Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα"

Transcript

1 Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής

2 Μετασχηματισμός Fourier Στο κεφάλαιο αυτό θα εισάγουμε και θα μελετήσουμε τα μαθηματικά εκείνα εργαλεία που επιτρέπουν την ανάλυση ενός σήματος σε άλλα σήματα απλών συχνοτήτων. Η γέννησηκαιοιρίζεςτηςθεωρίαςαυτήςοφείλονται στο Γάλλο φυσικο-μαθηματικό Jean Baptiste Joseph Fourier (768-83), ο οποίος υιοθέτησε, για πρώτη φορά, την ανάλυση μιας (σύνθετης) συνάρτησης σε άθροισμα συναρτήσεων απλών συχνοτήτων για να μελετήσει φαινόμενα διάδοσης της θερμότητας. Η ανάλυση μιας σύνθετης ποσότητας σε απλούστερες συνιστώσες, που καθιστούν την μελέτη ενός προβλήματος ευκολότερη, δεν είναι νέα. Για παράδειγμα, στην γραμμική άλγεβρα ένα διάνυσμα στον n-ιοστό χώρο αναλύεται στις n συνιστώσες του, που είναι οι προβολές του σε μια (ορθοκανονική) βάση που παράγει το χώρο. Θα δούμε ότι το πρόβλημα της ανάλυσης ενός σήματος σε άθροισμα σημάτων απλών συχνοτήτων είναι ουσιαστικά το ίδιο με αυτό της γραμμικής άλγεβρας.

3 Μιγαδική Συνάρτηση πραγματικής μεταβλητής Χ(Ω)

4 Μετασχηματισμός Fourier Παράδειγμα : Να υπολογιστεί ο μετασχηματισμός Fourier ενός x t P t τετραγωνικού παλμού ( ) ( ) () x t T :, t < T =, t > T Λύση : Από τον ορισμό του μετασχηματισμού Fourier έχουμε: + T jωt jωt jωt ΩT Χ( Ω ) = x( t) e dt = e dt e sin = = T jω Ω ΩT sin ΩT Χ( Ω ) = T TSa ΩT ΗσυνάρτησηSα(x) ορίζεται ως ( ) Sa x (.) + T T sin x x = = sin c, x π T T jω jω ΩΤ e sin = όπου ΗσυνάρτησηSα(x) είναι γνωστή ως συνάρτηση δειγματοληψίας ( ) sin c x e j sinπ x π x

5 Μετασχηματισμός Fourier Τετραγωνικός παλμός Μετασχηματισμός Fourier Συνάρτηση sinc(x) Η συνάρτηση sinc(x) είναι ιδιαίτερης σημασίας και την συναντάμε στην επεξεργασία σημάτων και στις επικοινωνίες. Όπως φαίνεται από το γράφημα της η sinc(x) αποτελείται από ένα κύριο λοβό με κέντρο το x= και εύρος και δευτερεύοντες λοβούς εκατέρωθεν. Διέρχεται περιοδικά από το με περίοδο. Αντίστοιχα, ο μετασχηματισμός Fourier, Χ(Ω) του τετραγωνικού παλμού διέρχεται από το περιοδικά με περίοδο π/τ. Το πλάτος του κύριου λοβού είναι 4π/Τ. Το ύψος των δευτερευόντων λοβών μειώνεται ασυμπτωτικά στο μηδέν.

6

7 Μετασχηματισμός Fourier

8 Μετασχηματισμός Fourier

9 Μετασχηματισμός Fourier

10 Μετασχηματισμός Fourier

11 Πίνακας Μετασχηματισμού Fourier Χρήσιμα ζεύγη μετασχηματισμών Fourier Σήμα x(t) MF Χ(Ω) Σήμα x(t) MF Χ(Ω) Ae ( ) at δ () t πδ ( Ω) jω u() t + πδ ( Ω) ( a > ) ( ) t t Aa a + ω e Ω δ j t j t e Ω πδ ( Ω Ω ) Ae sin T, t < T, t > sin Ωt πt ( ) at π δ j Ω t ( Ω Ω ) δ ( Ω+Ω ) ( a > ) () ( ) at e u t, Re a > () ( ) at te u t, Re a > ΩT sin T ΩT,, Ω<Ω Ω >Ω Aa a + ω jω + a ( jω+ a) cos Ω t π δ ( Ω Ω ) + δ ( Ω+Ω) t n at e u() t, Re( a) > ( n! ) ( jω+ a) n A -b b t b Absinc ω π A -b b t Absinc ωb π

12 Πίνακας Ιδιοτήτων Μετασχηματισμός Fourier jωt x() t = X ( ω) e dω π ΓΡΑΜΜΙΚΟΤΗΤΑ ( I) ax( t) ax ( ω) ( ΙΙ ) x( t) + y( t) X ( ω) + Y( ω) () ( ) ( ) jωt ( ω) ( ) X = x t e dt ( ν ) ν () ( ) ( ) (III) ΧΡΟΝΙΚΗ ΠΑΡΑΓΩΓΟΣ x t jω Χ ω, x t jω Χ ω jωt (iv) ΧΡΟΝΙΚΗ ΜΕΤΑΤΟΠΙΣΗ x( t t ) e X ( ω) jωt (v) ΜΕΤΑΤΟΠΙΣΗ ΣΥΧΝΟΤΗΤΑΣ e x( t) X ( ω ω ) (vi) ΑΛΛΑΓΗ ΚΛΙΜΑΚΑΣ x ( λt) ω Χ λ λ

13 Πίνακας Ιδιοτήτων Μετασχηματισμός Fourier (συνέχεια) jωt ( ω) ( ), X = x t e dt (vii) ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΤΟΥ ΣΗΜΑΤΟΣ ΕΠΙ t : tx( t) jx ( ω) n n ( n) txt () jx ( ω) (viii) ΑΝΤΙΣΤΡΟΦΗ X ( t) π x( ω ) (ix) ΣΥΝΕΛΙΞΗ x( t) y( t) X ( ω) Y( ω) π (x) ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ x () t y () t X ( ω) Y ( ω) t (xi) ΟΛΟΚΛΗΡΩΜΑ x( τ ) dτ X ( ω) + πx ( ) δ ( ω) jωt x() t = X ( ω) e dω π jω

14 Μετασχηματισμός Fourier Παράδειγμα : Να υπολογιστεί ο μετασχηματισμός Fourier της x t = δ t ( ) ( ). Λύση: Από τον ορισμό έχουμε: ( ) ( ) j Ωt X Ω = δ t e dt = ή δ ( t) όπου δηλώνει ότι οι αντίστοιχες συναρτήσεις αποτελούν ζεύγος Fourier. Στη συνέχεια, κάνοντας χρήση του αντίστροφου μετασχηματισμού Fourier, ηδ(t) μπορεί ν ανακτηθεί από τη X(Ω): jωt δ () t = e dω π Καταλήγουμε δηλαδή στη γνωστή, από τη θεωρία κατανομών, σχέση (.4b) (βλ. Κεφάλαιο ).

15 Μετασχηματισμός Fourier Παράδειγμα 3: Να υπολογιστεί ο αντίστροφος μετασχηματισμός Fourier της X ( Ω ) = j Ω j t Λύση: Σύμφωνα με τον ορισμό και τη σχέση του Euler έχουμε jωt cosωt sinωt sinωt x() t = e d d d sin t d π Ω= Ω+ Ω= Ω + Ω jω π jω π Ω jπ π Ω Το πρώτο από τα δύο ολοκληρώματα είναι μηδέν λόγω του ότι η ολοκληρωτέα συνάρτηση είναι περιττή. Λαμβάνοντας υπόψη την (.7), καταλήγουμε, έπειτα από αλλαγή μεταβλητής, στην sinωt xt d t π Ω () = Ω= sgn () όπου sgn () t, t > =, t < e Ω = cos( Ω t) + jsin( Ωt) είναι η συνάρτηση πρόσημου.

