1 ΘΕΩΡΙΑ ΥΠΟΔΟΜΗΣ 2 ΜΕΤΑΔΟΣΗ ΔΕΔΟΜΕΝΩΝ Εισαγωγή Σειρές Fourier Το πεδίο της συχνότητας 1-7

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "1 ΘΕΩΡΙΑ ΥΠΟΔΟΜΗΣ 2 ΜΕΤΑΔΟΣΗ ΔΕΔΟΜΕΝΩΝ 2-30. 1.1 Εισαγωγή 1-5. 1.2 Σειρές Fourier 1-5. 1.3 Το πεδίο της συχνότητας 1-7"

Transcript

1 1 ΘΕΩΡΙΑ ΥΠΟΔΟΜΗΣ Εισαγωγή Σειρές Fourier Το πεδίο της συχνότητας Φάσμα μιας σειράς δυαδικών δεδομένων βασικής ζώνης Ο μετασχηματισμός Fourier Η διαδικασία της διαμόρφωσης Η διαδικασία της μίξης Ο διανυσματικός διαμορφωτής Βασική θεωρία πιθανοτήτων και θόρυβος στις επικοινωνίες Αθροιστική συνάρτηση πιθανότητας (cumulative distribution function - cdf) Συνάρτηση πυκνότητας πιθανότητας Φάσμα θορύβου Ιδιότητες της λογαριθμικής συνάρτησης Ορισμός db Επανάληψη γραμμικών συστημάτων Γραμμικά μη χρονικά μεταβαλλόμενα συστήματα Κρουστική απόκριση Συνάρτηση μεταφοράς ΜΕΤΑΔΟΣΗ ΔΕΔΟΜΕΝΩΝ Παράγοντες που επηρεάζουν τη σχεδίαση συστημάτων Βασικές αρχές της εκπομπής δεδομένων Δυαδική σηματοδοσία Σηματοδοσία πολλών επιπέδων Ο συμβιβασμός μεταξύ εύρους ζώνης και θορύβου Μετάδοση πληροφορίας ορισμοί Πολυεπίπεδη σηματοδοσία Ρυθμός εσφαλμένων bit έναντι ρυθμού εσφαλμένων συμβόλων Κωδικοποίηση Gray Εκτίμηση του απαιτούμενου εύρους ζώνης Περιορισμός της χωρητικότητας καναλιού λόγω θορύβου Απόδοση ισχύος και εύρους ζώνης 2-39 Επικοινωνίες ΙΙ 1-1 Τμήμα Πληροφορικής & Επικοινωνιών

2 3 ΜΕΤΑΔΟΣΗ ΣΤΗ ΒΑΣΙΚΗ ΖΩΝΗ Διασυμβολική παρεμβολή Φίλτρα Nyquist Διαγράμματα οφθαλμού Φίλτρα υψωμένου συνημιτόνου Ανάκτηση χρονισμού συμβόλων Κυκλώματα χρονισμού συμβόλων Προσαρμοσμένο φίλτρο Δυαδική σηματοδοσία και βέλτιστο όριο ανίχνευσης ΨΗΦΙΑΚΗ ΔΙΑΜΟΡΦΩΣΗ ΔΙΕΛΕΥΣΗΣ ΖΩΝΗΣ Ψηφιακή διαμόρφωση πλάτους (ASK) Διαμόρφωση ASK περιορισμένου εύρους ζώνης Ασύγχρονη ανίχνευση Σύγχρονη ανίχνευση Ανάκτηση φορέα στη σύγχρονη ASK Σύγκριση ασύγχρονης και σύγχρονης ανίχνευσης Ψηφιακή διαμόρφωση συχνότητας (FSK) Δημιουργία της διαμόρφωσης FSK Καταλαμβανόμενο εύρος ζώνης στη διαμόρφωσης FSK Ασύμφωνη ανίχνευση της διαμόρφωσης FSK Σύμφωνη ανίχνευση της διαμόρφωσης FSK Ρυθμός εμφάνισης σφαλμάτων στη διαμόρφωση FSK Πλεονεκτήματα και μειονεκτήματα της διαμόρφωσης FSK Ψηφιακή διαμόρφωση φάσης (PSK) Δημιουργία της PSK Ανίχνευση της διαμόρφωσης PSK Ανάκτηση φέροντος για τη σύμφωνη διαμόρφωση PSK Διαφορική διαμόρφωση PSK Ανάκτηση χρονισμού συμβόλων στη διαμόρφωση PSK Διάγραμμα αστερισμού για τη διαμόρφωση PSK Ρυθμός εμφάνισης σφαλμάτων στη διαμόρφωση PSK Σύγκριση δυαδικών μεθόδων ψηφιακής διαμόρφωσης ΨΗΦΙΑΚΗ ΔΙΑΜΟΡΦΩΣΗ ΠΟΛΛΑΠΛΩΝ ΕΠΙΠΕΔΩΝ Μ-αδική ψηφιακή διαμόρφωση πλάτους (Μ-αδική ASK) Απόδοση της Μ-αδικής ASK Μ-αδική ψηφιακή διαμόρφωση συχνότητας (Μ-αδική FSK) Ιδιότητες των ορθογωνικών συμβόλων Ανίχνευση της ορθογωνικής διαμόρφωσης FSK Ρυθμός εμφάνισης σφαλμάτων στην Μ-αδική FSK 5-94 Επικοινωνίες ΙΙ 1-2 Τμήμα Πληροφορικής & Επικοινωνιών

3 5.3 Μ-αδική ψηφιακή διαμόρφωση φάσης (Μ-αδική PSK) Υλοποίηση της QPSK Εφαρμογή της QPSK Ρυθμός εμφάνισης σφαλμάτων στην QPSK Διαφορική διαμόρφωση QPSK (DQPSK) Η διαμόρφωση π/4-qpsk Η διαμόρφωση O-QPSK Το φάσμα της Μ-αδικής διαμόρφωσης PSK Απόδοση της Μ-αδικής διαμόρφωσης PSK Συνδυασμένη ψηφιακή διαμόρφωση πλάτους και φάσης QAM Δημιουργία της διαμόρφωσης QAM Ανίχνευση της διαμόρφωσης QAM Ρυθμός εμφάνισης σφαλμάτων στη διαμόρφωση QAM Σύγκριση μεταξύ Μ-αδικών QAM και PSK Κωδικοποίηση Gray Το όριο Shannon ΒΙΒΛΙΟΓΡΑΦΙΑ ΠΑΡΑΡΤΗΜΑ Α Επικοινωνίες ΙΙ 1-3 Τμήμα Πληροφορικής & Επικοινωνιών

4 Equation Chapter 1 Section 1 Επικοινωνίες ΙΙ 1-4 Τμήμα Πληροφορικής & Επικοινωνιών

5 1 ΘΕΩΡΙΑ ΥΠΟΔΟΜΗΣ 1.1 Εισαγωγή Οι επιδόσεις μιας ψηφιακής επικοινωνιακής ζεύξης περιορίζονται από δυο κεφαλαιώδεις παράγοντες: το εύρος ζώνης και το θόρυβο. Για να καταλάβουμε ακριβώς την αλληλεπίδραση ανάμεσα στο ρυθμό αποστολής δεδομένων ενός συστήματος, στο είδος της διαμόρφωσης, το σχήμα των παλμών και το εύρος ζώνης του καναλιού επικοινωνίας, θα πρέπει να αναφερθούμε στο συχνοτικό περιεχόμενο διαφόρων ειδών χρονικά μεταβαλλόμενων σημάτων. Είναι φανερό ότι το εύρος ζώνης παίζει καθοριστικό ρόλο στη σχεδίαση συστημάτων επικοινωνίας. Επομένως, για να μπορέσουμε να αναλύσουμε και να σχεδιάσουμε διάφορα συστήματα επικοινωνιών είναι απαραίτητο να είμαστε σε θέση να εκτιμήσουμε το συχνοτικό περιεχόμενο διαφόρων ειδών χρονικά μεταβαλλόμενων σημάτων. Τα μαθηματικά εργαλεία που απαιτούνται για τη μετάβαση από το πεδίο του χρόνου σε αυτό της συχνότητας είναι συνηθέστερα η αναπαράσταση με σειρές Fourier (για περιοδικά σήματα) και ο μετασχηματισμός Fourier (για εν γένει περιοδικά και απεριοδικά σήματα). 1.2 Σειρές Fourier Σύμφωνα με την θεωρία του Γάλλου μαθηματικού Fourier το συχνοτικό περιεχόμενο μιας περιοδικής συνάρτησης στο πεδίο του χρόνου, δηλαδή μιας συνάρτησης για την οποία ισχύει x(t)=x(t+t), όπου T η περίοδος επανάληψης, μπορεί εκτιμηθεί μέσω του παρακάτω αναπτύγματος: Επικοινωνίες ΙΙ 1-5 Τμήμα Πληροφορικής & Επικοινωνιών

6 [ n cos(2 π ) n sin(2 π 0 )] x( t) = a + a nf t + b nf t 0 0 n= 0 (1.1) 1 όπου f 0 = και οι όροι α 0, α n και b n δίδονται από τις σχέσεις: T δ + T a = 1 0 x() t dt T (1.2) δ δ + T 2 an = x() t cos(2 π nf0t) dt T (1.3) δ δ + T 2 bn = x() t sin(2 π nf0t) dt T δ (1.4) Η συνάρτηση x(t) μπορεί επίσης να εκφραστεί και ως μιγαδικό εκθετικό ανάπτυγμα με την ακόλουθη μορφή: xt () = c n= 0 n j2 nf0t e π (1.5) Το μιγαδικό πλάτος c n που δίδεται από τη σχέση: δ + T 1 n () T (1.6) j2π nf0t c = x t e dt δ σχετίζεται με τους συντελεστές a n και b n δια μέσου της σχέσης: c = a + jb = a + b e θ (1.7) 2 2 j n n n n n n Η γωνία θ n σχετίζεται με τους συντελεστές a n και b n δια μέσου της σχέσης: Επικοινωνίες ΙΙ 1-6 Τμήμα Πληροφορικής & Επικοινωνιών

7 1 bn θ tan n = (1.8) an 1.3 Το πεδίο της συχνότητας Η αναπαράσταση ενός σήματος στο πεδίο της συχνότητας αποτελεί το φάσμα (spectrum) του σήματος. Το φάσμα μιας κυματομορφής αποτελείται από δύο γραφικές παραστάσεις, οι οποίες αφορούν στο πλάτος και στη φάση του υπάρχοντος συχνοτικού περιεχομένου, αντίστοιχα. Σχήμα 1-1. Τυπικό διάγραμμα για το φάσμα πλάτους σειράς παλμών. Σχεδιασμένη επίσης είναι και η περιβάλλουσα συνάρτηση sinc(nτ/τ) των πλατών των συχνοτικών συνιστωσών. Τα διαγράμματα πλάτους και φάσης του φάσματος προκύπτουν από την κατασκευή της γραφικής παράστασης των c = a + b 2 2 n n n και θ 1 n = tan ( bn / an) συναρτήσει της συχνότητας f=n/t, αντίστοιχα. Στον άξονα των τετμημένων ευρίσκεται πάντοτε η συχνότητα f ενώ στον άξονα των τεταγμένων το πλάτος ή η φάση των όρων της σειράς Fourier κατά περίπτωση. Το Σχήμα 1-1 απεικονίζει το φάσμα πλάτους μιας σειράς παλμών διάρκειας τ και περιόδου Τ (f 0 =1/T), ενώ ο Πίνακας Σφάλμα! Δεν έχει οριστεί στυλ.-1 Επικοινωνίες ΙΙ 1-7 Τμήμα Πληροφορικής & Επικοινωνιών

8 συνοψίζει τους συντελεστές Fourier επιλεγμένων περιοδικών κυματομορφών, με f=1/t και ω=2πf. Πίνακας Σφάλμα! Δεν έχει οριστεί στυλ.-1. Ανάλυση κατά Fourier επιλεγμένων περιοδικών κυματομορφών. Παράδειγμα: Σχεδιάστε το φάσμα της παρακάτω κυματομορφής. Επικοινωνίες ΙΙ 1-8 Τμήμα Πληροφορικής & Επικοινωνιών

9 Στο πεδίο του χρόνου A για τ t τ 2 2 xt () = 0 για τ < t < T 2 Έτσι, η Λύση: κυματομορφή εκφράζεται ως: T τ + τ a0 = x() t dt = A dt = T τ τ 2 2 A τ T T τ + τ A an = x() t cos(2 πnf t) dt = cos(2 π f nt) = T dt 0 0 τ 2π Tnf 0 τ 2 2 t= τ /2 A A τ τ = sin(2 π fnt) = sin 2πnf sin 2πnf0 nπ f T n = π t= τ /2 2Α 1 τ 2Aτ sin( nπτ / T) = sin 2nπ =. nπ T 2 T ( nπτ / T) τ τ τ A sin(2 πnft 0 ) d(2 πnft 0 ) Α sin( ω0 ) cos( 2π 0 ) τ τ 2π 0 π τ bn = A n t dt = = nf t = T T nf n A πnτ πnτ = cos + cos = 0 nπ Τ Τ Επομένως, το πλήρες ανάπτυγμα Fourier έχει ως εξής: Aτ 2Aτ sin( nπτ / T) x() t = + cos(2 nπ f0t ). T T ( nπτ / T) n= 1,3,5, K Για την ειδική περίπτωση όπου τ=t/2 έχουμε: A A nπ A 2A a0 =, an = sin, x( t) = + cos(2 nπ f0t) 2 nπ 2 2 n= 1,3,5, K nπ με το ακόλουθο διάγραμμα πλάτους φάσματος: Επικοινωνίες ΙΙ 1-9 Τμήμα Πληροφορικής & Επικοινωνιών

10 Παράδειγμα: Προσδιορίστε το ανάπτυγμα Fourier της κυματομορφής πριονωτής τάσης. Απάντηση: 8A x() t = cos(2 π nf 2 0t) n π ν = 1,3,5, K Άσκηση: Προσδιορίστε το ανάπτυγμα Fourier του διπολικού τετραγωνικού παλμού με μέγιστη και ελάχιστη τάση Α και Α. (Υπόδειξη: Η dc συνιστώσα είναι προφανώς μηδέν). 1.4 Φάσμα μιας σειράς δυαδικών δεδομένων βασικής ζώνης Το φάσμα μιας τυχαίας σειράς δεδομένων μπορεί να προσδιοριστεί εάν απλά υπερθέσουμε τα στιγμιαία φάσματα του κάθε παλμού. Με αυτόν τον τρόπο γνωρίζουμε ότι το συνολικό φάσμα θα περιορίζεται από τη περιβάλλουσα συνάρτηση sinc και ότι σε κάθε χρονική στιγμή η θέση και πυκνότητα των συχνοτικών συνιστωσών θα εξαρτάται από τη συγκεκριμένη μορφή που έχουν τα bit δεδομένων εκείνη τη στιγμή. (Μια μετατόπιση στο πεδίο του χρόνου αντιστοιχεί σε μια ολίσθηση φάσης στο πεδίο της συχνότητας.) Επικοινωνίες ΙΙ 1-10 Τμήμα Πληροφορικής & Επικοινωνιών

11 «Λειαίνοντας» τη μορφή των παλμών δεδομένων, έτσι ώστε να έχ ουν ομαλές ακμές, αναμένουμε να ελαττωθεί σημαντικά το υψηλό φασματικό περιεχόμενο της κυματομορφής, π.χ. Μία μέθοδος που χρησιμοποιείται συχνά για τη μορφοποίηση του σχήματος των παλμών είναι η διαβίβαση της παλμοσειράς σε ένα χαμηλοπερατό φίλτρο, το οποίο έχει απόκριση συχνότητας υψωμένου συνημιτόνου (raised cosine frequency response). Για τον προσδιορισμό του πλάτους των συχνοτικών συνιστωσών που συγκροτούν το ανάπτυγμα σε σειρά Fourier είναι σημαντικό όχι μόνο το σχήμα της κυματομορφής αλλά και το εύρος των παλμών δεδομένων. 1.5 Ο μετασχηματισμός Fourier Στην γενικότερη των περιπτώσεων οι κυματομορφές δεν είναι περιοδικές. Ο τρόπος με τον οποίο μπορούμε να εκτιμήσουμε το συχνοτικό περιεχόμενο μιας τέτοιας κυματομορφής x(t) είναι μέσω του μετασχηματισμού Fourier, ο οποίος ορίζεται ως εξής: Επικοινωνίες ΙΙ 1-11 Τμήμα Πληροφορικής & Επικοινωνιών

