα. εικόνα περίθλασης Ο Κ Λ Laser Σχισμή Λ Κ Ο D Πέτασμα Λύση: Επειδή το D είναι μεγάλο, η κατανομή της έντασης της ακτινοβολίας του αρχικού διαγράμματος περίθλασης δίνεται προσεγγιστικά από την σχέση όπου Ι Ι 0 ( sinξ ξ Τα ελάχιστα εμφανίζονται εκεί όπου δηλαδή εκεί όπου ξ = π 1 λd x sinξ = sin ( π 1 λd x = 0 π 1 x = nπ λd

16 με το n να είναι ακέραιος με εξαίρεση το n = 0 επειδή λόγω του νόμου του De l Hospital δίνει μέγιστο της μορφής 0/0 1. Έτσι τα ελάχιστα εμφανίζονται στις θέσεις x n = n λd 1 με n = ±1, ±, ±3 Από τη δεδομένη εικόνα περίθλασης, τα Κ και Λ φαίνονται να είναι στο πρώτο και δεύτερο ελάχιστο αντίστοιχα, δηλαδή στα n = 1 και n =, οπότε έχουν συντεταγμένες και x Κ = λd 1 x Λ = λd 1 Όταν το πλάτος της σχισμής αλλάξει σε, τότε το ξ αλλάζει σε ξ = π λd x και η κατανομή της έντασης της ακτινοβολίας γίνεται Ι I 0 ( sin (π λd x π λd x όπου το Ι 0 παραμένει το ίδιο αφού πρόκειται για την ίδια πηγή. Μας ενδιαφέρει η ένταση στα σημεία Κ και Λ με συντεταγμένες x 1 και x που είδαμε παραπάνω. Με αντικατάσταση, βρίσκουμε για την νέα ένταση στα δυο σημεία: Αφού = 1 /4, έχουμε Ι (Κ I 0 ( sin (π λd x Κ π λd x Κ Ι (Λ I 0 ( sin (π λd x Λ π λd x Λ sin ( π λd λd = I 0 ( 1 π λd λd 1 sin ( π λd λd = I 0 ( 1 π λd λd 1 Ι (Κ = I 0 ( sin (π 4 π = I 0 ( π = I 0 ( π 4 4 Ι (Λ = I 0 ( sin ( π 4 π 4 = I 0 ( 1 π sin ( π = I 0 ( 1 π 1 sin ( π = I 0 ( 1 π 1 = I 0 ( π

17 Ο ζητούμενος λόγος είναι ο Ι (Κ Ι (Λ = Ι (Κ Ι (Λ = ( =

ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ. Ανάκλαση. Κάτοπτρα. Διάθλαση. Ολική ανάκλαση. Φαινόμενη ανύψωση αντικειμένου. Μετατόπιση ακτίνας. Πρίσματα

ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ. Ανάκλαση. Κάτοπτρα. Διάθλαση. Ολική ανάκλαση. Φαινόμενη ανύψωση αντικειμένου. Μετατόπιση ακτίνας. Πρίσματα ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ Ανάκλαση Κάτοπτρα Διάθλαση Ολική ανάκλαση Φαινόμενη ανύψωση αντικειμένου Μετατόπιση ακτίνας Πρίσματα ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ - Ανάκλαση Επιστροφή σε «γεωμετρική οπτική» Ανάκλαση φωτός ονομάζεται

Διαβάστε περισσότερα

Διάθλαση φωτός και ολική ανάκλαση: Εύρεση του δείκτη διάθλασης και της γωνίας ολικής ανάκλασης

Διάθλαση φωτός και ολική ανάκλαση: Εύρεση του δείκτη διάθλασης και της γωνίας ολικής ανάκλασης 3 Διάθλαση φωτός και ολική ανάκλαση: Εύρεση του δείκτη διάθλασης και της γωνίας ολικής ανάκλασης Μέθοδος Σε σώμα διαφανές ημικυλινδρικού σχήματος είναι εύκολο να επιβεβαιωθεί ο νόμος του Sell και να εφαρμοστεί

Διαβάστε περισσότερα

Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης

Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Δίκτυα Τηλεπικοινωνιών και Μετάδοσης Σύστημα μετάδοσης με οπτικές ίνες Tο οπτικό φέρον κύμα μπορεί να διαμορφωθεί είτε από αναλογικό

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ 1 ο ΘΕΜΑ Α. Ερωτήσεις πολλαπλής επιλογής ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ 1. Μια ακτίνα φωτός προσπίπτει στην επίπεδη διαχωριστική επιφάνεια δύο µέσων. Όταν η διαθλώµενη ακτίνα κινείται παράλληλα προς τη διαχωριστική

Διαβάστε περισσότερα

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 03-0 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΛΥΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 0/0/03 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α-Α

Διαβάστε περισσότερα

ΟΡΟΣΗΜΟ ΓΛΥΦΑΔΑΣ. 7.1 Τι είναι το ταλαντούμενο ηλεκτρικό δίπολο; Πως παράγεται ένα ηλεκτρομαγνητικό

ΟΡΟΣΗΜΟ ΓΛΥΦΑΔΑΣ. 7.1 Τι είναι το ταλαντούμενο ηλεκτρικό δίπολο; Πως παράγεται ένα ηλεκτρομαγνητικό ΚΕΦΑΛΑΙΟ 2 Ηλεκτρομαγνητικά κύματα. Ηλεκτρομαγνητικά κύματα 7. Τι είναι το ταλαντούμενο ηλεκτρικό δίπολο; Πως παράγεται ένα ηλεκτρομαγνητικό κύμα; 7.2 Ποιες εξισώσεις περιγράφουν την ένταση του ηλεκτρικού

Διαβάστε περισσότερα

Μέτρηση Γωνίας Brewster Νόμοι του Fresnel

Μέτρηση Γωνίας Brewster Νόμοι του Fresnel Μέτρηση Γωνίας Bewse Νόμοι του Fesnel [] ΕΙΣΑΓΩΓΗ Στο πείραμα, δέσμη φωτός από διοδικό lase ανακλάται στην επίπεδη επιφάνεια ενός ακρυλικού ημι-κυκλικού φακού, πολώνεται γραμμικά και ανιχνεύεται από ένα

Διαβάστε περισσότερα

ΤΕΛΟΣ 2ΗΣ ΑΠΟ 4 ΣΕΛΙΔΕΣ

ΤΕΛΟΣ 2ΗΣ ΑΠΟ 4 ΣΕΛΙΔΕΣ ΑΡΧΗ 2ΗΣ ΣΕΛΙΔΑΣ ΘΕΜΑ 1 ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 20 ΔΕΚΕΜΒΡΙΟΥ 2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΕΣΣΕΡΙΣ (4) Α) Για κάθε μία