16 Μετασχηματισμός Fourier (Συνέλιξη) Στο προηγούμενο κεφάλαιο ορίσαμε τη συνέλιξη δύο συναρτήσεων x(t) και h(t) ως: () () () = ( ) ( ) y t x t h t x τ h t τ dτ Είδαμε ότι, εάν h(t) συμβολίζει την κρουστική απόκριση ενός γραμμικού χρονικά αμετάβλητου συστήματος και x(t) την είσοδό του, τότε y(t) είναι το σήμα εξόδου του συστήματος. Εδώ θα μελετήσουμε τη σχέση που συνδέει τους αντίστοιχους μετασχηματισμούς Fourier. Γνωρίζουμε ότι: jωt Y F y t y t e dt ( ) ( ) { } () Ω = = = ( τ) ( τ) τ jωt x h t d e dt

17 Μετασχηματισμός Fourier (Συνέλιξη) όπου, t t τ = και τελικά ( ) ( ) ( ) ( ) ( ) y t x t h t X H Ω Ω όπου Η(Ω), Χ(Ω) οι μετασχηματισμοί Fourier των h(t) και x(t), αντίστοιχα. Στην απόδειξη υποθέσαμε ότι οι συναρτήσεις x(t) και h(t) πληρούν τους όρους εναλλαγής της σειράς ολοκλήρωσης. (.8) ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( Ω Ω = Ω = Ω = = = Ω Ω Ω Ω Ω + Ω Ω X H d e x H d H e x d dt e t h e x d dt e t h x d dt e t h x Y j j t j j t j t j τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ

18 Μετασχηματισμός Fourier (Συνέλιξη) Ανάλογη σχέση ισχύει και για τη συνέλιξη των μετασχηματισμών Fourier. Εάν δηλαδή τότε Y H X π ( Ω ) = ( Ω) ( Ω) π ( ) ( Ω ) H ϕ X ϕ dϕ y t h t x t H X π () () () ( Ω) ( Ω) (.9) Οι ιδιότητες (.8) και (.9) είναι πολύ μεγάλης σημασίας στη μελέτη των γραμμικών σημάτων, όπως θα διαπιστώσουμε σε λίγο. Μια υπολογιστικά σύνθετη πράξη, όπως αυτή της συνέλιξης, μετασχηματιζόμενη κατά Fourier καταλήγει σ ένα απλό γινόμενο συναρτήσεων.

19 Φυσική Σημασία του Μετασχηματισμού Fourier Ο μετασχηματισμός Fourier X(Ω) ενός σήματος x(t) είναι μια μιγαδική συνάρτηση και μπορεί ν αναπαρασταθεί ως X ( Ω ) = R( Ω ) + ji( Ω ) (.4) όπου R(Ω) το πραγματικό και I(Ω) το φανταστικό μέρος της συνάρτησης. Θ αποδείξουμε ότι, εάν η x(t) είναι πραγματική συνάρτηση, τότε R I X ( Ω ) = R( Ω) ( Ω ) = I( Ω) ( Ω ) = X ( Ω) : δηλαδή άρτια συνάρτηση : δηλαδή περιττή συνάρτηση (.5) όπου * συμβολίζει τη συζυγή συνάρτηση

20 Φυσική Σημασία του Μετασχηματισμού Fourier Γνωρίζουμε ότι jωt X x t e dt ( Ω ) = ( ) ()( cos sin ) = x t Ωt j Ωt dt Εφόσον η x(t) είναι πραγματική συνάρτηση, έπεται ότι ( Ω ) = ( ) cos( Ω ) R x t t dt ( Ω ) = ( ) sin ( Ω ) I x t t dt Απ όπου γίνονται προφανείς οι (.5). Μπορεί εύκολα ν αποδειχθεί ότι οι (.5) συνιστούν και αναγκαίες συνθήκες για να είναι το σήμα x(t) πραγματικό.

21 Φυσική Σημασία του Μετασχηματισμού Fourier Στη συνέχεια θα χρησιμοποιήσουμε τις R(Ω) και Ι(Ω) για ν ανακτήσουμε το σήμα x(t). Έχουμε ότι: x() t = R( Ω ) + ji ( Ω) ( cos Ω t + jsin Ωt) dω π x () t = R( ) cos t I ( ) sin t d j R( ) sin t I ( ) cos t d π Ω Ω Ω Ω Ω + Ω Ω + Ω Ω Ω π Εφόσον η x(t) είναι πραγματική συνάρτηση, το δεύτερο ολοκλήρωμα μηδενίζεται. Αυτό επιβεβαιώνεται με τη βοήθεια των (.5). Στη συνέχεια υποθέτουμε ότι οι R(Ω) και Ι(Ω) δεν περιλαμβάνουν γενικευμένες συναρτήσεις στο Ω =. Από την τριγωνομετρία γνωρίζουμε ότι: R( Ω ) cos Ωt I ( Ω) sin Ω t = A( Ω) cos Ω t + ϕ ( Ω) (.6) ( Ω ) = ( Ω ) + ( Ω) I ( Ω ) ( Ω ) = tan R ( Ω ) A R I ϕ (.7)

22 Φυσική Σημασία του Μετασχηματισμού Fourier x t = π A Ω Ω t + Ω d Ω Άρα () ( ) cos ϕ ( ) ή, λόγω του ότι οι A( Ω), cos Ω+ t ϕ ( Ω) xt () = A( Ω) cos Ω t+ ϕ ( Ω) dω π είναι άρτιες συναρτήσεις του Ω, Μ άλλα λόγια, ο μετασχηματισμός Fourier ενός πραγματικού σήματος ισοδυναμεί μ ένα ανάπτυγμα του σήματος σ ένα άπειρο (μη αριθμήσιμο) πλήθος ημιτονοειδών σημάτων. Κάθε μια από τις απλές αυτές συχνότητες υπεισέρχεται με πλάτος A ( Ω ) d Ω και φάση ϕ ( Ω ), όπου Ω η αντίστοιχη π (.8) (κυκλική) συχνότητα. Αυτός είναι και ο λόγος που η μεταβλητή Ω του μετασχηματισμού Fourier αναφέρεται και ως συχνότητα. Απόρροια αυτού είναι και το ότι ο μετασχηματισμός Fourier λέγεται και φάσμα συχνοτήτων, κατ αναλογία με την ανάλυση που υφίσταται το λευκό φως στις επιμέρους συχνότητες που το απαρτίζουν.

23 Φυσική Σημασία του Μετασχηματισμού Fourier xt () = A( Ω) cos Ω t+ ϕ ( Ω) dω π (.8) A d Κάθε μια από τις απλές αυτές συχνότητες υπεισέρχεται με πλάτος ( Ω ) Ω π και φάση ϕ ( Ω ), όπου Ω η αντίστοιχη (κυκλική) συχνότητα. Αυτός είναι και ο λόγος που η μεταβλητή Ω του μετασχηματισμού Fourier αναφέρεται και ως συχνότητα. Απόρροια αυτού είναι και το ότι ο μετασχηματισμός Fourier λέγεται και φάσμα συχνοτήτων, κατ αναλογία με την ανάλυση που υφίσταται το λευκό φως στις επιμέρους συχνότητες που το απαρτίζουν.

24 Μετασχηματισμοί Fourier Ημιτόνου και Συνημιτόνου Υποθέτουμε ότι το σήμα μας, x(t), είναι πραγματική συνάρτηση. Άρα x() t = R( Ω) cos( Ωt) I( Ω) sin ( Ωt) dω π (.9) Θα εξετάσουμε τρεις ειδικές περιπτώσεις: Α) x(t) : άρτια Από τον ορισμό των R(Ω) και Ι(Ω) στο προηγούμενο εδάφιο γίνεται αμέσως φανερό ότι I ( Ω ) = x() t = R( Ω) cos( Ωt) dω π ( Ω ) = ( )cos( Ω ) R x t t dt (.3) Με άλλα λόγια ο μετασχηματισμός Fourier μιας πραγματικής άρτιας συνάρτησης είναι πραγματική και άρτια συνάρτηση. Το αντίστροφο της πρότασης αυτής είναι επίσης αληθές.