12 2 π θ( { () t } X( f) x() t e dt X( f) e j ft j f ) F x = = = (1.9) ενώ με την βοήθεια του αντίστροφου μετασχηματισμού Fourier, που ορίζεται ως: { } ( ) 1 ( ) ( ) j2 π ft x t = F X f = X f e df (1.10) καθίσταται δυνατή η αναπαραγωγή της αρχικής κυματομορφής στο πεδίο του χρόνου. Παράδειγμα: Να βρεθεί ο μετασχηματισμός Fourier ενός τετραγωνικού παλμού Π(t τ) πλάτους Α και διάρκειας τ: A για t τ / 2 Π ( t τ ) =. 0 για t > τ / 2 Λύση: τ 2 j2π ft j2π ft j2π ft e F { Π () t } = Π() t e dt = A e dt = A = j2π f τ 2 τ 2 t= τ 2 jπ fτ jπ fτ e e A jπ fτ jπ fτ = A + = e e j2π f j2π f j2π f = A = ( cos( π fτ) jsin( π fτ) cos( π fτ) jsin( π fτ) ) = j2π f A sin( π fτ) = ( j2sin( π fτ) ) = Aτ = Aτ sinc( π fτ) j2π f π fτ Μερικές χρήσιμες ιδιότητες του μετασχηματισμού Fourier συνοψίζει ο Πίνακας Σφάλμα! Δεν έχει οριστεί στυλ.-2. Πεδίο χρόνου του Πεδίο της συχνότητας Επικοινωνίες ΙΙ 1-12 Τμήμα Πληροφορικής & Επικοινωνιών

13 Χρονική καθυστέρηση x( t ) j2π ft0 t0 X( f) e Συζυγής συνάρ τηση x * () t X * ( f ) Κλιμάκωση χρόνου - x(/ t τ ) τ X (2 π f τ ) συχνότητας Μετατόπιση συχνότητας xt X ( f f c ) j2 fct () e π Πίνακας Σφάλμα! Δεν έχει οριστεί στυλ.-2. Χρήσιμες ιδιότητες του μετασχηματισμού Fourier. Ο Πίνακας Σφάλμα! Δεν έχει οριστεί στυλ.-3 περιέχει μερικά βασικά ζεύγη μετασχηματισμών Fourier που χρησιμοποιούνται στην ανάλυση συστημάτων επικοινωνίας. Συνάρτηση Πεδίο του χρόνου Πεδίο της συχνότητας Σταθερά 1 δ ( f ) Κρουστικός Τετραγωνικός παλμός παλμός 2 δ ( t t ) e 0 V, t τ 0, t > τ Τριγωνικός παλμός ( ) Συνημιτονικός παλμός V 1 t/ τ, t τ 0, t > τ V cos( πt / τ), t τ / 2 0, t > τ / 2 j π f 0 sin( π f τ ) Vτ π f τ sin( π f τ ) Vτ π f τ 2Vτ cos( π fτ) 2 π 1 (2 f τ ) 2 Παλμός υψωμένου συνημιτόνου Παλμός σχήματος κανονικής κατανομής Παλμός sinc ανοίγματος Τ V 1 cos ( / ), t 2 + πt τ τ 0, t > τ V e 2 2 t /2τ sin(2 πt/ T) V 2 πt/ T V sin(2 π fτ ) 2 2π f 1 (2 fτ ) 2 π Vτ e 2 (2 π f τ) /2 VT, f 1/ T 0, f > 1/ T Επικοινωνίες ΙΙ 1-13 Τμήμα Πληροφορικής & Επικοινωνιών

14 Συνημίτονο cos( ω t +φ 1 c ) jφ jφ e δ( f fc) + e δ( f + fc) 2 Σειρά κρουστικών παλμών 1 n δ ( t mt) δ f = T n= T m Πίνακας Σφάλμα! Δεν έχει οριστεί στυλ.-3. Ζεύγη μετασχηματισμών Fourier για συνήθεις κυματομορφές. Παράδειγμα: Κάνοντας χρήση του αποτελέσματος που ευρέθη για το μετασχηματισμό Fourier του βηματικού παλμού, προσδιορίστε το μετασχηματισμό Fourier της συνάρτησης dirac (δέλτα). Λύση: Η συνάρτηση dirac στη χρονική στιγμή t 0 ορίζεται ως + t 0 δ ( t t0) dt = 1 και μπορε ί να θεωρηθεί ότι προκύπτει ως το όριο t0 του βηματικού παλμού { τ } δ ( t t ) = lim Π( t t ), υποδηλώνοντας ότι το 0 0 τ 0 εμβαδόν της επιφάνειας του παλμού είναι ίσο με 1, δηλαδή Aτ=1. Όπως είδαμε στο προηγούμενο παράδειγμα, ο μετασχηματισμός Fourier ενός ορθογωνικού παλμού πλάτους Α και διάρκειας τ δίδεται από τις σχέσεις: { } τ { } F Π ( t τ) = A si 0 και επομένως j2π fto nc( π fτ), F Π( t t τ) = Aτ sinc( π fτ) e j2π fto { lim ( ) } lim{ sinc( ) } { ( o) } = { 0 } t { τ} { π τ } F δ t t F Π t t τ = A τ π fτ e = 0 t 0 j2π ft j2π ft j2π ft = lim A lim sinc( f ) e = 1 1 e = e t 0 t 0 o o o Εναλλακτικά, θα μπορούσαμε να χρησιμοποιήσουμε τον ορισμό: Επικοινωνίες ΙΙ 1-14 Τμήμα Πληροφορικής & Επικοινωνιών

15 { } t j2π ft o + o j2π fto j2π fto o o e t = t o e o F δ( t t ) = δ( t t ) d δ( t t ) e dt = κάνοντας χρήση της ιδιότητας 1 της συνάρτησης dirac δ ( t t) xt ( ) dt= xt ( ) Η διαδικασία της διαμόρφωσης Για να μετατοπίσουμε το φάσμα του σήματος εισόδου έτσι ώστε να εμπίπτει στην επιτρεπτή περιοχή διέλευσης του καναλιού πραγματοποιούμε μια διαδικασία διαμόρφωσης. Αυτή η διαδικασία περιλαμβάνει συχνά τη μίξη του σήματος εισόδου με ένα άλλο ημιτονικό ή συνημιτονικό σήμα υψηλότερης συχνότητας, που ονομάζεται φορέας (carrier) ή φέρουσα κυματομορφή Η διαδικασία της μίξης Η διαμόρφωση μπορεί απλά να προκύψει από τη μίξη (πολλαπλασιασμό) της κυματομορφής βασικής ζώνης με το φορέα, όπως απεικονίζεται σχηματικά παρακάτω: Α Υποθέτοντας ότι στη είσοδο του μίκτη εφαρμόζεται μια ακολουθία δεδομένων 1,0,1,0, και χρησιμοποιώντας την τριγωνομετρική 1 Η ιδιότητα αυτή σε πολλά μαθηματικά εγχειρίδια χρησιμοποιείται για τον ορισμό της συνάρτησης dirac. Επικοινωνίες ΙΙ 1-15 Τμήμα Πληροφορικής & Επικοινωνιών

16 1 ταυτότητα cos A cos B= [ cos( A B) + cos( A+ B)], η έξοδος του μίκτη 2 2A 1 1 nπ 2 2 ) c 0 c 0 n= 1,3,5,... n= 1,3,5,... t γίνεται y() t = cos( 2 π( f nf ) t) + cos( 2 π( f + nf ). Το φάσμα του διαμορφωμένου σήματος που προκύπτει, είναι κεντραρισμένο στη συχνότητα του φορέα και στη συγκεκριμένη περίπτωση αναπαράγει κατοπτρικά τις φασματικές συνιστώσες του σήματος δεδομένων βασικής ζώνης εκατέρωθεν του φορέα. Επομένως, με τη μέθοδο της μίξης καθίσταται δυνατή η μετατόπιση του φασματικού περιεχομένου του σήματος της πληροφορίας σε οποιαδήποτε συχνότητα επιθυμούμε Ο διανυσματικός διαμορφωτής Για τον πιο αποτελεσματικό έλεγχο του συχνοτικού περιεχομένου του διαμορφωμένου σήματος στα πιο προχωρημένα συστήματα διαμόρφωσης ή όταν η μορφή των δεδομένων προς διαμόρφωση είναι περίπλοκη, χρησιμοποιούνται συνδυασμοί ημιτονικών και συνημιτονικών συνιστωσών του σήματος εισόδου, οι οποίοι εισέρχονται σε μίκτες μαζί με τους αντίστοιχους συνδυασμούς ημιτόνων και συνημιτόνων του φέροντος. Μια τέτοια διάταξη απεικονίζεται παρακάτω και ονομάζεται διανυσματικός διαμορφωτής (vector modulator). Επικοινωνίες ΙΙ 1-16 Τμήμα Πληροφορικής & Επικοινωνιών

17 Σχήμα 1-2. Διανυσματικός διαμορφωτής. Ανάλογα με την πράξη που εκτελείται στην τελευταία βαθμίδα του διανυσματικού διαμορφωτή, δηλαδή άθροιση ή διαφορά της συμφασικής cos( ω0t) cos( ωct) = 0.5cos( ωc + ω0) t+ 0.5cos( ωc ω0) t και της ορθογωνικής συνιστώσας sin(ω t) sin( ω t) = 0.5cos( ω + ω ) t+ 0.5cos( ω ω ) t 0 C C 0 C 0 εξόδου, η έξοδος λαμβάνει τις τιμές cos( ω )t C ω0 και cos( ωc + ω0) t, αντίστοιχα. Παράδειγμα: Ένας διανυσματικός διαμορφωτής τροφοδοτείται με ένα ημιτονοειδές σήμα τέλειας ορθογωνικότητας στην είσοδο αλλά υπάρχει ένα μικρό σφάλμα στην τάση των 0.1dB μεταξύ των υποτιθέμενων ορθογωνικών εισόδων του φέροντος. Ποιος θα είναι ο λόγος σε db, των σημάτων άθροισης και διαφοράς στην έξοδο του διαμορφωτή, ως αποτέλεσμα της διαφοράς τάσης που εμφανίζεται στο φορέα; Απάντηση: Συμφασική είσοδος Ορθογωνική είσοδος cos(ω o t) sin(ω o t) A cos(ω c t) (A+dA) sin(ω c t) Εν-φάσει (in-phase) έξοδος: Ορθογωνική (quadrature) έξοδος: A cos(ω c t) cos(ω o t) = (A + da) 2 [ cos(ω c -ω o )t - cos(ω c +ω o )t] A [cos(ωc +ω o )t + cos(ω c -ω o )t] 2 ( A + da) 20 log(a+da) 20 log(a) = log A = 0.1 A + da A = da = A. Ο όρος διαφοράς είναι: Επικοινωνίες ΙΙ 1-17 Τμήμα Πληροφορικής & Επικοινωνιών

18 Acos( ωc + ωo) t 2 + A + da cos(ωc +ω o )t + 2 A A + da cos(ωc -ω o )t cos(ω c - da da ω o )t = A cos(ω c +ω o )t + cos(ωc +ω o )t - cos(ωc -ω o )t = 2 2 da =A cos(ω c +ω o )t + [cos(ωc +ω o )t- cos(ω c -ω o )t] = 2 da - cos(ωc -ω o )t = 2 A + da 2 Ο όρος αθροίσματος είναι: A + da 2 da cos(ω c +ω o )t - cos(ωc -ω o )t 2 ανεπιθύμητος όρος cos(ω c +ω o )t A A A da cos(ωc +ω o )t + cos(ωc -ω o )t + cos(ωc -ω o )t + cos(ωc ω o )t- A da da - cos(ωc +ω o ) t - cos(ωc +ω o )t = A cos(ω c -ω o )t + [ cos(ωc ω o )t - cos(ω c +ω o )t] = A + da 2 da cos(ω c -ω o )t - cos(ωc -ω o )t 2 επιθυμητός όρος Ο λόγος των πλατών του επιθυμητού προς τον ανεπιθύμητο όρο είναι ο εξής: A+ da da / 2 10log = 10log = 22.4dB / 2 Παράδειγμα: Ένας διανυσματικός διαμορφωτής τροφοδοτείται με ένα ημιτονοειδές σήμα τέλειας ορθογωνικότητας στην είσοδο αλλά υπάρχει ένα μικρό σφάλμα φάσης 5 ο μεταξύ των υποτιθέμενων ορθογωνικών εισόδων του φέροντος. Ποιος θα είναι ο λόγος των ισχύων, σε dβ, των σημάτων άθροισης και διαφοράς στην έξοδο, ως αποτέλεσμα αυτής της διαφοράς φάσης που εμφανίζεται στο φορέα; (Απάντηση: λόγος πλατών (amplitude ratio) 525:1 ή 27dB). 1+ cosϕ 1 cosϕ, Επικοινωνίες ΙΙ 1-18 Τμήμα Πληροφορικής & Επικοινωνιών

19 1.7 Βασική θεωρία πιθανοτήτων και θόρυβος στις επικοινωνίες Μια συνεχής τυχαία μεταβλητή χ μπορεί πάρει οποιεσδήποτε τιμές σε ένα συγκεκριμένο διάστημα. Η πιθανότητα η τυχαία μεταβλητή χ να λάβει την τιμή χ i συμβολίζεται ως Ρ(χ=χ i ) και είναι γενικά μηδέν, καθότι υπάρχουν άπειρες τιμές τις οποίες μπορεί να λάβει η μεταβλητή χ Αθροιστική συνάρτηση πιθανότητας (cumulative distribution function - cdf) Έστω ότι η συνάρτηση P x (x=x i ) εκφράζει την πιθανότητα η τυχαία μεταβλητή x να λάβει την τιμή x i. Ως αθροιστική συνάρτηση πιθανότητας ορίζεται η συνάρτηση F x (x i )=P x (x x i ), δηλαδή η πιθανότητα η τυχαία μεταβλητή x να λάβει τιμή μικρότερη ή ίση με την τιμή x i. Επομένως: x i F ( x ) = P( u) du (1.11) x i x και dfx ( x ι ) = Px ( xi ) dx (1.12) Ορισμένες χαρακτηριστικές ιδιότητες της αθροιστικής συνάρτησης πιθανότητας είναι οι ακόλουθες: F x (x i ) 0, F x ( ) = 1, Επικοινωνίες ΙΙ 1-19 Τμήμα Πληροφορικής & Επικοινωνιών

20 F x ( ) = 0, F x (x 1 ) F x (x 2 ) για x 1 x Συνάρτηση πυκνότητας πιθανότητας H συνάρτηση πυκνότητας πιθανότητας (probability density function - pdf) p ορίζεται από τη σχέση: x ( 2 x 1 ) ( ) 2 = x1 P x x x p x dx (1.13) Συνεπώς, x2 x1 x( 1 2) = x( 2) x( 1) = x( ) x( ) P x x x F x F x P u du P u du (1.14) Η κανονική συνάρτηση πυκνότητας πιθανότητας Η κανονική συνάρτηση πυκνότητας πιθανότητας δίδεται από τη σχέση: ( x x) 2 1 px ( ) = exp 2 σ 2π 2σ (1.15) όπου x = Ex ( ) = x px ( ) dx (1.16) είναι η μέση τιμή της κανονικής συνάρτησης πυκνότητας πιθανότητας, Επικοινωνίες ΙΙ 1-20 Τμήμα Πληροφορικής & Επικοινωνιών

21 σ = ( x x) = E ( x x) = ( x x) p( x) dx (1.17) σ 2 η διασπορά και σ η τυπική απόκλισή της. Η αθροιστική συνάρτηση πιθανότητας της κανονικής συνάρτησης πυκνότητας πιθανότητας είναι: x 2 1 ( u x) exp 2 σ π 2σ F( x ) = du (1.18) 2 u x και θέτοντας z = η σχέση (1.18) γίνεται σ z 2 y 2 1 F( z ) = e dy = 1 Q( z) (1.19) 2π όπου η συνάρτηση Q(z) ορίζεται ως: Qz ( ) 1 2π = z e 2 y 2 dy (1.20) έχοντας την ιδιότητα Q( z ) = 1 Q( z), οπότε προκύπτει: xi x Px ( xi ) = Q (1.21) σ Εποπτικά, η συνάρτηση Q αντιστοιχεί στο εμβαδόν της γραμμοσκιασμένης επιφάνειας που απεικονίζεται στο Σχήμα 1-3. Επικοινωνίες ΙΙ 1-21 Τμήμα Πληροφορικής & Επικοινωνιών

22 Σχήμα 1-3. Ορισμός της συνάρτησης Q. Η συνάρτηση Q συνδέεται με την συμπληρωματική συνάρτηση σφάλματος (complementary error function - erfc), ως εξής: ( ) 2 2 y erfc( z) = e dy = 2Q 2z π z (1.22) Η γραφική παράσταση της συναρτήσεως Q(χ) που εικονίζεται στο Σχήμα 1-4, μπορεί να χρησιμοποιηθεί για πρακτικούς υπολογισμούς, καθότι η συνάρτηση αυτή δεν μπορεί να εκτιμηθεί με αναλυτικό τρόπο. Επικοινωνίες ΙΙ 1-22 Τμήμα Πληροφορικής & Επικοινωνιών

23 1 p ( g ) Σχήμα 1-4. Γραφική παράσταση της συνάρτησης Q. Επικοινωνίες ΙΙ 1-23 Τμήμα Πληροφορικής & Επικοινωνιών

