1 ΘΕΩΡΙΑ ΥΠΟΔΟΜΗΣ 2 ΜΕΤΑΔΟΣΗ ΔΕΔΟΜΕΝΩΝ Εισαγωγή Σειρές Fourier Το πεδίο της συχνότητας 1-7

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "1 ΘΕΩΡΙΑ ΥΠΟΔΟΜΗΣ 2 ΜΕΤΑΔΟΣΗ ΔΕΔΟΜΕΝΩΝ 2-30. 1.1 Εισαγωγή 1-5. 1.2 Σειρές Fourier 1-5. 1.3 Το πεδίο της συχνότητας 1-7"

Transcript

1 1 ΘΕΩΡΙΑ ΥΠΟΔΟΜΗΣ Εισαγωγή Σειρές Fourier Το πεδίο της συχνότητας Φάσμα μιας σειράς δυαδικών δεδομένων βασικής ζώνης Ο μετασχηματισμός Fourier Η διαδικασία της διαμόρφωσης Η διαδικασία της μίξης Ο διανυσματικός διαμορφωτής Βασική θεωρία πιθανοτήτων και θόρυβος στις επικοινωνίες Αθροιστική συνάρτηση πιθανότητας (cumulative distribution function - cdf) Συνάρτηση πυκνότητας πιθανότητας Φάσμα θορύβου Ιδιότητες της λογαριθμικής συνάρτησης Ορισμός db Επανάληψη γραμμικών συστημάτων Γραμμικά μη χρονικά μεταβαλλόμενα συστήματα Κρουστική απόκριση Συνάρτηση μεταφοράς ΜΕΤΑΔΟΣΗ ΔΕΔΟΜΕΝΩΝ Παράγοντες που επηρεάζουν τη σχεδίαση συστημάτων Βασικές αρχές της εκπομπής δεδομένων Δυαδική σηματοδοσία Σηματοδοσία πολλών επιπέδων Ο συμβιβασμός μεταξύ εύρους ζώνης και θορύβου Μετάδοση πληροφορίας ορισμοί Πολυεπίπεδη σηματοδοσία Ρυθμός εσφαλμένων bit έναντι ρυθμού εσφαλμένων συμβόλων Κωδικοποίηση Gray Εκτίμηση του απαιτούμενου εύρους ζώνης Περιορισμός της χωρητικότητας καναλιού λόγω θορύβου Απόδοση ισχύος και εύρους ζώνης 2-39 Επικοινωνίες ΙΙ 1-1 Τμήμα Πληροφορικής & Επικοινωνιών

2 3 ΜΕΤΑΔΟΣΗ ΣΤΗ ΒΑΣΙΚΗ ΖΩΝΗ Διασυμβολική παρεμβολή Φίλτρα Nyquist Διαγράμματα οφθαλμού Φίλτρα υψωμένου συνημιτόνου Ανάκτηση χρονισμού συμβόλων Κυκλώματα χρονισμού συμβόλων Προσαρμοσμένο φίλτρο Δυαδική σηματοδοσία και βέλτιστο όριο ανίχνευσης ΨΗΦΙΑΚΗ ΔΙΑΜΟΡΦΩΣΗ ΔΙΕΛΕΥΣΗΣ ΖΩΝΗΣ Ψηφιακή διαμόρφωση πλάτους (ASK) Διαμόρφωση ASK περιορισμένου εύρους ζώνης Ασύγχρονη ανίχνευση Σύγχρονη ανίχνευση Ανάκτηση φορέα στη σύγχρονη ASK Σύγκριση ασύγχρονης και σύγχρονης ανίχνευσης Ψηφιακή διαμόρφωση συχνότητας (FSK) Δημιουργία της διαμόρφωσης FSK Καταλαμβανόμενο εύρος ζώνης στη διαμόρφωσης FSK Ασύμφωνη ανίχνευση της διαμόρφωσης FSK Σύμφωνη ανίχνευση της διαμόρφωσης FSK Ρυθμός εμφάνισης σφαλμάτων στη διαμόρφωση FSK Πλεονεκτήματα και μειονεκτήματα της διαμόρφωσης FSK Ψηφιακή διαμόρφωση φάσης (PSK) Δημιουργία της PSK Ανίχνευση της διαμόρφωσης PSK Ανάκτηση φέροντος για τη σύμφωνη διαμόρφωση PSK Διαφορική διαμόρφωση PSK Ανάκτηση χρονισμού συμβόλων στη διαμόρφωση PSK Διάγραμμα αστερισμού για τη διαμόρφωση PSK Ρυθμός εμφάνισης σφαλμάτων στη διαμόρφωση PSK Σύγκριση δυαδικών μεθόδων ψηφιακής διαμόρφωσης ΨΗΦΙΑΚΗ ΔΙΑΜΟΡΦΩΣΗ ΠΟΛΛΑΠΛΩΝ ΕΠΙΠΕΔΩΝ Μ-αδική ψηφιακή διαμόρφωση πλάτους (Μ-αδική ASK) Απόδοση της Μ-αδικής ASK Μ-αδική ψηφιακή διαμόρφωση συχνότητας (Μ-αδική FSK) Ιδιότητες των ορθογωνικών συμβόλων Ανίχνευση της ορθογωνικής διαμόρφωσης FSK Ρυθμός εμφάνισης σφαλμάτων στην Μ-αδική FSK 5-94 Επικοινωνίες ΙΙ 1-2 Τμήμα Πληροφορικής & Επικοινωνιών

3 5.3 Μ-αδική ψηφιακή διαμόρφωση φάσης (Μ-αδική PSK) Υλοποίηση της QPSK Εφαρμογή της QPSK Ρυθμός εμφάνισης σφαλμάτων στην QPSK Διαφορική διαμόρφωση QPSK (DQPSK) Η διαμόρφωση π/4-qpsk Η διαμόρφωση O-QPSK Το φάσμα της Μ-αδικής διαμόρφωσης PSK Απόδοση της Μ-αδικής διαμόρφωσης PSK Συνδυασμένη ψηφιακή διαμόρφωση πλάτους και φάσης QAM Δημιουργία της διαμόρφωσης QAM Ανίχνευση της διαμόρφωσης QAM Ρυθμός εμφάνισης σφαλμάτων στη διαμόρφωση QAM Σύγκριση μεταξύ Μ-αδικών QAM και PSK Κωδικοποίηση Gray Το όριο Shannon ΒΙΒΛΙΟΓΡΑΦΙΑ ΠΑΡΑΡΤΗΜΑ Α Επικοινωνίες ΙΙ 1-3 Τμήμα Πληροφορικής & Επικοινωνιών

4 Equation Chapter 1 Section 1 Επικοινωνίες ΙΙ 1-4 Τμήμα Πληροφορικής & Επικοινωνιών

5 1 ΘΕΩΡΙΑ ΥΠΟΔΟΜΗΣ 1.1 Εισαγωγή Οι επιδόσεις μιας ψηφιακής επικοινωνιακής ζεύξης περιορίζονται από δυο κεφαλαιώδεις παράγοντες: το εύρος ζώνης και το θόρυβο. Για να καταλάβουμε ακριβώς την αλληλεπίδραση ανάμεσα στο ρυθμό αποστολής δεδομένων ενός συστήματος, στο είδος της διαμόρφωσης, το σχήμα των παλμών και το εύρος ζώνης του καναλιού επικοινωνίας, θα πρέπει να αναφερθούμε στο συχνοτικό περιεχόμενο διαφόρων ειδών χρονικά μεταβαλλόμενων σημάτων. Είναι φανερό ότι το εύρος ζώνης παίζει καθοριστικό ρόλο στη σχεδίαση συστημάτων επικοινωνίας. Επομένως, για να μπορέσουμε να αναλύσουμε και να σχεδιάσουμε διάφορα συστήματα επικοινωνιών είναι απαραίτητο να είμαστε σε θέση να εκτιμήσουμε το συχνοτικό περιεχόμενο διαφόρων ειδών χρονικά μεταβαλλόμενων σημάτων. Τα μαθηματικά εργαλεία που απαιτούνται για τη μετάβαση από το πεδίο του χρόνου σε αυτό της συχνότητας είναι συνηθέστερα η αναπαράσταση με σειρές Fourier (για περιοδικά σήματα) και ο μετασχηματισμός Fourier (για εν γένει περιοδικά και απεριοδικά σήματα). 1.2 Σειρές Fourier Σύμφωνα με την θεωρία του Γάλλου μαθηματικού Fourier το συχνοτικό περιεχόμενο μιας περιοδικής συνάρτησης στο πεδίο του χρόνου, δηλαδή μιας συνάρτησης για την οποία ισχύει x(t)=x(t+t), όπου T η περίοδος επανάληψης, μπορεί εκτιμηθεί μέσω του παρακάτω αναπτύγματος: Επικοινωνίες ΙΙ 1-5 Τμήμα Πληροφορικής & Επικοινωνιών

6 [ n cos(2 π ) n sin(2 π 0 )] x( t) = a + a nf t + b nf t 0 0 n= 0 (1.1) 1 όπου f 0 = και οι όροι α 0, α n και b n δίδονται από τις σχέσεις: T δ + T a = 1 0 x() t dt T (1.2) δ δ + T 2 an = x() t cos(2 π nf0t) dt T (1.3) δ δ + T 2 bn = x() t sin(2 π nf0t) dt T δ (1.4) Η συνάρτηση x(t) μπορεί επίσης να εκφραστεί και ως μιγαδικό εκθετικό ανάπτυγμα με την ακόλουθη μορφή: xt () = c n= 0 n j2 nf0t e π (1.5) Το μιγαδικό πλάτος c n που δίδεται από τη σχέση: δ + T 1 n () T (1.6) j2π nf0t c = x t e dt δ σχετίζεται με τους συντελεστές a n και b n δια μέσου της σχέσης: c = a + jb = a + b e θ (1.7) 2 2 j n n n n n n Η γωνία θ n σχετίζεται με τους συντελεστές a n και b n δια μέσου της σχέσης: Επικοινωνίες ΙΙ 1-6 Τμήμα Πληροφορικής & Επικοινωνιών

7 1 bn θ tan n = (1.8) an 1.3 Το πεδίο της συχνότητας Η αναπαράσταση ενός σήματος στο πεδίο της συχνότητας αποτελεί το φάσμα (spectrum) του σήματος. Το φάσμα μιας κυματομορφής αποτελείται από δύο γραφικές παραστάσεις, οι οποίες αφορούν στο πλάτος και στη φάση του υπάρχοντος συχνοτικού περιεχομένου, αντίστοιχα. Σχήμα 1-1. Τυπικό διάγραμμα για το φάσμα πλάτους σειράς παλμών. Σχεδιασμένη επίσης είναι και η περιβάλλουσα συνάρτηση sinc(nτ/τ) των πλατών των συχνοτικών συνιστωσών. Τα διαγράμματα πλάτους και φάσης του φάσματος προκύπτουν από την κατασκευή της γραφικής παράστασης των c = a + b 2 2 n n n και θ 1 n = tan ( bn / an) συναρτήσει της συχνότητας f=n/t, αντίστοιχα. Στον άξονα των τετμημένων ευρίσκεται πάντοτε η συχνότητα f ενώ στον άξονα των τεταγμένων το πλάτος ή η φάση των όρων της σειράς Fourier κατά περίπτωση. Το Σχήμα 1-1 απεικονίζει το φάσμα πλάτους μιας σειράς παλμών διάρκειας τ και περιόδου Τ (f 0 =1/T), ενώ ο Πίνακας Σφάλμα! Δεν έχει οριστεί στυλ.-1 Επικοινωνίες ΙΙ 1-7 Τμήμα Πληροφορικής & Επικοινωνιών

8 συνοψίζει τους συντελεστές Fourier επιλεγμένων περιοδικών κυματομορφών, με f=1/t και ω=2πf. Πίνακας Σφάλμα! Δεν έχει οριστεί στυλ.-1. Ανάλυση κατά Fourier επιλεγμένων περιοδικών κυματομορφών. Παράδειγμα: Σχεδιάστε το φάσμα της παρακάτω κυματομορφής. Επικοινωνίες ΙΙ 1-8 Τμήμα Πληροφορικής & Επικοινωνιών

9 Στο πεδίο του χρόνου A για τ t τ 2 2 xt () = 0 για τ < t < T 2 Έτσι, η Λύση: κυματομορφή εκφράζεται ως: T τ + τ a0 = x() t dt = A dt = T τ τ 2 2 A τ T T τ + τ A an = x() t cos(2 πnf t) dt = cos(2 π f nt) = T dt 0 0 τ 2π Tnf 0 τ 2 2 t= τ /2 A A τ τ = sin(2 π fnt) = sin 2πnf sin 2πnf0 nπ f T n = π t= τ /2 2Α 1 τ 2Aτ sin( nπτ / T) = sin 2nπ =. nπ T 2 T ( nπτ / T) τ τ τ A sin(2 πnft 0 ) d(2 πnft 0 ) Α sin( ω0 ) cos( 2π 0 ) τ τ 2π 0 π τ bn = A n t dt = = nf t = T T nf n A πnτ πnτ = cos + cos = 0 nπ Τ Τ Επομένως, το πλήρες ανάπτυγμα Fourier έχει ως εξής: Aτ 2Aτ sin( nπτ / T) x() t = + cos(2 nπ f0t ). T T ( nπτ / T) n= 1,3,5, K Για την ειδική περίπτωση όπου τ=t/2 έχουμε: A A nπ A 2A a0 =, an = sin, x( t) = + cos(2 nπ f0t) 2 nπ 2 2 n= 1,3,5, K nπ με το ακόλουθο διάγραμμα πλάτους φάσματος: Επικοινωνίες ΙΙ 1-9 Τμήμα Πληροφορικής & Επικοινωνιών

10 Παράδειγμα: Προσδιορίστε το ανάπτυγμα Fourier της κυματομορφής πριονωτής τάσης. Απάντηση: 8A x() t = cos(2 π nf 2 0t) n π ν = 1,3,5, K Άσκηση: Προσδιορίστε το ανάπτυγμα Fourier του διπολικού τετραγωνικού παλμού με μέγιστη και ελάχιστη τάση Α και Α. (Υπόδειξη: Η dc συνιστώσα είναι προφανώς μηδέν). 1.4 Φάσμα μιας σειράς δυαδικών δεδομένων βασικής ζώνης Το φάσμα μιας τυχαίας σειράς δεδομένων μπορεί να προσδιοριστεί εάν απλά υπερθέσουμε τα στιγμιαία φάσματα του κάθε παλμού. Με αυτόν τον τρόπο γνωρίζουμε ότι το συνολικό φάσμα θα περιορίζεται από τη περιβάλλουσα συνάρτηση sinc και ότι σε κάθε χρονική στιγμή η θέση και πυκνότητα των συχνοτικών συνιστωσών θα εξαρτάται από τη συγκεκριμένη μορφή που έχουν τα bit δεδομένων εκείνη τη στιγμή. (Μια μετατόπιση στο πεδίο του χρόνου αντιστοιχεί σε μια ολίσθηση φάσης στο πεδίο της συχνότητας.) Επικοινωνίες ΙΙ 1-10 Τμήμα Πληροφορικής & Επικοινωνιών