25 Μετασχηματισμοί Fourier Ημιτόνου και Συνημιτόνου Β) x(t) : περιττή Τότε είναι R ( Ω ) = x() t = I( Ω) sin ( Ωt) dω π ( Ω ) = ( )sin( Ω ) I x t t dt (.3) Άρα ο μετασχηματισμός Fourier μιας πραγματικής περιττής συνάρτησης είναι φανταστική συνάρτηση με περιττή συμμετρία. Το αντίστροφο είναι επίσης αληθές. x() t = R( Ω) cos( Ωt) I( Ω) sin ( Ωt) dω π (.9) Γ) x(t) : αιτιατή, δηλαδή x(t) =, t <. Από την (.9) και τις ιδιότητες των R(Ω) και Ι(Ω) [βλ. (.5)] προκύπτει ότι για πραγματικές συναρτήσεις ισχύει x() t = R( Ω) cos( Ωt) I( Ω) sin ( Ωt) dω (.3) π

26 Μετασχηματισμοί Fourier Ημιτόνου και Συνημιτόνου x(t) = για t <, άρα R Ω cos Ωt dω= I Ω sin Ωt dω, t < ( ) ( ) ( ) ( ) Αντικαθιστώντας το t με -t, για t >, παίρνουμε ( ) ( ) ( ) ( ) R Ω cos Ωt dω= I Ω sin Ωt dω, t > Από την παραπάνω σχέση και την (.3) έπεται ότι x() t = R( Ω) cos ( Ωt) dω, t > π x() t = I( Ω) sin ( Ωt) dω, t > π (.33)

27 Μετασχηματισμοί Fourier Ημιτόνου και Συνημιτόνου x() t = R( Ω) cos ( Ωt) dω, t > π x() t = I( Ω) sin ( Ωt) dω, t > π (.33) Προφανώς η x() δεν ορίζεται με τις παραπάνω σχέσεις, αλλά αυτό δεν είναι ιδιαίτερο πρόβλημα εάν η x(t) δεν περιλαμβάνει γενικευμένες συναρτήσεις στο t=. Από την (.33) είναι εμφανές ότι οι R(Ω) και Ι(Ω) δεν μπορεί να είναι ανεξάρτητες. Πράγματι, όπως θ αποδείξουμε στη συνέχεια, η μία προκύπτει από την άλλη. Από τον ορισμό του μετασχηματισμού Fourier για αιτιατές συναρτήσεις έχουμε j t jωt X Ω = x t e dt = x t e dt Ω ( ) ( ) ( ) (.34)

28 Μετασχηματισμοί Fourier Ημιτόνου και Συνημιτόνου Έχουμε υποθέσει ότι η x(t) δεν περιλαμβάνει γενικευμένες συναρτήσεις στο t= και συνεπώς το κάτω όριο του ολοκληρώματος δεν μας δημιουργεί ανησυχίες. Συνδυασμός των (.33) και (.34) μας δίνει jωt X ( ) R( ϕ ) cos( ϕt) e dϕdt π Ω = (.35) Με τη βοήθεια του τύπου του Euler παίρνουμε τότε: I ( Ω ) = R( ϕ ) cos( ϕt) sin ( Ωt) dϕdt π Με ανάλογο τρόπο αποδεικνύεται ότι: (.36) R ( Ω ) = I( ϕ ) sin ( ϕt) cos( Ωt) dϕdt π (.37)

29 Μετασχηματισμός Fourier Παράδειγμα 4: Να βρεθεί ο Μετασχηματισμός Fourier του παρακάτω σήματος at, t > x() t = e u() t, a R u() t = Λύση:, t < Επειδή x(t)= για t< (λόγω της u(t) ( ω) at j t X e ω e dt = ( a+ jω) t ( a+ jω) t X ( ω) = e = lim e e a+ jω a+ jω t Έχουμε: ( ω) ( ) ( ) lim a + j t lim at j ω t e = e e = lim e at cos ωt jsin ωt =, για α >. t t t Άρα ο Μετασχηματισμός Fourier υπάρχει όταν α> και ισχύει: X = = = a+ jω a+ jω a+ jω ( ω) e [ ]

30 Αντίστροφος Μετασχηματισμός Fourier Παράδειγμα 5: Να βρεθεί ο αντίστροφος μετασχηματισμός Fourier του εξής σήματος Λύση: X ( ω) cos ω, ω π =, αλλιώς + π + π jωt jωt jω jω jωt xt () = X( ω) e dω cos ω e dω ( e e ) e dω π = π = π π + = π + π j j t + π j j t + π jω( t ) + π ω ω ω ω + jω( t ) = e e dω e e dω e dω e dω π + π π = π π + π π = π jt ( + ) + π jω( t+ ) jt ( ) + π jω( t ) + π jω( t+ ) + π jω( t ) = e dω+ e dω π jt ( + ) jt ( ) e d jt ( ) e d π π jt ( ) = + ω+ ω π πjt ( + ) π πjt ( ) π + π j ( t ) π ( ) + π ( ) + π ω + + jω t jω t+ jω( t ) e d ( jω( t+ ) ) + e d ( jω( t ) ) = e + e = πjt+ π πjt π πjt+ π πjt π ( ) ( + ) π ( + ) π e e + e πjt+ πjt ( ) ( ) ( ) ( ) ( ) ( ) jt jt jt π jt π ( ) e = ( t ) ( ) ( ) ( t ) ( ) sin + π sin π sin j ( t+ ) π + sin j ( t ) π = +. πjt+ πjt π t+ π t ( )

31 Μετασχηματισμός Fourier Παράδειγμα 6: Να βρεθεί ο Μετασχηματισμός Fourier του παρακάτω σήματος Λύση: ( ω) z z z=+ z e dz e ( z ) ω ω z= () x t jωt z z X = t e dt = e dz = jω jω j = = jωt t=+ e ( jωt ) ω = t= jω jω e ( jω ) e ( jω ) ω = jω jω jω jω ( jωe e jωe + e ) = ω jω jω jω jω jω ( e e ) ( e e ) ω + + = j j jωcosω ( + j sinω) = cosω sinω ω ω ω t, t =, t > Όπου z z = jωt t = jω dz dt = jω ax x dx ax e = a ( ax )

32 Μετασχηματισμός Fourier Παράδειγμα 7: Να βρεθεί ο Μετασχηματισμός Fourier του παρακάτω σήματος Λύση:,, () ( ), () t > at ( ) t > x t = e u t a> u t = u t =, t <, t < ( ω) at jωt a jω t a jω t a jω t ( ) ( ) ( ω) ( ) X = e e dt = e dt = e d a j t = e a jω a jω Αλλά ισχύει: ( ω) ( ω ) ( ω ) lim a j t lim at j ω e = e e t = lim e at cos t jsin t = για α>. t t t = = = a jω a jω a jω Άρα για α>: X ( ω) e [ ]

33 Μετασχηματισμός Fourier Άσκηση Ο μετασχηματισμός Fourier ενός σήματος x(t) δίνεται από τη σχέση: X ( ω ) Να βρεθεί ο μετασχηματισμός Fourier καθενός από τα ακόλουθα σήματα: 4 = 3 + jω j6t ( a) x( t) ( b) x( t 5) ( c) x( 8t ) ( d) t x( t) ( e) e x( t) ( f ) x ( t) Λύση (α) Προφανώς έχουμε αλλαγή κλίμακας. Σύμφωνα με τη γνωστή ιδιότητα μετασχηματισμού Fourier, ( λ ) x t X ω, λ λ έχει μετασχηματισμό Fourier: ω 4 X = = ω 6 jω 3 + j 4 x( t) 6 jω το σήμα x( t)

34 Μετασχηματισμός Fourier ( b) x( t 5) X ( ω) 4 = 3 + jω Προφανώς έχουμε χρονική μετατόπιση. Σύμφωνα με τη γνωστή ιδιότητα μετασχηματισμού Fourier, μετασχηματισμό Fourier: xt t e X jωt ( ) ( ω), το σήμα x(t-5) έχει jω5 jω5 j 5 4 4e ω ( ω) ( 5) e X = e x t 3+ iω 3+ jω

35 Μετασχηματισμός Fourier X ( ω) 4 = 3 + jω (c) Έχουμε x(8t-). Για την εύρεση του μετασχηματισμού Fourier του σήματοςαυτού βρίσκουμε πρώτα τον μετασχηματισμό Fourier του σήματος x(8t). Σύμφωνα με την ιδιότητα αλλαγής της χρονικής κλίμακας, ( λ ) λ είναι: ( ) ω x 8t X x( 8t) 4 x( 8t) ω ω j 6 + j 8 4 x t X ω, λ Το σήμα x(8t-) μπορεί να προκύψει από το σήμα x(8t) με χρονική μετατόπιση jωt κατά. Έτσι σύμφωνα με τη γνωστή ιδιότητα, xt ( t ) e X( ω), o μετασχηματισμός Fourier του σήματος x(8t-) προκύπτει από τον μετασχηματισμό Fourier του σήματος x(8t) με πολλαπλασιασμό επί e -iω. j ω e ω ω 6+ j 6+ j 4 4 Άρα έχουμε: j ω x( 8t ) e x( 8t )