24 1.8 Φάσμα θορύβου Όπως κάθε σήμα στο πεδίο της συχνότητας, έτσι και ο θόρυβος μπορεί να χαρακτηριστεί από μια φασματική πυκνότητα ισχύος N(f), όπως για παράδειγμα στο Σχήμα 1-5. N(f) N o Φασματική πυκνότητα ισχύος f 1 f 2 f Σχήμα 1-5. Φασματική πυκνότητα ισχύος θορύβου. Αν η φασματική πυκνότητα ισχύος του θορύβου είναι σταθερή και ανεξάρτητη της συχνότητας τότε Ν(f)=Νο Watts/Hz και ο θόρυβος ονομάζεται λευκός. Ο θόρυβος ο οποίος χρησιμοποιείται στην ανάλυση των περισσότερων επικοινωνιακών συστημάτων ακολουθεί την κανονική κατανομή και είναι λευκός, ονομάζεται δε λευκός προσθετικός γκαουσιανός θόρυβος (Additive White Gaussian Noise AWGN). Η μέση τιμή και η ισχύς του AWGN θορύβου μετρημένη σε μοναδιαία ωμική αντίσταση εντός εύρους ζώνης BW είναι x = 0 και 2 P= N BW =σ, αντίστοιχα Ιδιότητες της λογαριθμικής συνάρτησης Λογάριθμος γινομένου: log( ab ) = log( a) + log( b) (1.23) Λογάριθμος πηλίκου: Επικοινωνίες ΙΙ 1-24 Τμήμα Πληροφορικής & Επικοινωνιών

25 log( a/ b) = log( a) - log( b) (1.24) Αλλαγή βάσης λογαρίθμου: log y ( A) log x (A) = (1.25) log ( x) y 1.10 Ορισμός db Σε πολλές περιπτώσεις στην ανάλυση και σχεδίαση κυκλωμάτων, πομπών, δεκτών, γραμμών μεταφοράς, φίλτρων και άλλων διατάξεων ή ηλεκτρονικών στοιχείων, είναι προτιμότερο να δουλεύουμε τα διάφορα μεγέθη σε λογαριθμική κλίμακα παρά σε γραμμική για δύο κύριους λόγους. Πρώτον διότι η συνάρτηση του λογαρίθμου έχει την ιδιότητα να μετατρέπει την πράξη του πολλαπλασιασμού σε πρόσθεση, και δεύτερον διότι μας επιτρέπει να χειριστούμε μεγάλο εύρος τιμών ενός μεγέθους με ιδιαίτερα συμπαγή τρόπο. Έτσι, προκύπτει ο ακόλουθος ορισμός της ηλεκτρικής ισχύος σε db. g P 10 lo 10 = P [db ref ] P (1.26) ref Στο συγκεκριμένο παράδειγμα η ισχύς P μπορεί να εκφραστεί σε db σε σχέση με την μονάδα αναφοράς ισχύος P ref. Για παράδειγμα, αν η μονάδα αναφοράς ισχύος είναι το 1mW τότε ισχύς P=1W=1000mW, αντιστοιχεί σε 30dBmW. Αν η ισχύς αναφοράς ήταν το 1W, τότε η ισχύς P=1W, αντιστοιχεί σε 0dBW. Στην περίπτωση που θέλουμε να εκφράσουμε τάσεις σε λογαριθμική κλίμακα, έχουμε: Επικοινωνίες ΙΙ 1-25 Τμήμα Πληροφορικής & Επικοινωνιών

26 g V 20 lo 10 = V [db ref ] V (1.27) ref Για παράδειγμα, αν η μονάδα αναφοράς τάσης είναι το 1μV τότε τάση V 1 =1V=1,000,000μV, αντιστοιχεί σε 120dBμV. Αν η ισχύς αναφοράς ήταν το 1mV, τότε η τάση V 1 =1V=1,000mV, αντιστοιχεί σε 60dBμV. Το db μπορεί επίσης να χρησιμοποιηθεί για να αποδώσει το συσχετισμό δύο μεγεθών που μετρώνται στις ίδιες μονάδες. Έτσι, για παράδειγμα αν σε ένα συγκεκριμένο σημείο ενός δέκτη η ισχύς του ωφέλιμου σήματος είναι P S και αυτή του θορύβου P N, τότε ορίζεται ο λόγος σήματος προς θόρυβο ως εξής: 10 P S lo g S 10 = = SNR [db] P N N (1.28) Για P S =1μW και P N =1pW, S/N=60dB. Αν επιθυμούσαμε να εκφράσουμε το λόγο τάσεων ωφέλιμου σήματος προς την τάση θορύβου, θα χρησιμοποιούσαμε τον ορισμό: V 20 log S 10 [db] V (1.29) N 1.11 Επανάληψη γραμμικών συστημάτων Γραμμικά μη χρονικά μεταβαλλόμενα συστήματα Επικοινωνίες ΙΙ 1-26 Τμήμα Πληροφορικής & Επικοινωνιών

27 Ένα σύστημα είναι γραμμικό όταν ισχύει η αρχή της υπέρθεσης, δηλαδή, y( t) = [ a x ( t) + a x ( t)] = a [ x ( t)] + a [ x ( t)] (1.30) όπου y(t) είναι η έξοδος του συστήματος και x(t) είναι η είσοδος, όπως παρουσιάζεται στο σχετικό Σχήμα. Το σύμβολο [ ] υποδηλώνει τον γραμμικό (διαφορική εξίσωση) τελεστή που εφαρμόζεται στο [ ]. Το σύστημα λέγεται μη χρονικά μεταβαλλόμενο εάν, για κάθε καθυστερημένη είσοδο x(t-t 0 ), η έξοδος καθυστερεί κατά τον ίδιο χρόνο y(t-t 0 ). x(t) Γραμμικό σύστημα h(t) H(f) y(t) Κρουστική απόκριση Ένα γραμμικό μη χρονικά μεταβαλλόμενο σύστημα περιγράφεται από γραμμική συνήθη διαφορική εξίσωση με σταθερούς συντελεστές και μπορεί να χαρακτηριστεί από την λεγόμενη κρουστική της απόκριση. Ως κρουστική απόκριση ορίζεται ως η λύση της διαφορικής εξίσωσης όταν η συνάρτηση εξαναγκασμού (forcing function) είναι η συνάρτηση δέλτα του Dirac. Επομένως, y(t)=h(t) όταν x(t)=δ(t). Η κρουστική απόκριση μπορεί να χρησιμοποιηθεί για να προσδιοριστεί η έξοδος του συστήματος όταν η είσοδος δεν είναι η συνάρτηση δέλτα. Σε αυτήν την περίπτωση μια γενική κυματομορφή στην είσοδο του συστήματος μπορεί να προσεγγιστεί ως: Επικοινωνίες ΙΙ 1-27 Τμήμα Πληροφορικής & Επικοινωνιών

28 x() t = x( n Δt)[ δ ( t n Δt)] Δt (1.31) n= 0 υποδηλώνοντας ότι δείγματα στην είσοδο λαμβάνονται κατά χρονικά διαστήματα Δt. Στη συνέχεια κάνοντας χρήση των ιδιοτήτων της γραμμικότητας και της μη χρονικής μεταβλητότητας, η έξοδος είναι προσεγγιστικά: y() t = x( n Δt)[ h( t n Δt)] Δt (1.32) n= 0 Στην περίπτωση που Δt 0, η παραπάνω έκφραση δίδει το ακριβές αποτέλεσμα και θέτοντας nδt=τ, έχουμε: + y() t = x( τ) [ ht ( τ)] d τ = xt () ht () (1.33) που αποτελεί ουσιαστικά το ολοκλήρωμα της συνέλιξης της εισόδου με την κρουστική απόκριση Συνάρτηση μεταφοράς Το φάσμα του σήματος εξόδου προκύπτει από την εφαρμογή του μετασχηματισμού Fourier και στα δύο μέλη του ολοκληρώματος της συνέλιξης, δηλαδή: F{ y( t)} = F{ x( t) h( t)} Y( f) = X( f) H( f) (1.34) και Y( f) H( f) = (1.35) X ( f ) Επικοινωνίες ΙΙ 1-28 Τμήμα Πληροφορικής & Επικοινωνιών

29 όπου H(f)= [h(t)] ορίζεται ως η συνάρτηση μεταφοράς (transfer function) ή απόκριση συχνότητας (frequency response) του συστήματος. Επομένως, η κρουστική απόκριση και η απόκριση συχνότητας αποτελούν ένα ζεύγος μετασχηματισμού Fourier, ήτοι h(t) H(f). Στη γενική περίπτωση η συνάρτηση μεταφοράς είναι μιγαδική ποσότητα και μπορεί να γραφεί σε πολική μορφή ως: j ( f ) H( f ) = H( f) e θ (1.36) όπου H(f) είναι η απόκριση πλάτους και θ ( f ) 1 Im{ H( f)} = tan Re{ H( f)} (1.37) είναι η απόκριση φάσης του συστήματος. Επιπροσθέτως, εφόσον η συνάρτηση h(t) είναι πραγματική συνάρτηση του χρόνου, συνεπάγεται 2 ότι η H(f) είναι άρτια συνάρτηση της συχνότητας και ότι η θ(f) είναι περιττή συνάρτηση της συχνότητας. 2 Από τις ιδιότητες του μετασχηματισμού Fourier. Επικοινωνίες ΙΙ 1-29 Τμήμα Πληροφορικής & Επικοινωνιών

30 Equation Chapter 2 Section 2 2 ΜΕΤΑΔΟΣΗ ΔΕΔΟΜΕΝΩΝ Επικοινωνίες ΙΙ 2-30 Τμήμα Πληροφορικής & Επικοινωνιών

31 2.1 Παράγοντες που επηρεάζουν τη σχεδίαση συστημάτων Σε πολλές περιπτώσεις ο μηχανικός γνωρίζει τη βέλτιστη σχεδίαση ενός συστήματος, αλλά μέχρι αυτή να φθάσει στο στάδιο της εφαρμογής και του τελικού προϊόντος θα πρέπει να ληφθούν υπόψη διάφοροι παράγοντες, οι κυριότεροι των οποίων είναι: Τεχνολογικοί περιορισμοί (διαθεσιμότητα υλικού και λογισμικού, κατανάλωση ισχύος, μέγεθος συσκευών). Κρατικές προδιαγραφές και πρότυπα. Εμπορική πραγματικότητα. 2.2 Βασικές αρχές της εκπομπής δεδομένων Υπάρχουν δύο κύριες μέθοδοι μεταφοράς δεδομένων. Η δυαδική σηματοδοσία και η σηματοδοσία πολλαπλών επιπέδων. Στην πρώτη περίπτωση χρησιμοποιούνται δύο καταστάσεις για να κωδικοποιηθούν τα δυαδικά ψηφία 1 και 0, ενώ στη δεύτερη χρησιμοποιούνται περισσότερες καταστάσεις το πλήθος των οποίων καθορίζεται από τη σχετική δύναμη του 2 για να κωδικοποιηθούν οι αντίστοιχοι συνδυασμοί δυαδικών ψηφίων Δυαδική σηματοδοσία Στην περίπτωση δυαδικής σηματοδοσίας ο ρυθμός μετάδοσης δεδομένων καθορίζεται από το πόσο γρήγορα μπορεί να μεταβληθεί η τάση στο κανάλι ή ισοδύναμα από το εύρος ζώνης του καναλιού επικοινωνίας. (γιατί;) Σηματοδοσία δύο καταστάσεων μπορούμε να έχουμε χρησιμοποιώντας ένα ή περισσότερα παράλληλα καλώδια, όπως φαίνεται στο Σχήμα 2-1. Επικοινωνίες ΙΙ 2-31 Τμήμα Πληροφορικής & Επικοινωνιών

32 Σχήμα 2-1. Δυαδική σηματοδοσία με ένα και περισσότερα παράλληλα καλώδια. Χρησιμοποιώντας πολλαπλά παράλληλα καλώδια και διατηρώντας το ίδιο εύρος ζώνης για κάθε καλώδιο, μπορούμε να αυξήσουμε το ρυθμό μετάδοσης πληροφορίας ανάλογα με το πλήθος των καλωδίων. Εναλλακτικά, θα ήταν επίσης εφικτό να διατηρηθεί ο ίδιος ρυθμός μετάδοσης πληροφορίας υποβιβάζοντας το εύρος ζώνης κάθε καλωδίου τόσες φορές όσες και το πλήθος τους Σηματοδοσία πολλών επιπέδων Στην περίπτωση σηματοδοσίας πολλών επιπέδων ο ρυθμός μετάδοσης δεδομένων καθορίζεται τόσο από το εύρος ζώνης του καναλιού επικοινωνίας, όσο και από τη στάθμη του θορύβου. (γιατί;) Όπως και στην περίπτωση της δυαδικής σηματοδοσίας μπορούν να χρησιμοποιηθούν ένα ή πολλαπλά παράλληλα καλώδια για την αποστολή δεδομένων. Για παράδειγμα στη σηματοδοσία τεσσάρων καταστάσεων Μ=2 n (n=2) μπορούμε να κωδικοποιήσουμε από δύο bit στις τέσσερις προκύπτουσες στάθμες τάσης ( 00 στάθμη Α, 01 στάθμη Β, 10 στάθμη Γ, 11 στάθμη Δ). Σχήμα 2-2. Σηματοδοσία πολλαπλών επιπέδων με ένα ή περισσότερα παράλληλα καλώδια. Επικοινωνίες ΙΙ 2-32 Τμήμα Πληροφορικής & Επικοινωνιών

33 Σε σχέση με τη δυαδική σηματοδοσία και με την προϋπόθεση ότι ο ρυθμός αλλαγής των συμβολικών καταστάσεων παραμένει ο ίδιος, παρατηρούμε ότι στον ίδιο χρόνο η τετραδική σηματοδοσία μεταδίδει διπλάσια πληροφορία από η δυαδική. Έτσι για ο ίδιο εύρος ζώνης η τετραδική σηματοδοσία μεταφέρει πληροφορία με διπλάσιο ρυθμό. Γενικεύοντας τη χρήση σηματοδοσίας πολλαπλών επιπέδων κάποιος θα μπορούσε να ισχυριστεί ότι με αυτόν τον τρόπο μπορούμε να αυξάνουμε απεριόριστα το ρυθμό μετάδοσης πληροφορίας. Από την άλλη πλευρά όμως μειώνεται σημαντικά η αντίσταση του συστήματος στο θόρυβο, καθότι η απόσταση μεταξύ των σταθμών τάσης που αντιστοιχούν σε κάθε συμβολική κατάσταση γίνεται ολοένα και μικρότερη για αυξανόμενο αριθμό καταστάσεων. Επιπροσθέτως, αυξάνεται και η πολυπλοκότητα του δέκτη Ο συμβιβασμός μεταξύ εύρους ζώνης και θορύβου Από την προηγούμενη θεώρηση είναι φανερό ότι ο ρυθμός μεταφοράς δεδομένων σε ένα κανάλι επικοινωνίας επηρεάζεται από: Το μέγιστο δυνατό ρυθμό ανίχνευσης αλλαγής της κυματομορφής ή της κατάστασης συμβόλων καταδεικνύοντας το εύρος ζώνης ως περιοριστικό παράγοντα. Τη δυνατότητα διάκρισης/διαχωρισμού των διαφορετικών καταστάσεων συμβόλων, καταδεικνύοντας το θόρυβο και την αλλοίωση (απόσβεση, διασπορά φάσης) ως περιοριστικούς παράγοντες. Επικοινωνίες ΙΙ 2-33 Τμήμα Πληροφορικής & Επικοινωνιών

34 2.3 Μετάδοση πληροφορίας ορισμοί Ρυθμός μεταφοράς πληροφορίας (information transfer rate): ορίζεται ως η ταχύτητα με την οποία μπορεί να αποσταλεί δυαδική πληροφορία (bit) από την πηγή στον προορισμό και μετράται σε [bits/sec]. Ρυθμός μεταφοράς συμβόλων(baud rate): ορίζεται ως ο ρυθμός με τον οποίο μεταβάλλονται οι καταστάσεις συμβόλων και μετράται σε [symbols/sec ή baud]. Φασματική απόδοση( bandwidth efficiency): ορίζεται ως το πηλίκο του ρυθμού μετάδοσης πληροφορίας προς το χρησιμοποιούμενο εύρος ζώνης και μετράται σε [bits/sec/hz]. Η φασματική απόδοση αποτελεί μέτρο του πόσο καλά μια συγκεκριμένη τεχνική διαμόρφωσης (και κωδικοποίησης) εκμεταλλεύεται το διαθέσιμο εύρος ζώνης Πολυεπίπεδη σηματοδοσία Ο αριθμός των καταστάσεων σηματοδοσίας που απαιτείται για να αναπαρασταθεί με μοναδικό τρόπο κάθε σχηματισμός από n bit δίνεται από την σχέση: Μ= 2 n, όπου Μ είναι ο αριθμός των συμβολικών καταστάσεων. Ένα παράδειγμα υλοποίησης σηματοδοσίας οκτώ επιπέδων (οκταδικής) παρουσιάζεται στο Σχήμα 2-3. Επικοινωνίες ΙΙ 2-34 Τμήμα Πληροφορικής & Επικοινωνιών