11 «Λειαίνοντας» τη μορφή των παλμών δεδομένων, έτσι ώστε να έχ ουν ομαλές ακμές, αναμένουμε να ελαττωθεί σημαντικά το υψηλό φασματικό περιεχόμενο της κυματομορφής, π.χ. Μία μέθοδος που χρησιμοποιείται συχνά για τη μορφοποίηση του σχήματος των παλμών είναι η διαβίβαση της παλμοσειράς σε ένα χαμηλοπερατό φίλτρο, το οποίο έχει απόκριση συχνότητας υψωμένου συνημιτόνου (raised cosine frequency response). Για τον προσδιορισμό του πλάτους των συχνοτικών συνιστωσών που συγκροτούν το ανάπτυγμα σε σειρά Fourier είναι σημαντικό όχι μόνο το σχήμα της κυματομορφής αλλά και το εύρος των παλμών δεδομένων. 1.5 Ο μετασχηματισμός Fourier Στην γενικότερη των περιπτώσεων οι κυματομορφές δεν είναι περιοδικές. Ο τρόπος με τον οποίο μπορούμε να εκτιμήσουμε το συχνοτικό περιεχόμενο μιας τέτοιας κυματομορφής x(t) είναι μέσω του μετασχηματισμού Fourier, ο οποίος ορίζεται ως εξής: Επικοινωνίες ΙΙ 1-11 Τμήμα Πληροφορικής & Επικοινωνιών

12 2 π θ( { () t } X( f) x() t e dt X( f) e j ft j f ) F x = = = (1.9) ενώ με την βοήθεια του αντίστροφου μετασχηματισμού Fourier, που ορίζεται ως: { } ( ) 1 ( ) ( ) j2 π ft x t = F X f = X f e df (1.10) καθίσταται δυνατή η αναπαραγωγή της αρχικής κυματομορφής στο πεδίο του χρόνου. Παράδειγμα: Να βρεθεί ο μετασχηματισμός Fourier ενός τετραγωνικού παλμού Π(t τ) πλάτους Α και διάρκειας τ: A για t τ / 2 Π ( t τ ) =. 0 για t > τ / 2 Λύση: τ 2 j2π ft j2π ft j2π ft e F { Π () t } = Π() t e dt = A e dt = A = j2π f τ 2 τ 2 t= τ 2 jπ fτ jπ fτ e e A jπ fτ jπ fτ = A + = e e j2π f j2π f j2π f = A = ( cos( π fτ) jsin( π fτ) cos( π fτ) jsin( π fτ) ) = j2π f A sin( π fτ) = ( j2sin( π fτ) ) = Aτ = Aτ sinc( π fτ) j2π f π fτ Μερικές χρήσιμες ιδιότητες του μετασχηματισμού Fourier συνοψίζει ο Πίνακας Σφάλμα! Δεν έχει οριστεί στυλ.-2. Πεδίο χρόνου του Πεδίο της συχνότητας Επικοινωνίες ΙΙ 1-12 Τμήμα Πληροφορικής & Επικοινωνιών

13 Χρονική καθυστέρηση x( t ) j2π ft0 t0 X( f) e Συζυγής συνάρ τηση x * () t X * ( f ) Κλιμάκωση χρόνου - x(/ t τ ) τ X (2 π f τ ) συχνότητας Μετατόπιση συχνότητας xt X ( f f c ) j2 fct () e π Πίνακας Σφάλμα! Δεν έχει οριστεί στυλ.-2. Χρήσιμες ιδιότητες του μετασχηματισμού Fourier. Ο Πίνακας Σφάλμα! Δεν έχει οριστεί στυλ.-3 περιέχει μερικά βασικά ζεύγη μετασχηματισμών Fourier που χρησιμοποιούνται στην ανάλυση συστημάτων επικοινωνίας. Συνάρτηση Πεδίο του χρόνου Πεδίο της συχνότητας Σταθερά 1 δ ( f ) Κρουστικός Τετραγωνικός παλμός παλμός 2 δ ( t t ) e 0 V, t τ 0, t > τ Τριγωνικός παλμός ( ) Συνημιτονικός παλμός V 1 t/ τ, t τ 0, t > τ V cos( πt / τ), t τ / 2 0, t > τ / 2 j π f 0 sin( π f τ ) Vτ π f τ sin( π f τ ) Vτ π f τ 2Vτ cos( π fτ) 2 π 1 (2 f τ ) 2 Παλμός υψωμένου συνημιτόνου Παλμός σχήματος κανονικής κατανομής Παλμός sinc ανοίγματος Τ V 1 cos ( / ), t 2 + πt τ τ 0, t > τ V e 2 2 t /2τ sin(2 πt/ T) V 2 πt/ T V sin(2 π fτ ) 2 2π f 1 (2 fτ ) 2 π Vτ e 2 (2 π f τ) /2 VT, f 1/ T 0, f > 1/ T Επικοινωνίες ΙΙ 1-13 Τμήμα Πληροφορικής & Επικοινωνιών

14 Συνημίτονο cos( ω t +φ 1 c ) jφ jφ e δ( f fc) + e δ( f + fc) 2 Σειρά κρουστικών παλμών 1 n δ ( t mt) δ f = T n= T m Πίνακας Σφάλμα! Δεν έχει οριστεί στυλ.-3. Ζεύγη μετασχηματισμών Fourier για συνήθεις κυματομορφές. Παράδειγμα: Κάνοντας χρήση του αποτελέσματος που ευρέθη για το μετασχηματισμό Fourier του βηματικού παλμού, προσδιορίστε το μετασχηματισμό Fourier της συνάρτησης dirac (δέλτα). Λύση: Η συνάρτηση dirac στη χρονική στιγμή t 0 ορίζεται ως + t 0 δ ( t t0) dt = 1 και μπορε ί να θεωρηθεί ότι προκύπτει ως το όριο t0 του βηματικού παλμού { τ } δ ( t t ) = lim Π( t t ), υποδηλώνοντας ότι το 0 0 τ 0 εμβαδόν της επιφάνειας του παλμού είναι ίσο με 1, δηλαδή Aτ=1. Όπως είδαμε στο προηγούμενο παράδειγμα, ο μετασχηματισμός Fourier ενός ορθογωνικού παλμού πλάτους Α και διάρκειας τ δίδεται από τις σχέσεις: { } τ { } F Π ( t τ) = A si 0 και επομένως j2π fto nc( π fτ), F Π( t t τ) = Aτ sinc( π fτ) e j2π fto { lim ( ) } lim{ sinc( ) } { ( o) } = { 0 } t { τ} { π τ } F δ t t F Π t t τ = A τ π fτ e = 0 t 0 j2π ft j2π ft j2π ft = lim A lim sinc( f ) e = 1 1 e = e t 0 t 0 o o o Εναλλακτικά, θα μπορούσαμε να χρησιμοποιήσουμε τον ορισμό: Επικοινωνίες ΙΙ 1-14 Τμήμα Πληροφορικής & Επικοινωνιών

15 { } t j2π ft o + o j2π fto j2π fto o o e t = t o e o F δ( t t ) = δ( t t ) d δ( t t ) e dt = κάνοντας χρήση της ιδιότητας 1 της συνάρτησης dirac δ ( t t) xt ( ) dt= xt ( ) Η διαδικασία της διαμόρφωσης Για να μετατοπίσουμε το φάσμα του σήματος εισόδου έτσι ώστε να εμπίπτει στην επιτρεπτή περιοχή διέλευσης του καναλιού πραγματοποιούμε μια διαδικασία διαμόρφωσης. Αυτή η διαδικασία περιλαμβάνει συχνά τη μίξη του σήματος εισόδου με ένα άλλο ημιτονικό ή συνημιτονικό σήμα υψηλότερης συχνότητας, που ονομάζεται φορέας (carrier) ή φέρουσα κυματομορφή Η διαδικασία της μίξης Η διαμόρφωση μπορεί απλά να προκύψει από τη μίξη (πολλαπλασιασμό) της κυματομορφής βασικής ζώνης με το φορέα, όπως απεικονίζεται σχηματικά παρακάτω: Α Υποθέτοντας ότι στη είσοδο του μίκτη εφαρμόζεται μια ακολουθία δεδομένων 1,0,1,0, και χρησιμοποιώντας την τριγωνομετρική 1 Η ιδιότητα αυτή σε πολλά μαθηματικά εγχειρίδια χρησιμοποιείται για τον ορισμό της συνάρτησης dirac. Επικοινωνίες ΙΙ 1-15 Τμήμα Πληροφορικής & Επικοινωνιών

16 1 ταυτότητα cos A cos B= [ cos( A B) + cos( A+ B)], η έξοδος του μίκτη 2 2A 1 1 nπ 2 2 ) c 0 c 0 n= 1,3,5,... n= 1,3,5,... t γίνεται y() t = cos( 2 π( f nf ) t) + cos( 2 π( f + nf ). Το φάσμα του διαμορφωμένου σήματος που προκύπτει, είναι κεντραρισμένο στη συχνότητα του φορέα και στη συγκεκριμένη περίπτωση αναπαράγει κατοπτρικά τις φασματικές συνιστώσες του σήματος δεδομένων βασικής ζώνης εκατέρωθεν του φορέα. Επομένως, με τη μέθοδο της μίξης καθίσταται δυνατή η μετατόπιση του φασματικού περιεχομένου του σήματος της πληροφορίας σε οποιαδήποτε συχνότητα επιθυμούμε Ο διανυσματικός διαμορφωτής Για τον πιο αποτελεσματικό έλεγχο του συχνοτικού περιεχομένου του διαμορφωμένου σήματος στα πιο προχωρημένα συστήματα διαμόρφωσης ή όταν η μορφή των δεδομένων προς διαμόρφωση είναι περίπλοκη, χρησιμοποιούνται συνδυασμοί ημιτονικών και συνημιτονικών συνιστωσών του σήματος εισόδου, οι οποίοι εισέρχονται σε μίκτες μαζί με τους αντίστοιχους συνδυασμούς ημιτόνων και συνημιτόνων του φέροντος. Μια τέτοια διάταξη απεικονίζεται παρακάτω και ονομάζεται διανυσματικός διαμορφωτής (vector modulator). Επικοινωνίες ΙΙ 1-16 Τμήμα Πληροφορικής & Επικοινωνιών

17 Σχήμα 1-2. Διανυσματικός διαμορφωτής. Ανάλογα με την πράξη που εκτελείται στην τελευταία βαθμίδα του διανυσματικού διαμορφωτή, δηλαδή άθροιση ή διαφορά της συμφασικής cos( ω0t) cos( ωct) = 0.5cos( ωc + ω0) t+ 0.5cos( ωc ω0) t και της ορθογωνικής συνιστώσας sin(ω t) sin( ω t) = 0.5cos( ω + ω ) t+ 0.5cos( ω ω ) t 0 C C 0 C 0 εξόδου, η έξοδος λαμβάνει τις τιμές cos( ω )t C ω0 και cos( ωc + ω0) t, αντίστοιχα. Παράδειγμα: Ένας διανυσματικός διαμορφωτής τροφοδοτείται με ένα ημιτονοειδές σήμα τέλειας ορθογωνικότητας στην είσοδο αλλά υπάρχει ένα μικρό σφάλμα στην τάση των 0.1dB μεταξύ των υποτιθέμενων ορθογωνικών εισόδων του φέροντος. Ποιος θα είναι ο λόγος σε db, των σημάτων άθροισης και διαφοράς στην έξοδο του διαμορφωτή, ως αποτέλεσμα της διαφοράς τάσης που εμφανίζεται στο φορέα; Απάντηση: Συμφασική είσοδος Ορθογωνική είσοδος cos(ω o t) sin(ω o t) A cos(ω c t) (A+dA) sin(ω c t) Εν-φάσει (in-phase) έξοδος: Ορθογωνική (quadrature) έξοδος: A cos(ω c t) cos(ω o t) = (A + da) 2 [ cos(ω c -ω o )t - cos(ω c +ω o )t] A [cos(ωc +ω o )t + cos(ω c -ω o )t] 2 ( A + da) 20 log(a+da) 20 log(a) = log A = 0.1 A + da A = da = A. Ο όρος διαφοράς είναι: Επικοινωνίες ΙΙ 1-17 Τμήμα Πληροφορικής & Επικοινωνιών

18 Acos( ωc + ωo) t 2 + A + da cos(ωc +ω o )t + 2 A A + da cos(ωc -ω o )t cos(ω c - da da ω o )t = A cos(ω c +ω o )t + cos(ωc +ω o )t - cos(ωc -ω o )t = 2 2 da =A cos(ω c +ω o )t + [cos(ωc +ω o )t- cos(ω c -ω o )t] = 2 da - cos(ωc -ω o )t = 2 A + da 2 Ο όρος αθροίσματος είναι: A + da 2 da cos(ω c +ω o )t - cos(ωc -ω o )t 2 ανεπιθύμητος όρος cos(ω c +ω o )t A A A da cos(ωc +ω o )t + cos(ωc -ω o )t + cos(ωc -ω o )t + cos(ωc ω o )t- A da da - cos(ωc +ω o ) t - cos(ωc +ω o )t = A cos(ω c -ω o )t + [ cos(ωc ω o )t - cos(ω c +ω o )t] = A + da 2 da cos(ω c -ω o )t - cos(ωc -ω o )t 2 επιθυμητός όρος Ο λόγος των πλατών του επιθυμητού προς τον ανεπιθύμητο όρο είναι ο εξής: A+ da da / 2 10log = 10log = 22.4dB / 2 Παράδειγμα: Ένας διανυσματικός διαμορφωτής τροφοδοτείται με ένα ημιτονοειδές σήμα τέλειας ορθογωνικότητας στην είσοδο αλλά υπάρχει ένα μικρό σφάλμα φάσης 5 ο μεταξύ των υποτιθέμενων ορθογωνικών εισόδων του φέροντος. Ποιος θα είναι ο λόγος των ισχύων, σε dβ, των σημάτων άθροισης και διαφοράς στην έξοδο, ως αποτέλεσμα αυτής της διαφοράς φάσης που εμφανίζεται στο φορέα; (Απάντηση: λόγος πλατών (amplitude ratio) 525:1 ή 27dB). 1+ cosϕ 1 cosϕ, Επικοινωνίες ΙΙ 1-18 Τμήμα Πληροφορικής & Επικοινωνιών

19 1.7 Βασική θεωρία πιθανοτήτων και θόρυβος στις επικοινωνίες Μια συνεχής τυχαία μεταβλητή χ μπορεί πάρει οποιεσδήποτε τιμές σε ένα συγκεκριμένο διάστημα. Η πιθανότητα η τυχαία μεταβλητή χ να λάβει την τιμή χ i συμβολίζεται ως Ρ(χ=χ i ) και είναι γενικά μηδέν, καθότι υπάρχουν άπειρες τιμές τις οποίες μπορεί να λάβει η μεταβλητή χ Αθροιστική συνάρτηση πιθανότητας (cumulative distribution function - cdf) Έστω ότι η συνάρτηση P x (x=x i ) εκφράζει την πιθανότητα η τυχαία μεταβλητή x να λάβει την τιμή x i. Ως αθροιστική συνάρτηση πιθανότητας ορίζεται η συνάρτηση F x (x i )=P x (x x i ), δηλαδή η πιθανότητα η τυχαία μεταβλητή x να λάβει τιμή μικρότερη ή ίση με την τιμή x i. Επομένως: x i F ( x ) = P( u) du (1.11) x i x και dfx ( x ι ) = Px ( xi ) dx (1.12) Ορισμένες χαρακτηριστικές ιδιότητες της αθροιστικής συνάρτησης πιθανότητας είναι οι ακόλουθες: F x (x i ) 0, F x ( ) = 1, Επικοινωνίες ΙΙ 1-19 Τμήμα Πληροφορικής & Επικοινωνιών