36 Μετασχηματισμός Fourier X ( ω) 4 = 3 + jω (d) Το σήμα t x(t) προκύπτει από το σήμα x(t) με πολλαπλασιασμό επί t. Άρα, σύμφωνα με τη γνωστή ιδιότητα, t x() t jx ( ω), ο μετασχηματισμός Fourier του σήματος t x(t) προκύπτει μετά από παραγώγιση του μετασχηματισμού Fourier του σήματος x(t) ως προς ω και κατόπιν πολλαπλασιασμό επί ξ. Άρα είναι: 4 t x() t j X ( ω) t x() t j 3+ jω (4) (3 + jω) (3 + jω) 4 4 j 4 t x() t j t x() t j t x() t ( ) ( ) (3 jω) 3 jω 3 jω

37 Μετασχηματισμός Fourier X ( ω) 4 = 3 + jω (e) Το σήμα e j6t x(t) προέρχεται από το σήμα x(t) μετά από πολλαπλασιασμό επί e i6t. Άρα έχουμε μετατόπιση συχνότητας. Σύμφωνα με τη γνωστή ιδιότητα jωt e x t X ( ω ω ) (), ο μετασχηματισμός Fourier του σήματος e j6t x(t) προέρχεται από το μετασχηματισμό Fourier του σήματος x(t) αν θέσουμε όπου ωτοω-6. Άρα είναι: () 4 4 () 3+ j 6 3 j6+ jω j6t j6t e x t e x t ( ω )

38 Μετασχηματισμός Fourier X ( ω) 4 = 3 + jω (f) Το σήμα x (t) προέρχεται από το σήμα x(t) με παραγώγιση ως προς το χρόνο t. Έτσι ο μετασχηματισμός Fourier του σήματος x (t) προέρχεται από το μετασχηματισμό Fourier του σήματος x(t) με πολλαπλασιασμό επί iω, σύμφωνα με τη γνωστή ιδιότητα. Άρα έχουμε: ( ) ( ω) ( ω) x t j X 4 x () t ( jω ) 3 + jω j4ω x () t 3 + jω

39 Μετασχηματισμός Fourier Παράδειγμα 8: Να βρεθεί ο Μετασχηματισμός Fourier του παρακάτω σήματος, t < T =, αλλιώς ( ) x b Λύση: Επειδή x(t)= για t >T και t < -T τα όρια του ολοκληρώματος γίνονται: j X ( ω) e dt e d( jωt) e jω ω Τ Τ Τ jωt jωt jωt = = = Τ Τ Τ j jωτ jωτ j X ( ω) = ( e e ) = cos( ω ) jsin( ω ) cos( ω ) jsin( ω ) ω ω Τ Τ Τ Τ j sin( ωτ ) X ( ω) = jsin( ωτ ) = ω ω

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Φυσική Σημασία του Μετασχηματισμού Fourier Ο μετασχηματισμός Fourier

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 7: Μετασχηματισμός Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 7: Μετασχηματισμός Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 7: Μετασχηματισμός Fourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μετασχηματισμός Fourier 1. Ορισμός του Μετασχηματισμού Fourier 2. Φυσική Σημασία του Μετασχηματισμού

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Αντίστροφος Μετασχηματισμός Laplace Στην

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Αντίστροφος Μετασχηματισμός Laplace Στην

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 8: Ιδιότητες του Μετασχηματισμού Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 8: Ιδιότητες του Μετασχηματισμού Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 8: Ιδιότητες του Μετασχηματισμού ourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ιδιότητες του Μετασχηματισμού ourier 1. Ιδιότητες του Μετασχηματισμού ourier 2. Θεώρημα

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier 1. Μετασχηματισμός Fourier

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 2: Στοιχειώδη Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 2: Στοιχειώδη Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 2: Στοιχειώδη Σήματα Συνεχούς Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Στοιχειώδη Σήματα Συνεχούς Χρόνου 1. Μοναδιαία Βηματική Συνάρτηση 2. Κρουστική Συνάρτηση ή

Διαβάστε περισσότερα

ΣΕΙΡΕΣ ΚΑΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ FOURIER. e ω. Το βασικό πρόβλημα στις σειρές Fourier είναι ο υπολογισμός των συντελεστών c

ΣΕΙΡΕΣ ΚΑΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ FOURIER. e ω. Το βασικό πρόβλημα στις σειρές Fourier είναι ο υπολογισμός των συντελεστών c ΣΕΙΡΕΣ ΚΑΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ FOURIER x(t+kτ) = x(t) = π/ω f = / x(t) = = 8 c j t e ω c = (a-jb ) Το βασικό πρόβλημα στις σειρές Fourier είναι ο υπολογισμός των συντελεστών c. Αυτός γίνεται κατορθωτός αν

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Μετασχηματισμός Laplace 1. Ο μετασχηματισμός

Διαβάστε περισσότερα

Τηλεπικοινωνιακά Συστήματα Ι

Τηλεπικοινωνιακά Συστήματα Ι Τηλεπικοινωνιακά Συστήματα Ι Διάλεξη 2: Ανάλυση Fourier και Γραμμικά Φίλτρα Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μέρος 1: Ανάλυση Fourier 2 Ανάλυση Fourier 1. Ορισμός του Μετασχηματισμού Fourier

Διαβάστε περισσότερα

. Σήματα και Συστήματα

. Σήματα και Συστήματα Σήματα και Συστήματα Βασίλειος Δαλάκας & Παναγιώτης Ριζομυλιώτης Τμήμα Πληροφορικής & Τηλεματικής Χαροκόπειο Πανεπιστήμιο Σήματα και Συστήματα 1/17 Πρόβλημα 1 (βιβλίο σελίδα 93) Να αποδειχθεί ότι: α) Κάθε

Διαβάστε περισσότερα

() min. xt δεν έχει μετασχηματισμό LAPLACE () () () Αν Λ= το σήμα ( ) Αν Λ, έστω σ. Το σύνολο μιγαδικών αριθμών. s Q το ολοκλήρωμα (1) υπάρχει.

() min. xt δεν έχει μετασχηματισμό LAPLACE () () () Αν Λ= το σήμα ( ) Αν Λ, έστω σ. Το σύνολο μιγαδικών αριθμών. s Q το ολοκλήρωμα (1) υπάρχει. Έστω xt : Ο (αμφίπλευρος) μετασχηματισμός LAPLACE ορίζεται : X: L { xt} : X xt e dt = = μιγαδική συνάρτηση της μιγαδικής μεταβλητής = σ+ j Ο (μονόπλευρος) μετασχηματισμός LAPLACE ορίζεται : L { xt } :

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Σειρά Fourier Ορθοκανονικές Συναρτήσεις Στοεδάφιοαυτόθαδιερευνήσουμεεάνκαικάτωαπό

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Περίληψη Ευστάθεια Συστημάτων Απόκριση ΓΧΑ Συστημάτων σε Διεγέρσεις

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 1: Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 1: Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 1: Σήματα Συνεχούς Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Εισαγωγή στα Σήματα 1. Σκοποί της Θεωρίας Σημάτων 2. Κατηγορίες Σημάτων 3. Χαρακτηριστικές Παράμετροι

Διαβάστε περισσότερα

Σήματα και Συστήματα

Σήματα και Συστήματα Σήματα και Συστήματα Διάλεξη 12: Ιδιότητες του Μετασχηματισμού aplace Ο αντίστροφος Μετασχηματισμός aplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ιδιότητες του Μετασχηματισμού aplace 1. Ιδιότητες

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 10: Γραμμικά Φίλτρα. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 10: Γραμμικά Φίλτρα. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 10: Γραμμικά Φίλτρα Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Γραμμικά Φίλτρα 1. Ιδανικά Γραμμικά Φίλτρα Ιδανικό Κατωδιαβατό Φίλτρο Ιδανικό Ανωδιαβατό Φίλτρο Ιδανικό Ζωνοδιαβατό

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι Σύγκλιση Σειρών Fourier Ιδιότητες Σειρών Fourier Παραδείγματα HMY 220: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #10 Τρεις ισοδύναμες μορφές: () = = = = Σειρές Fourier j( 2π ) t Τ.. x () t FS a jω0t xt () = ae =