35 Σχήμα 2-3. Μετατροπή δυαδικής σηματοδοσίας σε οκταδική με παράμετρο το εύρος ζώνης. Τα πλεονεκτήματα της Μ-αδικής σηματοδοσίας είναι: Για δεδομένο ρυθμό μετάδοσης συμβόλων και διαθέσιμο εύρος ζώνης επιτυγχάνεται υψηλότερος ρυθμός μετάδοσης πληροφορίας (περίπτωση C). Εναλλακτικά, με τη υιοθέτηση χαμηλότερου ρυθμού μετάδοσης συμβόλων (περίπτωση Β), ελαττώνεται η απαίτηση για εύρος ζώνης. (Και στις δύο περιπτώσεις έχουμε αύξηση της φασματικής απόδοσης.) Τα μειονεκτήματα της Μ-αδικής σηματοδοσίας είναι: Η ανοχή της στο θόρυβο και τις παρεμβολές είναι μειωμένη σε σχέση με τη δυαδική σηματοδοσία, καθώς καθίσταται ολοένα και πιο δύσκολο να διακριθούν διαφορετικές συμβολικές καταστάσεις. Προϋποθέτει πιο περίπλοκη διαδικασία αναγνώρισης συμβόλων στο δέκτη. Επικοινωνίες ΙΙ 2-35 Τμήμα Πληροφορικής & Επικοινωνιών

36 Επιβάλλει μεγαλύτερες απαιτήσεις για γραμμικότητα ή/και ελαττωμένη αλλοίωση στο υλικό του πομποδέκτη και του καναλιού. 2.4 Ρυθμός εσφαλμένων bit έναντι ρυθμού εσφαλμένων συμβόλων Σε δυαδικό σύστημα τα σφάλματα bit και συμβόλων ταυτίζονται, επειδή κάθε σύμβολο αντιστοιχεί σε ένα bit. Σε Μ-δικά συστήματα (Μ>2) όμως αυτό δεν ισχύει. Στην πράξη μερικά σύμβολα είναι πιο επιρρεπή στην εσφαλμένη ανίχνευση από άλλα, ανάλογα με το πόσο μοιάζουν στα γειτονικά σύμβολα. Η προσεκτική επιλογή της μορφής κάθε συμβόλου μπορεί να βοηθήσει στην ελαχιστοποίηση του αριθμού των εσφαλμένων bit που προκύπτουν σε κάθε εσφαλμένα ανιχνευόμενο σύμβολο Κωδικοποίηση Gray Κωδικοποίηση Gray ονομάζεται μία μέθοδος αντιστοίχησης των bit, σύμφωνα με την οποία οι μορφές των διαδοχικών συμβόλων διαφέρουν μόνο κατά ένα bit. Εάν θεωρήσουμε ότι η διαδικασία ανίχνευσης θα ανιχνεύσει εσφαλμένα κάποιο σύμβολο δηλαδή αντί για το γειτονικό το, μπορούμε να συνάγουμε ότι η πιθανότητα εμφάνισης εσφαλμένων bit θα είναι περίπου ίση με την πιθανότητα εμφάνισης εσφαλμένων δια τον αριθμό k των bit που Gray κωδικοποιούνται σε κάθε σύμβολο, δηλαδή P = P / k. E E Επικοινωνίες ΙΙ 2-36 Τμήμα Πληροφορικής & Επικοινωνιών

37 2.5 Εκτίμηση του απαιτούμενου εύρους ζώνης Προκειμένου να καθορίσουμε το μέγιστο ρυθμό με τον οποίο δεδομένα μπορούν να αποσταλούν σε ένα επικοινωνιακό κανάλι, πρέπει να γνωρίζουμε το μέγιστο αριθμό αλλαγής συμβολικών καταστάσεων που μπορεί να υποστηρίξει το κανάλι συναρτήσει του εύρους ζώνης. Για παράδειγμα, ας θεωρήσουμε την κυματομορφή που απεικονίζεται στο Σχήμα 2-4 και αντιστοιχεί σε σύστημα οκταδικής σηματοδοσίας και ότι το κανάλι επιτρέπει τη διέλευση σημάτων με συχνοτικό περιεχόμενο από 0 Hz έως B Hz. Σχήμα 2-4. Κυματομορφή οκταδικής σηματοδοσίας και απαιτούμενο εύρος ζώνης. Εφόσον η ζώνη διέλευσης του καναλιού (channel passband) είναι Β Hz θα πρέπει τουλάχιστον η θεμελιώδης συχνότητα της κυματομορφής δεδομένων να εμπίπτει εντός αυτής, και επομένως το ελάχιστο εύρος ζώνης που απαιτείται για εκπομπή απαλλαγμένη από σφάλματα σε ένα κανάλι βασικής ζώνης είναι B min = 12T S, όπου T S είναι η διάρκεια της συμβολικής κατάστασης. Γνωρίζοντας ότι ο μέγιστος ρυθμός αποστολής (συχνότητα) συμβόλων στο κανάλι είναι 2Β και ότι ο κάθε σύμβολο μεταφέρει log 2 M bits, Επικοινωνίες ΙΙ 2-37 Τμήμα Πληροφορικής & Επικοινωνιών

38 συμπεραίνουμε ότι η χωρητικότητα ενός καναλιού με ζώνη διέλευσης Β Hz είναι: C = 2B log M bits / s 2 (2.1) 2.6 Περιορισμός της χωρητικότητας καναλιού λόγω θορύβου Καθώς ο αριθμός των συμβολικών καταστάσεων αυξάνει, η ικανότητα του δέκτη να διαχωρίσει μεταξύ αυτών ελαττώνεται με την εμφάνιση θορύβου ή/και παρεμβολών. Επομένως ο λόγος σήματος προς θόρυβο (signal power S to noise power N ratio) παίζει σημαντικό ρόλο στον καθορισμό του αριθμού των συμβολικών καταστάσεων που μπορούν να χρησιμοποιηθούν ώστε να επιτευχθεί επικοινωνία απαλλαγμένη από σφάλματα. Η συνδυασμένη επίδραση του θορύβου και του εύρους ζώνης στο ρυθμό μετάδοσης δεδομένων σε ένα κανάλι επικοινωνίας συνοψίζεται στην διάσημη πια σχέση των Shannon και Hartley: S C = B log2 + 1 bits / s (2.2) N Το θεώρημα των Shannon-Hartley δηλώνει ότι εάν ο ρυθμός μετάδοσης δεδομένων σε ένα κανάλι με εύρος ζώνης Β και για δεδομένο λόγο σήματος προς θόρυβο S/N είναι μικρότερος από το προβλεπόμενο όριο χωρητικότητας C, τότε η επικοινωνία είναι απαλλαγμένη από σφάλματα. Η σχέση αυτή μας δίδει τη δυνατότητα να εκτιμήσουμε την εφικτότητα κάθε ψηφιακού συστήματος επικοινωνίας, διότι επιτρέπει άμεσα τον καθορισμό του θεωρητικού άνω ορίου της χωρητικότητας καθότι υποθέτει ότι η επικοινωνιακή ζεύξη είναι πλήρως απαλλαγμένη από αλλοιώσεις και παρεμβολές και υφίσταται μόνο τη επίδραση AWGN θορύβου. Επικοινωνίες ΙΙ 2-38 Τμήμα Πληροφορικής & Επικοινωνιών

39 2.6.1 Απόδοση ισχύος και εύρους ζώνης Σε ένα σύστημα επικοινωνίας η μέση ισχύς σήματος είναι S=E b C, όπου E b είναι η μέση λαμβανόμενη ενέργεια ανά bit πληροφορίας (J/bit). Επίσης η μέση ισχύς θορύβου είναι Ν=Ν 0 Β, όπου Ν 0 είναι η πυκνότητα ισχύος του θορύβου (Watts/Hz). Έτσι το θεώρημα Shannon-Hartley μπορεί να γραφεί στη μορφή: C Eb C Eb log2 1 BE log2 BE 1 bits / s / Hz B = N0 B + = N + 0 (2.3) όπου ΒΕ είναι η φασματική απόδοση και ο λόγος E b /Ν 0 εκφράζει τον ανηγμένο ανά bit πληροφορίας και μονάδα εύρους ζώνης λόγο σήματος προς θόρυβο εκφράζοντας ταυτόχρονα κι ένα μέτρο της απόδοσης ισχύος του συστήματος. Το θεώρημα Shannon-Hartley δείχνει καθαρά ότι η φασματική απόδοση μπορεί να ανταλλαγεί με την απόδοση ισχύος και αντίστροφα, όπως φαίνεται και στο Σχήμα 2-5. Επικοινωνίες ΙΙ 2-39 Τμήμα Πληροφορικής & Επικοινωνιών

40 Σχήμα 2-5. Γραφική αναπαράσταση του θεωρήματος των Shannon- Hartley. Equation Chapter 3 Section 3 Επικοινωνίες ΙΙ 2-40 Τμήμα Πληροφορικής & Επικοινωνιών

41 3 ΜΕΤΑΔΟΣΗ ΣΤΗ ΒΑΣΙΚΗ ΖΩΝΗ Από την ανάλυση Fourier γνωρίζουμε ότι το εύρος ζώνης ενός ιδανικού ορθογωνικού παλμού είναι άπειρο. Καθότι οι διάφορες τηλεπικοινωνιακές διατάξεις όπως και το μέσο μετάδοσης έχουν ένα συγκεκριμένο εύρος ζώνης είναι επόμενο οι ιδανικοί ορθογωνικοί παλμοί να φιλτράρονται καθώς η πληροφορία διαδίδεται από τον πομπό στο δέκτη. Το αποτέλεσμα αυτού του φιλτραρίσματος είναι η διασπορά των συμβόλων που χρησιμοποιούνται για τη μετάδοση δεδομένων, όπως απεικονίζεται στο Σχήμα 3-1. Σχήμα 3-1. Διέλευση ορθογωνικού παλμού δια μέσου φίλτρου περιορισμένου εύρους ζώνης. 3.1 Διασυμβολική παρεμβολή Η διασπορά -λόγω του πεπερασμένου εύρους ζώνης είτε του μέσου διάδοσης είτε των διατάξεων του πομπού και του δέκτη- των διαδοχικών συμβόλων έχει ως αποτέλεσμα την επικάλυψη μέρους της ενέργειας του ενός με τα γειτονικά του προκαλώντας έτσι το λεγόμενο πρόβλημα της διασυμβολικής παρεμβολής (intersymbol interference). Το φαινόμενο της διασυμβολικής παρεμβολής παρουσιάζεται στο Σχήμα 3-2. Επικοινωνίες ΙΙ 3-41 Τμήμα Πληροφορικής & Επικοινωνιών

42 Σχήμα 3-2. Το φαινόμενο της διασυμβολικής παρεμβολής. Η διασυμβολική παρεμβολή είναι ένα πρόβλημα που είναι σε θέση να υποβαθμίσει σοβαρά την ικανότητα του ανιχνευτή δεδομένων στο δέκτη να διαχωρίσει το τρέχον σύμβολο από τα γειτονικά του λόγω της διασποράς της ενέργειας αυτών. Έτσι, ακόμη και στην περίπτωση που δεν έχουμε θόρυβο σε ένα κανάλι επικοινωνίας, η διασυμβολική παρεμβολή μπορεί να οδηγήσει στην λανθασμένη ανίχνευση συμβόλων, έχοντας ως αποτέλεσμα τον αναπόφευκτο ρυθμό σφαλμάτων (irreducible error rate). 3.2 Φίλτρα Nyquist Το φαινόμενο της διασυμβολικής παρεμβολής είναι δυνατόν να περιοριστεί σε τέτοιο βαθμό, ώστε να μην υποβαθμίζει την ποιότητα της ζεύξης αναφορικά στον παρατηρούμενο ρυθμό εμφάνισης σφαλμάτων. Αποδεικνύεται ότι εάν η συνάρτηση μεταφοράς του καναλιού επικοινωνίας (συμπεριλαμβανομένου του πομπού, μέσου μετάδοσης και δέκτη) είναι σύμφωνη κατά το κριτήριο Nyquist, τότε η διασυμβολική παρεμβολή μηδενίζεται. Επικοινωνίες ΙΙ 3-42 Τμήμα Πληροφορικής & Επικοινωνιών

43 Η χαρακτηριστική ιδιότητα της συνάρτησης μεταφοράς κατά Nyquist είναι ότι η ζώνη μετάβασης μεταξύ των ζωνών διέλευσης και αποκοπής είναι συμμετρική περί την συχνότητα f s =1/2T s (Σχήμα 3-3). Σχήμα 3-3. Συνάρτηση μεταφοράς κατά το κριτήριο Nyquist. Σε ένα κανάλι με συνάρτηση μεταφοράς Nyquist, τα σύμβολα εξακολουθούν να εμφανίζουν διασπορά, αλλά η κυματομορφή τους έχει την ιδιότητα να περνά από το μηδέν σε χρονικές στιγμές που είναι πολλαπλάσια της διάρκειας του συμβόλου (Σχήμα 3-4). Σχήμα 3-4. Διέλευση ορθογωνικού παλμού δια φίλτρου Nyquist. Διενεργώντας τη διαδικασία της δειγματοληψίας των δεδομένων τις χρονικές εκείνες στιγμές που η διασυμβολική παρεμβολή διέρχεται δια του μηδενός, η ενέργεια διασποράς των γειτονικών συμβόλων δεν επηρεάζει την τιμή του τρέχοντος συμβόλου τη Επικοινωνίες ΙΙ 3-43 Τμήμα Πληροφορικής & Επικοινωνιών

44 στιγμή της δειγματοληψίας (Σχήμα 3-5). Είναι όμως ευνόητο ότι προκειμένου να περιοριστεί κατά το δυνατόν αποτελεσματικότερα το πρόβλημα της διασυμβολικής παρεμβολής απαιτείται πολύ ακριβής χρονισμός δειγματοληψίας στο δέκτη. Σχήμα 3-5. Επίτευξη μηδενικής διασυμβολικής παρεμβολής με φίλτρο Nyquist. Σε πρακτικά συστήματα επικοινωνιών, όπως για παράδειγμα σε ένα κλασσικό τηλεφωνικό κανάλι, η επίτευξη συνάρτησης μεταφοράς κατά Nyquist είναι αρκετά δύσκολη. Παρά το γεγονός ότι το τηλεφωνικό modem μπορεί να έχει σχεδιαστεί έτσι ώστε να επιτυγχάνεται μηδενική διασυμβολική παρεμβολή, η γραμμή μεταφοράς μπορεί να εισάγει σημαντική αλλοίωση καταργώντας την όποια προσεκτική προσπάθεια σχεδίασης. Γι αυτό το λόγο χρησιμοποιούνται προσαρμοζόμενοι ισοσταθμητές (adaptive equalizers) ώστε να εξομαλύνουν την συνάρτηση μεταφοράς του καναλιού και να επιτυγχάνεται συνάρτηση μεταφοράς κατά Nyquist. Τα περισσότερα τηλεφωνικά modem σήμερα λειτουργούν σε ταχύτητες μεγαλύτερες των 9.6kbps και χρησιμοποιούν προσαρμοζόμενους ισοσταθμητές που αποστέλλουν εκπαιδευτικές ακολουθίες κατά τη διάρκεια της σηματοδοσίας πριν την έναρξη της συνομιλίας ή της αποστολής δεδομένων, για να καθορίσουν την μη ιδανική απόκριση του καναλιού. Επικοινωνίες ΙΙ 3-44 Τμήμα Πληροφορικής & Επικοινωνιών

45 3.3 Διαγράμματα οφθαλμού Το διάγραμμα οφθαλμού είναι μια εποπτική μέθοδος διάγνωσης προβλημάτων σε συστήματα μετάδοσης δεδομένων. Το διάγραμμα οφθαλμού προκύπτει όταν συνδέσουμε έναν παλμογράφο στο σημείο εκείνο του δέκτη όπου τα δεδομένα έχουν φιλτραριστεί και αποδιαμορφωθεί αλλά δεν έχουν αναγνωριστεί και μετατραπεί σε δυαδικά ψηφία. Ο παλμογράφος σκανδαλίζεται επαναληπτικά σε κάθε περίοδο συμβόλου ή σε καθορισμένο πολλαπλάσιο της περιόδου του συμβόλου, ανακτώντας το σήμα χρονισμού συμβόλων από τη λαμβανόμενη κυματομορφή. Βασιζόμενοι στην αδράνεια οπτικής απεικόνισης του παλμογράφου, το αποτέλεσμα είναι η υπέρθεση μιας επικαλυπτόμενης ακολουθίας συμβολικών καταστάσεων που οδηγεί στη σύνθεση του διαγράμματος οφθαλμού. Ένα τυπικό διάγραμμα οφθαλμού απεικονίζεται στο Σχήμα 3-6. Σχήμα 3-6. Διάγραμμα οφθαλμού. Τα διαγράμματα οφθαλμού αποτελούν ένα εξαιρετικό διαγνωστικό εργαλείο για την ανίχνευση αιτιών υποβάθμισης της ποιότητας μιας τηλεπικοινωνιακής ζεύξης. Στο Σχήμα 3-7 παρουσιάζονται διάφορες αιτίες υποβιβασμού της ποιότητας ενός τηλεπικοινωνιακού καναλιού, με καθεμιά να έχει τη δική της επίδραση στην εμφάνιση του διαγράμματος οφθαλμού. Επικοινωνίες ΙΙ 3-45 Τμήμα Πληροφορικής & Επικοινωνιών