20 F x ( ) = 0, F x (x 1 ) F x (x 2 ) για x 1 x Συνάρτηση πυκνότητας πιθανότητας H συνάρτηση πυκνότητας πιθανότητας (probability density function - pdf) p ορίζεται από τη σχέση: x ( 2 x 1 ) ( ) 2 = x1 P x x x p x dx (1.13) Συνεπώς, x2 x1 x( 1 2) = x( 2) x( 1) = x( ) x( ) P x x x F x F x P u du P u du (1.14) Η κανονική συνάρτηση πυκνότητας πιθανότητας Η κανονική συνάρτηση πυκνότητας πιθανότητας δίδεται από τη σχέση: ( x x) 2 1 px ( ) = exp 2 σ 2π 2σ (1.15) όπου x = Ex ( ) = x px ( ) dx (1.16) είναι η μέση τιμή της κανονικής συνάρτησης πυκνότητας πιθανότητας, Επικοινωνίες ΙΙ 1-20 Τμήμα Πληροφορικής & Επικοινωνιών

21 σ = ( x x) = E ( x x) = ( x x) p( x) dx (1.17) σ 2 η διασπορά και σ η τυπική απόκλισή της. Η αθροιστική συνάρτηση πιθανότητας της κανονικής συνάρτησης πυκνότητας πιθανότητας είναι: x 2 1 ( u x) exp 2 σ π 2σ F( x ) = du (1.18) 2 u x και θέτοντας z = η σχέση (1.18) γίνεται σ z 2 y 2 1 F( z ) = e dy = 1 Q( z) (1.19) 2π όπου η συνάρτηση Q(z) ορίζεται ως: Qz ( ) 1 2π = z e 2 y 2 dy (1.20) έχοντας την ιδιότητα Q( z ) = 1 Q( z), οπότε προκύπτει: xi x Px ( xi ) = Q (1.21) σ Εποπτικά, η συνάρτηση Q αντιστοιχεί στο εμβαδόν της γραμμοσκιασμένης επιφάνειας που απεικονίζεται στο Σχήμα 1-3. Επικοινωνίες ΙΙ 1-21 Τμήμα Πληροφορικής & Επικοινωνιών

22 Σχήμα 1-3. Ορισμός της συνάρτησης Q. Η συνάρτηση Q συνδέεται με την συμπληρωματική συνάρτηση σφάλματος (complementary error function - erfc), ως εξής: ( ) 2 2 y erfc( z) = e dy = 2Q 2z π z (1.22) Η γραφική παράσταση της συναρτήσεως Q(χ) που εικονίζεται στο Σχήμα 1-4, μπορεί να χρησιμοποιηθεί για πρακτικούς υπολογισμούς, καθότι η συνάρτηση αυτή δεν μπορεί να εκτιμηθεί με αναλυτικό τρόπο. Επικοινωνίες ΙΙ 1-22 Τμήμα Πληροφορικής & Επικοινωνιών

23 1 p ( g ) Σχήμα 1-4. Γραφική παράσταση της συνάρτησης Q. Επικοινωνίες ΙΙ 1-23 Τμήμα Πληροφορικής & Επικοινωνιών

24 1.8 Φάσμα θορύβου Όπως κάθε σήμα στο πεδίο της συχνότητας, έτσι και ο θόρυβος μπορεί να χαρακτηριστεί από μια φασματική πυκνότητα ισχύος N(f), όπως για παράδειγμα στο Σχήμα 1-5. N(f) N o Φασματική πυκνότητα ισχύος f 1 f 2 f Σχήμα 1-5. Φασματική πυκνότητα ισχύος θορύβου. Αν η φασματική πυκνότητα ισχύος του θορύβου είναι σταθερή και ανεξάρτητη της συχνότητας τότε Ν(f)=Νο Watts/Hz και ο θόρυβος ονομάζεται λευκός. Ο θόρυβος ο οποίος χρησιμοποιείται στην ανάλυση των περισσότερων επικοινωνιακών συστημάτων ακολουθεί την κανονική κατανομή και είναι λευκός, ονομάζεται δε λευκός προσθετικός γκαουσιανός θόρυβος (Additive White Gaussian Noise AWGN). Η μέση τιμή και η ισχύς του AWGN θορύβου μετρημένη σε μοναδιαία ωμική αντίσταση εντός εύρους ζώνης BW είναι x = 0 και 2 P= N BW =σ, αντίστοιχα Ιδιότητες της λογαριθμικής συνάρτησης Λογάριθμος γινομένου: log( ab ) = log( a) + log( b) (1.23) Λογάριθμος πηλίκου: Επικοινωνίες ΙΙ 1-24 Τμήμα Πληροφορικής & Επικοινωνιών

25 log( a/ b) = log( a) - log( b) (1.24) Αλλαγή βάσης λογαρίθμου: log y ( A) log x (A) = (1.25) log ( x) y 1.10 Ορισμός db Σε πολλές περιπτώσεις στην ανάλυση και σχεδίαση κυκλωμάτων, πομπών, δεκτών, γραμμών μεταφοράς, φίλτρων και άλλων διατάξεων ή ηλεκτρονικών στοιχείων, είναι προτιμότερο να δουλεύουμε τα διάφορα μεγέθη σε λογαριθμική κλίμακα παρά σε γραμμική για δύο κύριους λόγους. Πρώτον διότι η συνάρτηση του λογαρίθμου έχει την ιδιότητα να μετατρέπει την πράξη του πολλαπλασιασμού σε πρόσθεση, και δεύτερον διότι μας επιτρέπει να χειριστούμε μεγάλο εύρος τιμών ενός μεγέθους με ιδιαίτερα συμπαγή τρόπο. Έτσι, προκύπτει ο ακόλουθος ορισμός της ηλεκτρικής ισχύος σε db. g P 10 lo 10 = P [db ref ] P (1.26) ref Στο συγκεκριμένο παράδειγμα η ισχύς P μπορεί να εκφραστεί σε db σε σχέση με την μονάδα αναφοράς ισχύος P ref. Για παράδειγμα, αν η μονάδα αναφοράς ισχύος είναι το 1mW τότε ισχύς P=1W=1000mW, αντιστοιχεί σε 30dBmW. Αν η ισχύς αναφοράς ήταν το 1W, τότε η ισχύς P=1W, αντιστοιχεί σε 0dBW. Στην περίπτωση που θέλουμε να εκφράσουμε τάσεις σε λογαριθμική κλίμακα, έχουμε: Επικοινωνίες ΙΙ 1-25 Τμήμα Πληροφορικής & Επικοινωνιών

26 g V 20 lo 10 = V [db ref ] V (1.27) ref Για παράδειγμα, αν η μονάδα αναφοράς τάσης είναι το 1μV τότε τάση V 1 =1V=1,000,000μV, αντιστοιχεί σε 120dBμV. Αν η ισχύς αναφοράς ήταν το 1mV, τότε η τάση V 1 =1V=1,000mV, αντιστοιχεί σε 60dBμV. Το db μπορεί επίσης να χρησιμοποιηθεί για να αποδώσει το συσχετισμό δύο μεγεθών που μετρώνται στις ίδιες μονάδες. Έτσι, για παράδειγμα αν σε ένα συγκεκριμένο σημείο ενός δέκτη η ισχύς του ωφέλιμου σήματος είναι P S και αυτή του θορύβου P N, τότε ορίζεται ο λόγος σήματος προς θόρυβο ως εξής: 10 P S lo g S 10 = = SNR [db] P N N (1.28) Για P S =1μW και P N =1pW, S/N=60dB. Αν επιθυμούσαμε να εκφράσουμε το λόγο τάσεων ωφέλιμου σήματος προς την τάση θορύβου, θα χρησιμοποιούσαμε τον ορισμό: V 20 log S 10 [db] V (1.29) N 1.11 Επανάληψη γραμμικών συστημάτων Γραμμικά μη χρονικά μεταβαλλόμενα συστήματα Επικοινωνίες ΙΙ 1-26 Τμήμα Πληροφορικής & Επικοινωνιών

27 Ένα σύστημα είναι γραμμικό όταν ισχύει η αρχή της υπέρθεσης, δηλαδή, y( t) = [ a x ( t) + a x ( t)] = a [ x ( t)] + a [ x ( t)] (1.30) όπου y(t) είναι η έξοδος του συστήματος και x(t) είναι η είσοδος, όπως παρουσιάζεται στο σχετικό Σχήμα. Το σύμβολο [ ] υποδηλώνει τον γραμμικό (διαφορική εξίσωση) τελεστή που εφαρμόζεται στο [ ]. Το σύστημα λέγεται μη χρονικά μεταβαλλόμενο εάν, για κάθε καθυστερημένη είσοδο x(t-t 0 ), η έξοδος καθυστερεί κατά τον ίδιο χρόνο y(t-t 0 ). x(t) Γραμμικό σύστημα h(t) H(f) y(t) Κρουστική απόκριση Ένα γραμμικό μη χρονικά μεταβαλλόμενο σύστημα περιγράφεται από γραμμική συνήθη διαφορική εξίσωση με σταθερούς συντελεστές και μπορεί να χαρακτηριστεί από την λεγόμενη κρουστική της απόκριση. Ως κρουστική απόκριση ορίζεται ως η λύση της διαφορικής εξίσωσης όταν η συνάρτηση εξαναγκασμού (forcing function) είναι η συνάρτηση δέλτα του Dirac. Επομένως, y(t)=h(t) όταν x(t)=δ(t). Η κρουστική απόκριση μπορεί να χρησιμοποιηθεί για να προσδιοριστεί η έξοδος του συστήματος όταν η είσοδος δεν είναι η συνάρτηση δέλτα. Σε αυτήν την περίπτωση μια γενική κυματομορφή στην είσοδο του συστήματος μπορεί να προσεγγιστεί ως: Επικοινωνίες ΙΙ 1-27 Τμήμα Πληροφορικής & Επικοινωνιών

28 x() t = x( n Δt)[ δ ( t n Δt)] Δt (1.31) n= 0 υποδηλώνοντας ότι δείγματα στην είσοδο λαμβάνονται κατά χρονικά διαστήματα Δt. Στη συνέχεια κάνοντας χρήση των ιδιοτήτων της γραμμικότητας και της μη χρονικής μεταβλητότητας, η έξοδος είναι προσεγγιστικά: y() t = x( n Δt)[ h( t n Δt)] Δt (1.32) n= 0 Στην περίπτωση που Δt 0, η παραπάνω έκφραση δίδει το ακριβές αποτέλεσμα και θέτοντας nδt=τ, έχουμε: + y() t = x( τ) [ ht ( τ)] d τ = xt () ht () (1.33) που αποτελεί ουσιαστικά το ολοκλήρωμα της συνέλιξης της εισόδου με την κρουστική απόκριση Συνάρτηση μεταφοράς Το φάσμα του σήματος εξόδου προκύπτει από την εφαρμογή του μετασχηματισμού Fourier και στα δύο μέλη του ολοκληρώματος της συνέλιξης, δηλαδή: F{ y( t)} = F{ x( t) h( t)} Y( f) = X( f) H( f) (1.34) και Y( f) H( f) = (1.35) X ( f ) Επικοινωνίες ΙΙ 1-28 Τμήμα Πληροφορικής & Επικοινωνιών

29 όπου H(f)= [h(t)] ορίζεται ως η συνάρτηση μεταφοράς (transfer function) ή απόκριση συχνότητας (frequency response) του συστήματος. Επομένως, η κρουστική απόκριση και η απόκριση συχνότητας αποτελούν ένα ζεύγος μετασχηματισμού Fourier, ήτοι h(t) H(f). Στη γενική περίπτωση η συνάρτηση μεταφοράς είναι μιγαδική ποσότητα και μπορεί να γραφεί σε πολική μορφή ως: j ( f ) H( f ) = H( f) e θ (1.36) όπου H(f) είναι η απόκριση πλάτους και θ ( f ) 1 Im{ H( f)} = tan Re{ H( f)} (1.37) είναι η απόκριση φάσης του συστήματος. Επιπροσθέτως, εφόσον η συνάρτηση h(t) είναι πραγματική συνάρτηση του χρόνου, συνεπάγεται 2 ότι η H(f) είναι άρτια συνάρτηση της συχνότητας και ότι η θ(f) είναι περιττή συνάρτηση της συχνότητας. 2 Από τις ιδιότητες του μετασχηματισμού Fourier. Επικοινωνίες ΙΙ 1-29 Τμήμα Πληροφορικής & Επικοινωνιών

30 Equation Chapter 2 Section 2 2 ΜΕΤΑΔΟΣΗ ΔΕΔΟΜΕΝΩΝ Επικοινωνίες ΙΙ 2-30 Τμήμα Πληροφορικής & Επικοινωνιών

31 2.1 Παράγοντες που επηρεάζουν τη σχεδίαση συστημάτων Σε πολλές περιπτώσεις ο μηχανικός γνωρίζει τη βέλτιστη σχεδίαση ενός συστήματος, αλλά μέχρι αυτή να φθάσει στο στάδιο της εφαρμογής και του τελικού προϊόντος θα πρέπει να ληφθούν υπόψη διάφοροι παράγοντες, οι κυριότεροι των οποίων είναι: Τεχνολογικοί περιορισμοί (διαθεσιμότητα υλικού και λογισμικού, κατανάλωση ισχύος, μέγεθος συσκευών). Κρατικές προδιαγραφές και πρότυπα. Εμπορική πραγματικότητα. 2.2 Βασικές αρχές της εκπομπής δεδομένων Υπάρχουν δύο κύριες μέθοδοι μεταφοράς δεδομένων. Η δυαδική σηματοδοσία και η σηματοδοσία πολλαπλών επιπέδων. Στην πρώτη περίπτωση χρησιμοποιούνται δύο καταστάσεις για να κωδικοποιηθούν τα δυαδικά ψηφία 1 και 0, ενώ στη δεύτερη χρησιμοποιούνται περισσότερες καταστάσεις το πλήθος των οποίων καθορίζεται από τη σχετική δύναμη του 2 για να κωδικοποιηθούν οι αντίστοιχοι συνδυασμοί δυαδικών ψηφίων Δυαδική σηματοδοσία Στην περίπτωση δυαδικής σηματοδοσίας ο ρυθμός μετάδοσης δεδομένων καθορίζεται από το πόσο γρήγορα μπορεί να μεταβληθεί η τάση στο κανάλι ή ισοδύναμα από το εύρος ζώνης του καναλιού επικοινωνίας. (γιατί;) Σηματοδοσία δύο καταστάσεων μπορούμε να έχουμε χρησιμοποιώντας ένα ή περισσότερα παράλληλα καλώδια, όπως φαίνεται στο Σχήμα 2-1. Επικοινωνίες ΙΙ 2-31 Τμήμα Πληροφορικής & Επικοινωνιών

