Πίνακες Συμβόλων. εισαγωγή αναζήτηση επιλογή. εισαγωγή. αναζήτηση

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Πίνακες Συμβόλων. εισαγωγή αναζήτηση επιλογή. εισαγωγή. αναζήτηση"

Transcript

1 Πίνακες Συμβόλων χειρότερη περίπτωση μέση περίπτωση εισαγωγή αναζήτηση επιλογή εισαγωγή αναζήτηση διατεταγμένος πίνακας διατεταγμένη λίστα μη διατεταγμένος πίνακας μη διατεταγμένη λίστα δένδρο αναζήτησης (μη ισορροπημένο) τυχαιοποιημένο δένδρο ισορροπημένο δένδρο αναζήτησης κατακερματισμός (*) Συμβαίνει με εξαιρετικά μικρή πιθανότητα ( ) Μετά από ταξινόμηση. Χρόνος O(N) είναι εφικτός με πιο περίπλοκους αλγόριθμους.

2 Πίνακες Διασποράς (Κατακερματισμός) Χειριζόμαστε ένα σύνολο στοιχείων κλειδί από ολικά διατεταγμένο σύνολο όπου το κάθε στοιχείο έχει ένα Θέλουμε να υποστηρίξουμε τις βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου με κλειδί Αναζήτηση στοιχείου με δεδομένο κλειδί Διαγραφή ενός καθορισμένου στοιχείου Ο κατακερματισμός δίνει μια πολύ αποδοτική λύση (απλή και γρήγορη στην πράξη) όταν χρειαζόμαστε μόνο τις παραπάνω λειτουργίες

3 Πίνακες Διασποράς Χρησιμοποιούμε ένα πίνακα διασποράς T και μια συνάρτηση διασποράς h Ένα στοιχείο με κλειδί k αποθηκεύεται στη θέση T k U : χώρος πιθανών κλειδιών Τ : πίνακας μεγέθους m κλειδί k συνάρτηση διασποράς 6 7

4 Πίνακες Διασποράς Μετατροπή σε ακέραιο στο διάστημα - για αριθμό κινητής υποδιαστολής στο διάστημα int m, k; float x; k = x*m; π.χ. για m = 67 x = k = 38 x = k = 21 x = k = 38

5 Πίνακες Διασποράς Μετατροπή σε ακέραιο στο διάστημα - για αλφαριθμητικά με χαρακτήρες κάθε χαρακτήρας αντιστοιχεί σε ένα ακέραιο σε κωδικοποίηση ASCII έχουμε a = 97, b = 98, c = 99, κλπ π.χ. για m = 67 char s[4] = have k = ( ) mod 67 = 420 mod 67 = 18

6 Πίνακες Διασποράς Μετατροπή σε ακέραιο στο διάστημα - για αλφαριθμητικά με χαρακτήρες κάθε χαρακτήρας αντιστοιχεί σε ένα ακέραιο σε κωδικοποίηση ASCII έχουμε a = 97, b = 98, c = 99, κλπ π.χ. για m = 67 char s[4] = have k = ( ) mod 67 = 420 mod 67 = 18 Αντιστοιχεί στον ίδιο ακέραιο αλφαριθμητικά που προκύπτουν από μεταθέσεις των ίδιων χαρακτήρων. Π.χ. stop tops pots spot, «γραφή» «φραγή» Για να το αποφύγουμε πολλαπλασιάζουμε με ένα συντελεστή βάρους κάθε θέση σε

7 Πίνακες Διασποράς Μετατροπή σε ακέραιο στο διάστημα - για αλφαριθμητικά με χαρακτήρες των 7 bit (w = 2 7 = 128 χαρακτήρες) κάθε χαρακτήρας αντιστοιχεί σε ένα ακέραιο σε κωδικοποίηση ASCII έχουμε a = 97, b = 98, c = 99, κλπ π.χ. για m = 67 char s[4] = have k = (104* * * *128 0 ) mod 67 = mod 67 = 52 για να αποφύγουμε το πρόβλημα της υπερχείλισης χρησιμοποιούμε τον αλγόριθμο του Horner και τις αριθμητικές ιδιότητες της συνάρτησης mod 104* * * *128 0 = ((104* )* )*

8 Πίνακες Διασποράς Μετατροπή σε ακέραιο στο διάστημα - για αλφαριθμητικά με χαρακτήρες των 7 bit (w = 2 7 = 128 χαρακτήρες) κάθε χαρακτήρας αντιστοιχεί σε ένα ακέραιο σε κωδικοποίηση ASCII έχουμε a = 97, b = 98, c = 99, κλπ π.χ. για m = 67 char s[4] = have k = (((104* )* )* ) mod 67 = 52 int w = 128; int k = 0; for (i=0; i<n; i++){ k = (k*w + s[i]) % m; }