46 Σχήμα 3-7. Επίδραση διαφόρων παραγόντων υποβάθμισης στο διάγραμμα οφθαλμού. Διαγράμματα οφθαλμού για περιπτώσεις σηματοδοσίας τεσσάρων και δεκαέξι επιπέδων παρουσιάζονται στο Σχήμα 3-8. Σχήμα 3-8. Διαγράμματα οφθαλμού για διαμόρφωση τεσσάρων και δεκαέξι καταστάσεων. 3.4 Φίλτρα υψωμένου συνημιτόνου Τα φίλτρα υψωμένου συνημιτόνου αποτελούν μια δημοφιλή υλοποίηση των φίλτρων Nyquist. Ονομάζονται δε έτσι, λόγω του ότι το σχήμα της ζώνης μετάβασης (η ζώνη μεταξύ των ζωνών διέλευσης και αποκοπής) μοιάζει με τμήμα της κυματομορφής ενός συνημιτόνου. Η οξύτητα του φίλτρου ελέγχεται από τον παράγοντα κλίσης του φίλτρου α. Το εύρος ζώνης Β που καταλαμβάνεται από Επικοινωνίες ΙΙ 3-46 Τμήμα Πληροφορικής & Επικοινωνιών

47 ένα σήμα που φιλτράρεται από φίλτρο υψωμένου συνημιτόνου δίδεται από τη σχέση: 1 B = Bmin (1 + a) = (1 + a) (3.1) T 2 S Η απόκριση συχνότητας ενός φίλτρου υψωμένου συνημιτόνου για διάφορες τιμές του παράγοντα κλίσης απεικονίζονται στο Σχήμα 3-9. Σχήμα 3-9. Απόκριση συχνότητας φίλτρων υψωμένου συνημιτόνου για διάφορες τιμές του παράγοντα κλίσης. Ο παράγοντας κλίσης α κυμαίνεται μεταξύ 0 και 1, με την τιμή 0 να αντιστοιχεί σε ένα ιδανικό φίλτρο, το «φίλτρο πλινθοδομής» και το 1 στο μέγιστο δυνατό εύρος ζώνης Nyquist. Μια σημαντική ιδιότητα του φίλτρου υψωμένου συνημιτόνου είναι το ομαλό σχήμα του φάσματος μεταξύ της ζώνης διέλευσης και της ζώνης αποκοπής, που οδηγεί σε μείωση των παλμικών ταλαντώσεων στο πεδίο του χρόνου. Η κρουστική απόκριση ενός φίλτρου υψωμένου συνημιτόνου παρουσιάζεται στο Σχήμα Επικοινωνίες ΙΙ 3-47 Τμήμα Πληροφορικής & Επικοινωνιών

48 Σχήμα Κρουστική απόκριση φίλτρου υψωμένου συνημιτόνου για διάφορες τιμές του παράγοντα κλίσης. Παράδειγμα: Μια ακολουθία δεδομένων οκτώ επιπέδων βασικής ζώνης έχει περίοδο συμβόλων 100μs. Ποιο είναι το ελάχιστο εύρος ζώνης Β που απαιτείται για εκπομπή, θεωρώντας ότι χρησιμοποιείται ένα φίλτρο υψωμένου συνημιτόνου με α=0.33; Πόσος χρόνος χρειάζεται για τη μετάδοση ενός εκατομμυρίου bits; Λύση: B min = 1 = 50 KHz, B N = B ( ) = 66,500Hz min Η μονάδα ταχύτητας μετάδοσης ψηφιακών παλμών είναι 1/ ή 100,000 symbols/sec. Κάθε σύμβολο μεταφέρει 3 bit πληροφορίας, οπότε η ταχύτητα μετάδοσης των bit είναι 300,000 bits/sec. Η υλοποίηση φίλτρων που έχουν απόκριση συχνότητας κατά Nyquist είναι δύσκολο να πραγματοποιηθεί με αναλογική τεχνολογία κι εξαρτήματα. Οι πρόσφατες όμως τεχνολογικές εξελίξεις επέτρεψαν την εύκολη και φθηνή υλοποίηση με τη χρήση ψηφιακών επεξεργαστών σήματος. Χρησιμοποιώντας τα φίλτρα πεπερασμένης Επικοινωνίες ΙΙ 3-48 Τμήμα Πληροφορικής & Επικοινωνιών

49 κρουστικής απόκρισης (finite impulse response FIR) καθίσταται δυνατή η υλοποίηση φίλτρων υψωμένου συνημιτόνου στον επιθυμητό βαθμό ακρίβειας. 3.5 Ανάκτηση χρονισμού συμβόλων Ο χρονισμός συμβόλων στο δέκτη μπορεί να ανακτηθεί με την αποστολή ενός σήματος χρονισμού αναφοράς μαζί με την αποστολή δεδομένων. Τα περισσότερα όμως σύγχρονα συστήματα ψηφιακών επικοινωνιών ανακτούν την πληροφορία χρονισμού από τα ίδια τα δεδομένα κάνοντας χρήση της μεθόδου της διέλευσης δια του μηδενός (zero-crossing). Σχήμα Ανάκτηση χρονισμού για σήματα φιλτραρισμένα με φίλτρο υψωμένου συνημιτόνου. Το πρόβλημα της ανάκτησης του χρονισμού συμβόλων γίνεται πολύ πιο απλό για δεδομένα που έχουν φιλτραριστεί με φίλτρο υψωμένου συνημιτόνου, του οποίου ο παράγοντας κλίσης είναι α=1. Στην περίπτωση αυτή, η διέλευση της κυματομορφής δεδομένων δια του μηδενός συμβαίνει τη χρονική στιγμή T S /2 πριν το βέλτιστο σημείο ανίχνευσης ( Σχήμα 3-12) για μηδενική διασυμβολική παρεμβολή. Σκανδαλίζοντας ένα χρονιστή ώστε η δειγματοληψία να λάβει χώρα T S /2 αργότερα από τη χρονική στιγμή διέλευσης δια του μηδενός, επιτυγχάνεται ο ιδανικός χρονισμός συμβόλων. Όταν τα δεδομένα Επικοινωνίες ΙΙ 3-49 Τμήμα Πληροφορικής & Επικοινωνιών

50 περιέχουν μεγάλες ακολουθίες 1 ή 0, η δειγματοληψία θα πρέπει μέσω της διαδικασίας της παρεμβολής να καθορίσει το σωστό χρονικό διάστημα δειγματοληψίας μέχρι την επόμενη διέλευση της κυματομορφής δεδομένων δια του μηδενός Κυκλώματα χρονισμού συμβόλων Το κύριο μειονέκτημα της χρήσης φίλτρων υψωμένου συνημιτόνου με α=1 σε συστήματα χρονισμού είναι το μεγάλο εύρος ζώνης που απαιτείται. Επιπροσθέτως, ο θόρυβος που συνοδεύει το λαμβανόμενο σήμα επηρεάζει τις μεμονωμένες διελεύσεις δια του μηδενός και προκειμένου να ανακτηθεί με ακρίβεια ο σωστός χρονισμός απαιτείται κάποια μορφή εξαγωγής του μέσου όρου μέσω μιας διαδικασίας ολοκλήρωσης. Έτσι, σε σύγχρονους δέκτες χρησιμοποιούνται ειδικά κυκλώματα που καταπολεμούν τα φαινόμενα του θορύβου αλλά και των μη ιδανικών διελεύσεων δια του μηδενός λόγω της επιλογής παράγοντα κλίσης μικρότερου της μονάδας. Ένα τέτοιο κύκλωμα παρουσιάζεται στο Σχήμα Σχήμα Κύκλωμα ανάκτησης χρονισμού συμβόλων. Επικοινωνίες ΙΙ 3-50 Τμήμα Πληροφορικής & Επικοινωνιών

51 Η λειτουργία του κυκλώματος βασίζεται στην παραγωγή παλμών διάρκειας T S /2 από ένα μονοσταθές κύκλωμα κάθε φορά που η τάση της κυματομορφής δεδομένων διέρχεται δια του μηδενός. Στη συνέχεια, ο παλμός αυτός συγκρίνεται σε ένα ψηφιακό μίκτη με το τοπικό παραγόμενο ρολόι που λειτουργεί σε συχνότητα πλησίον της συχνότητας αποστολής συμβόλων. Στη συνέχεια η έξοδος του μίκτη ολοκληρώνεται και φιλτράρεται προκειμένου να παραχθεί μια dc εξομαλυνμένη τάση ελέγχου, η οποία χρησιμοποιείται ως είσοδος σε ένα ταλαντωτή ελεγχόμενο από τάση για να συντονίσει το τοπικό ρολόι στην πραγματική συχνότητα αποστολής των συμβόλων. 3.6 Προσαρμοσμένο φίλτρο Η λειτουργία ενός ψηφιακού δέκτη είναι να αναγνωρίζει σωστά σε κάθε περίοδο του συμβόλου ποιο σύμβολο στάλθηκε από τον πομπό. Αυτό επιτυγχάνεται με την δειγματοληψία του λαμβανόμενου σήματος σε κάθε περίοδο του συμβόλου και με την σύγκρισή του με ένα προκαθορισμένο όριο απόφασης. Σχήμα Διάγραμμα βαθμίδων κυκλώματος δειγματοληψίας. Ο σκοπός του φίλτρου είναι να απομακρύνει όσο περισσότερο θόρυβο γίνεται χωρίς να επηρεαστεί το ωφέλιμο σήμα με ανεπιθύμητο τρόπο. Μ άλλα λόγια, ο σκοπός του φίλτρου είναι Επικοινωνίες ΙΙ 3-51 Τμήμα Πληροφορικής & Επικοινωνιών

52 να μεγιστοποιήσει το λόγο σήματος προς θόρυβο κατά τη στιγμή δειγματοληψίας. Το φίλτρο που μεγιστοποιεί το λόγο σήματος προς θόρυβο στην έξοδό του ονομάζεται προσαρμοσμένο φίλτρο. Αποδεικνύεται, ότι για ένα κανάλι που υπόκειται σε θόρυβο AWGN το προσαρμοσμένο φίλτρο είναι αυτό του οποίου η κρουστική απόκριση είναι μια χρονικά ανεστραμμένη και καθυστερημένη έκδοση της κυματομορφής του παλμού σηματοδοσίας, δηλαδή: h () t = s( T t) matched (3.2) Σχήμα Κρουστική απόκριση προσαρμοσμένου φίλτρου. Αναφερόμενοι στο πεδίο της συχνότητας, το προσαρμοσμένο φίλτρο ορίζεται ως αυτό του οποίου η απόκριση συχνότητας είναι ίση με την μιγαδική συζυγή της απόκρισης συχνότητας της κυματομορφής του συμβόλου σηματοδοσίας, δηλαδή: H ( f) S ( f) e matched * j2π ft = (3.3) Αποδεικνύεται επίσης ότι ο λόγος SNR στην έξοδο του προσαρμοσμένου φίλτρου κατά τη στιγμή δειγματοληψίας είναι 2 s ( T ) 2E SNR = =, όπου Ε είναι η ενέργεια του συμβόλου του 2 n N o λαμβανόμενου σήματος και Ν 0 είναι η φασματική πυκνότητα θορύβου του AWGN. Στο ερώτημα εάν είναι δυνατή η κατασκευή ενός προσαρμοσμένου φίλτρου που ταυτόχρονα να ικανοποιεί το κριτήριο Nyquist για μηδενική διασυμβολική παρεμβολή, την απάντηση δίδει το φίλτρο Επικοινωνίες ΙΙ 3-52 Τμήμα Πληροφορικής & Επικοινωνιών

53 ρίζας υψωμένου συνημιτόνου, το οποίο αποδείχθηκε 3 ότι ικανοποιεί και τις δύο αυτές απαιτήσεις Δυαδική σηματοδοσία και βέλτιστο όριο ανίχνευσης Αφού καθοριστεί το βέλτιστο (προσαρμοσμένο) φίλτρο είναι αναγκαίο να επιλεχτεί ένα κατάλληλο όριο για τον συγκριτή ώστε η αναλογία σφάλματος των bits (Bit Error Ratio BER) [το BER είναι ισοδύναμο με την πιθανότητα λανθασμένης λήψης bits Ρ Ε ] να ελαχιστοποιηθεί. Αν το κανάλι υπόκειται σε AWGN και η στάθμη τάσης V 0 χρησιμοποιείται για να μεταδώσει ένα λογικό 0 και η στάθμη τάσης V 1 για ένα λογικό 1, τότε η στάθμη σήματος στην είσοδο του συγκριτή περιγράφεται από τις ακόλουθες κατανομές πυκνότητας πιθανότητας: P 0 (v) P 1 (v) V o V T V 1 V Σχήμα Διεύρυνση της στάθμης σηματοδοσίας για δυαδικό κανάλι λόγω AWGN. Για το παραπάνω δυαδικό κανάλι ισχύει: P( 1 )=Q, 1 P e0 =P( 0 1') P( 1 1')=1-P e1 1 P e1 =P( 1 0') 3 Schwartz, M., Information, Transmission, Modulation and Noise, McGraw-Hill, P( 0 )=1-Q, 0 0 P( 0 0')=1-P e0 Επικοινωνίες ΙΙ 3-53 Τμήμα Πληροφορικής & Επικοινωνιών

Εισαγωγή. Προχωρημένα Θέματα Τηλεπικοινωνιών. Ανάκτηση Χρονισμού. Τρόποι Συγχρονισμού Συμβόλων. Συγχρονισμός Συμβόλων. t mt

Εισαγωγή. Προχωρημένα Θέματα Τηλεπικοινωνιών. Ανάκτηση Χρονισμού. Τρόποι Συγχρονισμού Συμβόλων. Συγχρονισμός Συμβόλων. t mt Προχωρημένα Θέματα Τηλεπικοινωνιών Συγχρονισμός Συμβόλων Εισαγωγή Σε ένα ψηφιακό τηλεπικοινωνιακό σύστημα, η έξοδος του φίλτρου λήψης είναι μια κυματομορφή συνεχούς χρόνου y( an x( t n ) n( n x( είναι

Διαβάστε περισσότερα

Ήχος. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 04-1

Ήχος. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 04-1 Ήχος Χαρακτηριστικά του ήχου Ψηφιοποίηση με μετασχηματισμό Ψηφιοποίηση με δειγματοληψία Κβαντοποίηση δειγμάτων Παλμοκωδική διαμόρφωση Συμβολική αναπαράσταση μουσικής Τεχνολογία Πολυμέσων και Πολυμεσικές

Διαβάστε περισσότερα

Εργαστήριο 3: Διαλείψεις

Εργαστήριο 3: Διαλείψεις Εργαστήριο 3: Διαλείψεις Διάλειψη (fading) είναι η παραμόρφωση ενός διαμορφωμένου σήματος λόγω της μετάδοσης του σε ασύρματο περιβάλλον. Η προσομοίωση μίας τέτοιας μετάδοσης γίνεται με την μοντελοποίηση

Διαβάστε περισσότερα

Τεχνολογία Πολυμέσων. Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής

Τεχνολογία Πολυμέσων. Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Τεχνολογία Πολυμέσων Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το

Διαβάστε περισσότερα

Τμήμα Μηχανικών Η/Υ και Πληροφορικής

Τμήμα Μηχανικών Η/Υ και Πληροφορικής Τμήμα Μηχανικών Η/Υ και Πληροφορικής Εργαστήριο Επεξεργασίας Σημάτων και Τηλεπικοινωνιών Κινητά Δίκτυα Επικοινωνιών Μέρος Α: Τηλεπικοινωνιακά Θέματα: Τεχνικές Ψηφιακής Διαμόρφωσης και Μετάδοσης Tο γενικό

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΉΜΑ ΕΠΙΣΤΉΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 7 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: hp://ecla.uop.gr/coure/tst25 e-ail:

Διαβάστε περισσότερα

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Τ.Ε.Ι. ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ: Μελέτη της τεχνικής ψαλιδισμού (clipping) του λόγου μέγιστης τιμής ισχύος προς μέση τιμή ισχύος σημάτων με ψηφιακή διαμόρφωση QPSK

Διαβάστε περισσότερα

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Μελέτη και προσομοίωση ψηφιακών φίλτρων για δορυφορικό τηλεπικοινωνιακό πομποδέκτη με χρήση διαμόρφωσης 16-QAM.