32 Σχήμα 2-1. Δυαδική σηματοδοσία με ένα και περισσότερα παράλληλα καλώδια. Χρησιμοποιώντας πολλαπλά παράλληλα καλώδια και διατηρώντας το ίδιο εύρος ζώνης για κάθε καλώδιο, μπορούμε να αυξήσουμε το ρυθμό μετάδοσης πληροφορίας ανάλογα με το πλήθος των καλωδίων. Εναλλακτικά, θα ήταν επίσης εφικτό να διατηρηθεί ο ίδιος ρυθμός μετάδοσης πληροφορίας υποβιβάζοντας το εύρος ζώνης κάθε καλωδίου τόσες φορές όσες και το πλήθος τους Σηματοδοσία πολλών επιπέδων Στην περίπτωση σηματοδοσίας πολλών επιπέδων ο ρυθμός μετάδοσης δεδομένων καθορίζεται τόσο από το εύρος ζώνης του καναλιού επικοινωνίας, όσο και από τη στάθμη του θορύβου. (γιατί;) Όπως και στην περίπτωση της δυαδικής σηματοδοσίας μπορούν να χρησιμοποιηθούν ένα ή πολλαπλά παράλληλα καλώδια για την αποστολή δεδομένων. Για παράδειγμα στη σηματοδοσία τεσσάρων καταστάσεων Μ=2 n (n=2) μπορούμε να κωδικοποιήσουμε από δύο bit στις τέσσερις προκύπτουσες στάθμες τάσης ( 00 στάθμη Α, 01 στάθμη Β, 10 στάθμη Γ, 11 στάθμη Δ). Σχήμα 2-2. Σηματοδοσία πολλαπλών επιπέδων με ένα ή περισσότερα παράλληλα καλώδια. Επικοινωνίες ΙΙ 2-32 Τμήμα Πληροφορικής & Επικοινωνιών

33 Σε σχέση με τη δυαδική σηματοδοσία και με την προϋπόθεση ότι ο ρυθμός αλλαγής των συμβολικών καταστάσεων παραμένει ο ίδιος, παρατηρούμε ότι στον ίδιο χρόνο η τετραδική σηματοδοσία μεταδίδει διπλάσια πληροφορία από η δυαδική. Έτσι για ο ίδιο εύρος ζώνης η τετραδική σηματοδοσία μεταφέρει πληροφορία με διπλάσιο ρυθμό. Γενικεύοντας τη χρήση σηματοδοσίας πολλαπλών επιπέδων κάποιος θα μπορούσε να ισχυριστεί ότι με αυτόν τον τρόπο μπορούμε να αυξάνουμε απεριόριστα το ρυθμό μετάδοσης πληροφορίας. Από την άλλη πλευρά όμως μειώνεται σημαντικά η αντίσταση του συστήματος στο θόρυβο, καθότι η απόσταση μεταξύ των σταθμών τάσης που αντιστοιχούν σε κάθε συμβολική κατάσταση γίνεται ολοένα και μικρότερη για αυξανόμενο αριθμό καταστάσεων. Επιπροσθέτως, αυξάνεται και η πολυπλοκότητα του δέκτη Ο συμβιβασμός μεταξύ εύρους ζώνης και θορύβου Από την προηγούμενη θεώρηση είναι φανερό ότι ο ρυθμός μεταφοράς δεδομένων σε ένα κανάλι επικοινωνίας επηρεάζεται από: Το μέγιστο δυνατό ρυθμό ανίχνευσης αλλαγής της κυματομορφής ή της κατάστασης συμβόλων καταδεικνύοντας το εύρος ζώνης ως περιοριστικό παράγοντα. Τη δυνατότητα διάκρισης/διαχωρισμού των διαφορετικών καταστάσεων συμβόλων, καταδεικνύοντας το θόρυβο και την αλλοίωση (απόσβεση, διασπορά φάσης) ως περιοριστικούς παράγοντες. Επικοινωνίες ΙΙ 2-33 Τμήμα Πληροφορικής & Επικοινωνιών

34 2.3 Μετάδοση πληροφορίας ορισμοί Ρυθμός μεταφοράς πληροφορίας (information transfer rate): ορίζεται ως η ταχύτητα με την οποία μπορεί να αποσταλεί δυαδική πληροφορία (bit) από την πηγή στον προορισμό και μετράται σε [bits/sec]. Ρυθμός μεταφοράς συμβόλων(baud rate): ορίζεται ως ο ρυθμός με τον οποίο μεταβάλλονται οι καταστάσεις συμβόλων και μετράται σε [symbols/sec ή baud]. Φασματική απόδοση( bandwidth efficiency): ορίζεται ως το πηλίκο του ρυθμού μετάδοσης πληροφορίας προς το χρησιμοποιούμενο εύρος ζώνης και μετράται σε [bits/sec/hz]. Η φασματική απόδοση αποτελεί μέτρο του πόσο καλά μια συγκεκριμένη τεχνική διαμόρφωσης (και κωδικοποίησης) εκμεταλλεύεται το διαθέσιμο εύρος ζώνης Πολυεπίπεδη σηματοδοσία Ο αριθμός των καταστάσεων σηματοδοσίας που απαιτείται για να αναπαρασταθεί με μοναδικό τρόπο κάθε σχηματισμός από n bit δίνεται από την σχέση: Μ= 2 n, όπου Μ είναι ο αριθμός των συμβολικών καταστάσεων. Ένα παράδειγμα υλοποίησης σηματοδοσίας οκτώ επιπέδων (οκταδικής) παρουσιάζεται στο Σχήμα 2-3. Επικοινωνίες ΙΙ 2-34 Τμήμα Πληροφορικής & Επικοινωνιών

35 Σχήμα 2-3. Μετατροπή δυαδικής σηματοδοσίας σε οκταδική με παράμετρο το εύρος ζώνης. Τα πλεονεκτήματα της Μ-αδικής σηματοδοσίας είναι: Για δεδομένο ρυθμό μετάδοσης συμβόλων και διαθέσιμο εύρος ζώνης επιτυγχάνεται υψηλότερος ρυθμός μετάδοσης πληροφορίας (περίπτωση C). Εναλλακτικά, με τη υιοθέτηση χαμηλότερου ρυθμού μετάδοσης συμβόλων (περίπτωση Β), ελαττώνεται η απαίτηση για εύρος ζώνης. (Και στις δύο περιπτώσεις έχουμε αύξηση της φασματικής απόδοσης.) Τα μειονεκτήματα της Μ-αδικής σηματοδοσίας είναι: Η ανοχή της στο θόρυβο και τις παρεμβολές είναι μειωμένη σε σχέση με τη δυαδική σηματοδοσία, καθώς καθίσταται ολοένα και πιο δύσκολο να διακριθούν διαφορετικές συμβολικές καταστάσεις. Προϋποθέτει πιο περίπλοκη διαδικασία αναγνώρισης συμβόλων στο δέκτη. Επικοινωνίες ΙΙ 2-35 Τμήμα Πληροφορικής & Επικοινωνιών

36 Επιβάλλει μεγαλύτερες απαιτήσεις για γραμμικότητα ή/και ελαττωμένη αλλοίωση στο υλικό του πομποδέκτη και του καναλιού. 2.4 Ρυθμός εσφαλμένων bit έναντι ρυθμού εσφαλμένων συμβόλων Σε δυαδικό σύστημα τα σφάλματα bit και συμβόλων ταυτίζονται, επειδή κάθε σύμβολο αντιστοιχεί σε ένα bit. Σε Μ-δικά συστήματα (Μ>2) όμως αυτό δεν ισχύει. Στην πράξη μερικά σύμβολα είναι πιο επιρρεπή στην εσφαλμένη ανίχνευση από άλλα, ανάλογα με το πόσο μοιάζουν στα γειτονικά σύμβολα. Η προσεκτική επιλογή της μορφής κάθε συμβόλου μπορεί να βοηθήσει στην ελαχιστοποίηση του αριθμού των εσφαλμένων bit που προκύπτουν σε κάθε εσφαλμένα ανιχνευόμενο σύμβολο Κωδικοποίηση Gray Κωδικοποίηση Gray ονομάζεται μία μέθοδος αντιστοίχησης των bit, σύμφωνα με την οποία οι μορφές των διαδοχικών συμβόλων διαφέρουν μόνο κατά ένα bit. Εάν θεωρήσουμε ότι η διαδικασία ανίχνευσης θα ανιχνεύσει εσφαλμένα κάποιο σύμβολο δηλαδή αντί για το γειτονικό το, μπορούμε να συνάγουμε ότι η πιθανότητα εμφάνισης εσφαλμένων bit θα είναι περίπου ίση με την πιθανότητα εμφάνισης εσφαλμένων δια τον αριθμό k των bit που Gray κωδικοποιούνται σε κάθε σύμβολο, δηλαδή P = P / k. E E Επικοινωνίες ΙΙ 2-36 Τμήμα Πληροφορικής & Επικοινωνιών

37 2.5 Εκτίμηση του απαιτούμενου εύρους ζώνης Προκειμένου να καθορίσουμε το μέγιστο ρυθμό με τον οποίο δεδομένα μπορούν να αποσταλούν σε ένα επικοινωνιακό κανάλι, πρέπει να γνωρίζουμε το μέγιστο αριθμό αλλαγής συμβολικών καταστάσεων που μπορεί να υποστηρίξει το κανάλι συναρτήσει του εύρους ζώνης. Για παράδειγμα, ας θεωρήσουμε την κυματομορφή που απεικονίζεται στο Σχήμα 2-4 και αντιστοιχεί σε σύστημα οκταδικής σηματοδοσίας και ότι το κανάλι επιτρέπει τη διέλευση σημάτων με συχνοτικό περιεχόμενο από 0 Hz έως B Hz. Σχήμα 2-4. Κυματομορφή οκταδικής σηματοδοσίας και απαιτούμενο εύρος ζώνης. Εφόσον η ζώνη διέλευσης του καναλιού (channel passband) είναι Β Hz θα πρέπει τουλάχιστον η θεμελιώδης συχνότητα της κυματομορφής δεδομένων να εμπίπτει εντός αυτής, και επομένως το ελάχιστο εύρος ζώνης που απαιτείται για εκπομπή απαλλαγμένη από σφάλματα σε ένα κανάλι βασικής ζώνης είναι B min = 12T S, όπου T S είναι η διάρκεια της συμβολικής κατάστασης. Γνωρίζοντας ότι ο μέγιστος ρυθμός αποστολής (συχνότητα) συμβόλων στο κανάλι είναι 2Β και ότι ο κάθε σύμβολο μεταφέρει log 2 M bits, Επικοινωνίες ΙΙ 2-37 Τμήμα Πληροφορικής & Επικοινωνιών

38 συμπεραίνουμε ότι η χωρητικότητα ενός καναλιού με ζώνη διέλευσης Β Hz είναι: C = 2B log M bits / s 2 (2.1) 2.6 Περιορισμός της χωρητικότητας καναλιού λόγω θορύβου Καθώς ο αριθμός των συμβολικών καταστάσεων αυξάνει, η ικανότητα του δέκτη να διαχωρίσει μεταξύ αυτών ελαττώνεται με την εμφάνιση θορύβου ή/και παρεμβολών. Επομένως ο λόγος σήματος προς θόρυβο (signal power S to noise power N ratio) παίζει σημαντικό ρόλο στον καθορισμό του αριθμού των συμβολικών καταστάσεων που μπορούν να χρησιμοποιηθούν ώστε να επιτευχθεί επικοινωνία απαλλαγμένη από σφάλματα. Η συνδυασμένη επίδραση του θορύβου και του εύρους ζώνης στο ρυθμό μετάδοσης δεδομένων σε ένα κανάλι επικοινωνίας συνοψίζεται στην διάσημη πια σχέση των Shannon και Hartley: S C = B log2 + 1 bits / s (2.2) N Το θεώρημα των Shannon-Hartley δηλώνει ότι εάν ο ρυθμός μετάδοσης δεδομένων σε ένα κανάλι με εύρος ζώνης Β και για δεδομένο λόγο σήματος προς θόρυβο S/N είναι μικρότερος από το προβλεπόμενο όριο χωρητικότητας C, τότε η επικοινωνία είναι απαλλαγμένη από σφάλματα. Η σχέση αυτή μας δίδει τη δυνατότητα να εκτιμήσουμε την εφικτότητα κάθε ψηφιακού συστήματος επικοινωνίας, διότι επιτρέπει άμεσα τον καθορισμό του θεωρητικού άνω ορίου της χωρητικότητας καθότι υποθέτει ότι η επικοινωνιακή ζεύξη είναι πλήρως απαλλαγμένη από αλλοιώσεις και παρεμβολές και υφίσταται μόνο τη επίδραση AWGN θορύβου. Επικοινωνίες ΙΙ 2-38 Τμήμα Πληροφορικής & Επικοινωνιών

39 2.6.1 Απόδοση ισχύος και εύρους ζώνης Σε ένα σύστημα επικοινωνίας η μέση ισχύς σήματος είναι S=E b C, όπου E b είναι η μέση λαμβανόμενη ενέργεια ανά bit πληροφορίας (J/bit). Επίσης η μέση ισχύς θορύβου είναι Ν=Ν 0 Β, όπου Ν 0 είναι η πυκνότητα ισχύος του θορύβου (Watts/Hz). Έτσι το θεώρημα Shannon-Hartley μπορεί να γραφεί στη μορφή: C Eb C Eb log2 1 BE log2 BE 1 bits / s / Hz B = N0 B + = N + 0 (2.3) όπου ΒΕ είναι η φασματική απόδοση και ο λόγος E b /Ν 0 εκφράζει τον ανηγμένο ανά bit πληροφορίας και μονάδα εύρους ζώνης λόγο σήματος προς θόρυβο εκφράζοντας ταυτόχρονα κι ένα μέτρο της απόδοσης ισχύος του συστήματος. Το θεώρημα Shannon-Hartley δείχνει καθαρά ότι η φασματική απόδοση μπορεί να ανταλλαγεί με την απόδοση ισχύος και αντίστροφα, όπως φαίνεται και στο Σχήμα 2-5. Επικοινωνίες ΙΙ 2-39 Τμήμα Πληροφορικής & Επικοινωνιών

40 Σχήμα 2-5. Γραφική αναπαράσταση του θεωρήματος των Shannon- Hartley. Equation Chapter 3 Section 3 Επικοινωνίες ΙΙ 2-40 Τμήμα Πληροφορικής & Επικοινωνιών

41 3 ΜΕΤΑΔΟΣΗ ΣΤΗ ΒΑΣΙΚΗ ΖΩΝΗ Από την ανάλυση Fourier γνωρίζουμε ότι το εύρος ζώνης ενός ιδανικού ορθογωνικού παλμού είναι άπειρο. Καθότι οι διάφορες τηλεπικοινωνιακές διατάξεις όπως και το μέσο μετάδοσης έχουν ένα συγκεκριμένο εύρος ζώνης είναι επόμενο οι ιδανικοί ορθογωνικοί παλμοί να φιλτράρονται καθώς η πληροφορία διαδίδεται από τον πομπό στο δέκτη. Το αποτέλεσμα αυτού του φιλτραρίσματος είναι η διασπορά των συμβόλων που χρησιμοποιούνται για τη μετάδοση δεδομένων, όπως απεικονίζεται στο Σχήμα 3-1. Σχήμα 3-1. Διέλευση ορθογωνικού παλμού δια μέσου φίλτρου περιορισμένου εύρους ζώνης. 3.1 Διασυμβολική παρεμβολή Η διασπορά -λόγω του πεπερασμένου εύρους ζώνης είτε του μέσου διάδοσης είτε των διατάξεων του πομπού και του δέκτη- των διαδοχικών συμβόλων έχει ως αποτέλεσμα την επικάλυψη μέρους της ενέργειας του ενός με τα γειτονικά του προκαλώντας έτσι το λεγόμενο πρόβλημα της διασυμβολικής παρεμβολής (intersymbol interference). Το φαινόμενο της διασυμβολικής παρεμβολής παρουσιάζεται στο Σχήμα 3-2. Επικοινωνίες ΙΙ 3-41 Τμήμα Πληροφορικής & Επικοινωνιών