9 Πίνακες σταθερών διευθύνσεων Απλή λύση όταν το U είναι μικρό: όπου 5 3 K T U : χώρος πιθανών κλειδιών K : χώρος ενεργών κλειδιών Τ : πίνακας μεγέθους m συνάρτηση διασποράς 6 U

10 Πίνακες σταθερών διευθύνσεων Απλή λύση όταν το U είναι μικρό: όπου Δίνει Ο(1) χρόνο ανά πράξη. 5 3 K T U : χώρος πιθανών κλειδιών K : χώρος ενεργών κλειδιών Τ : πίνακας μεγέθους m συνάρτηση διασποράς 6 U

11 Πίνακες σταθερών διευθύνσεων Απλή λύση όταν το U είναι μικρό: όπου Δίνει Ο(1) χρόνο ανά πράξη. Τι γίνεται όμως αν το U είναι πολύ μεγάλο; 5 3 K T U : χώρος πιθανών κλειδιών K : χώρος ενεργών κλειδιών Τ : πίνακας μεγέθους m συνάρτηση διασποράς 6 U

12 Πίνακες σταθερών διευθύνσεων Απλή λύση όταν το U είναι μικρό: όπου Δίνει Ο(1) χρόνο ανά πράξη. Τι γίνεται όμως αν το U είναι πολύ μεγάλο και το Κ πολύ μικρότερο; 5 3 K T U : χώρος πιθανών κλειδιών K : χώρος ενεργών κλειδιών Τ : πίνακας μεγέθους m συνάρτηση διασποράς 6 U

13 Πίνακες Διασποράς Επιθυμητές ιδιότητες: χώρος χρόνος ανά λειτουργία (αναμενόμενη περίπτωση) T 0 U : χώρος πιθανών κλειδιών K : χώρος ενεργών κλειδιών U K k 2 k 4 k 1 Τ : πίνακας μεγέθους m συνάρτηση διασποράς k 3 m-1

14 Πίνακες Διασποράς Επιθυμητές ιδιότητες: χώρος χρόνος ανά λειτουργία (αναμενόμενη περίπτωση) Σύγκρουση (collision): για κλειδιά T 0 U : χώρος πιθανών κλειδιών K : χώρος ενεργών κλειδιών U K k 2 k 4 k 1 Τ : πίνακας μεγέθους m συνάρτηση διασποράς k 3 m-1

15 Πίνακες Διασποράς Επιθυμητές ιδιότητες: χώρος χρόνος ανά λειτουργία (αναμενόμενη περίπτωση) Σύγκρουση (collision): για κλειδιά T 0 Η h πρέπει να δίνει τυχαιόμορφη κατανομή U : χώρος πιθανών κλειδιών K : χώρος ενεργών κλειδιών U K k 2 k 4 k 1 Τ : πίνακας μεγέθους m συνάρτηση διασποράς k 3 m-1

16 Πίνακες Διασποράς Ποιά συνάρτηση διασποράς είναι καλύτερη;

17 Πίνακες Διασποράς Σύγκρουση (collision): για κλειδιά Πρέπει να οριστεί ένας τρόπος διαχείρισης συγκρούσεων ώστε τα κλειδιά να μπορούν να βρεθούν αρκετά γρήγορα. Χρησιμοποιούνται 2 κύριοι τρόποι: Τοποθέτηση στην ίδια θέση (π.χ., σε αλυσίδα) Τοποθέτηση σε άλλη θέση

18 Πίνακες Διασποράς Αλυσιδωτής Σύνδεσης Σύγκρουση (collision): για κλειδιά Άρση των συγκρούσεων μέσω αλυσιδωτής σύνδεσης Κάθε δείχνει σε μία αλυσίδα για τα κλειδιά με διασπορά T 0 k 2 U K k 2 k 3 k 4 k 1 m-1 k 1 k 3 k 4

19 Πίνακες Διασποράς Αλυσιδωτής Σύνδεσης Σύγκρουση (collision): για κλειδιά Άρση των συγκρούσεων μέσω αλυσιδωτής σύνδεσης Κάθε δείχνει σε μία αλυσίδα για τα κλειδιά με διασπορά εισαγωγή(τ,x): εισαγωγή του x στη λίστα του Τ[h(κλειδί[x])] T 0 k 2 U K k 2 k 3 k 4 k 1 m-1 k 1 k 3 k 4

20 Πίνακες Διασποράς Αλυσιδωτής Σύνδεσης Σύγκρουση (collision): για κλειδιά Άρση των συγκρούσεων μέσω αλυσιδωτής σύνδεσης Κάθε δείχνει σε μία αλυσίδα για τα κλειδιά με διασπορά εισαγωγή(τ,x): εισαγωγή του x στη λίστα του Τ[h(κλειδί[x])] k 5 k 5 k 2 T 0 U K k 2 k 4 k 1 k 1 k 3 k 4 k 3 m-1