Διαβάστε περισσότερα

ΕΠΩΝΥΜΟ ΟΝΟΜΑ ΤΑΞΗ ΤΜΗΜΑ ΗΜ/ΝΙΑ ΚΥΡΙΑΚΗ 11/3/2012 ΧΡΟΝΟΣ ΕΞΕΤΑΣΗΣ: 10:30-13:30

ΕΠΩΝΥΜΟ ΟΝΟΜΑ ΤΑΞΗ ΤΜΗΜΑ ΗΜ/ΝΙΑ ΚΥΡΙΑΚΗ 11/3/2012 ΧΡΟΝΟΣ ΕΞΕΤΑΣΗΣ: 10:30-13:30 ΕΠΩΝΥΜΟ ΟΝΟΜΑ ΤΑΞΗ ΤΜΗΜΑ ΗΜ/ΝΙΑ ΚΥΡΙΑΚΗ 11/3/2012 ΧΡΟΝΟΣ ΕΞΕΤΑΣΗΣ: 10:30-13:30 Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση,

Διαβάστε περισσότερα

7 σειρά ασκήσεων. Για την επίλυση των προβλημάτων να θεωρηθούν γνωστά: σταθερά του Planck 6,63 10-34 J s, ταχύτητα του φωτός στον αέρα 3 10 8 m/s

7 σειρά ασκήσεων. Για την επίλυση των προβλημάτων να θεωρηθούν γνωστά: σταθερά του Planck 6,63 10-34 J s, ταχύτητα του φωτός στον αέρα 3 10 8 m/s η 7 σειρά ασκήσεων Για την επίλυση των προβλημάτων να θεωρηθούν γνωστά: σταθερά του Planck 6,63 10-34 J s, ταχύτητα του φωτός στον αέρα 3 10 8 m/s 1. Εξηγήστε γιατί, όταν φως διαπερνά μία διαχωριστική

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Στις ημιτελείς προτάσεις Α1-Α4 να ράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το ράμμα που αντιστοιχεί στη φράση, η οποία τη συμπληρώνει

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012. Α5) α) Σωστό β) Σωστό γ) Λάθος δ) Λάθος ε) Σωστό.

ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012. Α5) α) Σωστό β) Σωστό γ) Λάθος δ) Λάθος ε) Σωστό. ΘΕΜΑ Α ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 Α) γ Α) β Α)γ Α4) γ Α5) α) Σωστό β) Σωστό γ) Λάθος δ) Λάθος ε) Σωστό ΘΕΜΑ Β n a n ( ύ) a n (), ( ύ ) n

Διαβάστε περισσότερα

Το πλάτος της ταλάντωσης του σημείου Σ, μετά τη συμβολή των δυο. α. 0 β. Α γ. 2Α δ. Μονάδες 5

Το πλάτος της ταλάντωσης του σημείου Σ, μετά τη συμβολή των δυο. α. 0 β. Α γ. 2Α δ. Μονάδες 5 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 04-01-2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ Μ-ΑΓΙΑΝΝΙΩΤΑΚΗ ΑΝ-ΠΟΥΛΗ Κ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς

Διαβάστε περισσότερα

Περίθλαση από µία σχισµή.

Περίθλαση από µία σχισµή. ρ. Χ. Βοζίκης Εργαστήριο Φυσικής ΙΙ 71 7. Άσκηση 7 Περίθλαση από µία σχισµή. 7.1 Σκοπός της εργαστηριακής άσκησης Σκοπός της άσκησης είναι η γνωριµία των σπουδαστών µε την συµπεριφορά των µικροκυµάτων

Διαβάστε περισσότερα

Μονάδες 5. Α2. Τα ηλεκτρομαγνητικά κύματα

Μονάδες 5. Α2. Τα ηλεκτρομαγνητικά κύματα ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 26 ΜΑÏΟΥ 2010 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ 2002 ΘΕΜΑΤΑ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 6 ΙΟΥΝΙΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ): ΦΥΣΙΚΗ

Διαβάστε περισσότερα

Όλα τα θέματα των εξετάσεων έως και το 2014 σε συμβολή, στάσιμα, ηλεκτρομαγνητικά κύματα, ανάκλαση - διάθλαση Η/Μ ΚΥΜΑΤΑ. Ερωτήσεις Πολλαπλής επιλογής

Όλα τα θέματα των εξετάσεων έως και το 2014 σε συμβολή, στάσιμα, ηλεκτρομαγνητικά κύματα, ανάκλαση - διάθλαση Η/Μ ΚΥΜΑΤΑ. Ερωτήσεις Πολλαπλής επιλογής Η/Μ ΚΥΜΑΤΑ 1. Τα ηλεκτροµαγνητικά κύµατα: Ερωτήσεις Πολλαπλής επιλογής α. είναι διαµήκη. β. υπακούουν στην αρχή της επαλληλίας. γ. διαδίδονται σε όλα τα µέσα µε την ίδια ταχύτητα. δ. Δημιουργούνται από

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 006 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις - 4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

Ασκήσεις (Ηλεκτρισμός-Οπτική) Κ.-Α. Θ. Θωμά

Ασκήσεις (Ηλεκτρισμός-Οπτική) Κ.-Α. Θ. Θωμά Ασκήσεις (Ηλεκτρισμός-Οπτική) Ηλεκτρισμός 6 η. Ηλεκτρόνια κινούμενα με ταχύτητα 0 m / sec εισέρχονται σε χώρο μαγνητικού πεδίου όπου διαγράφουν κυκλική τροχιά ακτίνας 0.0m. Να βρεθεί η ένταση του μαγνητικού

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 15 ΙΟΥΝΙΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

r r r r r r r r r r r Μονάδες 5 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

r r r r r r r r r r r Μονάδες 5 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) ΠΑΡΑΣΚΕΥΗ 0 ΜΑÏΟΥ 011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014. ÄÉÁÍüÇÓÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014. ÄÉÁÍüÇÓÇ ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Τετάρτη 23 Απριλίου 2014 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α1 Α4 να γράψετε

Διαβάστε περισσότερα

Φυσική Γ Λυκείου Κατεύθυνσης. Προτεινόμενα Θέματα

Φυσική Γ Λυκείου Κατεύθυνσης. Προτεινόμενα Θέματα Φυσική Γ Λυκείου Κατεύθυνσης Προτεινόμενα Θέματα Θέμα ο Ένα σώμα εκτελεί απλή αρμονική ταλάντωση πλάτους Α. Η φάση της ταλάντωσης μεταβάλλεται με το χρόνο όπως δείχνει το παρακάτω σχήμα : φ(rad) 2π π 6

Διαβάστε περισσότερα

ΑΡΧΗ 1 ΗΣ ΣΕΛΙΔΑΣ Γ ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΑ ΘΕΩΡΙΑ ΚΑΙ ΠΡΑΞΗ ΔΙΑΓΩΝΙΣΜΑ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΑΝΤΙΚΕΙΜΕΝΟ: ΤΑΛΑΝΤΩΣΕΙΣ - ΚΥΜΑΤΑ