42 Σχήμα 3-2. Το φαινόμενο της διασυμβολικής παρεμβολής. Η διασυμβολική παρεμβολή είναι ένα πρόβλημα που είναι σε θέση να υποβαθμίσει σοβαρά την ικανότητα του ανιχνευτή δεδομένων στο δέκτη να διαχωρίσει το τρέχον σύμβολο από τα γειτονικά του λόγω της διασποράς της ενέργειας αυτών. Έτσι, ακόμη και στην περίπτωση που δεν έχουμε θόρυβο σε ένα κανάλι επικοινωνίας, η διασυμβολική παρεμβολή μπορεί να οδηγήσει στην λανθασμένη ανίχνευση συμβόλων, έχοντας ως αποτέλεσμα τον αναπόφευκτο ρυθμό σφαλμάτων (irreducible error rate). 3.2 Φίλτρα Nyquist Το φαινόμενο της διασυμβολικής παρεμβολής είναι δυνατόν να περιοριστεί σε τέτοιο βαθμό, ώστε να μην υποβαθμίζει την ποιότητα της ζεύξης αναφορικά στον παρατηρούμενο ρυθμό εμφάνισης σφαλμάτων. Αποδεικνύεται ότι εάν η συνάρτηση μεταφοράς του καναλιού επικοινωνίας (συμπεριλαμβανομένου του πομπού, μέσου μετάδοσης και δέκτη) είναι σύμφωνη κατά το κριτήριο Nyquist, τότε η διασυμβολική παρεμβολή μηδενίζεται. Επικοινωνίες ΙΙ 3-42 Τμήμα Πληροφορικής & Επικοινωνιών

43 Η χαρακτηριστική ιδιότητα της συνάρτησης μεταφοράς κατά Nyquist είναι ότι η ζώνη μετάβασης μεταξύ των ζωνών διέλευσης και αποκοπής είναι συμμετρική περί την συχνότητα f s =1/2T s (Σχήμα 3-3). Σχήμα 3-3. Συνάρτηση μεταφοράς κατά το κριτήριο Nyquist. Σε ένα κανάλι με συνάρτηση μεταφοράς Nyquist, τα σύμβολα εξακολουθούν να εμφανίζουν διασπορά, αλλά η κυματομορφή τους έχει την ιδιότητα να περνά από το μηδέν σε χρονικές στιγμές που είναι πολλαπλάσια της διάρκειας του συμβόλου (Σχήμα 3-4). Σχήμα 3-4. Διέλευση ορθογωνικού παλμού δια φίλτρου Nyquist. Διενεργώντας τη διαδικασία της δειγματοληψίας των δεδομένων τις χρονικές εκείνες στιγμές που η διασυμβολική παρεμβολή διέρχεται δια του μηδενός, η ενέργεια διασποράς των γειτονικών συμβόλων δεν επηρεάζει την τιμή του τρέχοντος συμβόλου τη Επικοινωνίες ΙΙ 3-43 Τμήμα Πληροφορικής & Επικοινωνιών

44 στιγμή της δειγματοληψίας (Σχήμα 3-5). Είναι όμως ευνόητο ότι προκειμένου να περιοριστεί κατά το δυνατόν αποτελεσματικότερα το πρόβλημα της διασυμβολικής παρεμβολής απαιτείται πολύ ακριβής χρονισμός δειγματοληψίας στο δέκτη. Σχήμα 3-5. Επίτευξη μηδενικής διασυμβολικής παρεμβολής με φίλτρο Nyquist. Σε πρακτικά συστήματα επικοινωνιών, όπως για παράδειγμα σε ένα κλασσικό τηλεφωνικό κανάλι, η επίτευξη συνάρτησης μεταφοράς κατά Nyquist είναι αρκετά δύσκολη. Παρά το γεγονός ότι το τηλεφωνικό modem μπορεί να έχει σχεδιαστεί έτσι ώστε να επιτυγχάνεται μηδενική διασυμβολική παρεμβολή, η γραμμή μεταφοράς μπορεί να εισάγει σημαντική αλλοίωση καταργώντας την όποια προσεκτική προσπάθεια σχεδίασης. Γι αυτό το λόγο χρησιμοποιούνται προσαρμοζόμενοι ισοσταθμητές (adaptive equalizers) ώστε να εξομαλύνουν την συνάρτηση μεταφοράς του καναλιού και να επιτυγχάνεται συνάρτηση μεταφοράς κατά Nyquist. Τα περισσότερα τηλεφωνικά modem σήμερα λειτουργούν σε ταχύτητες μεγαλύτερες των 9.6kbps και χρησιμοποιούν προσαρμοζόμενους ισοσταθμητές που αποστέλλουν εκπαιδευτικές ακολουθίες κατά τη διάρκεια της σηματοδοσίας πριν την έναρξη της συνομιλίας ή της αποστολής δεδομένων, για να καθορίσουν την μη ιδανική απόκριση του καναλιού. Επικοινωνίες ΙΙ 3-44 Τμήμα Πληροφορικής & Επικοινωνιών

45 3.3 Διαγράμματα οφθαλμού Το διάγραμμα οφθαλμού είναι μια εποπτική μέθοδος διάγνωσης προβλημάτων σε συστήματα μετάδοσης δεδομένων. Το διάγραμμα οφθαλμού προκύπτει όταν συνδέσουμε έναν παλμογράφο στο σημείο εκείνο του δέκτη όπου τα δεδομένα έχουν φιλτραριστεί και αποδιαμορφωθεί αλλά δεν έχουν αναγνωριστεί και μετατραπεί σε δυαδικά ψηφία. Ο παλμογράφος σκανδαλίζεται επαναληπτικά σε κάθε περίοδο συμβόλου ή σε καθορισμένο πολλαπλάσιο της περιόδου του συμβόλου, ανακτώντας το σήμα χρονισμού συμβόλων από τη λαμβανόμενη κυματομορφή. Βασιζόμενοι στην αδράνεια οπτικής απεικόνισης του παλμογράφου, το αποτέλεσμα είναι η υπέρθεση μιας επικαλυπτόμενης ακολουθίας συμβολικών καταστάσεων που οδηγεί στη σύνθεση του διαγράμματος οφθαλμού. Ένα τυπικό διάγραμμα οφθαλμού απεικονίζεται στο Σχήμα 3-6. Σχήμα 3-6. Διάγραμμα οφθαλμού. Τα διαγράμματα οφθαλμού αποτελούν ένα εξαιρετικό διαγνωστικό εργαλείο για την ανίχνευση αιτιών υποβάθμισης της ποιότητας μιας τηλεπικοινωνιακής ζεύξης. Στο Σχήμα 3-7 παρουσιάζονται διάφορες αιτίες υποβιβασμού της ποιότητας ενός τηλεπικοινωνιακού καναλιού, με καθεμιά να έχει τη δική της επίδραση στην εμφάνιση του διαγράμματος οφθαλμού. Επικοινωνίες ΙΙ 3-45 Τμήμα Πληροφορικής & Επικοινωνιών

46 Σχήμα 3-7. Επίδραση διαφόρων παραγόντων υποβάθμισης στο διάγραμμα οφθαλμού. Διαγράμματα οφθαλμού για περιπτώσεις σηματοδοσίας τεσσάρων και δεκαέξι επιπέδων παρουσιάζονται στο Σχήμα 3-8. Σχήμα 3-8. Διαγράμματα οφθαλμού για διαμόρφωση τεσσάρων και δεκαέξι καταστάσεων. 3.4 Φίλτρα υψωμένου συνημιτόνου Τα φίλτρα υψωμένου συνημιτόνου αποτελούν μια δημοφιλή υλοποίηση των φίλτρων Nyquist. Ονομάζονται δε έτσι, λόγω του ότι το σχήμα της ζώνης μετάβασης (η ζώνη μεταξύ των ζωνών διέλευσης και αποκοπής) μοιάζει με τμήμα της κυματομορφής ενός συνημιτόνου. Η οξύτητα του φίλτρου ελέγχεται από τον παράγοντα κλίσης του φίλτρου α. Το εύρος ζώνης Β που καταλαμβάνεται από Επικοινωνίες ΙΙ 3-46 Τμήμα Πληροφορικής & Επικοινωνιών

47 ένα σήμα που φιλτράρεται από φίλτρο υψωμένου συνημιτόνου δίδεται από τη σχέση: 1 B = Bmin (1 + a) = (1 + a) (3.1) T 2 S Η απόκριση συχνότητας ενός φίλτρου υψωμένου συνημιτόνου για διάφορες τιμές του παράγοντα κλίσης απεικονίζονται στο Σχήμα 3-9. Σχήμα 3-9. Απόκριση συχνότητας φίλτρων υψωμένου συνημιτόνου για διάφορες τιμές του παράγοντα κλίσης. Ο παράγοντας κλίσης α κυμαίνεται μεταξύ 0 και 1, με την τιμή 0 να αντιστοιχεί σε ένα ιδανικό φίλτρο, το «φίλτρο πλινθοδομής» και το 1 στο μέγιστο δυνατό εύρος ζώνης Nyquist. Μια σημαντική ιδιότητα του φίλτρου υψωμένου συνημιτόνου είναι το ομαλό σχήμα του φάσματος μεταξύ της ζώνης διέλευσης και της ζώνης αποκοπής, που οδηγεί σε μείωση των παλμικών ταλαντώσεων στο πεδίο του χρόνου. Η κρουστική απόκριση ενός φίλτρου υψωμένου συνημιτόνου παρουσιάζεται στο Σχήμα Επικοινωνίες ΙΙ 3-47 Τμήμα Πληροφορικής & Επικοινωνιών

48 Σχήμα Κρουστική απόκριση φίλτρου υψωμένου συνημιτόνου για διάφορες τιμές του παράγοντα κλίσης. Παράδειγμα: Μια ακολουθία δεδομένων οκτώ επιπέδων βασικής ζώνης έχει περίοδο συμβόλων 100μs. Ποιο είναι το ελάχιστο εύρος ζώνης Β που απαιτείται για εκπομπή, θεωρώντας ότι χρησιμοποιείται ένα φίλτρο υψωμένου συνημιτόνου με α=0.33; Πόσος χρόνος χρειάζεται για τη μετάδοση ενός εκατομμυρίου bits; Λύση: B min = 1 = 50 KHz, B N = B ( ) = 66,500Hz min Η μονάδα ταχύτητας μετάδοσης ψηφιακών παλμών είναι 1/ ή 100,000 symbols/sec. Κάθε σύμβολο μεταφέρει 3 bit πληροφορίας, οπότε η ταχύτητα μετάδοσης των bit είναι 300,000 bits/sec. Η υλοποίηση φίλτρων που έχουν απόκριση συχνότητας κατά Nyquist είναι δύσκολο να πραγματοποιηθεί με αναλογική τεχνολογία κι εξαρτήματα. Οι πρόσφατες όμως τεχνολογικές εξελίξεις επέτρεψαν την εύκολη και φθηνή υλοποίηση με τη χρήση ψηφιακών επεξεργαστών σήματος. Χρησιμοποιώντας τα φίλτρα πεπερασμένης Επικοινωνίες ΙΙ 3-48 Τμήμα Πληροφορικής & Επικοινωνιών

49 κρουστικής απόκρισης (finite impulse response FIR) καθίσταται δυνατή η υλοποίηση φίλτρων υψωμένου συνημιτόνου στον επιθυμητό βαθμό ακρίβειας. 3.5 Ανάκτηση χρονισμού συμβόλων Ο χρονισμός συμβόλων στο δέκτη μπορεί να ανακτηθεί με την αποστολή ενός σήματος χρονισμού αναφοράς μαζί με την αποστολή δεδομένων. Τα περισσότερα όμως σύγχρονα συστήματα ψηφιακών επικοινωνιών ανακτούν την πληροφορία χρονισμού από τα ίδια τα δεδομένα κάνοντας χρήση της μεθόδου της διέλευσης δια του μηδενός (zero-crossing). Σχήμα Ανάκτηση χρονισμού για σήματα φιλτραρισμένα με φίλτρο υψωμένου συνημιτόνου. Το πρόβλημα της ανάκτησης του χρονισμού συμβόλων γίνεται πολύ πιο απλό για δεδομένα που έχουν φιλτραριστεί με φίλτρο υψωμένου συνημιτόνου, του οποίου ο παράγοντας κλίσης είναι α=1. Στην περίπτωση αυτή, η διέλευση της κυματομορφής δεδομένων δια του μηδενός συμβαίνει τη χρονική στιγμή T S /2 πριν το βέλτιστο σημείο ανίχνευσης ( Σχήμα 3-12) για μηδενική διασυμβολική παρεμβολή. Σκανδαλίζοντας ένα χρονιστή ώστε η δειγματοληψία να λάβει χώρα T S /2 αργότερα από τη χρονική στιγμή διέλευσης δια του μηδενός, επιτυγχάνεται ο ιδανικός χρονισμός συμβόλων. Όταν τα δεδομένα Επικοινωνίες ΙΙ 3-49 Τμήμα Πληροφορικής & Επικοινωνιών

50 περιέχουν μεγάλες ακολουθίες 1 ή 0, η δειγματοληψία θα πρέπει μέσω της διαδικασίας της παρεμβολής να καθορίσει το σωστό χρονικό διάστημα δειγματοληψίας μέχρι την επόμενη διέλευση της κυματομορφής δεδομένων δια του μηδενός Κυκλώματα χρονισμού συμβόλων Το κύριο μειονέκτημα της χρήσης φίλτρων υψωμένου συνημιτόνου με α=1 σε συστήματα χρονισμού είναι το μεγάλο εύρος ζώνης που απαιτείται. Επιπροσθέτως, ο θόρυβος που συνοδεύει το λαμβανόμενο σήμα επηρεάζει τις μεμονωμένες διελεύσεις δια του μηδενός και προκειμένου να ανακτηθεί με ακρίβεια ο σωστός χρονισμός απαιτείται κάποια μορφή εξαγωγής του μέσου όρου μέσω μιας διαδικασίας ολοκλήρωσης. Έτσι, σε σύγχρονους δέκτες χρησιμοποιούνται ειδικά κυκλώματα που καταπολεμούν τα φαινόμενα του θορύβου αλλά και των μη ιδανικών διελεύσεων δια του μηδενός λόγω της επιλογής παράγοντα κλίσης μικρότερου της μονάδας. Ένα τέτοιο κύκλωμα παρουσιάζεται στο Σχήμα Σχήμα Κύκλωμα ανάκτησης χρονισμού συμβόλων. Επικοινωνίες ΙΙ 3-50 Τμήμα Πληροφορικής & Επικοινωνιών

51 Η λειτουργία του κυκλώματος βασίζεται στην παραγωγή παλμών διάρκειας T S /2 από ένα μονοσταθές κύκλωμα κάθε φορά που η τάση της κυματομορφής δεδομένων διέρχεται δια του μηδενός. Στη συνέχεια, ο παλμός αυτός συγκρίνεται σε ένα ψηφιακό μίκτη με το τοπικό παραγόμενο ρολόι που λειτουργεί σε συχνότητα πλησίον της συχνότητας αποστολής συμβόλων. Στη συνέχεια η έξοδος του μίκτη ολοκληρώνεται και φιλτράρεται προκειμένου να παραχθεί μια dc εξομαλυνμένη τάση ελέγχου, η οποία χρησιμοποιείται ως είσοδος σε ένα ταλαντωτή ελεγχόμενο από τάση για να συντονίσει το τοπικό ρολόι στην πραγματική συχνότητα αποστολής των συμβόλων. 3.6 Προσαρμοσμένο φίλτρο Η λειτουργία ενός ψηφιακού δέκτη είναι να αναγνωρίζει σωστά σε κάθε περίοδο του συμβόλου ποιο σύμβολο στάλθηκε από τον πομπό. Αυτό επιτυγχάνεται με την δειγματοληψία του λαμβανόμενου σήματος σε κάθε περίοδο του συμβόλου και με την σύγκρισή του με ένα προκαθορισμένο όριο απόφασης. Σχήμα Διάγραμμα βαθμίδων κυκλώματος δειγματοληψίας. Ο σκοπός του φίλτρου είναι να απομακρύνει όσο περισσότερο θόρυβο γίνεται χωρίς να επηρεαστεί το ωφέλιμο σήμα με ανεπιθύμητο τρόπο. Μ άλλα λόγια, ο σκοπός του φίλτρου είναι Επικοινωνίες ΙΙ 3-51 Τμήμα Πληροφορικής & Επικοινωνιών