Διαβάστε περισσότερα

x(t)e jωt dt = e 2(t 1) u(t 1)e jωt dt = e 2 t 1 e jωt dt =

x(t)e jωt dt = e 2(t 1) u(t 1)e jωt dt = e 2 t 1 e jωt dt = Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκν : Α. Μουχτάρης Εφαρµοσµένα Μαθηµατικά για Μηχανικούς- Λύσεις 3η Σειρά Ασκήσεν 03/05/0 Λύσεις 3ης Σειράς Ασκήσεν

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace 1. Επίλυση Γραμμικών

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 11: Μετασχηματισμός Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 11: Μετασχηματισμός Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη : Μετασχηματισμός Laplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Μετασχηματισμός Laplace. Μαθηματικός ορισμός μετασχηματισμού Laplace 2. Η περιοχή σύγκλισης του μετασχηματισμού

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Ιδιότητες της Συνέλιξης Η συνέλιξη μετατοπισμένων σημάτων

Διαβάστε περισσότερα

Προηγµένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών

Προηγµένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών Προηγµένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών Το εκπαιδευτικό υλικό που ακολουθεί αναπτύχθηκε στα πλαίσια του έργου «Προηγµένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών», του Μέτρου «Εισαγωγή

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι Σύγκλιση Σειρών Fourier Ιδιότητες Σειρών Fourier Παραδείγματα HMY 0: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #10 Σειρές Fourier: Προσέγγιση Οι Σειρές Fourier μπορούν να αναπαραστήσουν μια πολύ μεγάλη κλάση περιοδικών

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 220: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #9 Ιδιοτιμές και ιδιοσυναρτήσεις συστημάτων Απόκριση ΓΧΑ συστημάτων σε μιγαδικά εκθετικά σήματα Συνάρτηση μεταφοράς Ανάλυση Σημάτων/Συστημάτων με βασικά σήματα Συχνά

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών. Σήματα. και. Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών. Σήματα. και. Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Άσκηση η Να υπολογιστεί η έξοδος του συστήματος με κρουστική απόκριση h()=u()-u(-4) και είσοδο x()=u(-) u(-3)

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 6: Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 6: Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 6: Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier 1. Ανάπτυγμα σήματος σε Σειρά Fourier

Διαβάστε περισσότερα

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER 4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER Σκοπός του κεφαλαίου είναι να παρουσιάσει μερικές εφαρμογές του Μετασχηματισμού Fourier (ΜF). Ειδικότερα στο κεφάλαιο αυτό θα περιγραφούν έμμεσοι τρόποι

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Σήματα και Συστήματα Το εκπαιδευτικό υλικό που παρουσιάζεται βασίζεται

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΑΝΑΛΥΣΗ FOURIER (H ΣΕΙΡΑ FOURIER ΚΑΙ Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER) Aναστασία Βελώνη Τμήμα Η.Υ.Σ 1 Άδειες

Διαβάστε περισσότερα

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Σήματα και Συστήματα στο Πεδίο της Επιμέλεια: Αθανάσιος N. Σκόδρας, Καθηγητής Γεώργιος Α. Βασκαντήρας, Υπ. Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Υπολογιστών Άδειες

Διαβάστε περισσότερα

2 ο κεφάλαιο: Ανάλυση και Σύνθεση κυματομορφών με τον Μετασχηματισμό Fourier

2 ο κεφάλαιο: Ανάλυση και Σύνθεση κυματομορφών με τον Μετασχηματισμό Fourier 2 ο κεφάλαιο: Ανάλυση και Σύνθεση κυματομορφών με τον Μετασχηματισμό Fourier Η βασική ιδέα στην ανάλυση των κυματομορφών με την βοήθεια του μετασχηματισμού Fourier συνίσταται στο ότι μία κυματομορφή

Διαβάστε περισσότερα

Επεξεργασία Πολυµέσων. Δρ. Μαρία Κοζύρη Π.Μ.Σ. «Εφαρµοσµένη Πληροφορική» Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήµιο Θεσσαλίας

Επεξεργασία Πολυµέσων. Δρ. Μαρία Κοζύρη Π.Μ.Σ. «Εφαρµοσµένη Πληροφορική» Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήµιο Θεσσαλίας Π.Μ.Σ. «Εφαρµοσµένη Πληροφορική» Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήµιο Θεσσαλίας Ενότητα 0: Εισαγωγή στο µάθηµα 2 Διαδικαστικά Παράδοση: Παρασκευή 16:00-18:30 Διδάσκων: E-mail:

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 22: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ # Αναπαράσταση περιοδικών σημάτων με μιγαδικά εκθετικά σήματα: Οι σειρές Fourier Υπολογισμός συντελεστών Fourier Ανάλυση σημάτων σε μιγαδικά εκθετικά σήματα Είδαμε

Διαβάστε περισσότερα

x[n] = e u[n 1] 4 x[n] = u[n 1] 4 X(z) = z 1 H(z) = (1 0.5z 1 )(1 + 4z 2 ) z 2 (βʹ) H(z) = H min (z)h lin (z) 4 z 1 1 z 1 (z 1 4 )(z 1) (1)

x[n] = e u[n 1] 4 x[n] = u[n 1] 4 X(z) = z 1 H(z) = (1 0.5z 1 )(1 + 4z 2 ) z 2 (βʹ) H(z) = H min (z)h lin (z) 4 z 1 1 z 1 (z 1 4 )(z 1) (1) Ασκήσεις με Συστήματα στο Χώρο του Ζ Επιμέλεια: Γιώργος Π. Καφεντζης Δρ. Επιστήμης Η/Υ Πανεπιστημίου Κρήτης Δρ. Επεξεργασίας Σήματος Πανεπιστημίου Rennes 1 7 Νοεμβρίου 015 1. Υπολόγισε τον μετ. Ζ και την

Διαβάστε περισσότερα

[1] είναι ταυτοτικά ίση με το μηδέν. Στην περίπτωση που το στήριγμα μιας συνάρτησης ελέγχου φ ( x)

[1] είναι ταυτοτικά ίση με το μηδέν. Στην περίπτωση που το στήριγμα μιας συνάρτησης ελέγχου φ ( x) [] 9 ΣΥΝΑΡΤΗΣΙΑΚΟΙ ΧΩΡΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER Η «συνάρτηση» δέλτα του irac Η «συνάρτηση» δέλτα ορίζεται μέσω της σχέσης φ (0) αν 0 δ[ φ ] = φ δ dx = (9) 0 αν 0 όπου η φ είναι μια συνάρτηση που ανήκει

Διαβάστε περισσότερα

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Εκθετική Ορισμοί & Ιδιότητες Επιμέλεια: Αθανάσιος Ν. Σκόδρας, Καθηγητής Γεώργιος Α. Βασκαντήρας, Υπ. Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Υπολογιστών Άδειες Χρήσης

Διαβάστε περισσότερα

6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE

6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE 6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ APACE Σκοπός του κεφαλαίου είναι να ορίσει τον αμφίπλευρο μετασχηματισμό aplace ή απλώς μετασχηματισμό aplace (Μ) και το μονόπλευρο μετασχηματισμό aplace (ΜΜ), να περιγράψει

Διαβάστε περισσότερα

Ο αντίστροφος μετασχηματισμός Laplace ορίζεται από το μιγαδικό ολοκλήρωμα : + +

Ο αντίστροφος μετασχηματισμός Laplace ορίζεται από το μιγαδικό ολοκλήρωμα : + + Μετασχηματισμός aplace ορίζεται ως εξής : t X() [x( t)] xte () dt = = Ο αντίστροφος μετασχηματισμός aplace ορίζεται από το μιγαδικό ολοκλήρωμα : t x(t) = [ X()] = X() e dt π j c C είναι μία καμπύλη που

Διαβάστε περισσότερα

ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος.

ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος. 3. ΚΕΦΑΛΑΙΟ ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος. Ορίσουµε το µετασχηµατισµό Fourier ενός µη περιοδικού

Διαβάστε περισσότερα

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER 4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER Υπολογίζουµε εύκολα τον αντίστροφο Μετασχηµατισµό Fourier µιας συνάρτησης χωρίς να καταφεύγουµε στην εξίσωση ανάλυσης. Υπολογίζουµε εύκολα την απόκριση

Διαβάστε περισσότερα

Τηλεπικοινωνίες. Ενότητα 2.2: Ανάλυση Fourier (Συνέχεια) Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ

Τηλεπικοινωνίες. Ενότητα 2.2: Ανάλυση Fourier (Συνέχεια) Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ Τηλεπικοινωνίες Ενότητα 2.2: Ανάλυση Fourier (Συνέχεια) Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

X k e j2πkf0t = x(t) = x(t)e j2πkf0t dt (6.2)

X k e j2πkf0t = x(t) = x(t)e j2πkf0t dt (6.2) Κεφάλαιο 6 Ο Μετασχηματισμός Fourier 6. Εισαγωγή στο Μετασχ. Fourier Ο μετασχ. Fourier ορίζεται εύκολα ως η επέκταση των σειρών Fourier, όταν η περίοδος του σήματος τείνει στο άπειρο, όταν δηλαδή το σήμα

Διαβάστε περισσότερα

ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Καθηγητής Τσιριγώτης Γεώργιος

ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Καθηγητής Τσιριγώτης Γεώργιος ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Καθηγητής Τσιριγώτης Γεώργιος Τα κεφάλαια του μαθήματος 1 ο κεφάλαιο: Σήματα & Συστήματα 2 ο κεφάλαιο: Ανάλυση Fourier 3 ο κεφάλαιο: Απόκριση κατά συχνότητα 4 ο κεφάλαιο: Δειγματοληψία

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Απόκριση Γραμμικών Συστημάτων στο. Πεδίο της Συχνότητας

Δυναμική Μηχανών I. Απόκριση Γραμμικών Συστημάτων στο. Πεδίο της Συχνότητας Δυναμική Μηχανών I Απόκριση Γραμμικών Συστημάτων στο 7 4 Πεδίο της Συχνότητας 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς

Διαβάστε περισσότερα

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΥΣΗ FOURIER ΔΙΑΚΡΙΤΩΝ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ. DTFT και Περιοδική/Κυκλική Συνέλιξη

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΥΣΗ FOURIER ΔΙΑΚΡΙΤΩΝ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ. DTFT και Περιοδική/Κυκλική Συνέλιξη ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΥΣΗ FOURIER ΔΙΑΚΡΙΤΩΝ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ DTFT και Περιοδική/Κυκλική Συνέλιξη Διακριτός μετασχηματισμός συνημιτόνου DCT discrete cosine transform Η σχέση αποτελεί «πυρήνα»

Διαβάστε περισσότερα

Κλασσική Θεωρία Ελέγχου

Κλασσική Θεωρία Ελέγχου ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Ο μετασχηματισμός Laplace Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Μετασχηματισμός Furier Αθανάσιος Κανάτας

Διαβάστε περισσότερα

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ. Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Z

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ. Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Z ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Laplace Μετασχηµατισµός Z Εφαρµογές Παράδειγµα ενός ηλεκτρικού συστήµατος Σύστηµα Παράδειγµα

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 0: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ # Μετασχηματισμός Laplace και ΓΧΑ Συστήματα Συνάρτηση μεταφοράς αιτιατών και ευσταθών συστημάτων Συστήματα που περιγράφονται από ΔΕ Διαγράμματα Μπλοκ Μετασχηματισμός

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΓΕΝΙΚΟ ΤΜΗΜΑ

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΓΕΝΙΚΟ ΤΜΗΜΑ ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΓΕΝΙΚΟ ΤΜΗΜΑ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΦΑΡΜΟΣΜΕΝΕΣ ΕΠΙΣΤΗΜΕΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΔΙΠΛΩΜΑΤΙΚΗ ΔΙΑΤΡΙΒΗ ΜΕΤΑΠΤΥΧΙΑΚΟΥ ΔΙΠΛΩΜΑΤΟΣ ΕΙΔΙΚΕΥΣΗΣ ΚΑΤΕΥΘΥΝΣΗ : «ΕΦΑΡΜΟΣΜΕΝΑ ΚΑΙ ΥΠΟΛΟΓΙΣΤΙΚΑ

Διαβάστε περισσότερα

7 ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ z

7 ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ z 7 ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Ο μετασχηματισμός είναι ο αντίστοιχος Laplace για σήματα διακριτού χρόνου και αποτελεί γενίκευση του μετασχηματισμού Fourier διακριτού χρόνου. Σκοπός του Κεφαλαίου είναι να ορίσει

Διαβάστε περισσότερα

Παράδειγμα 14.2 Να βρεθεί ο μετασχηματισμός Laplace των συναρτήσεων

Παράδειγμα 14.2 Να βρεθεί ο μετασχηματισμός Laplace των συναρτήσεων Κεφάλαιο 4 Μετασχηματισμός aplace 4. Μετασχηματισμός aplace της εκθετικής συνάρτησης e Είναι Άρα a a a u( a ( a ( a ( aj F( e e d e d [ e ] [ e ] ( a e (c ji, με a (4.9 a a a [ e u( ] a, με a (4.3 Η σχέση

Διαβάστε περισσότερα

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΣΥΝΑΡΤΗΣΙΑΚΟΙ ΧΩΡΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER Διδάσκων : Επίκ Καθ Κολάσης Χαράλαμπος Άδειες Χρήσης

Διαβάστε περισσότερα

y[n] ay[n 1] = x[n] + βx[n 1] (6)

y[n] ay[n 1] = x[n] + βx[n 1] (6) Ασκήσεις με το Μετασχηματισμό Fourier Διακριτού Χρόνου Επιμέλεια: Γιώργος Π. Καφεντζης Δρ. Επιστήμης Η/Υ Πανεπιστημίου Κρήτης Δρ. Επεξεργασίας Σήματος Πανεπιστημίου Rennes 1 8 Οκτωβρίου 015 1. Εστω το

Διαβάστε περισσότερα

x(t) ax 1 (t) y(t) = 1 ax 1 (t) = (1/a)y 1(t) x(t t 0 ) y(t t 0 ) =

x(t) ax 1 (t) y(t) = 1 ax 1 (t) = (1/a)y 1(t) x(t t 0 ) y(t t 0 ) = ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 26-7 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λύσεις Τρίτης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Σημάτων

Ψηφιακή Επεξεργασία Σημάτων Ψηφιακή Επεξεργασία Σημάτων Ενότητα 8: Μετασχηματισμός Ζ Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μετασχηματισμός Z Μετασχηματισμός Ζ (Ζ-Transform) Χρήσιμα Ζεύγη ΖT και Περιοχές Σύγκλισης (ROC) Ιδιότητες

Διαβάστε περισσότερα

Τηλεπικοινωνιακά Συστήματα Ι

Τηλεπικοινωνιακά Συστήματα Ι Τηλεπικοινωνιακά Συστήματα Ι Διάλεξη 1: Σήματα και Συστήματα Συνεχούς Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μέρος 1: Σήματα Συνεχούς Χρόνου 2 Σήματα Συνεχούς Χρόνου 1. Κατηγορίες Σημάτων

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης 6 Nv 6 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Ανάπτυξη σε Σειρές Furier Αθανάσιος

Διαβάστε περισσότερα

3. Κεφάλαιο Μετασχηματισμός Fourier

3. Κεφάλαιο Μετασχηματισμός Fourier 3 Κεφάλαιο 3 Ορισμοί Ο μετασχηματισμός Fourir αποτελεί την επέκταση των σειρών Fourir στη γενική κατηγορία των συναρτήσεων (περιοδικών και μη) Όπως και στις σειρές οι συναρτήσεις θα εκφράζονται με τη βοήθεια

Διαβάστε περισσότερα

Κεφάλαιο 5 ΔΙΔΙΑΣΤΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. Ενα αυτόνομο δυναμικό σύστημα δύο διαστάσεων περιγράφεται από τις εξισώσεις

Κεφάλαιο 5 ΔΙΔΙΑΣΤΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. Ενα αυτόνομο δυναμικό σύστημα δύο διαστάσεων περιγράφεται από τις εξισώσεις Κεφάλαιο 5 ΔΙΔΙΑΣΤΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Ενα αυτόνομο δυναμικό σύστημα δύο διαστάσεων περιγράφεται από τις εξισώσεις ẋ 1 f 1 (x 1 x 2 ) ẋ 2 f 2 (x 1 x 2 ) (501) Το σύστημα αυτό γράφεται σε διανυσματική

Διαβάστε περισσότερα

1. Τριγωνοµετρικές ταυτότητες.