ΑΡΧΗ 1 ΗΣ ΣΕΛΙΔΑΣ Γ ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΑ ΘΕΩΡΙΑ ΚΑΙ ΠΡΑΞΗ ΔΙΑΓΩΝΙΣΜΑ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΑΝΤΙΚΕΙΜΕΝΟ: ΤΑΛΑΝΤΩΣΕΙΣ - ΚΥΜΑΤΑ ΑΡΧΗ 1 ΗΣ ΣΕΛΙΔΑΣ Γ ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΑ ΘΕΩΡΙΑ ΚΑΙ ΠΡΑΞΗ ΔΙΑΓΩΝΙΣΜΑ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΑΝΤΙΚΕΙΜΕΝΟ: ΤΑΛΑΝΤΩΣΕΙΣ - ΚΥΜΑΤΑ ΘΕΜΑ Α : Για να απαντήσετε στις παρακάτω ερωτήσεις πολλαπλής

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 5 ΙΟΥΝΙΟΥ 05 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΠΤΑ

Διαβάστε περισσότερα

ΣΤΑΣΙΜΑ ΚΥΜΑΤΑ. + 1) με Ν=0,1,2,3..., όπου d το μήκος της χορδής. 4 χορδή με στερεωμένο το ένα άκρο ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ. ,στο κενό (αέρα) co

ΣΤΑΣΙΜΑ ΚΥΜΑΤΑ. + 1) με Ν=0,1,2,3..., όπου d το μήκος της χορδής. 4 χορδή με στερεωμένο το ένα άκρο ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ. ,στο κενό (αέρα) co ΣΤΑΣΙΜΑ ΚΥΜΑΤΑ Κύματα που t x t x σχηματίζουν το y1 = A. hm2 p ( - ), y2 = A. hm2 p ( + ) T l T l στάσιμο Εξίσωση στάσιμου c κύματος y = 2 A. sun 2 p. hm2p t l T Πλάτος ταλάντωσης c A = 2A sun 2p l Κοιλίες,

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΕΣ & ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ

ΜΗΧΑΝΙΚΕΣ & ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΜΗΧΑΝΙΚΕΣ & ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Θέμα ο Να δώσετε την σωστή απάντηση στις παρακάτω ερωτήσεις.. Σε μια απλή αρμονική ταλάντωση η χρονική διάρκεια της κίνησης μεταξύ των ακραίων θέσεων είναι 0. s. Η ταλάντωση

Διαβάστε περισσότερα

γ. Για την απώλεια της ενέργειας αφαιρούμε την ενέργεια που είχε το σώμα τη χρονική στιγμή t 1, αυτή της

γ. Για την απώλεια της ενέργειας αφαιρούμε την ενέργεια που είχε το σώμα τη χρονική στιγμή t 1, αυτή της Βασικές ασκήσεις στις φθίνουσες ταλαντώσεις.. Μικρό σώμα εκτελεί φθίνουσα ταλάντωση με πλάτος που μειώνεται με το χρόνο σύμφωνα με τη σχέση =,8e,t (S.I.). Να υπολογίσετε: α. το πλάτος της ταλάντωσης τη

Διαβάστε περισσότερα

αυτ = dt dt = dt dt C dt C Ε = = = L du du du du + = = dt dt dt dt

αυτ = dt dt = dt dt C dt C Ε = = = L du du du du + = = dt dt dt dt ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΤΥΠΟΛΟΓΙΟ Q=CV U E =1/2 2 /C U B =1/2Li 2 E 0 =1/2Q 2 /C=1/2LI 2 E 0 =1/2 2 /C+1/2Li 2 T=2π LC =Q συνωt i=-i ημωt ω=1/ LC E di L αυτ = ΡΥΘΜΟΙ ΜΕΤΑΒΟΛΗΣ d Φορτίου: i = Τάσης: Ρεύματος:

Διαβάστε περισσότερα

Φύση του φωτός. Θεωρούμε ότι το φως έχει διττή φύση: διαταραχή που διαδίδεται στο χώρο. μήκος κύματος φωτός. συχνότητα φωτός

Φύση του φωτός. Θεωρούμε ότι το φως έχει διττή φύση: διαταραχή που διαδίδεται στο χώρο. μήκος κύματος φωτός. συχνότητα φωτός Γεωμετρική Οπτική Φύση του φωτός Θεωρούμε ότι το φως έχει διττή φύση: ΚΥΜΑΤΙΚΗ Βασική ιδέα Το φως είναι μια Η/Μ διαταραχή που διαδίδεται στο χώρο Βασική Εξίσωση Φαινόμενα που εξηγεί καλύτερα (κύμα) μήκος

Διαβάστε περισσότερα

6.10 Ηλεκτροµαγνητικά Κύµατα

6.10 Ηλεκτροµαγνητικά Κύµατα Πρόταση Μελέτης Λύσε απο τον Α τόµο των Γ. Μαθιουδάκη & Γ.Παναγιωτακόπουλου τις ακόλουθες ασκήσεις : 11.1-11.36, 11.46-11.50, 11.52-11.59, 11.61, 11.63, 11.64, 1.66-11.69, 11.71, 11.72, 11.75-11.79, 11.81

Διαβάστε περισσότερα

Ηλεκτρική Ενέργεια. Ηλεκτρικό Ρεύμα

Ηλεκτρική Ενέργεια. Ηλεκτρικό Ρεύμα Ηλεκτρική Ενέργεια Σημαντικές ιδιότητες: Μετατροπή από/προς προς άλλες μορφές ενέργειας Μεταφορά σε μεγάλες αποστάσεις με μικρές απώλειες Σημαντικότερες εφαρμογές: Θέρμανση μέσου διάδοσης Μαγνητικό πεδίο

Διαβάστε περισσότερα

Πως διαδίδονται τα Η/Μ κύματα σε διαφανή διηλεκτρικά?

Πως διαδίδονται τα Η/Μ κύματα σε διαφανή διηλεκτρικά? Πως διαδίδονται τα Η/Μ κύματα σε διαφανή διηλεκτρικά? (Μη-μαγνητικά, μη-αγώγιμα, διαφανή στερεά ή υγρά με πυκνή, σχετικά κανονική διάταξη δομικών λίθων). Γραμμικά πολωμένο κύμα προσπίπτει σε ηλεκτρόνιο

Διαβάστε περισσότερα

ΚΥΜΑΤΑ Θέματα Εξετάσεων

ΚΥΜΑΤΑ Θέματα Εξετάσεων ΚΥΜΑΤΑ. Θέματα Εξετάσεων 1 ΚΥΜΑΤΑ Θέματα Εξετάσεων 1) Το μήκος κύματος δύο κυμάτων που συμβάλλουν και δημιουργούν στάσιμο κύμα είναι λ. Η απόσταση μεταξύ δύο διαδοχικών δεσμών του στάσιμου κύματος θα είναι:

Διαβάστε περισσότερα

Ο χρόνος που απαιτείται για να διανύσει το κύµα κάθε τµήµα της χορδής είναι

Ο χρόνος που απαιτείται για να διανύσει το κύµα κάθε τµήµα της χορδής είναι ΜΑΘΗΜΑ 213 ΟΜΑ Α Β ΕΠΩΝΥΜΟ: ΟΝΟΜΑ: ΑΡΙΘΜΟΣ ΤΑΥΤΟΤΗΤΑΣ: ΗΜΕΡΟΜΗΝΙΑ:6 ΕΚΕΜΒΡΙΟΥ 2010 ΘΕΜΑ 1 2 3 4 5 6 7 8 ΒΑΘΜΟΣ ΚΥΜΑΤΙΚΗ Θέµα 1 ο. Τρία κοµµάτια χορδής, καθένα µήκους L, δένονται µεταξύ τους από άκρο σε

Διαβάστε περισσότερα

Προτεινόμενα θέματα Πανελλαδικών εξετάσεων. Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ

Προτεινόμενα θέματα Πανελλαδικών εξετάσεων. Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ Προτεινόμενα θέματα Πανελλαδικών εξετάσεων Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης 3o ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ ΘΕΜΑ 1ο Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΣΤΑ ΚΥΜΑΤΑ

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΣΤΑ ΚΥΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΣΤΑ ΚΥΜΑΤΑ Θέμα 1 ο Στις ερωτήσεις 1-4 να γράψετε στην κόλλα σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή πρόταση, χωρίς δικαιολόγηση. 1. Α) Φορτία που κινούνται

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΤΟΥ ΦΑΙΝΟΜΕΝΟΥ ΤΗΣ ΔΙΑΘΛΑΣΗΣ ΣΕ «ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ»

ΜΕΛΕΤΗ ΤΟΥ ΦΑΙΝΟΜΕΝΟΥ ΤΗΣ ΔΙΑΘΛΑΣΗΣ ΣΕ «ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ» 1 ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 217 ΜΕΛΕΤΗ ΤΟΥ ΦΑΙΝΟΜΕΝΟΥ ΤΗΣ ΔΙΑΘΛΑΣΗΣ ΣΕ «ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ» Λουκία Μαρνέλη Εκπαιδευτικός Δευτεροβάθμιας Εκπαίδευσης Διεύθυνση: Μονής Κύκκου 1, 15669 Παπάγου

Διαβάστε περισσότερα

ιαγώνισμα στη Φυσική Γ Λυκείου Κατεύθυνσης Επαναληπτικό Ι

ιαγώνισμα στη Φυσική Γ Λυκείου Κατεύθυνσης Επαναληπτικό Ι Θέμα 1 ο ιαγώνισμα στη Φυσική Γ Λυκείου Κατεύθυνσης Επαναληπτικό Ι Στα ερωτήματα 1 5 του πρώτου θέματος, να μεταφέρετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα της απάντησης που θεωρείτε

Διαβάστε περισσότερα

Διάρκεια 90 min. Στις ερωτήσεις 1-4 να επιλέξετε το γράµµα που αντιστοιχεί στη σωστή απάντηση:

Διάρκεια 90 min. Στις ερωτήσεις 1-4 να επιλέξετε το γράµµα που αντιστοιχεί στη σωστή απάντηση: 2ο ΓΕΛ ΠΕΙΡΑΙΑ Α Οµάδα ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Ονοµατεπώνυµο: Τµήµα: Ηµεροµηνία: 2/2/200 Διάρκεια 90 min Ζήτηµα ο Στις ερωτήσεις -4 να επιλέξετε το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 1 ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο 1. Aν ο ρυθμός μεταβολής της ταχύτητας ενός σώματος είναι σταθερός, τότε το σώμα: (i) Ηρεμεί. (ii) Κινείται με σταθερή ταχύτητα. (iii) Κινείται με μεταβαλλόμενη

Διαβάστε περισσότερα

Θ έ μ α τ α γ ι α Ε π α ν ά λ η ψ η Φ υ σ ι κ ή Κ α τ ε ύ θ υ ν σ η ς Γ Λ υ κ ε ί ο υ

Θ έ μ α τ α γ ι α Ε π α ν ά λ η ψ η Φ υ σ ι κ ή Κ α τ ε ύ θ υ ν σ η ς Γ Λ υ κ ε ί ο υ Θ έ μ α τ α γ ι α Ε π α ν ά λ η ψ η Φ υ σ ι κ ή Κ α τ ε ύ θ υ ν σ η ς Γ Λ υ κ ε ί ο υ Αφού επαναληφθεί το τυπολόγιο, να γίνει επανάληψη στα εξής: ΚΕΦΑΛΑΙΟ 1: ΤΑΛΑΝΤΩΣΕΙΣ Ερωτήσεις: (Από σελ. 7 και μετά)

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ Θέμα Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 9 ΜΑΪΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ

Διαβάστε περισσότερα

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ. B κύματος. Γνωρίζουμε ότι το σημείο Α έχει μικρότερη φάση από το x x σημείο Β. Συνεπώς το σημείο Γ του

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ. B κύματος. Γνωρίζουμε ότι το σημείο Α έχει μικρότερη φάση από το x x σημείο Β. Συνεπώς το σημείο Γ του ΑΡΧΗ ης ΣΕΛΙΔΑΣ Προτεινόμενο Τελικό Διαγώνισμα Στη Φυσική Θετικής και Τεχνολογικής Κατεύθυσης Γ Λυκείου Διάρκεια: 3ώρες ΘΕΜΑ A Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΗΣ ΘΕΤΙΗΣ-ΤΕΧΝΟΛΟΓΙΗΣ ΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΕΙΟΥ Θέμα ο. ύλινδρος περιστρέφεται γύρω από άξονα που διέρχεται από το κέντρο μάζας του με γωνιακή ταχύτητα ω. Αν ο συγκεκριμένος κύλινδρος περιστρεφόταν

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ (14)

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ (14) ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ (14) Θέμα 1 ο Α. Σε ιδανικό κύκλωμα ηλεκτρικών ταλαντώσεων LC σε κάποια χρονική στιγμή που το ρεύμα στο κύκλωμα είναι ίσο με το μισό της μέγιστης τιμής

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ

ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ Ενότητα 8: Συντονισμός Αριστείδης Νικ. Παυλίδης Τμήμα Μηχανολόγων Μηχανικών και Βιομηχανικού Σχεδιασμού ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΗ ΚΛΙΜΑΚΑ http://edu.klimaka.gr ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ

ΕΚΠΑΙΔΕΥΤΙΚΗ ΚΛΙΜΑΚΑ http://edu.klimaka.gr ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΕΣΠΕΡΙΝΟΥ ΕΠΑΛ (ΟΜΑ ΑΣ Β ) ΠΕΜΠΤΗ 27 MAΪΟΥ 2010 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ:

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ 2001 ΘΕΜΑΤΑ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 29 ΜΑΪΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ): ΦΥΣΙΚΗ ΘΕΜΑ 1 ο