52 να μεγιστοποιήσει το λόγο σήματος προς θόρυβο κατά τη στιγμή δειγματοληψίας. Το φίλτρο που μεγιστοποιεί το λόγο σήματος προς θόρυβο στην έξοδό του ονομάζεται προσαρμοσμένο φίλτρο. Αποδεικνύεται, ότι για ένα κανάλι που υπόκειται σε θόρυβο AWGN το προσαρμοσμένο φίλτρο είναι αυτό του οποίου η κρουστική απόκριση είναι μια χρονικά ανεστραμμένη και καθυστερημένη έκδοση της κυματομορφής του παλμού σηματοδοσίας, δηλαδή: h () t = s( T t) matched (3.2) Σχήμα Κρουστική απόκριση προσαρμοσμένου φίλτρου. Αναφερόμενοι στο πεδίο της συχνότητας, το προσαρμοσμένο φίλτρο ορίζεται ως αυτό του οποίου η απόκριση συχνότητας είναι ίση με την μιγαδική συζυγή της απόκρισης συχνότητας της κυματομορφής του συμβόλου σηματοδοσίας, δηλαδή: H ( f) S ( f) e matched * j2π ft = (3.3) Αποδεικνύεται επίσης ότι ο λόγος SNR στην έξοδο του προσαρμοσμένου φίλτρου κατά τη στιγμή δειγματοληψίας είναι 2 s ( T ) 2E SNR = =, όπου Ε είναι η ενέργεια του συμβόλου του 2 n N o λαμβανόμενου σήματος και Ν 0 είναι η φασματική πυκνότητα θορύβου του AWGN. Στο ερώτημα εάν είναι δυνατή η κατασκευή ενός προσαρμοσμένου φίλτρου που ταυτόχρονα να ικανοποιεί το κριτήριο Nyquist για μηδενική διασυμβολική παρεμβολή, την απάντηση δίδει το φίλτρο Επικοινωνίες ΙΙ 3-52 Τμήμα Πληροφορικής & Επικοινωνιών

53 ρίζας υψωμένου συνημιτόνου, το οποίο αποδείχθηκε 3 ότι ικανοποιεί και τις δύο αυτές απαιτήσεις Δυαδική σηματοδοσία και βέλτιστο όριο ανίχνευσης Αφού καθοριστεί το βέλτιστο (προσαρμοσμένο) φίλτρο είναι αναγκαίο να επιλεχτεί ένα κατάλληλο όριο για τον συγκριτή ώστε η αναλογία σφάλματος των bits (Bit Error Ratio BER) [το BER είναι ισοδύναμο με την πιθανότητα λανθασμένης λήψης bits Ρ Ε ] να ελαχιστοποιηθεί. Αν το κανάλι υπόκειται σε AWGN και η στάθμη τάσης V 0 χρησιμοποιείται για να μεταδώσει ένα λογικό 0 και η στάθμη τάσης V 1 για ένα λογικό 1, τότε η στάθμη σήματος στην είσοδο του συγκριτή περιγράφεται από τις ακόλουθες κατανομές πυκνότητας πιθανότητας: P 0 (v) P 1 (v) V o V T V 1 V Σχήμα Διεύρυνση της στάθμης σηματοδοσίας για δυαδικό κανάλι λόγω AWGN. Για το παραπάνω δυαδικό κανάλι ισχύει: P( 1 )=Q, 1 P e0 =P( 0 1') P( 1 1')=1-P e1 1 P e1 =P( 1 0') 3 Schwartz, M., Information, Transmission, Modulation and Noise, McGraw-Hill, P( 0 )=1-Q, 0 0 P( 0 0')=1-P e0 Επικοινωνίες ΙΙ 3-53 Τμήμα Πληροφορικής & Επικοινωνιών

ΘΕΜΑΤΑ & ΛΥΣΕΙΣ ΕΞΕΤΑΣΕΩΝ

ΘΕΜΑΤΑ & ΛΥΣΕΙΣ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑΤΑ & ΛΥΣΕΙΣ ΕΞΕΤΑΣΕΩΝ Μάθημα: Επικοινωνίες ΙΙ. Εξεταστική Περίοδος: B Θερινή, 14 Σεπτεμβρίου 2009. ΕΙΣΗΓΗΤΗΣ: Αναστάσιος Παπατσώρης Θέμα 1 ο (25 μονάδες) Ένα ADSL modem λειτουργεί με ταχύτητα downloading

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών ΙI

Συστήματα Επικοινωνιών ΙI + Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών ΙI Ψηφιακή μετάδοση στη βασική ζώνη + Ιστοσελίδα nιστοσελίδα του μαθήματος: n https://eclass.uowm.gr/courses/icte302/ +

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ. Εργαστήριο 8 ο. Αποδιαμόρφωση PAM-PPM με προσαρμοσμένα φίλτρα

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ. Εργαστήριο 8 ο. Αποδιαμόρφωση PAM-PPM με προσαρμοσμένα φίλτρα Τμήμα Πληροφορικής και Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Εργαστήριο 8 ο Αποδιαμόρφωση PAM-PPM με προσαρμοσμένα φίλτρα Βασική Θεωρία Σε ένα σύστημα μετάδοσης

Διαβάστε περισσότερα

Ψηφιακή μετάδοση στη βασική ζώνη. Baseband digital transmission

Ψηφιακή μετάδοση στη βασική ζώνη. Baseband digital transmission Ψηφιακή μετάδοση στη βασική ζώνη Baseband digital transmission Ψηφιακά σήματα Το ψηφιακό σήμα δεν είναι τίποτε άλλο από μια διατεταγμένη σειρά συμβόλων παραγόμενη από μια διακριτή πηγή πληροφορίας Η πηγή

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΜΔΕ Προηγμένα Τηλεπικοινωνιακά Συστήματα και Δίκτυα Διάλεξη 6 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst215

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Σχολή Θετικών Επιστημών Τεχνολογίας Τηλεπικοινωνιών Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ ΙI Εργαστήριο 8 ο : Προσαρμοσμένα Φίλτρα Βασική

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Σχολή Θετικών Επιστημών Τεχνολογίας Τηλεπικοινωνιών Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ ΙI Εργαστήριο 5 ο : Προσαρμοσμένα Φίλτρα Βασική

Διαβάστε περισσότερα

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 5 : Θόρυβος Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Ομιλίας Είδη θορύβου Περιγραφή θορύβου Θεώρημα Shannon Hartley Απόδοση ισχύος και εύρους

Διαβάστε περισσότερα

Μετάδοση πληροφορίας - Διαμόρφωση

Μετάδοση πληροφορίας - Διαμόρφωση Μετάδοση πληροφορίας - Διαμόρφωση MYE006: ΑΣΥΡΜΑΤΑ ΔΙΚΤΥΑ Ευάγγελος Παπαπέτρου ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΗΧ. Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ Διάρθρωση μαθήματος Μετάδοση Βασικές έννοιες Διαμόρφωση ορισμός είδη

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Τμήμα Πληροφορικής και Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Εργαστήριο 9 ο : Διαμόρφωση BPSK & QPSK Βασική Θεωρία Εισαγωγή Κατά την μετάδοση ψηφιακών δεδομένων

Διαβάστε περισσότερα

Ψηφιακές Τηλεπικοινωνίες. Πιθανότητα Σφάλματος για Δυαδική Διαμόρφωση

Ψηφιακές Τηλεπικοινωνίες. Πιθανότητα Σφάλματος για Δυαδική Διαμόρφωση Ψηφιακές Τηλεπικοινωνίες Πιθανότητα Σφάλματος για Δυαδική Διαμόρφωση Σύνδεση με τα Προηγούμενα Σχεδιάστηκε ο βέλτιστος δέκτης για κανάλι AWGN Επειδή πάντοτε υπάρχει ο θόρυβος, ακόμη κι ο βέλτιστος δέκτης

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 3 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst15

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 14 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: hp://ecla.uop.gr/coure/s15 e-mail:

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Σχολή Θετικών Επιστημών Τεχνολογίας Τηλεπικοινωνιών Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ ΙI Εργαστήριο 7 ο : Διαμόρφωση BPSK & QPSK

Διαβάστε περισσότερα

Μετάδοση πληροφορίας - Διαμόρφωση

Μετάδοση πληροφορίας - Διαμόρφωση ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΗΧ. Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ Μετάδοση πληροφορίας - Διαμόρφωση MYE006-ΠΛΕ065: ΑΣΥΡΜΑΤΑ ΔΙΚΤΥΑ Ευάγγελος Παπαπέτρου Διάρθρωση μαθήματος Βασικές έννοιες μετάδοσης Διαμόρφωση ορισμός

Διαβάστε περισσότερα

Εισαγωγή. Προχωρημένα Θέματα Τηλεπικοινωνιών. Ανάκτηση Χρονισμού. Τρόποι Συγχρονισμού Συμβόλων. Συγχρονισμός Συμβόλων. t mt

Εισαγωγή. Προχωρημένα Θέματα Τηλεπικοινωνιών. Ανάκτηση Χρονισμού. Τρόποι Συγχρονισμού Συμβόλων. Συγχρονισμός Συμβόλων. t mt Προχωρημένα Θέματα Τηλεπικοινωνιών Συγχρονισμός Συμβόλων Εισαγωγή Σε ένα ψηφιακό τηλεπικοινωνιακό σύστημα, η έξοδος του φίλτρου λήψης είναι μια κυματομορφή συνεχούς χρόνου y( an x( t n ) n( n x( είναι

Διαβάστε περισσότερα

Ψηφιακές Τηλεπικοινωνίες. Δισδιάστατες Κυματομορφές Σήματος

Ψηφιακές Τηλεπικοινωνίες. Δισδιάστατες Κυματομορφές Σήματος Ψηφιακές Τηλεπικοινωνίες Δισδιάστατες Κυματομορφές Σήματος Εισαγωγή Στα προηγούμενα μελετήσαμε τη διαμόρφωση PAM δυαδικό και Μ-αδικό, βασικής ζώνης και ζωνοπερατό Σε κάθε περίπτωση προέκυπταν μονοδιάστατες

Διαβάστε περισσότερα

Παράμετροι σχεδίασης παλμών (Μορφοποίηση παλμών)

Παράμετροι σχεδίασης παλμών (Μορφοποίηση παλμών) Παράμετροι σχεδίασης παλμών (Μορφοποίηση παλμών) Κύριοι παράμετροι στη σχεδίαση παλμών είναι (στο πεδίο συχνοτήτων): Η Συχνότητα του 1ου μηδενισμού (θέλουμε μικρό BW). H ελάχιστη απόσβεση των πλαγίων λοβών

Διαβάστε περισσότερα

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Εισαγωγή στα Συστήματα Τηλεπικοινωνιών Συστήματα Παλμοκωδικής Διαμόρφωσης

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Εισαγωγή στα Συστήματα Τηλεπικοινωνιών Συστήματα Παλμοκωδικής Διαμόρφωσης Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Εισαγωγή στα Συστήματα Τηλεπικοινωνιών Συστήματα Παλμοκωδικής Διαμόρφωσης Καθηγητής Ι. Τίγκελης itigelis@phys.uoa.gr ΚΒΑΝΤΙΣΗ Διαδικασία με την

Διαβάστε περισσότερα

Ψηφιακή μετάδοση στη βασική ζώνη. Baseband digital transmission

Ψηφιακή μετάδοση στη βασική ζώνη. Baseband digital transmission Ψηφιακή μετάδοση στη βασική ζώνη Baseband digital transmission Ψηφιακά σήματα Ένα ψηφιακό σήμα δεν είναι τίποτα άλλο από μια διατεταγμένη ακολουθία συμβόλων Η πηγή πληροφορίας παράγει σύμβολα από ένα αλφάβητο

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Εφαρμογές της Ανάλυσης Fourier Αθανάσιος

Διαβάστε περισσότερα

Σταθερή περιβάλλουσα (Constant Envelope)

Σταθερή περιβάλλουσα (Constant Envelope) Διαμόρφωση ολίσθησης φάσης (Phase Shift Keying-PSK) Σταθερή περιβάλλουσα (Constant Envelope) Ίση Ενέργεια συμβόλων 1 Binary Phase Shift keying (BPSK) BPSK 2 Quaternary Phase Shift Keying (QPSK) 3 Αστερισμός-Διαγράμματα

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών ΙI

Συστήματα Επικοινωνιών ΙI + Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών ΙI M-κά συστήματα διαμόρφωσης: Μ-PSK, M-FSK, M-QAM, DPSK + Ιστοσελίδα nιστοσελίδα του μαθήματος: n https://eclass.uowm.gr/courses/icte302/

Διαβάστε περισσότερα

Μοντέλο Επικοινωνίας Δεδομένων. Επικοινωνίες Δεδομένων Μάθημα 6 ο

Μοντέλο Επικοινωνίας Δεδομένων. Επικοινωνίες Δεδομένων Μάθημα 6 ο Μοντέλο Επικοινωνίας Δεδομένων Επικοινωνίες Δεδομένων Μάθημα 6 ο Εισαγωγή Με τη βοήθεια επικοινωνιακού σήματος, κάθε μορφή πληροφορίας (κείμενο, μορφή, εικόνα) είναι δυνατόν να μεταδοθεί σε απόσταση. Ανάλογα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙςΤΗΜΗς & ΤΕΧΝΟΛΟΓΙΑς ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΜΔΕ Προηγμένα Τηλεπικοινωνιακά Συστήματα και Δίκτυα Διάλεξη 2 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst233

Διαβάστε περισσότερα

Ψηφιακές Τηλεπικοινωνίες

Ψηφιακές Τηλεπικοινωνίες Ψηφιακές Τηλεπικοινωνίες Ψηφιακή Μετάδοση Σήματος σε Ζωνοπεριορισμένο Κανάλι AWGN (Μέχρι και τη διαφάνεια 32) Εισαγωγή Στα προηγούμενα μαθήματα θεωρήσαμε ότι ουσιαστικά το κανάλι AWGN είχε άπειρο εύρος

Διαβάστε περισσότερα

ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος.

ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος. 3. ΚΕΦΑΛΑΙΟ ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος. Ορίσουµε το µετασχηµατισµό Fourier ενός µη περιοδικού

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Μετασχηματισμός Fourier Στο κεφάλαιο αυτό θα εισάγουμε και θα μελετήσουμε

Διαβάστε περισσότερα

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ. Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Z

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ. Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Z ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Laplace Μετασχηµατισµός Z Εφαρµογές Παράδειγµα ενός ηλεκτρικού συστήµατος Σύστηµα Παράδειγµα

Διαβάστε περισσότερα

Παλμοκωδική Διαμόρφωση. Pulse Code Modulation (PCM)

Παλμοκωδική Διαμόρφωση. Pulse Code Modulation (PCM) Παλμοκωδική Διαμόρφωση Pulse Code Modulation (PCM) Pulse-code modulation (PCM) Η PCM είναι ένας στοιχειώδης τρόπος διαμόρφωσης που δεν χρησιμοποιεί φέρον! Το μεταδιδόμενο (διαμορφωμένο) σήμα PCM είναι

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 8 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst15

Διαβάστε περισσότερα

Ψηφιακές Τηλεπικοινωνίες. Βέλτιστος Δέκτης

Ψηφιακές Τηλεπικοινωνίες. Βέλτιστος Δέκτης Ψηφιακές Τηλεπικοινωνίες Βέλτιστος Δέκτης Σύνδεση με τα Προηγούμενα Επειδή το πραγματικό κανάλι είναι αναλογικό, κατά τη διαβίβαση ψηφιακής πληροφορίας, αντιστοιχίζουμε τα σύμβολα σε αναλογικές κυματομορφές

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών

Συστήματα Επικοινωνιών Συστήματα Επικοινωνιών Ενότητα 5: Μαθιόπουλος Παναγιώτης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Περιγραφή ενότητας Πλεονεκτήματα-Μειονεκτήματα ψηφιακών επικοινωνιών, Κριτήρια Αξιολόγησης

Διαβάστε περισσότερα

Επομένως το εύρος ζώνης του διαμορφωμένου σήματος είναι 2.

Επομένως το εύρος ζώνης του διαμορφωμένου σήματος είναι 2. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΠΛΗ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑ Το φέρον σε ένα σύστημα DSB διαμόρφωσης είναι c t A t μηνύματος είναι το m( t) sin c( t) sin c ( t) ( ) cos 4 c και το σήμα. Το διαμορφωμένο σήμα διέρχεται

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών ΙI

Συστήματα Επικοινωνιών ΙI + Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών ΙI Εισαγωγή Δειγματοληψία + Περιεχόμενα n Εισαγωγή n αναλογικό η ψηφιακό σήμα; n ψηφιακά συστήματα επικοινωνιών n Δειγματοληψία

Διαβάστε περισσότερα

Εξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης

Εξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης Πανεπιστήμιο Πατρών Τμήμα Μηχ. Η/Υ & Πληροφορικής Ακαδημαϊκό Έτος 009-010 Ψ Η Φ Ι Α Κ Ε Σ Τ Η Λ Ε Π Ι Κ Ο Ι Ν Ω Ν Ι ΕΣ η Εργαστηριακή Άσκηση: Εξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης Στην άσκηση

Διαβάστε περισσότερα

Επεξεργασία Στοχαστικών Σημάτων

Επεξεργασία Στοχαστικών Σημάτων Επεξεργασία Στοχαστικών Σημάτων Ψηφιακή Μετάδοση Αναλογικών Σημάτων Σεραφείμ Καραμπογιάς Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Ψηφιακή Μετάδοση Αναλογικών Σημάτων Τα σύγχρονα συστήματα

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Φυσική Σημασία του Μετασχηματισμού Fourier Ο μετασχηματισμός Fourier

Διαβάστε περισσότερα

Μορφοποίηση και ιαµόρφωση Σηµάτων Βασικής Ζώνης

Μορφοποίηση και ιαµόρφωση Σηµάτων Βασικής Ζώνης Μορφοποίηση και ιαµόρφωση Σηµάτων Βασικής Ζώνης Μορφοποίηση - Κωδικοποίηση πηγής Μορφοποίηση παλµών βασικής ζώνης Μορφοποίηση & µετάδοση βασικής ζώνης Mορφοποίηση-κωδικοποίηση πηγής Mορφοποίηση παλµών

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΓΝΩΣΤΙΚΩΝΝ ΡΑΔΙΟΣΥΣΤΗΜΑΤΩΝ ΕΠΙΚΟΙΝΩΝΙΑΣ

ΜΕΛΕΤΗ ΓΝΩΣΤΙΚΩΝΝ ΡΑΔΙΟΣΥΣΤΗΜΑΤΩΝ ΕΠΙΚΟΙΝΩΝΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡOΦΟΡΙΚΗΣ ΤΕ ΜΕΛΕΤΗ ΓΝΩΣΤΙΚΩΝΝ ΡΑΔΙΟΣΥΣΤΗΜΑΤΩΝ ΕΠΙΚΟΙΝΩΝΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΤΟΥ ΖΗΣΚΑ ΠΑΝΑΓΙΩΤΗ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: Δρ ΕΥΣΤΑΘΙΟΥ ΔΗΜΗΤΡΙΟΣ ΕΠΙΣΚΟΠΗΣΗ ΠΑΡΟΥΣΙΑΣΗΣ Σκοπός Πτυχιακής Εργασίας

Διαβάστε περισσότερα

Εξίσωση Τηλεπικοινωνιακών Διαύλων

Εξίσωση Τηλεπικοινωνιακών Διαύλων Εξίσωση Τηλεπικοινωνιακών Διαύλων ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΜΔΕ ΠΡΟΗΓΜΈΝΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΉΜΑΤΑ ΚΑΙ ΔΙΚΤΥΑ Ενότητα 2 η Φίλτρα Μηδενισμού της ISI Νικόλαος Χ.

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Σχολή Θετικών Επιστημών Τεχνολογίας Τηλεπικοινωνιών Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ ΙI Εργαστήριο 7 ο : Διαμόρφωση Θέσης Παλμών

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Εφαρμογές της Ανάλυσης Fourier 2 Αθανάσιος

Διαβάστε περισσότερα

Παλμοκωδική Διαμόρφωση. Pulse Code Modulation (PCM)

Παλμοκωδική Διαμόρφωση. Pulse Code Modulation (PCM) Παλμοκωδική Διαμόρφωση Pulse Code Modulation (PCM) Pulse-code modulation (PCM) Η PCM είναι ένας στοιχειώδης τρόπος διαμόρφωσης που δεν χρησιμοποιεί φέρον! Το μεταδιδόμενο (διαμορφωμένο) σήμα PCM είναι

Διαβάστε περισσότερα

ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΙΙ (ΨΗΦΙΑΚΑ ΤΗΛΕΠΙΚΟΙΝΩΙΑΚΑ ΣΥΣΤΗΜΑΤΑ) 3 η ΟΜΑΔΑ ΑΣΚΗΣΕΩΝ

ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΙΙ (ΨΗΦΙΑΚΑ ΤΗΛΕΠΙΚΟΙΝΩΙΑΚΑ ΣΥΣΤΗΜΑΤΑ) 3 η ΟΜΑΔΑ ΑΣΚΗΣΕΩΝ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΙΙ (ΨΗΦΙΑΚΑ ΤΗΛΕΠΙΚΟΙΝΩΙΑΚΑ ΣΥΣΤΗΜΑΤΑ) 3 η ΟΜΑΔΑ ΑΣΚΗΣΕΩΝ ΑΣΚΗΣΗ 1 Στο ανωτέρω Σχήμα η πρώτη κυματομορφή αποτελεί την είσοδο δύο κωδικοποιητών (Line Coders) ενώ οι επόμενες δύο

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΉΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 7 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: hp://ecla.uop.gr/coure/s5 e-mail:

Διαβάστε περισσότερα

4. Ποιο από τα παρακάτω δεν ισχύει για την ευαισθησία ενός δέκτη ΑΜ; Α. Ευαισθησία ενός δέκτη καθορίζεται από την στάθμη θορύβου στην είσοδό του.

4. Ποιο από τα παρακάτω δεν ισχύει για την ευαισθησία ενός δέκτη ΑΜ; Α. Ευαισθησία ενός δέκτη καθορίζεται από την στάθμη θορύβου στην είσοδό του. Τηλεπικοινωνικακά Συστήματα Ι - Ενδεικτικές Ερωτήσεις Ασκήσεις Δ.Ευσταθίου Τμήμα Μηχανικών Πληροφορικής ΤΕ, ΤΕΙ Κεντρικής Μακεδονίας 1) 1. Ποιο από τα παρακάτω δεν ισχύει για το χρονικό διάστημα που μηδενίζεται

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών ΙI

Συστήματα Επικοινωνιών ΙI + Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών ΙI FSK, MSK Πυκνότητα φάσματος ισχύος βασικής ζώνης + Ιστοσελίδα nιστοσελίδα του μαθήματος: n https://eclass.uowm.gr/courses/icte302/

Διαβάστε περισσότερα

Κεφάλαιο 7. Ψηφιακή Διαμόρφωση

Κεφάλαιο 7. Ψηφιακή Διαμόρφωση Κεφάλαιο 7 Ψηφιακή Διαμόρφωση Ψηφιακή Διαμόρφωση 2 Διαμόρφωση βασικής ζώνης H ψηφιακή πληροφορία μεταδίδεται απ ευθείας με τεχνικές διαμόρφωσης παλμών βασικής ζώνης, οι οποίες δεν απαιτούν τη χρήση ημιτονοειδούς

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Μετασχηματισμός Furier Αθανάσιος Κανάτας

Διαβάστε περισσότερα

Ήχος. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 04-1

Ήχος. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 04-1 Ήχος Χαρακτηριστικά του ήχου Ψηφιοποίηση με μετασχηματισμό Ψηφιοποίηση με δειγματοληψία Κβαντοποίηση δειγμάτων Παλμοκωδική διαμόρφωση Συμβολική αναπαράσταση μουσικής Τεχνολογία Πολυμέσων και Πολυμεσικές

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών

Συστήματα Επικοινωνιών Συστήματα Επικοινωνιών Ενότητα 11: Ψηφιακή Διαμόρφωση Μέρος Α Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Περιγραφή διαμόρφωσης παλμών κατά

Διαβάστε περισσότερα

Αναλογικές και Ψηφιακές Επικοινωνίες

Αναλογικές και Ψηφιακές Επικοινωνίες Αναλογικές και Ψηφιακές Επικοινωνίες Ενότητα : Βέλτιστος δέκτης για ψηφιακά διαμορφωμένα σήματα Σεραφείμ Καραμπογιάς Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Επικοινωνιών Η ΕΝΝΟΙΑ ΤΗΣ ΤΥΧΑΙΑΣ ΜΕΤΑΒΛΗΤΗΣ

Διαβάστε περισσότερα

Δίκτυα Απευθείας Ζεύξης

Δίκτυα Απευθείας Ζεύξης Δίκτυα Απευθείας Ζεύξης Επικοινωνία μεταξύ δύο υπολογιστώνοιοποίοιείναι απευθείας συνδεδεμένοι Φυσικό Επίπεδο. Περίληψη Ζεύξεις σημείου προς σημείο (point-to-point links) Ανάλυση σημάτων Μέγιστη χωρητικότητα

Διαβάστε περισσότερα

Θ.Ε. ΠΛΗ22 ( ) 2η Γραπτή Εργασία

Θ.Ε. ΠΛΗ22 ( ) 2η Γραπτή Εργασία Θ.Ε. ΠΛΗ22 (2012-13) 2η Γραπτή Εργασία Στόχος: Η 2 η εργασία αποσκοπεί στην κατανόηση των συστατικών στοιχείων των αναλογικών διαμορφώσεων, της δειγματοληψίας, και της μετατροπής του αναλογικού σήματος

Διαβάστε περισσότερα

Τεχνολογία Πολυμέσων. Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής

Τεχνολογία Πολυμέσων. Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Τεχνολογία Πολυμέσων Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το

Διαβάστε περισσότερα

Θεώρημα δειγματοληψίας

Θεώρημα δειγματοληψίας Δειγματοληψία Θεώρημα δειγματοληψίας Ένα βαθυπερατό σήμα πεπερασμένης ενέργειας που δεν περιέχει συχνότητες μεγαλύτερες των W Hertz μπορεί να περιγραφθεί πλήρως από τις τιμές του σε χρονικές στιγμές ισαπέχουσες

Διαβάστε περισσότερα

Ευρυζωνικά δίκτυα (2) Αγγελική Αλεξίου

Ευρυζωνικά δίκτυα (2) Αγγελική Αλεξίου Ευρυζωνικά δίκτυα (2) Αγγελική Αλεξίου alexiou@unipi.gr 1 Σήματα και πληροφορία Βασικές έννοιες 2 Αναλογικά και Ψηφιακά Σήματα Στις τηλεπικοινωνίες συνήθως χρησιμοποιούμε περιοδικά αναλογικά σήματα και

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Τμήμα Πληροφορικής και Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Εργαστήριο 6 ο : Διαμόρφωση Θέσης Παλμών Βασική Θεωρία Μ-αδική Διαμόρφωση Παλμών Κατά την μετατροπή

Διαβάστε περισσότερα

Ψηφιακές Επικοινωνίες

Ψηφιακές Επικοινωνίες Ψηφιακές Επικοινωνίες Ενότητα 2: Παναγιώτης Μαθιόπουλος Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Εισαγωγή (1) Οι Ψηφιακές Επικοινωνίες (Digital Communications) καλύπτουν σήμερα το

Διαβάστε περισσότερα

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 9 : Κανάλι-Σύστημα Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Ομιλίας Χωρητικότητα Χ ό καναλιού Το Gaussian κανάλι επικοινωνίας Τα διακριτά

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Τμήμα Πληροφορικής και Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Εργαστήριο 5 ο : Διαμόρφωση Παλμών Βασική Θεωρία Μ-αδική Διαμόρφωση Παλμών Κατά την μετατροπή

Διαβάστε περισσότερα

Εργαστήριο 3: Διαλείψεις

Εργαστήριο 3: Διαλείψεις Εργαστήριο 3: Διαλείψεις Διάλειψη (fading) είναι η παραμόρφωση ενός διαμορφωμένου σήματος λόγω της μετάδοσης του σε ασύρματο περιβάλλον. Η προσομοίωση μίας τέτοιας μετάδοσης γίνεται με την μοντελοποίηση

Διαβάστε περισσότερα

Διαμόρφωση Παλμών. Pulse Modulation

Διαμόρφωση Παλμών. Pulse Modulation Διαμόρφωση Παλμών Pulse Modulation Συστήματα διαμόρφωσης παλμών Είδη διαμόρφωσης παλμών Pulse Amplitude Modulation (PAM): A m(t) Pulse Position Modulation (PPM): T d m(t) Pulse Duration Modulation (PDM)

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Θ.Ε. ΠΛΗ22 ( ) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ #1 ΑΠΑΝΤΗΣΕΙΣ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Θ.Ε. ΠΛΗ22 ( ) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ #1 ΑΠΑΝΤΗΣΕΙΣ Θ.Ε. ΠΛΗ (0-3) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ # ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Στόχος της άσκησης είναι η εξοικείωση με γραφικές παραστάσεις βασικών σημάτων και πράξεις, καθώς και τον υπολογισμό ΜΣ Fourier βασικών σημάτων με τη χρήση

Διαβάστε περισσότερα

Εξίσωση Τηλεπικοινωνιακών Διαύλων

Εξίσωση Τηλεπικοινωνιακών Διαύλων Εξίσωση Τηλεπικοινωνιακών Διαύλων ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΜΔΕ ΠΡΟΗΓΜΈΝΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΉΜΑΤΑ ΚΑΙ ΔΙΚΤΥΑ Ενότητα η Φίλτρα Nyquis Νικόλαος Χ. Σαγιάς Επίκουρος

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Σχολή Οικονομίας Διοίκησης και Πληροφορικής Τμήμα Πληροφορικής και Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Αρχές Τηλ/ων Συστημάτων Εργαστήριο 7 ο : Δειγματοληψία και Ανασύσταση Βασική