1. Τριγωνοµετρικές ταυτότητες. . Τριγωνοµετρικές ταυτότητες. co( y co( co( y i( i( y i( y i( co( y co( i( y ± m (. ± ± (. π m (. 3 co ± i( i ± π ± co( (. co( co ( i ( (. 5 i( i( co( (. 6 j j co( + (. 7 j j j i ( (. 8 ( ( y ( y + ( +

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ο. Μετασχηματισμός FOURIER Διακριτού Χρόνου DTFT. (Discrete Time Fourier Transform) ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ Σ. ΦΩΤΟΠΟΥΛΟΣ ΔΠΜΣ 1/ 45

ΚΕΦΑΛΑΙΟ 3 ο. Μετασχηματισμός FOURIER Διακριτού Χρόνου DTFT. (Discrete Time Fourier Transform) ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ Σ. ΦΩΤΟΠΟΥΛΟΣ ΔΠΜΣ 1/ 45 ΚΕΦΑΛΑΙΟ 3 ο Μετασχηματισμός FOURIER Διακριτού Χρόνου DTFT (Discrt Tim Fourir Transform / 45 Γενικά Μορφές Μετασχηματισμού Fourir Σήματα που αντιστοιχούν στους τέσσερους τύπους μετασχηματισμών α Μετασχηματισμός

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 0: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #5 Ιδιότητες του Μετασχηματισμού Fourier (Συνέχεια) Παραδείγματα Ιδιότητες του Μετασχηματισμού Fourier Χρονική κλιμάκση j xt () X( j) xat ( ) X( ) a a xate ( ) τ=at

Διαβάστε περισσότερα

1. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΗΜΑΤΑ

1. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΗΜΑΤΑ . ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΗΜΑΤΑ Σκοπός του κεφαλαίου αυτού είναι να δώσει μια γενική εικόνα του τι είναι σήμα και να κατατάξει τα διάφορα σήματα σε κατηγορίες ανάλογα με τις βασικές ιδιότητες τους. Επίσης,

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΤΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ FOURIER

ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΤΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ FOURIER ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΤΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ FOURIER Ανάλυση σημάτων και συστημάτων Ο μετασχηματισμός Fourier (DTFT και DFT) είναι σημαντικότατος για την ανάλυση σημάτων και συστημάτων Εντοπίζει

Διαβάστε περισσότερα

Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να:

Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να: 6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να: ορίσουµε το Μετασχηµατισµό Laplace (ML) και το Μονόπλευρο Μετασχηµατισµό Laplace (MML) και να περιγράψουµε

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Σημάτων

Ψηφιακή Επεξεργασία Σημάτων Ψηφιακή Επεξεργασία Σημάτων Ενότητα 6: Απόκριση Συχνότητας Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μετασχηματισμός Fourier Διακριτού Χρόνου Η έννοια της Απόκρισης Συχνότητας Ιδιότητες της Απόκρισης

Διαβάστε περισσότερα

M. J. Lighthill. g(y) = f(x) e 2πixy dx, (1) d N. g (p) (y) =

M. J. Lighthill. g(y) = f(x) e 2πixy dx, (1) d N. g (p) (y) = Εισαγωγή στην ανάλυση Fourier και τις γενικευμένες συναρτήσεις * M. J. Lighthill μετάφραση: Γ. Ευθυβουλίδης ΚΕΦΑΛΑΙΟ 2 Η ΘΕΩΡΙΑ ΤΩΝ ΓΕΝΙΚΕΥΜΕΝΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΚΑΙ ΤΩΝ ΜΕΤΑΣΧΗΜΑΤΙΣΜΩΝ ΤΟΥΣ FOURIER 2.1. Καλές

Διαβάστε περισσότερα

. Σήματα και Συστήματα

. Σήματα και Συστήματα Σήματα και Συστήματα Βασίλειος Δαλάκας & Παναγιώτης Ριζομυλιώτης Τμήμα Πληροφορικής & Τηλεματικής Χαροκόπειο Πανεπιστήμιο Σήματα και Συστήματα 1/16 Πρόβλημα 1 (βιβλίο σελίδα 146) Να υπολογιστεί ο ML της

Διαβάστε περισσότερα

Επομένως το εύρος ζώνης του διαμορφωμένου σήματος είναι 2.

Επομένως το εύρος ζώνης του διαμορφωμένου σήματος είναι 2. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΠΛΗ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑ Το φέρον σε ένα σύστημα DSB διαμόρφωσης είναι c t A t μηνύματος είναι το m( t) sin c( t) sin c ( t) ( ) cos 4 c και το σήμα. Το διαμορφωμένο σήμα διέρχεται

Διαβάστε περισσότερα

Ο μετασχηματισμός Fourier

Ο μετασχηματισμός Fourier Ο μετασχηματισμός Fourier είναι από τα διαδεδομένα εργαλεία μετατροπής δεδομένων και συναρτήσεων (μιας ή περισσοτέρων διαστάσεων) από αυτό που ονομάζεται περιοχή χρόνου (time domain) στην περιοχή συχνότητας

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 220: Σήματα και Συστήματα Ι Βασικές Έννοιες Σήματα Κατηγορίες Σημάτων Συνεχούς/ Διακριτού Χρόνου, Αναλογικά/ Ψηφιακά Μετασχηματισμοί Σημάτων Χρόνου: Αντιστροφή, Κλιμάκωση, Μετατόπιση Πλάτους Βασικά

Διαβάστε περισσότερα

Ανάλυση Κυκλωμάτων. Φώτης Πλέσσας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών

Ανάλυση Κυκλωμάτων. Φώτης Πλέσσας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Ανάλυση Κυκλωμάτων Σήματα Φώτης Πλέσσας fplessas@inf.uth.gr Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Εισαγωγή Για την ανάλυση των ηλεκτρικών κυκλωμάτων μαζί με την μαθηματική περιγραφή των

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ο. Μετασχηματισμός FOURIER Διακριτού Χρόνου DTFT

ΚΕΦΑΛΑΙΟ 3 ο. Μετασχηματισμός FOURIER Διακριτού Χρόνου DTFT ΚΕΦΑΛΑΙΟ 3 ο Μετασχηματισμός FOURIER Διακριτού Χρόνου DTFT (Discrt Tim Fourir Transform / 55 2 / 55 3 / 55 Γενικά Μορφές Μετασχηματισμού Fourir Σήματα που αντιστοιχούν στους τέσσερους τύπους μετασχηματισμών

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY : Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ # Μετασχηματισμοί Σημάτων Ενέργεια και Ισχύς Σήματος Βασικές κατηγορίες σημάτων Περιοδικά σήματα Άρτια και περιττά σήματα Εκθετικά σήματα Μετασχηματισμοί σημάτων (signal

Διαβάστε περισσότερα

Επικοινωνίες στη Ναυτιλία

Επικοινωνίες στη Ναυτιλία Επικοινωνίες στη Ναυτιλία Εισαγωγή Α. Παπαδάκης, Αναπλ. Καθ. ΑΣΠΑΙΤΕ Δρ. ΗΜΜΥ Μηχ. ΕΜΠ Βασικά Αντικείμενα Μαθήματος Σήματα Κατηγοριοποίηση, ψηφιοποίηση, δειγματοληψία, κβαντισμός Βασικά σήματα ήχος, εικόνα,

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Διάλεξη 3 η Τα Συστήματα στις Τηλεπικοινωνίες

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 0: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #4 Η ιδιότητα της συνέλιξης Απόκριση Συχνότητας ΓΧΑ Συστημάτν Απόκριση συχνότητας ΓΧΑ Συστημάτν που περιγράφονται από Διαφορικές Εξισώσεις Η ιδιότητα πολλαπλασιασμού

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ο. Μετασχηματισμός FOURIER Διακριτού Χρόνου DTFT. (Discrete Time Fourier Transform) ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ Σ. ΦΩΤΟΠΟΥΛΟΣ ΔΠΜΣ 1 / 55

ΚΕΦΑΛΑΙΟ 3 ο. Μετασχηματισμός FOURIER Διακριτού Χρόνου DTFT. (Discrete Time Fourier Transform) ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ Σ. ΦΩΤΟΠΟΥΛΟΣ ΔΠΜΣ 1 / 55 ΚΕΦΑΛΑΙΟ 3 ο Μετασχηματισμός FOURIER Διακριτού Χρόνου DTFT (Discrt Tim Fourir Transform / 55 Γενικά Μορφές Μετασχηματισμού Fourir Σήματα που αντιστοιχούν στους τέσσερους τύπους μετασχηματισμών α Μετασχηματισμός