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 10 ΣΕΠΤΕΜΒΡΙΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΘΕΜΑ 1 Α. Ερωτήσεις πολλαπλής επιλογής 1. Σώμα εκτελεί Α.Α.Τ με περίοδο Τ και πλάτος Α. Αν διπλασιάσουμε το πλάτος της ταλάντωσης τότε η περίοδος της θα : α. παραμείνει

Διαβάστε περισσότερα

Generated by Foxit PDF Creator Foxit Software http://www.foxitsoftware.com For evaluation only. ΑΣΚΗΣΗ 10 ΜΕΤΡΗΣΗ ΤΗΣ ΕΣΤΙΑΚΗΣ ΑΠΟΣΤΑΣΗΣ ΦΑΚΟΥ

Generated by Foxit PDF Creator Foxit Software http://www.foxitsoftware.com For evaluation only. ΑΣΚΗΣΗ 10 ΜΕΤΡΗΣΗ ΤΗΣ ΕΣΤΙΑΚΗΣ ΑΠΟΣΤΑΣΗΣ ΦΑΚΟΥ ΑΣΚΗΣΗ 0 ΜΕΤΡΗΣΗ ΤΗΣ ΕΣΤΙΑΚΗΣ ΑΠΟΣΤΑΣΗΣ ΦΑΚΟΥ . Γεωμετρική οπτική ΜΕΡΟΣ ΠΡΩΤΟ ΒΑΣΙΚΕΣ ΘΕΩΡΗΤΙΚΕΣ ΓΝΩΣΕΙΣ Η Γεωμετρική οπτική είναι ένας τρόπος μελέτης των κυμάτων και χρησιμοποιείται για την εξέταση μερικών

Διαβάστε περισσότερα

r r r r r r r r r r r

r r r r r r r r r r r ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 0 ΜΑÏΟΥ 011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ) ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 9 ΜΑΪΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΛΥΚΕΙΟΥ ΠΕΡIΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2013 ΣΤΟ ΜΑΘΗΜΑ:ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΙΣΗΓΗΤΗΣ: ΧΙΩΤΕΛΗΣ ΙΩΑΝΝΗΣ

ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΛΥΚΕΙΟΥ ΠΕΡIΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2013 ΣΤΟ ΜΑΘΗΜΑ:ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΙΣΗΓΗΤΗΣ: ΧΙΩΤΕΛΗΣ ΙΩΑΝΝΗΣ Σχολικό έτος 2012-2013 Πελόπιο, 23 Μαΐου 2013 ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΛΥΚΕΙΟΥ ΠΕΡIΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2013 ΣΤΟ ΜΑΘΗΜΑ:ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΙΣΗΓΗΤΗΣ: ΧΙΩΤΕΛΗΣ ΙΩΑΝΝΗΣ ΘΕΜΑ

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 1 1. Ένα αυτοκίνητο κινείται με κατεύθυνση από το Νότο προς το Βορρά. Κάποια στιγμή ο οδηγός αντιαμβάνεται ένα εμπόδιο και φρενἀρει. Εάν το αυτοκίνητο διαθέτει Α.Β.S.,

Διαβάστε περισσότερα

ιάθλαση. Ολική ανάκλαση. ιάδοση µέσα σε κυµατοδηγό.

ιάθλαση. Ολική ανάκλαση. ιάδοση µέσα σε κυµατοδηγό. ρ. Χ. Βοζίκης Εργαστήριο Φυσικής ΙΙ 91 9. Άσκηση 9 ιάθλαση. Ολική ανάκλαση. ιάδοση µέσα σε κυµατοδηγό. 9.1 Σκοπός της εργαστηριακής άσκησης Σκοπός της άσκησης είναι η γνωριµία των σπουδαστών µε τα φαινόµενα

Διαβάστε περισσότερα

Κυκλώµατα µε αντίσταση και πυκνωτή ή αντίσταση και πηνίο σε σειρά και πηγή συνεχούς τάσης

Κυκλώµατα µε αντίσταση και πυκνωτή ή αντίσταση και πηνίο σε σειρά και πηγή συνεχούς τάσης Κυκλώµατα µε αντίσταση και πυκνωτή ή αντίσταση και πηνίο σε σειρά και πηγή συνεχούς τάσης Το κύριο χαρακτηριστικό των κυκλωµάτων αυτών είναι ότι ο χρόνος στον οποίο η τάση, ή η ένταση παίρνει ορισµένη

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ Φυσική Γ Λυκείου (Θετικής & Τεχνολογικής κατεύθυνσης)

ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ Φυσική Γ Λυκείου (Θετικής & Τεχνολογικής κατεύθυνσης) Θέµα 1 ο ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ Φυσική Γ Λυκείου (Θετικής & Τεχνολογικής κατεύθυνσης) 1.1 Πολλαπλής επιλογής A. Ελαστική ονοµάζεται η κρούση στην οποία: α. οι ταχύτητες των σωµάτων πριν και µετά την κρούση

Διαβάστε περισσότερα

http://edu.klimaka.gr ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ

http://edu.klimaka.gr ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 28 ΜΑΪΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1 ο Για τις ημιτελείς

Διαβάστε περισσότερα

Κυκλώματα με ημιτονοειδή διέγερση

Κυκλώματα με ημιτονοειδή διέγερση Κυκλώματα με ημιτονοειδή διέγερση Κυκλώματα με ημιτονοειδή διέγερση ονομάζονται εκείνα στα οποία επιβάλλεται τάση της μορφής: = ( ω ϕ ) vt V sin t όπου: V το πλάτος (στιγμιαία μέγιστη τιμή) της τάσης ω

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ) Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ) Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ) Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 00 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α I A. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα

Διαβάστε περισσότερα

Μονάδες 4. Β) Να αιτιολογήσετε την επιλογή σας. Μονάδες 8

Μονάδες 4. Β) Να αιτιολογήσετε την επιλογή σας. Μονάδες 8 Β.1 Μονοχρωματική δέσμη φωτός, περνάει από τον αέρα σε ένα κομμάτι γυαλί. Το μήκος κύματος της δέσμης φωτός όταν αυτή περάσει από τον αέρα στο γυαλί: α. θα αυξηθεί β. θα μειωθεί γ. θα παραμείνει αμετάβλητο

Διαβάστε περισσότερα

Οι δύο θεμελιώδεις παράμετροι προσδιορισμού της ταχύτητας του φωτός στο κενό: Διηλεκτρική σταθερά ε0 Μαγνητική διαπερατότητα μ0

Οι δύο θεμελιώδεις παράμετροι προσδιορισμού της ταχύτητας του φωτός στο κενό: Διηλεκτρική σταθερά ε0 Μαγνητική διαπερατότητα μ0 Οι δύο θεμελιώδεις παράμετροι προσδιορισμού της ταχύτητας του φωτός στο κενό: Διηλεκτρική σταθερά ε0 Μαγνητική διαπερατότητα μ0 1 c 0 0 Όταν το φως αλληλεπιδρά με την ύλη, το ηλεκτρομαγνητικό πεδίο του