Διαβάστε περισσότερα

Τελεστικοί Ενισχυτές. Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής

Τελεστικοί Ενισχυτές. Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής Τελεστικοί Ενισχυτές Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής Ο ιδανικός τελεστικός ενισχυτής Είσοδος αντιστροφής Ισοδύναμα Είσοδος μη αντιστροφής A( ) A d 2 1 2 1

Διαβάστε περισσότερα

Επικοινωνίες στη Ναυτιλία

Επικοινωνίες στη Ναυτιλία Επικοινωνίες στη Ναυτιλία Εισαγωγή Α. Παπαδάκης, Αναπλ. Καθ. ΑΣΠΑΙΤΕ Δρ. ΗΜΜΥ Μηχ. ΕΜΠ Βασικά Αντικείμενα Μαθήματος Σήματα Κατηγοριοποίηση, ψηφιοποίηση, δειγματοληψία, κβαντισμός Βασικά σήματα ήχος, εικόνα,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΉΜΑ ΕΠΙΣΤΉΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 7 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: hp://ecla.uop.gr/coure/tst25 e-ail:

Διαβάστε περισσότερα

Ψηφιακές Τηλεπικοινωνίες. Διαμόρφωση Παλμών κατά Πλάτος

Ψηφιακές Τηλεπικοινωνίες. Διαμόρφωση Παλμών κατά Πλάτος Ψηφιακές Τηλεπικοινωνίες Διαμόρφωση Παλμών κατά Πλάτος Διαμόρφωση Παλμών κατά Πλάτος Είπαμε ότι κατά την ψηφιακή μετάδοση μέσα από αναλογικό κανάλι κάθε σύμβολο αντιστοιχίζεται σε μια κυματομορφή σήματος

Διαβάστε περισσότερα

1. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΗΜΑΤΑ

1. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΗΜΑΤΑ . ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΗΜΑΤΑ Σκοπός του κεφαλαίου αυτού είναι να δώσει μια γενική εικόνα του τι είναι σήμα και να κατατάξει τα διάφορα σήματα σε κατηγορίες ανάλογα με τις βασικές ιδιότητες τους. Επίσης,

Διαβάστε περισσότερα

ΣΕΙΡΕΣ ΚΑΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ FOURIER. e ω. Το βασικό πρόβλημα στις σειρές Fourier είναι ο υπολογισμός των συντελεστών c

ΣΕΙΡΕΣ ΚΑΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ FOURIER. e ω. Το βασικό πρόβλημα στις σειρές Fourier είναι ο υπολογισμός των συντελεστών c ΣΕΙΡΕΣ ΚΑΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ FOURIER x(t+kτ) = x(t) = π/ω f = / x(t) = = 8 c j t e ω c = (a-jb ) Το βασικό πρόβλημα στις σειρές Fourier είναι ο υπολογισμός των συντελεστών c. Αυτός γίνεται κατορθωτός αν

Διαβάστε περισσότερα

Διαμόρφωση Παλμών. Pulse Modulation

Διαμόρφωση Παλμών. Pulse Modulation Διαμόρφωση Παλμών Pulse Modulation Δειγματοληψία Θεώρημα δειγματοληψίας Ένα βαθυπερατό σήμα πεπερασμένης ενέργειας που δεν περιέχει συχνότητες μεγαλύτερες των W Hertz μπορεί να περιγραφθεί πλήρως από τις

Διαβάστε περισσότερα

Δυαδικά Αντίποδα Σήματα. Προχωρημένα Θέματα Τηλεπικοινωνιών. Πιθανότητα Σφάλματος σε AWGN Κανάλι. r s n E n. P r s P r s.

Δυαδικά Αντίποδα Σήματα. Προχωρημένα Θέματα Τηλεπικοινωνιών. Πιθανότητα Σφάλματος σε AWGN Κανάλι. r s n E n. P r s P r s. Προχωρημένα Θέματα Τηλεπικοινωνιών Πιθανότητα Σφάλματος σε AWGN Κανάλι Δυαδικά Αντίποδα Σήματα Δυαδικά Αντίποδα Σήματα Βασικής Ζώνης) : s (t)=-s (t) Παράδειγμα: Δυαδικό PA s (t)=g T (t) (παλμός με ενέργεια

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΤΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ FOURIER

ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΤΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ FOURIER ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΤΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ FOURIER Ανάλυση σημάτων και συστημάτων Ο μετασχηματισμός Fourier (DTFT και DFT) είναι σημαντικότατος για την ανάλυση σημάτων και συστημάτων Εντοπίζει

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών ΙI

Συστήματα Επικοινωνιών ΙI + Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών ΙI Συστήματα διαμόρφωσης παλμών Πολυπλεξία + Ιστοσελίδα nιστοσελίδα του μαθήματος: n https://eclass.uowm.gr/courses/icte302/

Διαβάστε περισσότερα

Σύνδεση με τα Προηγούμενα. Προχωρημένα Θέματα Τηλεπικοινωνιών. Εισαγωγή (2) Εισαγωγή. Βέλτιστος Δέκτης. παρουσία AWGN.

Σύνδεση με τα Προηγούμενα. Προχωρημένα Θέματα Τηλεπικοινωνιών. Εισαγωγή (2) Εισαγωγή. Βέλτιστος Δέκτης. παρουσία AWGN. Προχωρημένα Θέματα Τηλεπικοινωνιών Βέλτιστος Δέκτης για Ψηφιακά Διαμορφωμένα Σήματα παρουσία AWGN Σύνδεση με τα Προηγούμενα Στις «Ψηφιακές Τηλεπικοινωνίες», αναφερθήκαμε στο βέλτιστο δέκτη ψηφιακά διαμορφωμένων

Διαβάστε περισσότερα

Ασκήσεις C B (2) SNR 10log( SNR) 10log(31) 14.91dB ΑΣΚΗΣΗ 1

Ασκήσεις C B (2) SNR 10log( SNR) 10log(31) 14.91dB ΑΣΚΗΣΗ 1 Ασκήσεις ΑΣΚΗΣΗ 1 Ένα ψηφιακό κανάλι πρέπει να έχει χωρητικότητα 25Mbps. Το ίδιο κανάλι έχει φάσμα μεταξύ 19 ΜΗz και 24 ΜΗz. Α)Ποιος είναι ο απαιτούμενος λόγος σήματος προς θόρυβο σε db για να λειτουργήσει

Διαβάστε περισσότερα

Επικοινωνίες I FM ΔΙΑΜΟΡΦΩΣΗ. Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών

Επικοινωνίες I FM ΔΙΑΜΟΡΦΩΣΗ. Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Επικοινωνίες I ΔΙΑΜΟΡΦΩΣΗ ΓΩΝΙΑΣ FM ΔΙΑΜΟΡΦΩΣΗ Σήμα FM Η ακόλουθη εξίσωση δίδει την ισοδύναμη για τη διαμόρφωση συχνότητας έκφραση

Διαβάστε περισσότερα

10-Μαρτ-2009 ΗΜΥ Παραθύρωση Ψηφιακά φίλτρα

10-Μαρτ-2009 ΗΜΥ Παραθύρωση Ψηφιακά φίλτρα -Μαρτ-9 ΗΜΥ 49. Παραθύρωση Ψηφιακά φίλτρα . Παραθύρωση / Ψηφιακά Φίλτρα -Μαρτ-9 Είδη παραθύρων Bartlett τριγωνικό: n, n Blacman: πn 4πn.4.5cos +.8cos, n < . Παραθύρωση / Ψηφιακά Φίλτρα -Μαρτ-9 3 Hamming:

Διαβάστε περισσότερα

[1] είναι ταυτοτικά ίση με το μηδέν. Στην περίπτωση που το στήριγμα μιας συνάρτησης ελέγχου φ ( x)

[1] είναι ταυτοτικά ίση με το μηδέν. Στην περίπτωση που το στήριγμα μιας συνάρτησης ελέγχου φ ( x) [] 9 ΣΥΝΑΡΤΗΣΙΑΚΟΙ ΧΩΡΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER Η «συνάρτηση» δέλτα του irac Η «συνάρτηση» δέλτα ορίζεται μέσω της σχέσης φ (0) αν 0 δ[ φ ] = φ δ dx = (9) 0 αν 0 όπου η φ είναι μια συνάρτηση που ανήκει

Διαβάστε περισσότερα

«Επικοινωνίες δεδομένων»

«Επικοινωνίες δεδομένων» Εργασία στο μάθημα «Διδακτική της Πληροφορικής» με θέμα «Επικοινωνίες δεδομένων» Αθήνα, Φεβρουάριος 2011 Χρονολογική απεικόνιση της εξέλιξης των Τηλεπικοινωνιών Χρονολογική απεικόνιση της εξέλιξης των

Διαβάστε περισσότερα

ΔΙΑΜΟΡΦΩΣΗ ΓΩΝΙΑΣ. () t. Διαμόρφωση Γωνίας. Περιεχόμενα:

ΔΙΑΜΟΡΦΩΣΗ ΓΩΝΙΑΣ. () t. Διαμόρφωση Γωνίας. Περιεχόμενα: ΔΙΑΜΟΡΦΩΣΗ ΓΩΝΙΑΣ Περιεχόμενα: Διαμόρφωση Φάσης (PM) και Συχνότητας (FM) Διαμόρφωση FM από Απλό Τόνο - - Στενής Ζώνης - - Ευρείας Ζώνης - - από Πολλούς Τόνους Εύρος Ζώνης Μετάδοσης Κυματομορφών FM Απόκριση

Διαβάστε περισσότερα

Εισαγωγή στη Σχεδίαση RF Κυκλωμάτων

Εισαγωγή στη Σχεδίαση RF Κυκλωμάτων Εισαγωγή στη Σχεδίαση RF Κυκλωμάτων Κεφάλαιο,.. Βασικές έννοιες Σχεδίασης RF Κυκλωμάτων Σωτήριος Ματακιάς, 0-, Σχεδίαση Τηλεπικοινωνιακών VLSI Κυκλωμάτων, Κεφάλαιο / In=Inerfirer IP Παράδειγμα ω,ω = in,ou

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου

Συστήματα Αυτομάτου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ενότητα Α: Γραμμικά Συστήματα Όνομα Καθηγητή: Ραγκούση Μαρία Τμήμα: Ηλεκτρονικών Μηχανικών Τ.Ε. Άδειες

Διαβάστε περισσότερα

Τηλεπικοινωνικακά Συστήματα Ι - Ενδεικτικές Ερωτήσεις Ασκήσεις 1)

Τηλεπικοινωνικακά Συστήματα Ι - Ενδεικτικές Ερωτήσεις Ασκήσεις 1) Τηλεπικοινωνικακά Συστήματα Ι - Ενδεικτικές Ερωτήσεις Ασκήσεις Δ.Ευσταθίου Τμήμα Μηχανικών Πληροφορικής ΤΕ, ΤΕΙ Κεντρικής Μακεδονίας 1) 1. Ποια από τις παρακάτω συχνότητες δεν εμφανίζεται στην έξοδο ενός

Διαβάστε περισσότερα

Ο μετασχηματισμός Fourier

Ο μετασχηματισμός Fourier Ο μετασχηματισμός Fourier είναι από τα διαδεδομένα εργαλεία μετατροπής δεδομένων και συναρτήσεων (μιας ή περισσοτέρων διαστάσεων) από αυτό που ονομάζεται περιοχή χρόνου (time domain) στην περιοχή συχνότητας

Διαβάστε περισσότερα

Σήματα και Συστήματα. Νόκας Γιώργος

Σήματα και Συστήματα. Νόκας Γιώργος Σήματα και Συστήματα Νόκας Γιώργος Δομή του μαθήματος Βασικά σήματα συνεχούς και διακριτού χρόνου. Ιδιότητες σημάτων συνεχούς και διακριτού χρόνου. Ιδιότητες συστημάτων συνεχούς και διακριτού χρόνου. Γραμμικά,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 13 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Wepage: http://eclass.uop.gr/courses/tst15

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 5 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst215

Διαβάστε περισσότερα

Ψηφιακές Επικοινωνίες

Ψηφιακές Επικοινωνίες Ψηφιακές Επικοινωνίες Ενότητα 3: Μαθιόπουλος Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Μέρος Α 3 Διαμόρφωση βασικής ζώνης (1) H ψηφιακή πληροφορία μεταδίδεται απ ευθείας με τεχνικές

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Διάλεξη 3 η Τα Συστήματα στις Τηλεπικοινωνίες

Διαβάστε περισσότερα

Ο μετασχηματισμός Fourier

Ο μετασχηματισμός Fourier Ο μετασχηματισμός Fourier είναι από τα διαδεδομένα εργαλεία μετατροπής δεδομένων και συναρτήσεων (μιας ή περισσοτέρων διαστάσεων) από αυτό που ονομάζεται περιοχή χρόνου (time domain) στην περιοχή συχνότητας

Διαβάστε περισσότερα

Ψηφιακές Τηλεπικοινωνίες

Ψηφιακές Τηλεπικοινωνίες Ψηφιακές Τηλεπικοινωνίες Κωδικοποίηση Αναλογικής Πηγής: Κβάντιση Εισαγωγή Αναλογική πηγή: μετά από δειγματοληψία γίνεται διακριτού χρόνου άπειρος αριθμός bits/έξοδο για τέλεια αναπαράσταση Θεωρία Ρυθμού-Παραμόρφωσης

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Επικοινωνίες I SSB Παραγωγή - Αποδιαμόρφωση FM Διαμόρφωση

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Επικοινωνίες I SSB Παραγωγή - Αποδιαμόρφωση FM Διαμόρφωση Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Επικοινωνίες I SSB Παραγωγή - Αποδιαμόρφωση FM Διαμόρφωση ΔΙΠΛΟΠΛΕΥΡΙΚΕΣ - ΜΟΝΟΠΛΕΥΡΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΑΜ 0 f DSB 0 f SSB 0 f SINGLE

Διαβάστε περισσότερα

2 η Εργαστηριακή Άσκηση

2 η Εργαστηριακή Άσκηση Πανεπιστήμιο Πατρών Τμήμα Μηχ. Η/Υ & Πληροφορικής Ψ Η Φ Ι Α Κ Ε Σ Τ Η Λ Ε Π Ι Κ Ο Ι Ν Ω Ν Ι ΕΣ 2 η Εργαστηριακή Άσκηση Σύγκριση Ομόδυνων Ζωνοπερατών Συστημάτων 8-PSK και 8-FSK Στην άσκηση αυτή καλείστε

Διαβάστε περισσότερα

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Εκθετική Ορισμοί & Ιδιότητες Επιμέλεια: Αθανάσιος Ν. Σκόδρας, Καθηγητής Γεώργιος Α. Βασκαντήρας, Υπ. Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Υπολογιστών Άδειες Χρήσης

Διαβάστε περισσότερα

Τμήμα Μηχανικών Η/Υ και Πληροφορικής

Τμήμα Μηχανικών Η/Υ και Πληροφορικής Τμήμα Μηχανικών Η/Υ και Πληροφορικής Εργαστήριο Επεξεργασίας Σημάτων και Τηλεπικοινωνιών Κινητά Δίκτυα Επικοινωνιών Μέρος Α: Τηλεπικοινωνιακά Θέματα: Τεχνικές Ψηφιακής Διαμόρφωσης και Μετάδοσης Tο γενικό

Διαβάστε περισσότερα

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER 4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER Υπολογίζουµε εύκολα τον αντίστροφο Μετασχηµατισµό Fourier µιας συνάρτησης χωρίς να καταφεύγουµε στην εξίσωση ανάλυσης. Υπολογίζουµε εύκολα την απόκριση

Διαβάστε περισσότερα