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Μελέτη και προσομοίωση ψηφιακών φίλτρων για δορυφορικό τηλεπικοινωνιακό πομποδέκτη με χρήση διαμόρφωσης 16-QAM. TEΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ με θέμα Μελέτη και προσομοίωση ψηφιακών φίλτρων για δορυφορικό τηλεπικοινωνιακό

Διαβάστε περισσότερα

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΜΕΤΡΗΣΕΩΝ Ι. Σημειώσεις Εργαστηριακών Ασκήσεων

ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΜΕΤΡΗΣΕΩΝ Ι. Σημειώσεις Εργαστηριακών Ασκήσεων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Τομέας Ηλεκτρικών Βιομηχανικών Διατάξεων και Συστημάτων Αποφάσεων ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΜΕΤΡΗΣΕΩΝ Ι Σημειώσεις Εργαστηριακών

Διαβάστε περισσότερα

Ήχος και φωνή. Τεχνολογία Πολυµέσων 04-1

Ήχος και φωνή. Τεχνολογία Πολυµέσων 04-1 Ήχος και φωνή Φύση του ήχου Ψηφιοποίηση µε µετασχηµατισµό Ψηφιοποίηση µε δειγµατοληψία Παλµοκωδική διαµόρφωση Αναπαράσταση µουσικής Ανάλυση και σύνθεση φωνής Μετάδοση φωνής Τεχνολογία Πολυµέσων 4-1 Φύση

Διαβάστε περισσότερα

Ψηφιακά Φίλτρα. Αναλογικά και ψηφιακά φίλτρα 20/5/2005 1 20/5/2005 2

Ψηφιακά Φίλτρα. Αναλογικά και ψηφιακά φίλτρα 20/5/2005 1 20/5/2005 2 Ψηφιακά Φίλτρα Αναλογικά και ψηφιακά φίλτρα 20/5/2005 1 Αναλογικά και ψηφιακά φίλτρα Στην επεξεργασία σήματος, η λειτουργία ενός φίλτρου είναι να απομακρύνει τα ανεπιθύμητα μέρη ενός σήματος, όπως ένα

Διαβάστε περισσότερα

ΦΙΛΤΡΑ ΜΕ ΠΑΘΗΤΙΚΑ ΣΤΟΙΧΕΙΑ

ΦΙΛΤΡΑ ΜΕ ΠΑΘΗΤΙΚΑ ΣΤΟΙΧΕΙΑ ΦΙΛΤΡΑ ΜΕ ΠΑΘΗΤΙΚΑ ΣΤΟΙΧΕΙΑ Τα φίλτρα είναι ηλεκτρικά δικτυώματα που αφήνουν να περνούν απαραμόρφωτα ηλεκτρικά σήματα μέσα σε συγκεκριμένες ζώνες συχνοτήτων και ταυτόχρονα μηδενίζουν κάθε άλλο ηλεκτρικό

Διαβάστε περισσότερα

Παλμοκωδική Διαμόρφωση. Pulse Code Modulation (PCM)

Παλμοκωδική Διαμόρφωση. Pulse Code Modulation (PCM) Παλμοκωδική Διαμόρφωση Pulse Code Modulation (PCM) Pulse-code modulation (PCM) Η PCM είναι ένας στοιχειώδης τρόπος διαμόρφωσης που δεν χρησιμοποιεί φέρον! Το μεταδιδόμενο (διαμορφωμένο) σήμα PCM είναι

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΗ ΚΑΙ ΥΛΟΠΟΙΗΣΗ ΨΗΦΙΑΚΟΥ ΔΕΚΤΗ ΜΕ ΔΙΑΜΟΡΦΩΣΗ QPSK

ΣΧΕΔΙΑΣΗ ΚΑΙ ΥΛΟΠΟΙΗΣΗ ΨΗΦΙΑΚΟΥ ΔΕΚΤΗ ΜΕ ΔΙΑΜΟΡΦΩΣΗ QPSK ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΗΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ: "ΣΥΓΧΡΟΝΕΣ ΗΛΕΚΤΡΟΝΙΚΕΣ ΤΕΧΝΟΛΟΓΙΕΣ" ΣΧΕΔΙΑΣΗ ΚΑΙ ΥΛΟΠΟΙΗΣΗ ΨΗΦΙΑΚΟΥ ΔΕΚΤΗ ΜΕ

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

ίκτυα Υπολογιστών και Επικοινωνία ίκτυα Υπολογιστών & Επικοινωνία ΙΑΛΕΞΗ 8 Η Παντάνο Ρόκου Φράνκα 1 ιάλεξη 8: Το Φυσικό Επίπεδο

ίκτυα Υπολογιστών και Επικοινωνία ίκτυα Υπολογιστών & Επικοινωνία ΙΑΛΕΞΗ 8 Η Παντάνο Ρόκου Φράνκα 1 ιάλεξη 8: Το Φυσικό Επίπεδο ίκτυα Υπολογιστών & Επικοινωνία ΙΑΛΕΞΗ 8 Η ιδάσκουσα: Παντάνο Ρόκου Φράνκα Παντάνο Ρόκου Φράνκα 1 ιάλεξη 8 η : Το Φυσικό Επίπεδο Το Φυσικό Επίπεδο ιάδοση Σήµατος Ηλεκτροµαγνητικά Κύµατα Οπτικές Ίνες Γραµµές

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 3 3.0 ΜΕΣΑ ΜΕΤΑΔΟΣΗΣ ΕΙΣΑΓΩΓΗ

ΕΝΟΤΗΤΑ 3 3.0 ΜΕΣΑ ΜΕΤΑΔΟΣΗΣ ΕΙΣΑΓΩΓΗ ΕΝΟΤΗΤΑ 3 3.0 ΜΕΣΑ ΜΕΤΑΔΟΣΗΣ ΕΙΣΑΓΩΓΗ Όπως είναι ήδη γνωστό, ένα σύστημα επικοινωνίας περιλαμβάνει τον πομπό, το δέκτη και το κανάλι επικοινωνίας. Στην ενότητα αυτή, θα εξετάσουμε τη δομή και τα χαρακτηριστικά

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες

Διαβάστε περισσότερα

ΑΣΥΡΜΑΤΟ ΠΕΡΙΒΑΛΛΟΝ ΣΤΙΣ ΚΙΝΗΤΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ

ΑΣΥΡΜΑΤΟ ΠΕΡΙΒΑΛΛΟΝ ΣΤΙΣ ΚΙΝΗΤΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΑΣΥΡΜΑΤΟ ΠΕΡΙΒΑΛΛΟΝ ΣΤΙΣ ΚΙΝΗΤΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Ραδιοδίαυλοι Ιδανικός Ραδιοδίαυλος Το λαµβανόµενο σήµα αποτελείται από ένα απευθείας λαµβανόµενο σήµα, από το οποίο ανακατασκευάζεται πλήρως το εκπεµπόµενο

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007 Μάθημα : Ψηφιακά Ηλεκτρονικά Τεχνολογία ΙΙ Τεχνικών Σχολών, Θεωρητικής Κατεύθυνσης

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΑ ΗΛΕΚΤΡΟΝΙΚΑ ΦΙΛΤΡΑ

ΕΙΣΑΓΩΓΗ ΣΤΑ ΗΛΕΚΤΡΟΝΙΚΑ ΦΙΛΤΡΑ Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής ΕΙΣΑΓΩΓΗ ΣΤΑ ΗΛΕΚΤΡΟΝΙΚΑ ΦΙΛΤΡΑ Κ. Ψυχαλίνος Πάτρα 005 . METAΣΧΗΜΑΤΙΣΜΟΣ LAPLACE. Ορισμοί Μετάβαση από το πεδίο του χρόνου στο πεδίο συχνότητας.

Διαβάστε περισσότερα

Θεωρία Παλμοκωδικής Διαμόρφωσης (PCM)

Θεωρία Παλμοκωδικής Διαμόρφωσης (PCM) Κεφάλαιο 2 ο Θεωρία Παλμοκωδικής Διαμόρφωσης (PCM) 1 Εισαγωγή στα συστήματα μετάδοσης ψηφιακής πληροφορίας Ο σκοπός των σύγχρονων τηλεπικοινωνιών είναι να μεταφέρουν υψηλής ποιότητας σήματα πολυμέσων (φωνής,

Διαβάστε περισσότερα

Επιδόσεις της σύνδεσης για κάλυψη µε κεραία πολλαπλής δέσµης σε σχέση µε κάλυψη µε κεραία απλής δέσµης

Επιδόσεις της σύνδεσης για κάλυψη µε κεραία πολλαπλής δέσµης σε σχέση µε κάλυψη µε κεραία απλής δέσµης Επιδόσεις της σύνδεσης για κάλυψη µε κεραία πολλαπλής δέσµης σε σχέση µε κάλυψη µε κεραία απλής δέσµης Η συνολική ποιότητα της σύνδεσης µέσω ραδιοσυχνοτήτων εξαρτάται από την 9000 απολαβή της κεραίας του

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΝΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 14/04/2013. ΘΕΜΑ 1 ο

ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΝΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 14/04/2013. ΘΕΜΑ 1 ο ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 01-013 ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΝΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 14/04/013 ΘΕΜΑ 1 ο 1) Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας δίπλα στο γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

ΘΕΜΑ 1 ο. α. τα μήκη κύματος από 100m έως 50m ονομάζονται κύματα νύχτας και τα μήκη κύματος από 50m έως 10m ονομάζονται κύματα ημέρας.

ΘΕΜΑ 1 ο. α. τα μήκη κύματος από 100m έως 50m ονομάζονται κύματα νύχτας και τα μήκη κύματος από 50m έως 10m ονομάζονται κύματα ημέρας. ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΕΠΑΛ (ΟΜΑΔΑ Α ) & ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΘΕΜΑ 1 ο ΤΕΤΑΡΤΗ 16/04/014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΗΛΕΚΤΡΟΝΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΑΠΑΝΤΗΣΕΙΣ 1) Να χαρακτηρίσετε

Διαβάστε περισσότερα

KYMATA Ανάκλαση - Μετάδοση

KYMATA Ανάκλαση - Μετάδοση ΦΥΣ 131 - Διαλ.34 1 KYMATA Ανάκλαση - Μετάδοση q Παλµός πάνω σε χορδή: Ένα άκρο της σταθερό (δεµένο) Προσπίπτων Ο παλµός ασκεί µια δύναµη προς τα πάνω στον τοίχο ο οποίος ασκεί µια δύναµη προς τα κάτω

Διαβάστε περισσότερα

Συναρτήσεις Όρια Συνέχεια

Συναρτήσεις Όρια Συνέχεια Κωνσταντίνος Παπασταματίου Μαθηματικά Γ Λυκείου Κατεύθυνσης Συναρτήσεις Όρια Συνέχεια Συνοπτική Θεωρία Μεθοδολογίες Λυμένα Παραδείγματα Επιμέλεια: Μαθηματικός Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με

Διαβάστε περισσότερα

ΠΡΟΣΟΜΟΙΩΣΗ BPSK ΠΟΜΠΟΔΕΚΤΗ ΜΕ ΚΩΔΙΚΟΠΟΙΗΣΗ HAMMING ΣΕ ΠΕΡΙΒΑΛΛΟΝ AWGN ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΠΡΟΣΟΜΟΙΩΣΗ BPSK ΠΟΜΠΟΔΕΚΤΗ ΜΕ ΚΩΔΙΚΟΠΟΙΗΣΗ HAMMING ΣΕ ΠΕΡΙΒΑΛΛΟΝ AWGN ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗ BPSK ΠΟΜΠΟΔΕΚΤΗ ΜΕ ΚΩΔΙΚΟΠΟΙΗΣΗ HAMMING ΣΕ ΠΕΡΙΒΑΛΛΟΝ AWGN ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ

Διαβάστε περισσότερα

Εισαγωγή στα ψηφιακά Συστήµατα Μετρήσεων

Εισαγωγή στα ψηφιακά Συστήµατα Μετρήσεων 1 Εισαγωγή στα ψηφιακά Συστήµατα Μετρήσεων 1.1 Ηλεκτρικά και Ηλεκτρονικά Συστήµατα Μετρήσεων Στο παρελθόν χρησιµοποιήθηκαν µέθοδοι µετρήσεων που στηριζόταν στις αρχές της µηχανικής, της οπτικής ή της θερµοδυναµικής.

Διαβάστε περισσότερα

Εισαγωγή στις Ηλεκτρικές Μετρήσεις

Εισαγωγή στις Ηλεκτρικές Μετρήσεις Εισαγωγή στις Ηλεκτρικές Μετρήσεις Σφάλματα Μετρήσεων Συμβατικά όργανα μετρήσεων Χαρακτηριστικά μεγέθη οργάνων Παλμογράφος Λέκτορας Σοφία Τσεκερίδου 1 Σφάλματα μετρήσεων Επιτυχημένη μέτρηση Σωστή εκλογή

Διαβάστε περισσότερα

1/3/2009. Τα ψηφιακά ηχητικά συστήματα πρέπει να επικοινωνήσουν με τον «αναλογικό» ανθρώπινο κόσμο. Φλώρος Ανδρέας Επίκ. Καθηγητής.

1/3/2009. Τα ψηφιακά ηχητικά συστήματα πρέπει να επικοινωνήσουν με τον «αναλογικό» ανθρώπινο κόσμο. Φλώρος Ανδρέας Επίκ. Καθηγητής. Από το προηγούμενο μάθημα... Μάθημα: «Ψηφιακή Επεξεργασία Ήχου» Δάλ Διάλεξη 2 η : «Βασικές Β έ αρχές ψηφιακού ήχου» Φλώρος Ανδρέας Επίκ. Καθηγητής Τα ψηφιακά ηχητικά συστήματα πρέπει να επικοινωνήσουν

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ

ΠΕΙΡΑΜΑΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ ΕΙΣΑΓΩΓΗ: Όπως θα δούμε και παρακάτω το φίλτρο είναι ένα σύστημα του οποίου η απόκριση συχνότητας παίρνει σημαντικές τιμές μόνο για συγκεκριμένες ζώνες του άξονα συχνοτήτων, δηλαδή «κόβουν» κάποιες ανεπιθύμητες

Διαβάστε περισσότερα

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1 Τελεστές και πίνακες 1. Τελεστές και πίνακες Γενικά Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. Ανάλογα, τελεστής είναι η απεικόνιση ενός διανύσματος σε ένα

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΑ ΚΥΚΛΩΜΑΤΑ 1 ης ΤΑΞΗΣ (Κεφ. 18)

ΑΣΚΗΣΕΙΣ ΣΤΑ ΚΥΚΛΩΜΑΤΑ 1 ης ΤΑΞΗΣ (Κεφ. 18) ΑΣΚΗΣΕΙΣ ΣΤΑ ΚΥΚΛΩΜΑΤΑ 1 ης ΤΑΞΗΣ (Κεφ. 18) Άσκηση 1. Α) Στο κύκλωμα του παρακάτω σχήματος την χρονική στιγμή t=0 sec ο διακόπτης κλείνει. Βρείτε τα v c και i c. Οι πυκνωτές είναι αρχικά αφόρτιστοι. Β)

Διαβάστε περισσότερα

ΠΑΛΜΟΓΡΑΦΟΣ ΤΡΟΦΟ ΟΤΙΚΟ ΓΕΝΝΗΤΡΙΑ

ΠΑΛΜΟΓΡΑΦΟΣ ΤΡΟΦΟ ΟΤΙΚΟ ΓΕΝΝΗΤΡΙΑ ΟΡΓΑΝΑ ΕΡΓΑΣΤΗΡΙΟΥ 1 Εργαστήριο Κινητών Ραδιοεπικοινωνιών, ΣΗΜΜΥ ΕΜΠ Εισαγωγή στις Τηλεπικοινωνίες ΟΡΓΑΝΑ ΕΡΓΑΣΤΗΡΙΟΥ ΠΑΛΜΟΓΡΑΦΟΣ ΤΡΟΦΟ ΟΤΙΚΟ ΓΕΝΝΗΤΡΙΑ 2 Εργαστήριο Κινητών Ραδιοεπικοινωνιών, ΣΗΜΜΥ ΕΜΠ

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

Κωδικοποίηση Πηγής. Δρ. Α. Πολίτης

Κωδικοποίηση Πηγής. Δρ. Α. Πολίτης Κωδικοποίηση Πηγής Coder Decoder Μεταξύ πομπού και καναλιού παρεμβάλλεται ο κωδικοποιητής (coder). Έργο του: η αντικατάσταση των συμβόλων πληροφορίας της πηγής με εναλλακτικά σύμβολα ή λέξεις. Κωδικοποίηση

Διαβάστε περισσότερα

Μετασχηµατισµός Ζ (z-tranform)