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 1 ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ Τι είναι ένα ευθύγραμμο τμήμα ΑΒ; Πώς ονομάζονται τα σημεία Α και Β; 1 ος ορισμός : Είναι η «ίσια» γραμμή που ενώνει τα δύο σημεία Α και Β. 2 ος ορισμός : Είναι

Διαβάστε περισσότερα

ΑΟ είναι η προσπίπτουσα ακτίνα. Ο είναι η διαθλωµένη ακτίνα. ΟΚ είναι η κάθετη στο σηµείο πρόσπτωσης. α : είναι η γωνία πρόσπτωσης δ : είναι η γωνία

ΑΟ είναι η προσπίπτουσα ακτίνα. Ο είναι η διαθλωµένη ακτίνα. ΟΚ είναι η κάθετη στο σηµείο πρόσπτωσης. α : είναι η γωνία πρόσπτωσης δ : είναι η γωνία 1 2 Ανάκλασης Νόµος Ανάκλασης Ακτίνα πρόσπτωσης Κάθετη Ακτίνα ανάκλασης Νόµος Ανάκλασης: η γωνία πρόσπτωσης (α) ισούται µε τη γωνία ανάκλασης (β) α = β α β Επίπεδο κάτοπτρο ε α β α: Γωνίαπρόσπτωσης β:γωνίαανάκλασης

Διαβάστε περισσότερα

Ã. ÁÓÉÁÊÇÓ ÐÅÉÑÁÉÁÓ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. ΘΕΜΑ 1 ο

Ã. ÁÓÉÁÊÇÓ ÐÅÉÑÁÉÁÓ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. ΘΕΜΑ 1 ο Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ ο Στι ερωτήσει - 4 να γράψετε στο τετράδιό σα τον αριθµό των ερώτηση και δίπλα σε κάθε αριθµό το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Τροχό κυλίεται πάνω σε οριζόντιο

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ ΣΤΙΣ ΤΑΛΑΝΤΩΣΕΙΣ

ΕΡΓΑΣΙΑ ΣΤΙΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΡΓΑΣΙΑ ΣΤΙΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΡΩΤΗΣΗ 1 Ένα σώμα εκτελεί κίνηση που οφείλεται στη σύνθεση δύο απλών αρμονικών ταλαντώσεων ίδιας διεύθυνσης, που γίνονται γύρω από το ίδιο σημείο, με το ίδιο πλάτος A και συχνότητες

Διαβάστε περισσότερα

ΦΩΣ ΑΝΑΣΤΑΣΙΑ ΚΟΥΤΑΛΙΑΝΟΥ ΙΩΑΝΝΑ ΚΑΡΝΕΣΗ ΛΕYΤΕΡΗΣ ΠΑΠΑΙΩΑΝΝΟΥ ΓΙΩΡΓΟΣ ΖΩΓΡΑΦΑΚΗΣ ΤΑΣΟΣ ΠΑΠΑΘΕΟΥ

ΦΩΣ ΑΝΑΣΤΑΣΙΑ ΚΟΥΤΑΛΙΑΝΟΥ ΙΩΑΝΝΑ ΚΑΡΝΕΣΗ ΛΕYΤΕΡΗΣ ΠΑΠΑΙΩΑΝΝΟΥ ΓΙΩΡΓΟΣ ΖΩΓΡΑΦΑΚΗΣ ΤΑΣΟΣ ΠΑΠΑΘΕΟΥ ΦΩΣ ΑΝΑΣΤΑΣΙΑ ΚΟΥΤΑΛΙΑΝΟΥ ΙΩΑΝΝΑ ΚΑΡΝΕΣΗ ΛΕYΤΕΡΗΣ ΠΑΠΑΙΩΑΝΝΟΥ ΓΙΩΡΓΟΣ ΖΩΓΡΑΦΑΚΗΣ ΤΑΣΟΣ ΠΑΠΑΘΕΟΥ ΤΡΑΓΟΥΔΙΑ-ΦΩΣ ΝΙΚΟΣ ΠΟΡΤΟΚΑΛΟΓΛΟΥ ΠΟΥ ΗΣΟΥΝΑ ΦΩΣ ΜΟΥ ΠΥΛΗΤΟΥΗΧΟΥ ΤΟΦΩΣΤΟΥΗΛΙΟΥ SOUNDTRACK ΑΠΌ ΜΑΛΛΙΑ ΚΟΥΒΑΡΙΑ

Διαβάστε περισσότερα

Μονάδες 5 Απαντήσεις Α5. Σ, Σ, Λ, Λ, Σ

Μονάδες 5 Απαντήσεις Α5. Σ, Σ, Λ, Λ, Σ ΠΑΝΕΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΟΥ ΥΕΙΟΥ & ΕΠΑ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΕΥΗ 5 ΜΑÏΟΥ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΗ ΘΕΤΙΗΣ & ΤΕΧΝΟΟΓΙΗΣ ΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Στις ημιτελείς προτάσεις Α-Α4 να γράψετε στο τετράδιό

Διαβάστε περισσότερα

Νέα Οπτικά Μικροσκόπια

Νέα Οπτικά Μικροσκόπια Νέα Οπτικά Μικροσκόπια Αντίθεση εικόνας (contrast) Αντίθεση πλάτους Αντίθεση φάσης Αντίθεση εικόνας =100 x (Ι υποβ -Ι δειγμα )/ Ι υποβ Μικροσκοπία φθορισμού (Χρησιμοποιεί φθορίζουσες χρωστικές για το

Διαβάστε περισσότερα

ΣΤΕΡΕΟΜΕΤΡΙΑ Β ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ

ΣΤΕΡΕΟΜΕΤΡΙΑ Β ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ ΣΤΕΡΕΟΜΕΤΡΙΑ Β ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ Α. ΠΟΛΥΕ ΡΑ 1. ΟΡΙΣΜΟΙ 2. ΟΡΘΟΓΩΝΙΟ ΠΑΡΑΛΛΗΛΕΠΙΠΕ Ο α = µήκος β = πλάτος γ = ύψος δ = διαγώνιος = α. β. γ = Ε β. υ Ε ολ = 2. (αβ + αγ + βγ) 3. ΚΥΒΟΣ = α 3 Ε ολ = 6α 2

Διαβάστε περισσότερα

Κεφάλαιο 5. Θεμελιώδη προβλήματα της Τοπογραφίας

Κεφάλαιο 5. Θεμελιώδη προβλήματα της Τοπογραφίας Κεφάλαιο 5 Θεμελιώδη προβλήματα της Τοπογραφίας ΚΕΦΑΛΑΙΟ 5. 5 Θεμελιώδη προβλήματα της Τοπογραφίας. Στο Κεφάλαιο αυτό περιέχονται: 5.1 Γωνία διεύθυνσης. 5. Πρώτο θεμελιώδες πρόβλημα. 5.3 εύτερο θεμελιώδες