Διαβάστε περισσότερα

Παράδειγµα ενός ηλεκτρικού συστήµατος

Παράδειγµα ενός ηλεκτρικού συστήµατος ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός aplace Μετασχηµατισµός Z Εφαρµογές Παράδειγµα ενός ηλεκτρικού συστήµατος A R B i( ) i

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες

Εισαγωγή στις Τηλεπικοινωνίες ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Ανάπτυξη σε Σειρές Furier Αθανάσιος Κανάτας

Διαβάστε περισσότερα

Κλασσική Θεωρία Ελέγχου

Κλασσική Θεωρία Ελέγχου ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6: Αντίστροφος μετασχηματισμός Laplace Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 5: Γραφική Μέθοδος Υπολογισμού του Συνελικτικού Ολοκληρώματος. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 5: Γραφική Μέθοδος Υπολογισμού του Συνελικτικού Ολοκληρώματος. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 5: Γραφική Μέθοδος Υπολογισμού του Συνελικτικού Ολοκληρώματος Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής . Γραφική Μέθοδος Υπολογισμού του Συνελικτικού Ολοκληρώματος 2 Γραφικός

Διαβάστε περισσότερα

ΤΟ ΜΑΥΡΟ ΚΟΥΤΙ. 1. Το περιεχόμενο του μαύρου κουτιού. 2. Είσοδος: σήματα (κυματομορφές) διέγερσης 3. Έξοδος: απόκριση. (απλά ηλεκτρικά στοιχεία)

ΤΟ ΜΑΥΡΟ ΚΟΥΤΙ. 1. Το περιεχόμενο του μαύρου κουτιού. 2. Είσοδος: σήματα (κυματομορφές) διέγερσης 3. Έξοδος: απόκριση. (απλά ηλεκτρικά στοιχεία) ΤΟ ΜΑΥΡΟ ΚΟΥΤΙ Είσοδος ΜΑΥΡΟ ΚΟΥΤΙ Έξοδος 1. Το περιεχόμενο του μαύρου κουτιού (απλά ηλεκτρικά στοιχεία) 2. Είσοδος: σήματα (κυματομορφές) διέγερσης 3. Έξοδος: απόκριση 2019Κ1-1 ΚΥΜΑΤΟΜΟΡΦΕΣ 2019Κ1-2 ΤΙ

Διαβάστε περισσότερα

Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Φασματική ανάλυση χρονοσειρών

Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Φασματική ανάλυση χρονοσειρών Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Φασματική ανάλυση χρονοσειρών Δημήτρης Κουτσογιάννης Τομέας Υδατικών Πόρων και Περιβάλλοντος, Σχολή Πολιτικών Μηχανικών, Εθνικό Μετσόβιο Πολυτεχνείο Αθήνα Επανέκδοση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ο. Μετασχηματισμός FOURIER Διακριτού Χρόνου DTFT

ΚΕΦΑΛΑΙΟ 3 ο. Μετασχηματισμός FOURIER Διακριτού Χρόνου DTFT ΚΕΦΑΛΑΙΟ 3 ο Μετασχηματισμός FOURIER Διακριτού Χρόνου DTFT (Discrt Tim Fourir Transform ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ Σ. ΦΩΤΟΠΟΥΛΟΣ ΔΠΜΣ / 46 Γενικά Μορφές Μετασχηματισμού Fourir Σήματα που αντιστοιχούν

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών Ι

Συστήματα Επικοινωνιών Ι + Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών Ι Αναπαράσταση Σημάτων και Συστημάτων στο πεδίο της συχνότητας + Περιεχόμενα n Εισαγωγή n Ανάλυση Fourier n Μετασχηματισμός

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα 1, Μέρος 2ο: ΠΕΡΙ ΣΗΜΑΤΩΝ Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Οι σειρές Fourier. Eισαγωγικές Επισημάνσεις

Οι σειρές Fourier. Eισαγωγικές Επισημάνσεις παραρτημα Α Οι σειρές Fourier Μέρος (Ι) Eισαγωγικές Επισημάνσεις Ο Γάλλος μαθηματικός Jean Baptist Fourier μελετώντας την διάδοση της θερμότητας στα στερεά σώματα και στην προσπάθειά του να δώσει σε κλειστή

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ Περιγραφή Σηµάτων Συνεχούς Χρόνου Συνάρτηση δέλτα Κατανοµές

ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ Περιγραφή Σηµάτων Συνεχούς Χρόνου Συνάρτηση δέλτα Κατανοµές ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ Περιγραφή Σηµάτων Συνεχούς Χρόνου Συνάρτηση δέλτα Κατανοµές Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Περιγραφή Σηµάτων Διακριτού Χρόνου Η Ακολουθία

Διαβάστε περισσότερα

11 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

11 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 11 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα: Μ/Σ FOURIER Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

ΣΤΗΑ ΨΕΣ /4/2013 2:12 πµ

ΣΤΗΑ ΨΕΣ /4/2013 2:12 πµ ΣΤΗΑ ΨΕΣ -3 4/4/3 : πµ ΑΝΤΙΚΕΙΜΕΝΟ ΤΟΥ ΜΑΘΗΜΑΤΟΣ Ψηφιακή Επεξεργασία Σήµατος ΨΕΣ Η Επεξεργασία Σήµατος µέσω της ψηφιοποίησής του και της επεξεργασίας µε ηλεκτρονικό υπολογιστή ή ειδικά ολοκληρωµένα κυκλώµατα

Διαβάστε περισσότερα

X(e jω ) = x[n]e jωn (1) x[n] = 1. T s

X(e jω ) = x[n]e jωn (1) x[n] = 1. T s Αναπαράσταση Σημάτων και Συστημάτων στο Χώρο της Συχνότητας Ο Μετασχηματισμός Fourier Επιμέλεια: Γιώργος Π. Καφεντζης Δρ. Επιστήμης Η/Υ Πανεπιστημίου Κρήτης Δρ. Επεξεργασίας Σήματος Πανεπιστημίου Rennes

Διαβάστε περισσότερα

20-Φεβ-2009 ΗΜΥ Διακριτός Μετασχηματισμός Fourier

20-Φεβ-2009 ΗΜΥ Διακριτός Μετασχηματισμός Fourier ΗΜΥ 429 8. Διακριτός Μετασχηματισμός Fourier 1 Μετασχηματισμός Fourier 4 κατηγορίες: Μετασχηματισμός Fourier: σήματα απεριοδικά και συνεχούς χρόνου Σειρά Fourier: σήματα περιοδικά και συνεχούς χρόνου Μετασχηματισμός

Διαβάστε περισσότερα

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE ΑΝΑΛΥΣΗ στο πεδίο των ΣΥΧΝΟΤΗΤΩΝ

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE ΑΝΑΛΥΣΗ στο πεδίο των ΣΥΧΝΟΤΗΤΩΝ Pierre-Simn Laplace ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE ΑΝΑΛΥΣΗ στο πεδίο των ΣΥΧΝΟΤΗΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ /4 Τι περιλαμβάνει Ορισμοί Μετασχ. Laplace απλών σημάτων Ιδιότητες Εφαρμογή στη λύση ΔΕ Μετασχηματισμένο

Διαβάστε περισσότερα

Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης

Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης Επεξεργασία στο πεδίο της συχνότητας Φασματικές τεχνικές Γενικά Τεχνικές αναπαράστασης και ανάλυσης

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔ ΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ Μεθοδολογία Κλεομένης Γ. Τσιγάνης Λέκτορας ΑΠΘ Πρόχειρες

Διαβάστε περισσότερα

Ο μετασχηματισμός Fourier

Ο μετασχηματισμός Fourier Ο μετασχηματισμός Fourier είναι από τα διαδεδομένα εργαλεία μετατροπής δεδομένων και συναρτήσεων (μιας ή περισσοτέρων διαστάσεων) από αυτό που ονομάζεται περιοχή χρόνου (time domain) στην περιοχή συχνότητας

Διαβάστε περισσότερα

Δομή της παρουσίασης

Δομή της παρουσίασης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Διάλεξη 2 η Τα Σήματα στις Τηλεπικοινωνίες

Διαβάστε περισσότερα