Μετασχηµατισµός Ζ (z-tranform) Μετασχηµατισµός Ζ (-traform) Εργαλείο ανάλυσης σηµάτων και συστηµάτων διακριτού χρόνου ιεργασία ανάλογη του Μετ/σµού Laplace Απόκριση συχνότητας Εφαρµογές επίλυση γραµµικών εξισώσεων διαφορών µε σταθερούς

Διαβάστε περισσότερα

Σχήμα Χαμηλοδιαβατά φίλτρα:

Σχήμα Χαμηλοδιαβατά φίλτρα: ΦΙΛΤΡΑ 6.. ΦΙΛΤΡΑ Το φίλτρο είναι ένα σύστημα του οποίου η απόκριση συχνότητας παίρνει σημαντικές τιμές μόνο για συγκεκριμένες ζώνες του άξονα συχνοτήτων. Στο Σχήμα 6.6 δείχνουμε την απόκριση συχνότητας

Διαβάστε περισσότερα

Διάλεξη 2. Συστήματα Εξισώσεων Διαφορών ΔιακριτάΣήματαστοΧώροτης Συχνότητας

Διάλεξη 2. Συστήματα Εξισώσεων Διαφορών ΔιακριτάΣήματαστοΧώροτης Συχνότητας University of Cyprus Biomedical Imaging & Applied Optics Διάλεξη 2 Συστήματα Εξισώσεων Διαφορών Συστήματα Εξισώσεων Διαφορών Γραμμικές Εξισώσεις Διαφορών με Σταθερούς Συντελεστές (Linear Constant- Coefficient

Διαβάστε περισσότερα

ΤΕΙ ΚΡΗΤΗΣ ΤΜ. ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡ/ΚΗΣ & ΠΟΛΥΜΕΣΩΝ ΔΙΔΑΣΚΩΝ: Δρ. Γ. ΓΑΡΔΙΚΗΣ. Επίγεια ψηφιακή τηλεόραση

ΤΕΙ ΚΡΗΤΗΣ ΤΜ. ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡ/ΚΗΣ & ΠΟΛΥΜΕΣΩΝ ΔΙΔΑΣΚΩΝ: Δρ. Γ. ΓΑΡΔΙΚΗΣ. Επίγεια ψηφιακή τηλεόραση ΤΕΙ ΚΡΗΤΗΣ ΤΜ. ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡ/ΚΗΣ & ΠΟΛΥΜΕΣΩΝ ΔΙΔΑΣΚΩΝ: Δρ. Γ. ΓΑΡΔΙΚΗΣ 5 Επίγεια ψηφιακή τηλεόραση Επίγεια τηλεόραση: Η ασύρματη εκπομπή και λήψη του τηλεοπτικού σήματος αποκλειστικά από επίγειους

Διαβάστε περισσότερα

Κυκλώματα, Σήματα και Συστήματα

Κυκλώματα, Σήματα και Συστήματα Κυκλώματα, Σήματα και Συστήματα Μάθημα 7 Ο Μετασχηματισμός Z Βασικές Ιδιότητες Καθηγητής Χριστόδουλος Χαμζάς Ο Μετασχηματισμός Ζ Γιατί χρειαζόμαστε τον Μετασχηματισμό Ζ; Ανάγει την επίλυση των αναδρομικών

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ 3.1 Τυχαίοι αριθμοί Στην προσομοίωση διακριτών γεγονότων γίνεται χρήση ακολουθίας τυχαίων αριθμών στις περιπτώσεις που απαιτείται η δημιουργία στοχαστικών

Διαβάστε περισσότερα

Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη

Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη ΒΕΣ 6 Προσαρµοστικά Συστήµατα στις Τηλεπικοινωνίες Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη 7 Nicolas sapatsoulis Βιβλιογραφία Ενότητας Benvenuto []: Κεφάλαιo Wirow

Διαβάστε περισσότερα

ΑΠΟΤΕΛΕΣΜΑΤΑ ΠΕΠΕΡΑΣΜΕΝΗΣ ΑΚΡΙΒΕΙΑΣ (ΚΒΑΝΤΙΣΜΟΥ)

ΑΠΟΤΕΛΕΣΜΑΤΑ ΠΕΠΕΡΑΣΜΕΝΗΣ ΑΚΡΙΒΕΙΑΣ (ΚΒΑΝΤΙΣΜΟΥ) ΑΠΟΤΕΛΕΣΜΑΤΑ ΠΕΠΕΡΑΣΜΕΝΗΣ ΑΚΡΙΒΕΙΑΣ (ΚΒΑΝΤΙΣΜΟΥ) 0. Εισαγωγή Τα αποτελέσµατα πεπερασµένης ακρίβειας οφείλονται στα λάθη που προέρχονται από την παράσταση των αριθµών µε µια πεπερασµένη ακρίβεια. Τα αποτελέσµατα

Διαβάστε περισσότερα

Κεφάλαιο 15 Κίνηση Κυµάτων. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 15 Κίνηση Κυµάτων. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 15 Κίνηση Κυµάτων Περιεχόµενα Κεφαλαίου 15 Χαρακτηριστικά των Κυµάτων Είδη κυµάτων: Διαµήκη και Εγκάρσια Μεταφορά ενέργειας µε κύµατα Μαθηµατική Περιγραφή της Διάδοσης κυµάτων Η Εξίσωση του Κύµατος

Διαβάστε περισσότερα

ΜΕΤΡΗΣΗ ΔΙΑΦΟΡΑΣ ΦΑΣΗΣ ΔΥΟ ΗΜΙΤΟΝΟΕΙΔΩΝ ΣΗΜΑΤΩΝ

ΜΕΤΡΗΣΗ ΔΙΑΦΟΡΑΣ ΦΑΣΗΣ ΔΥΟ ΗΜΙΤΟΝΟΕΙΔΩΝ ΣΗΜΑΤΩΝ ΑΣΚΗΣΗ 05 ΜΕΤΡΗΣΗ ΔΙΑΦΟΡΑΣ ΦΑΣΗΣ ΔΥΟ ΗΜΙΤΟΝΟΕΙΔΩΝ ΣΗΜΑΤΩΝ Αντικείμενο της άσκησης αυτής είναι η μέτρηση της διαφοράς φάσης μεταξύ δύο κυματομορφών τάσης σε ένα κύκλωμα εναλλασσομένου ρεύματος με τη βοήθεια

Διαβάστε περισσότερα

Μάθηµα Εισαγωγή στις Τηλεπικοινωνίες

Μάθηµα Εισαγωγή στις Τηλεπικοινωνίες Μάθηµα Εισαγωγή στις Τηλεπικοινωνίες Ενότητα 1η Βασικές έννοιες στις Τηλεπικοινωνίες Μάθηµα 2ο ΕΘΝΙΚΟ & ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τοµέας Επικοινωνιών και Επεξεργασίας Σήµατος Τµήµα Πληροφορικής

Διαβάστε περισσότερα

1η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ:

1η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Ι η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΣΤΟΙΧΕΙΩΔΕΣ ΤΗΛΕΦΩΝΙΚΟ ΣΥΣΤΗΜΑ Εισαγωγή. Η διεξαγωγή της παρούσας εργαστηριακής άσκησης προϋποθέτει την μελέτη τουλάχιστον των πρώτων παραγράφων του

Διαβάστε περισσότερα

ΤΕΙ ΚΡΗΤΗΣ ΤΜ. ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡ/ΚΗΣ & ΠΟΛΥΜΕΣΩΝ ΔΙΔΑΣΚΩΝ: Δρ. Γ. ΓΑΡΔΙΚΗΣ. Δορυφορική ψηφιακή τηλεόραση

ΤΕΙ ΚΡΗΤΗΣ ΤΜ. ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡ/ΚΗΣ & ΠΟΛΥΜΕΣΩΝ ΔΙΔΑΣΚΩΝ: Δρ. Γ. ΓΑΡΔΙΚΗΣ. Δορυφορική ψηφιακή τηλεόραση ΤΕΙ ΚΡΗΤΗΣ ΤΜ. ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡ/ΚΗΣ & ΠΟΛΥΜΕΣΩΝ ΔΙΔΑΣΚΩΝ: Δρ. Γ. ΓΑΡΔΙΚΗΣ 4 Δορυφορική ψηφιακή τηλεόραση Δορυφορική τηλεόραση: Η εκπομπή και λήψη του τηλεοπτικού σήματος από επίγειους σταθμούς μεταξύ

Διαβάστε περισσότερα

Παλμογράφος. ω Ν. Άσκηση 15:

Παλμογράφος. ω Ν. Άσκηση 15: Άσκηση 15: Παλμογράφος Σκοπός: Σε αυτή την άσκηση θα μάθουμε τις βασικές λειτουργίες του παλμογράφου και το πώς χρησιμοποιείται αυτός για τη μέτρηση συνεχούς και εναλλασσόμενης τάσης, συχνότητας και διαφοράς

Διαβάστε περισσότερα

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή 1. Ηλεκτρονικός Υπολογιστής Ο Ηλεκτρονικός Υπολογιστής είναι μια συσκευή, μεγάλη ή μικρή, που επεξεργάζεται δεδομένα και εκτελεί την εργασία του σύμφωνα με τα παρακάτω

Διαβάστε περισσότερα

Ψηφιακή Αναπαράσταση Σήματος: Δειγματοληψία, Κβαντισμός και Κωδικοποίηση

Ψηφιακή Αναπαράσταση Σήματος: Δειγματοληψία, Κβαντισμός και Κωδικοποίηση ΒΕΣ 4 Συμπίεση και Μετάδοση Πολυμέσων Ψηφιακή Αναπαράσταση Σήματος: Δειγματοληψία, Κβαντισμός και Κωδικοποίηση Τι είναι Σήμα; Βασικές έννοιες επεξεργασίας σημάτων Πληροφορίες που αντιλαμβανόμαστε μέσω

Διαβάστε περισσότερα

Ενότητα 4 η. «Ηλεκτροτεχνία Ηλεκτρικές Εγκαταστάσεις»,Τμήμα Μηχανολόγων Π.Θ., Γ. Περαντζάκης

Ενότητα 4 η. «Ηλεκτροτεχνία Ηλεκτρικές Εγκαταστάσεις»,Τμήμα Μηχανολόγων Π.Θ., Γ. Περαντζάκης - - Ενότητα 4 η (Συστηματική μελέτη και ανάλυση κυκλωμάτων με τις μεθόδους των βρόχων και κόμβων. Θεωρήματα κυκλωμάτωνthevenin, Norton, επαλληλίας, μέγιστης μεταφοράς ισχύος) Στην παρούσα ενότητα παρουσιάζονται

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΤΕΧΝΟΛΟΓΙΑ (Ι) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Τεχνολογία Ηλεκτρονικών

Διαβάστε περισσότερα

Σχήμα 1 Απόκλιση στον πυκνωτή (σωλήνας Braun)

Σχήμα 1 Απόκλιση στον πυκνωτή (σωλήνας Braun) Άσκηση Η3 Επαλληλία κινήσεων (Μετρήσεις με παλμογράφο) Εκτροπή δέσμης ηλεκτρονίων Όταν μια δέσμη ηλεκτρονίων εισέρχεται με σταθερή ταχύτητα U0=U,0 (παράλληλα στον άξονα z) μέσα σε έναν πυκνωτή, του οποίου

Διαβάστε περισσότερα

Εργαστήριο 1: Αρχές Κινητών Επικοινωνιών

Εργαστήριο 1: Αρχές Κινητών Επικοινωνιών 1.1 Βασικές μετατροπές Εργαστήριο 1: Αρχές Κινητών Επικοινωνιών Όταν μας ενδιαφέρει ο υπολογισμός μεγεθών σχετικών με στάθμες ισχύος εκπεμπόμενων σημάτων, γίνεται χρήση και της λογαριθμικής κλίμακας με

Διαβάστε περισσότερα

Γενικά Μαθηματικά (Φυλλάδιο 1 ο )

Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) Επιμέλεια Φυλλαδίου : Δρ. Σ. Σκλάβος Περιλαμβάνει: ΚΕΦΑΛΑΙΟ 1: ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ ΚΕΦΑΛΑΙΟ : ΠΑΡΑΓΩΓΙΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ

Διαβάστε περισσότερα

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής:

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής: ΣΕΙΡΕΣ TAYLOR Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων Πολυώνυµο είναι κάθε συνάρτηση της µορφής: p( ) = a + a + a + a + + a, όπου οι συντελεστές α i θα θεωρούνται

Διαβάστε περισσότερα

Σημειώσεις για την Άσκηση 2: Μετρήσεις σε RC Κυκλώματα

Σημειώσεις για την Άσκηση 2: Μετρήσεις σε RC Κυκλώματα Σημειώσεις για την Άσκηση 2: Μετρήσεις σε RC Κυκλώματα Ένας πυκνωτής με μία αντίσταση σε σειρά αποτελούν ένα RC κύκλωμα. Τα RC κυκλώματα χαρακτηρίζονται για την απόκρισή τους ως προς τη συχνότητα και ως

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 006 Μάθημα : Τεχνολογία Ηλεκτρονικών Επικοινωνιών Τεχνολογία Ι, Πρακτικής Κατεύθυνσης

Διαβάστε περισσότερα

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΜΕΛΕΤΗ ΚΑΙ ΑΝΑΠΤΥΞΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΥΛΙΚΟΥ ΨΗΦΙΑΚΩΝ ΔΙΑΜΟΡΦΩΣΕΩΝ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΜΕΛΕΤΗ ΚΑΙ ΑΝΑΠΤΥΞΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΥΛΙΚΟΥ ΨΗΦΙΑΚΩΝ ΔΙΑΜΟΡΦΩΣΕΩΝ ΠΑΝΕΠΙΣΤΉΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΔΙΔΑΚΤΙΚΗΣ ΤΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΚΑΤΕΥΘΥΝΣΗ ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΚΑΙ ΔΙΚΤΥΑ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΜΕΛΕΤΗ ΚΑΙ ΑΝΑΠΤΥΞΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΥΛΙΚΟΥ ΨΗΦΙΑΚΩΝ ΔΙΑΜΟΡΦΩΣΕΩΝ

Διαβάστε περισσότερα

Digital Image Processing

Digital Image Processing Digital Image Processing Intensity Transformations Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 2008. Image Enhancement: είναι

Διαβάστε περισσότερα

Ενότητα 3 η. (Ισχύς, συντελεστής ισχύος, βελτίωση συντελεστή ισχύος. Τριφασικά δίκτυα, γραμμές μεταφοράς)

Ενότητα 3 η. (Ισχύς, συντελεστής ισχύος, βελτίωση συντελεστή ισχύος. Τριφασικά δίκτυα, γραμμές μεταφοράς) - 1 - Ενότητα 3 η (Ισχύς, συντελεστής ισχύος, βελτίωση συντελεστή ισχύος. Τριφασικά δίκτυα, γραμμές μεταφοράς) Στην παρούσα ενότητα παρουσιάζεται το θέμα της ισχύος σε μονοφασικά και τριφασικά συμμετρικά

Διαβάστε περισσότερα

Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση

Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση Χειμερινό Εξάμηνο 2013-2014 Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση 5 η Παρουσίαση : Ψηφιακή Επεξεργασία Εικόνας Διδάσκων: Γιάννης Ντόκας Σύνθεση Χρωμάτων Αφαιρετική Παραγωγή Χρώματος Χρωματικά

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΕΠΙΚΟΙΝΩΝΙΕΣ Ε ΟΜΕΝΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΕΣ INTERNET

ΜΑΘΗΜΑ: ΕΠΙΚΟΙΝΩΝΙΕΣ Ε ΟΜΕΝΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΕΣ INTERNET ΥΠΕΠΘ ΟΡΓΑΝΙΣΜΟΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΑΙ ΚΑΤΑΡΤΙΣΗΣ ΙΕΚ ΧΑΝΙΩΝ ΚΡΗΤΗΣ ΕΙΔΙΚΟΤΗΤΑ : ΤΕΧΝΙΚΟΣ ΣΧΕΔΙΑΣΗΣ ΚΑΙ ΑΝΑΠΤΥΞΗΣ ΙΣΤΟΣΕΛΙΔΩΝ ΕΞΑΜΗΝΟ : Α ΜΑΘΗΜΑ: ΕΠΙΚΟΙΝΩΝΙΕΣ Ε ΟΜΕΝΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΕΣ INTERNET

Διαβάστε περισσότερα

( ) = ( ) Ηλεκτρική Ισχύς. p t V I t t. cos cos 1 cos cos 2. p t V I t. το στιγμιαίο ρεύμα: όμως: Άρα θα είναι: Επειδή όμως: θα είναι τελικά:

( ) = ( ) Ηλεκτρική Ισχύς. p t V I t t. cos cos 1 cos cos 2. p t V I t. το στιγμιαίο ρεύμα: όμως: Άρα θα είναι: Επειδή όμως: θα είναι τελικά: Η στιγμιαία ηλεκτρική ισχύς σε οποιοδήποτε σημείο ενός κυκλώματος υπολογίζεται ως το γινόμενο της στιγμιαίας τάσης επί το στιγμιαίο ρεύμα: Σε ένα εναλλασσόμενο σύστημα τάσεων και ρευμάτων θα έχουμε όμως:

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7. Σχ.7.1. Σύµβολο κοινού τελεστικού ενισχυτή και ισοδύναµο κύκλωµα.