Διαβάστε περισσότερα

(μονάδες 5) A1.2 Κύκλωμα RLC σε σειρά τροφοδοτείται από εναλλασσόμενη τάση V=V 0 ημ ωt + και διαρρέεται. +. Τότε:

(μονάδες 5) A1.2 Κύκλωμα RLC σε σειρά τροφοδοτείται από εναλλασσόμενη τάση V=V 0 ημ ωt + και διαρρέεται. +. Τότε: ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 23 ΜΑÏΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ) ΣΥΝΟΛΟ

Διαβάστε περισσότερα

Επαναληπτικό διαγώνισµα στα Κύµατα

Επαναληπτικό διαγώνισµα στα Κύµατα ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1 Επαναληπτικό διαγώνισµα στα Κύµατα Θέµα 1 0 Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

Διαβάστε περισσότερα

Κεφάλαιο31 Εξισώσεις Maxwellκαι ΗλεκτροµαγνητικάΚύµατα. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο31 Εξισώσεις Maxwellκαι ΗλεκτροµαγνητικάΚύµατα. Copyright 2009 Pearson Education, Inc. Κεφάλαιο31 Εξισώσεις Maxwellκαι ΗλεκτροµαγνητικάΚύµατα ΠεριεχόµεναΚεφαλαίου 31 Τα µεταβαλλόµενα ηλεκτρικά πεδία παράγουν µαγνητικά πεδία. Ο Νόµος του Ampère-Ρεύµα µετατόπισης Νόµος του Gauss s στο µαγνητισµό

Διαβάστε περισσότερα

Ο15. Κοίλα κάτοπτρα. 2. Θεωρία. 2.1 Γεωμετρική Οπτική

Ο15. Κοίλα κάτοπτρα. 2. Θεωρία. 2.1 Γεωμετρική Οπτική Ο15 Κοίλα κάτοπτρα 1. Σκοπός Σκοπός της άσκησης είναι η εύρεση της εστιακής απόστασης κοίλου κατόπτρου σχετικά μεγάλου ανοίγματος και την μέτρηση του σφάλματος της σφαιρικής εκτροπής... Θεωρία.1 Γεωμετρική

Διαβάστε περισσότερα

Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης

Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Δίκτυα Τηλεπικοινωνιών και Μετάδοσης Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής & Δρ. Στυλιανός Π. Τσίτσος Επίκουρος Καθηγητής

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΚΥΜΑΤΑ

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΚΥΜΑΤΑ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΚΥΜΑΤΑ Θέμα1: Α. Η ταχύτητα διάδοσης ενός ηλεκτρομαγνητικού κύματος: α. εξαρτάται από τη συχνότητα ταλάντωσης της πηγής β. εξαρτάται

Διαβάστε περισσότερα

Κύκλωμα RLC σε σειρά. 1. Σκοπός. 2. Γενικά. Εργαστήριο Φυσικής IΙ - Κύκλωμα RLC σε σειρά

Κύκλωμα RLC σε σειρά. 1. Σκοπός. 2. Γενικά. Εργαστήριο Φυσικής IΙ - Κύκλωμα RLC σε σειρά Κύκλωμα RLC σε σειρά. Σκοπός Σκοπός της άσκησης είναι η εξοικείωση των σπουδαστών με τη συμπεριφορά ενός κυκλώματος RLC συνδεδεμένο σε σειρά όταν τροφοδοτείται από εναλλασσόμενη τάση. Συγκεκριμένα, επιδιώκεται

Διαβάστε περισσότερα

ΕΞΗΓΗΣΗ ΤΗΣ ΣΥΜΒΟΛΗΣ ΚΑΙ ΤΗΣ ΠΕΡΙΘΛΑΣΗΣ ΜΕ ΤΗΝ ΣΩΜΑΤΙΔΙΑΚΗ ΘΕΩΡΙΑ ΤΟΥ ΦΩΤΟΣ

ΕΞΗΓΗΣΗ ΤΗΣ ΣΥΜΒΟΛΗΣ ΚΑΙ ΤΗΣ ΠΕΡΙΘΛΑΣΗΣ ΜΕ ΤΗΝ ΣΩΜΑΤΙΔΙΑΚΗ ΘΕΩΡΙΑ ΤΟΥ ΦΩΤΟΣ ΕΞΗΓΗΣΗ ΤΗΣ ΣΥΜΒΟΛΗΣ ΚΑΙ ΤΗΣ ΠΕΡΙΘΛΑΣΗΣ ΜΕ ΤΗΝ ΣΩΜΑΤΙΔΙΑΚΗ ΘΕΩΡΙΑ ΤΟΥ ΦΩΤΟΣ ΑΝΑΤΡΟΠΗ ΤΗΣ ΚΥΜΑΤΙΚΗΣ ΘΕΩΡΙΑΣ Του Αλέκου Χαραλαμπόπουλου Η συμβολή και η περίθλαση του φωτός, όταν περνά λεπτή σχισμή ή μικρή

Διαβάστε περισσότερα

ΚΥΜΑΤΑ. Επαλληλία 48. Συμβολή 49. Στάσιμα κύματα 52. Ηλεκτρομαγνητικά κύματα 55. Ανάκλαση και διάθλαση 63. Διασκεδασμός 70. Σύνοψη 72.

ΚΥΜΑΤΑ. Επαλληλία 48. Συμβολή 49. Στάσιμα κύματα 52. Ηλεκτρομαγνητικά κύματα 55. Ανάκλαση και διάθλαση 63. Διασκεδασμός 70. Σύνοψη 72. ΚΥΜΑΤΑ 2 Επαλληλία 48 Συμβολή 49 Στάσιμα κύματα 52 Ηλεκτρομαγνητικά κύματα 55 Ανάκλαση και διάθλαση 63 Διασκεδασμός 70 Σύνοψη 72 Ασκήσεις 74 Εικ. 2.1 Κύμα στην επιφάνεια της θάλασσας. 2-1 ΕΙΣΑΓΩΓΗ Η έννοια

Διαβάστε περισσότερα

Εργαστήριο Οπτικής ΣΥΜΒΟΛΗ ΤΟΥ ΦΩΤΟΣ

Εργαστήριο Οπτικής ΣΥΜΒΟΛΗ ΤΟΥ ΦΩΤΟΣ ΣΥΜΒΟΛΗ ΤΟΥ ΦΩΤΟΣ Μάκης Αγγελακέρης 010 Σκοπός της άσκησης Να μπορείτε να εξηγήσετε το φαινόμενο της Συμβολής και κάτω από ποιες προϋποθέσεις δύο δέσμες φωτός, μπορεί να συμβάλουν. Να μπορείτε να περιγράψετε

Διαβάστε περισσότερα

Μονάδες 5. Μονάδες 5. Μονάδες 5. Μονάδες 5 ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ

Μονάδες 5. Μονάδες 5. Μονάδες 5. Μονάδες 5 ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΘΕΜΑ ο ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ου ΓΕΛ ΠΕΤΡΟΥΠΟΛΗΣ ΔΕΥΤΕΡΑ 3 ΜΑΪΟΥ 200 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ () Να γράψετε στο τετράδιό

Διαβάστε περισσότερα

ΘΕΜΑ Α : α. 3000 V/m β. 1500 V/m γ. 2000 V/m δ. 1000 V/m

ΘΕΜΑ Α : α. 3000 V/m β. 1500 V/m γ. 2000 V/m δ. 1000 V/m ΑΡΧΗ 1 ΗΣ ΣΕΛΙ ΑΣ Γ ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΑ ΘΕΩΡΙΑ ΚΑΙ ΠΡΑΞΗ ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α : Για να απαντήσετε στις παρακάτω ερωτήσεις πολλαπλής επιλογής αρκεί να γράψετε

Διαβάστε περισσότερα

ΠΟΥ ΔΙΑΔΙΔΕΤΑΙ ΤΟ ΦΩΣ

ΠΟΥ ΔΙΑΔΙΔΕΤΑΙ ΤΟ ΦΩΣ 1 ΦΩΣ Στο μικρόκοσμο θεωρούμε ότι το φως έχει δυο μορφές. Άλλοτε το αντιμετωπίζουμε με τη μορφή σωματιδίων που ονομάζουμε φωτόνια. Τα φωτόνια δεν έχουν μάζα αλλά μόνον ενέργεια. Άλλοτε πάλι αντιμετωπίζουμε

Διαβάστε περισσότερα

2. Όλες οι απαντήσεις να δοθούν στο εξεταστικό δοκίμιο το οποίο θα επιστραφεί.

2. Όλες οι απαντήσεις να δοθούν στο εξεταστικό δοκίμιο το οποίο θα επιστραφεί. ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑ : Εφαρμοσμένη Ηλεκτρολογία

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 1 Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Δύο χορδές μιας κιθάρας Χ1, Χ2

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΙΓΩΝΙΣΜ ΘΕΜ 1 Ο Να επιλέξετε την σωστή απάντηση. ) Η απόσταση µεταξύ δύο διαδοχικών δεσµών το στάσιµο κύµα είναι: 1/ λ/4 / λ/6 3/ λ/ 4/ λ όπου λ είναι το µήκος κύµατος των τρεχόντων

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ

ΠΕΙΡΑΜΑΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ Εισαγωγή Σκοπός της εργαστηριακής άσκησης είναι η μελέτη του ηλεκτροοπτικού φαινομένου (φαινόμενο Pockels) σε θερμοκρασία περιβάλλοντος για κρύσταλλο KDP και ο προσδιορισμός της τάσης V λ/4. Στοιχεία Θεωρίας

Διαβάστε περισσότερα

Μάθημα 4.10: Οπτικά Αποθηκευτικά Μέσα

Μάθημα 4.10: Οπτικά Αποθηκευτικά Μέσα Κεφάλαιο 4 ο Ο Προσωπικός Υπολογιστής Μάθημα 4.10: Οπτικά Αποθηκευτικά Μέσα Όταν ολοκληρώσεις το κεφάλαιο θα μπορείς: Να εξηγείς τις αρχές λειτουργίας των οπτικών αποθηκευτικών μέσων. Να περιγράφεις τον

Διαβάστε περισσότερα

t 1 t 2 t 3 t 4 δ. Η κινητική ενέργεια του σώματος τη χρονική στιγμή t 1, ισούται με τη δυναμική ενέργεια της ταλάντωσης τη χρονική στιγμή t 2.

t 1 t 2 t 3 t 4 δ. Η κινητική ενέργεια του σώματος τη χρονική στιγμή t 1, ισούται με τη δυναμική ενέργεια της ταλάντωσης τη χρονική στιγμή t 2. Τάξη Μάθημα : Γ ΛΥΚΕΙΟΥ : Φυσική Εξεταστέα Ύλη : ΚΕΦΑΛΑΙΟ 1 ΚΑΙ 2 Καθηγητής : ΝΙΚΟΛΟΠΟΥΛΟΣ ΧΡΗΣΤΟΣ Ημερομηνία : 11-11 -2012 ΘΕΜΑ 1ο 1) Η ταχύτητα ενός σώματος που εκτελεί απλή αρμονική ταλάντωση μεταβάλλεται,

Διαβάστε περισσότερα

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Αριθμητική - Άλγεβρα Γεωμετρία Άρτιος λέγεται

Διαβάστε περισσότερα

2. Όλες οι απαντήσεις να δοθούν στο εξεταστικό δοκίμιο το οποίο θα επιστραφεί.

2. Όλες οι απαντήσεις να δοθούν στο εξεταστικό δοκίμιο το οποίο θα επιστραφεί. ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑ : Εφαρμοσμένη Ηλεκτρολογία

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΑ ΚΥΚΛΩΜΑΤΑ 1 ης ΤΑΞΗΣ (Κεφ. 18)

ΑΣΚΗΣΕΙΣ ΣΤΑ ΚΥΚΛΩΜΑΤΑ 1 ης ΤΑΞΗΣ (Κεφ. 18) ΑΣΚΗΣΕΙΣ ΣΤΑ ΚΥΚΛΩΜΑΤΑ 1 ης ΤΑΞΗΣ (Κεφ. 18) Άσκηση 1. Α) Στο κύκλωμα του παρακάτω σχήματος την χρονική στιγμή t=0 sec ο διακόπτης κλείνει. Βρείτε τα v c και i c. Οι πυκνωτές είναι αρχικά αφόρτιστοι. Β)

Διαβάστε περισσότερα

δ) µειώνεται το µήκος κύµατός της (Μονάδες 5)

δ) µειώνεται το µήκος κύµατός της (Μονάδες 5) ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 011-01 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1 η (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 30/1/11 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ 1 ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό κάθε µίας από τις παρακάτω

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΟΙ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΑΠΟΤΕΛΟΥΝ ΜΕΡΟΣ ΤΟΥ ΘΕΜΑΤΟΣ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ (ΘΕΜΑ ΘΕΩΡΙΑΣ) Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ 1. Ένα τρίγωνο είναι οξυγώνιο όταν έχει

Διαβάστε περισσότερα

ΑΝΑΚΛΑΣΗ. β' νόμος της ανάκλασης: Η γωνία πρόσπτωσης και η γωνία ανάκλασης είναι ίσες.

ΑΝΑΚΛΑΣΗ. β' νόμος της ανάκλασης: Η γωνία πρόσπτωσης και η γωνία ανάκλασης είναι ίσες. ΑΝΑΚΛΑΣΗ Η ακτίνα (ή η δέσμη) πριν ανακλασθεί ονομάζεται προσπίπτουσα ή αρχική, ενώ μετά την ανάκλαση ονομάζεται ανακλώμενη. Η γωνία που σχηματίζει η προσπίπτουσα με την κάθετη στην επιφάνεια στο σημείο

Διαβάστε περισσότερα