ΚΕΦΑΛΑΙΟ 7. Σχ.7.1. Σύµβολο κοινού τελεστικού ενισχυτή και ισοδύναµο κύκλωµα. ΚΕΦΑΛΑΙΟ 7 7. ΤΕΛΕΣΤΙΚΟΙ ΕΝΙΣΧΥΤΕΣ Ο τελεστικός ενισχυτής εφευρέθηκε κατά τη διάρκεια του δεύτερου παγκοσµίου πολέµου και. χρησιµοποιήθηκε αρχικά στα συστήµατα σκόπευσης των αντιαεροπορικών πυροβόλων για

Διαβάστε περισσότερα

Άσκηση 06: Φίλτρα πεπερασμένης κρουστικής απόκρισης (Finite Impulse Response (F.I.R.) Filters)

Άσκηση 06: Φίλτρα πεπερασμένης κρουστικής απόκρισης (Finite Impulse Response (F.I.R.) Filters) ΤΕΙ ΠΕΙΡΑΙΑ / ΣΤΕΦ / ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Μάθημα: ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ (Εργαστήριο) Ε εξάμηνο Εξάμηνο: Χειμερινό 2014-2015 Άσκηση 06: Φίλτρα πεπερασμένης κρουστικής απόκρισης (Finite

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. 1-3 Κέρδος Τάσης του ιαφορικού Ενισχυτή µε FET s 8

ΠΕΡΙΕΧΟΜΕΝΑ. 1-3 Κέρδος Τάσης του ιαφορικού Ενισχυτή µε FET s 8 ΠΕΡΙΕΧΟΜΕΝΑ 1 ΙΑΦΟΡΙΚΟΣ ΕΝΙΣΧΥΤΗΣ 1 1-1 Κέρδος Τάσης του ιαφορικού Ενισχυτή µε BJT s 1 και ιπλή Έξοδο Ανάλυση µε το Υβριδικό Ισοδύναµο του Τρανζίστορ 2 Ανάλυση µε βάση τις Ενισχύσεις των Βαθµίδων CE- 4

Διαβάστε περισσότερα

ΥΛΗ ΚΑΤΑΚΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΤΟΥ ΤΜΗΜΑΤΟΣ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. ΓΙΑ ΤΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2015-2016. Μάθημα Προγραμματισμός Ι.

ΥΛΗ ΚΑΤΑΚΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΤΟΥ ΤΜΗΜΑΤΟΣ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. ΓΙΑ ΤΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2015-2016. Μάθημα Προγραμματισμός Ι. ΥΛΗ ΚΑΤΑΚΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΤΟΥ ΤΜΗΜΑΤΟΣ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. ΓΙΑ ΤΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2015-2016 Μάθημα Προγραμματισμός Ι. 1) Προπαρασκευαστική Εισαγωγή, Εισαγωγή στον προγραμματισμό, (Κεφ, 1.2, 1.3,

Διαβάστε περισσότερα

Ενδεικτικές ασκήσεις ΔΙΠ 50

Ενδεικτικές ασκήσεις ΔΙΠ 50 Ενδεικτικές ασκήσεις ΔΙΠ 50 Άσκηση 1 (άσκηση 1 1 ης εργασίας 2009-10) Σε ένα ράφι μιας βιβλιοθήκης τοποθετούνται με τυχαία σειρά 11 διαφορετικά βιβλία τεσσάρων θεματικών ενοτήτων. Πιο συγκεκριμένα, υπάρχουν

Διαβάστε περισσότερα

Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης

Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Δίκτυα Τηλεπικοινωνιών και Μετάδοσης Σύστημα μετάδοσης με οπτικές ίνες Tο οπτικό φέρον κύμα μπορεί να διαμορφωθεί είτε από αναλογικό

Διαβάστε περισσότερα

Amplitude Shift Keying-ASK Frequency Shift Keying-FSK Phase Shift Keying-PSK

Amplitude Shift Keying-ASK Frequency Shift Keying-FSK Phase Shift Keying-PSK Εισαγωγή στις Τηλεπικοινωνίες Ψηφιακές ιαµορφώσεις Amplitude Shift Keying-ASK Frequency Shift Keying-FSK Phase Shift Keying-PSK ρ. Αθανάσιος. Παναγόπουλος Λέκτορας ΕΜΠ 1 Εργαστήριο Κινητών Ραδιοεπικοινωνιών,

Διαβάστε περισσότερα

O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n

O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n Η ύλη συνοπτικά... Στοιχειώδης συνδυαστική Γεννήτριες συναρτήσεις Σχέσεις αναδρομής Θεωρία Μέτρησης Polyá Αρχή Εγκλεισμού - Αποκλεισμού Σχέσεις Αναδρομής Γραμμικές Σχέσεις Αναδρομής με σταθερούς συντελεστές

Διαβάστε περισσότερα

Εργαστήριο 4: Κυψελωτά Δίκτυα Κινητών Επικοινωνιών

Εργαστήριο 4: Κυψελωτά Δίκτυα Κινητών Επικοινωνιών Εργαστήριο 4: Κυψελωτά Δίκτυα Κινητών Επικοινωνιών Τα κυψελωτά συστήματα εξασφαλίζουν ασύρματη κάλυψη σε μια γεωγραφική περιοχή η οποία διαιρείται σε τμήματα τα οποία είναι γνωστά ως κυψέλες (Εικόνα 1).

Διαβάστε περισσότερα

Οι ταλαντώσεις των οποίων το πλάτος ελαττώνεται με το χρόνο και τελικά μηδενίζονται λέγονται φθίνουσες

Οι ταλαντώσεις των οποίων το πλάτος ελαττώνεται με το χρόνο και τελικά μηδενίζονται λέγονται φθίνουσες ΦΘΙΝΟΥΣΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Φθίνουσες μηχανικές ταλαντώσεις Οι ταλαντώσεις των οποίων το πλάτος ελαττώνεται με το χρόνο και τελικά μηδενίζονται λέγονται φθίνουσες ταλαντώσεις. Η ελάττωση του πλάτους (απόσβεση)

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 ΙΑΜΟΡΦΩΣΗ ΑΠΟ ΙΑΜΟΡΦΩΣΗ ΠΛΑΤΟΥΣ (ΑΜ)

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 ΙΑΜΟΡΦΩΣΗ ΑΠΟ ΙΑΜΟΡΦΩΣΗ ΠΛΑΤΟΥΣ (ΑΜ) ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 ΙΑΜΟΡΦΩΣΗ ΑΠΟ ΙΑΜΟΡΦΩΣΗ ΠΛΑΤΟΥΣ (ΑΜ) 1. ιαµόρφωση Πλάτους. Στην άσκηση αυτή θα ασχοληθούµε µε τη ιαµόρφωση Πλάτους (Amplitude Modulation) χρησιµοποιώντας τον ολοκληρωµένο διαµορφωτή

Διαβάστε περισσότερα

Αναλογικά φίλτρα. Για να επιτύχουµε µια επιθυµητή απόκριση χρειαζόµαστε σηµαντικά λιγότερους συντελεστές γιαένα IIR φίλτροσεσχέσηµετοαντίστοιχο FIR.

Αναλογικά φίλτρα. Για να επιτύχουµε µια επιθυµητή απόκριση χρειαζόµαστε σηµαντικά λιγότερους συντελεστές γιαένα IIR φίλτροσεσχέσηµετοαντίστοιχο FIR. Τα IIR φίλτρα είναι επαναληπτικά ή αναδροµικά, µε την έννοια ότι δείγµατα της εξόδου χρησιµοποιούνται από το σύστηµα για τον υπολογισµό τν νέν τιµών της εξόδου σε επόµενες χρονικές στιγµές. Για να επιτύχουµε

Διαβάστε περισσότερα

Μετρολογικές Διατάξεις Μέτρησης Θερμοκρασίας. 4.1. Μετρολογικός Ενισχυτής τάσεων θερμοζεύγους Κ και η δοκιμή (testing).

Μετρολογικές Διατάξεις Μέτρησης Θερμοκρασίας. 4.1. Μετρολογικός Ενισχυτής τάσεων θερμοζεύγους Κ και η δοκιμή (testing). Κεφάλαιο 4 Μετρολογικές Διατάξεις Μέτρησης Θερμοκρασίας. 4.1. Μετρολογικός Ενισχυτής τάσεων θερμοζεύγους Κ και η δοκιμή (testing). Οι ενδείξεις (τάσεις εξόδου) των θερμοζευγών τύπου Κ είναι δύσκολο να

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΠΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ / ΙΟΥΝΙΟΥ 2014

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΠΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ / ΙΟΥΝΙΟΥ 2014 ΤΕΧΝΙΚΗ ΣΧΟΛΗ ΜΑΚΑΡΙΟΣ Γ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: 2013 2014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΠΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ / ΙΟΥΝΙΟΥ 2014 Κατεύθυνση: ΠΡΑΚΤΙΚΗ Κλάδος: ΗΛΕΚΤΡΟΛΟΓΙΑ Μάθημα: ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΕΡΓΑΣΤΗΡΙΑ ΕΠΙΚΟΙΝΩΝΙΩΝ Τάξη: A Τμήμα:

Διαβάστε περισσότερα

Βίντεο. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 06-1

Βίντεο. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 06-1 Βίντεο Εισαγωγή Χαρακτηριστικά του βίντεο Απόσταση θέασης Μετάδοση τηλεοπτικού σήματος Συμβατικά τηλεοπτικά συστήματα Ψηφιακό βίντεο Εναλλακτικά μορφότυπα Τηλεόραση υψηλής ευκρίνειας Κινούμενες εικόνες

Διαβάστε περισσότερα

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3 ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 3 Κεντρική Μονάδα Επεξεργασίας Κεντρική Μονάδα Επεξεργασίας Μονάδα επεξεργασίας δεδομένων Μονάδα ελέγχου Μονάδα επεξεργασίας δεδομένων Δομή Αριθμητικής Λογικής Μονάδας

Διαβάστε περισσότερα

Εισαγωγή. Κατηγοριοποίηση αισθητήρων. Χαρακτηριστικά αισθητήρων. Κυκλώματα διασύνδεσης αισθητήρων

Εισαγωγή. Κατηγοριοποίηση αισθητήρων. Χαρακτηριστικά αισθητήρων. Κυκλώματα διασύνδεσης αισθητήρων Εισαγωγή Κατηγοριοποίηση αισθητήρων Χαρακτηριστικά αισθητήρων Κυκλώματα διασύνδεσης αισθητήρων 1 2 Πωλήσεις αισθητήρων 3 4 Ο άνθρωπος αντιλαμβάνεται τη φύση με τα αισθητήρια όργανά του υποκειμενική αντίληψη

Διαβάστε περισσότερα

Ο Παλμογράφος στη Διδασκαλία της Τριγωνομετρίας. Εφαρμογές της Τριγωνομετρίας σε πραγματικά προβλήματα και ενδιαφέρουσες επεκτάσεις

Ο Παλμογράφος στη Διδασκαλία της Τριγωνομετρίας. Εφαρμογές της Τριγωνομετρίας σε πραγματικά προβλήματα και ενδιαφέρουσες επεκτάσεις Ο Παλμογράφος στη Διδασκαλία της Τριγωνομετρίας Εφαρμογές της Τριγωνομετρίας σε πραγματικά προβλήματα και ενδιαφέρουσες επεκτάσεις Περίληψη Τριγωνομετρικές Συναρτήσεις Κυματική Παλμογράφος STEM Εφαρμογές

Διαβάστε περισσότερα

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βασικές Έννοιες Προγραμματισμού. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βασικές Έννοιες Προγραμματισμού. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Βασικές Έννοιες Προγραμματισμού Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Αριθμητικά συστήματα Υπάρχουν 10 τύποι ανθρώπων: Αυτοί

Διαβάστε περισσότερα

Άσκηση 4: Παραγωγή Ημιτονικών Κυμάτων (Sine waves generation)

Άσκηση 4: Παραγωγή Ημιτονικών Κυμάτων (Sine waves generation) ΤΕΙ ΠΕΙΡΑΙΑ / ΣΤΕΦ / ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Μάθημα: ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ (Εργαστήριο) Ε εξάμηνο Εξάμηνο: Χειμερινό 2014-2015 Σκοπός της άσκησης Άσκηση 4: Παραγωγή Ημιτονικών Κυμάτων (Sine

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Τι λέμε δύναμη, πως συμβολίζεται και ποια η μονάδα μέτρησής της. Δύναμη είναι η αιτία που προκαλεί τη μεταβολή της κινητικής κατάστασης των σωμάτων ή την παραμόρφωσή

Διαβάστε περισσότερα

Κεφάλαιο 6 Σχεδιασμός FIR φίλτρων

Κεφάλαιο 6 Σχεδιασμός FIR φίλτρων Κεφάλαιο 6 Σχεδιασμός FIR φίλτρων Φίλτρα πεπερασμένης κρουστικής απόκρισης Finite Impulse Response (FIR) filters y(n) = M k= bk x(n k) / 68 παράδειγμα (εισαγωγικό) y(n) = 9 x(n k ) k= 2/ 68 Βασικές κατηγορίες

Διαβάστε περισσότερα

ΕΝΑΛΛΑΣΣΟΜΕΝΑ ΡΕΥΜΑΤΑ

ΕΝΑΛΛΑΣΣΟΜΕΝΑ ΡΕΥΜΑΤΑ ΕΝΑΛΛΑΣΣΟΜΕΝΑ ΡΕΥΜΑΤΑ Ένα ρεύµα ονοµάζεται εναλλασσόµενο όταν το πλάτος του χαρακτηρίζεται από µια συνάρτηση του χρόνου, η οποία εµφανίζει κάποια περιοδικότητα. Το συνολικό ρεύµα που διέρχεται από µια

Διαβάστε περισσότερα

Το Φως Είναι Εγκάρσιο Κύμα!

Το Φως Είναι Εγκάρσιο Κύμα! ΓΙΩΡΓΟΣ ΑΣΗΜΕΛΛΗΣ Μαθήματα Οπτικής 3. Πόλωση Το Φως Είναι Εγκάρσιο Κύμα! Αυτό που βλέπουμε με τα μάτια μας ή ανιχνεύουμε με αισθητήρες είναι το αποτέλεσμα που προκύπτει όταν φως με συγκεκριμένο χρώμα -είδος,

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015 ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑ : Εφαρμοσμένη Ηλεκτρολογία

Διαβάστε περισσότερα

Τηλεματική, Διαδίκτυα και Κοινωνία Κυψελωτή Τηλεφωνία

Τηλεματική, Διαδίκτυα και Κοινωνία Κυψελωτή Τηλεφωνία Τηλεματική, Διαδίκτυα και Κοινωνία Κυψελωτή Τηλεφωνία 1 Κυψελωτή Τηλεφωνία Για την ανάπτυξη νέων δικτύων κινητών επικοινωνιών υιοθετήθηκε η σχεδιαστική αρχή της κυψελωτής τηλεφωνίας που παρά την περιορισμένη

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙ- ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙ- ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙ- ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΟΜΑΔΑ Α Α1. Για τις ημιτελείς προτάσεις Α1.1 και Α1. να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

Kalman Filter Γιατί ο όρος φίλτρο;

Kalman Filter Γιατί ο όρος φίλτρο; Kalman Filter Γιατί ο όρος φίλτρο; Συνήθως ο όρος φίλτρο υποδηλώνει µια διαδικασία αποµάκρυνσης µη επιθυµητών στοιχείων Απότολατινικόόροfelt : το υλικό για το φιλτράρισµα υγρών Στη εποχή των ραδιολυχνίων:

Διαβάστε περισσότερα

ΔΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ Ι (Θεωρία)

ΔΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ Ι (Θεωρία) ΔΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ Ι (Θεωρία) 4 ο Εξάμηνο Μέρος 1 Διδάσκων: Μαδεμλής Ιωάννης M.Sc Ηλεκτρονικός Μηχανικός 1 ΠΡΟΦΙΛ ΜΑΘΗΜΑΤΟΣ Βασική βιβλιογραφία: «Επικοινωνίες Υπολογιστών & Δεδομένων», William Stallings,

Διαβάστε περισσότερα

Μετρήσεις µε παλµογράφο

Μετρήσεις µε παλµογράφο Η6 Μετρήσεις µε παλµογράφο ΜΕΡΟΣ 1 ο ΠΑΛΜΟΓΡΑΦΟΣ Α. Γενικά Κατά την απεικόνιση ενός εναλλασσόµενου µεγέθους (Σχήµα 1), είναι γνωστό ότι στον κατακόρυφο άξονα «Υ» παριστάνεται το πλάτος του µεγέθους, ενώ

Διαβάστε περισσότερα