21 Πίνακες Διασποράς Αλυσιδωτής Σύνδεσης Σύγκρουση (collision): για κλειδιά Άρση των συγκρούσεων μέσω αλυσιδωτής σύνδεσης Κάθε δείχνει σε μία αλυσίδα για τα κλειδιά με διασπορά εισαγωγή(τ,x): εισαγωγή του x στη λίστα του Τ[h(κλειδί[x])] αναζήτηση(τ,k): αναζήτηση στοιχείου με κλειδί k στην αλυσίδα T[h(k)] U K k 5 k 5 k 2 k 2 k k 1 k 4 4 k 1 k 3 k m-1 3 T 0 Η εισαγωγή παίρνει Ο(1) χρόνο αν γίνεται στην αρχή της αλυσίδας και δεν κάνουμε αναζήτηση αν το x είναι ήδη καταχωρημένο. Διαφορετικά πρέπει να προηγηθεί αναζήτηση του x.

22 Πίνακες Διασποράς Αλυσιδωτής Σύνδεσης Σύγκρουση (collision): για κλειδιά Άρση των συγκρούσεων μέσω αλυσιδωτής σύνδεσης Κάθε δείχνει σε μία αλυσίδα για τα κλειδιά με διασπορά εισαγωγή(τ,x): εισαγωγή του x στη λίστα του Τ[h(κλειδί[x])] αναζήτηση(τ,k): αναζήτηση στοιχείου με κλειδί k στην αλυσίδα T[h(k)] T 0 διαγραφή(τ,x): διαγραφή του x από την αλυσίδα του Τ[h(κλειδί[x])] U K k 2 k 3 k 4 k 1 m-1 k 1 k 3 k 4 k 5 k 5 k 2 Η διαγραφή παίρνει Ο(1) χρόνο αν η θέση του x είναι γνωστή. (Δηλαδή έχουμε δείκτη στον κόμβο του x.) Διαφορετικά πρέπει να προηγηθεί αναζήτηση του x. Ο αναμενόμενος χρόνος αναζήτησης εξαρτάται από το αναμενόμενο μήκος μιας αλυσίδας.

23 Πίνακες Διασποράς Αλυσιδωτής Σύνδεσης Εισαγωγή zebra key= hash = 4 T seal wolf tiger vulture frog bat 4 5 koala elephant alligator horse 6 octopus dog 7 mouse lion 8 iguana 9 rabbit puma jaguar

24 Πίνακες Διασποράς Αλυσιδωτής Σύνδεσης Εισαγωγή zebra key= hash = 4 T seal wolf tiger vulture zebra horse octopus mouse iguana frog bat koala elephant alligator dog lion 9 rabbit puma jaguar

25 Πίνακες Διασποράς Αλυσιδωτής Σύνδεσης Συντελεστής πληρότητας πλήθος των ενεργών κλειδιών Στη χειρότερη περίπτωση η διασπορά είναι ίδια για όλα τα χρόνος αναζήτησης στη χειρότερη περίπτωση. T 0 k 5 k 5 k 2 k 3 k 1 k 4 U K k 2 k 4 k 1 k 3 m-1

26 Πίνακες Διασποράς Αλυσιδωτής Σύνδεσης Συντελεστής πληρότητας πλήθος των ενεργών κλειδιών Έστω το μήκος της αλυσίδας του. Έχουμε και επομένως το μέσο μήκος μιας αλυσίδας είναι. T Υπόθεση απλής ομοιόμορφης διασποράς: κάθε νέο στοιχείο έχει ίση πιθανότητα να διασπαρεί σε οποιαδήποτε από τις m θέσεις. U K k 5 k 5 k 2 k 2 k k 1 k 4 4 k 1 k 3 k m Αναμενόμενος χρόνος ανεπιτυχούς αναζήτησης: Αναμενόμενος χρόνος επιτυχούς αναζήτησης: Μια επιτυχής αναζήτηση διασχίζει κατά μέσο όρο τους μισούς κόμβους αλυσίδας που δεν είναι κενή.

27 Συναρτήσεις Διασποράς Πότε είναι μία συνάρτηση διασποράς καλή; Επιθυμητή ιδιότητα: να ικανοποιεί την υπόθεση της απλής ομοιόμορφης διασποράς (δηλ. κάθε νέο στοιχείο έχει ίση πιθανότητα να διασπαρεί σε οποιαδήποτε από τις m θέσεις). Παράδειγμα: Τα κλειδιά είναι ανεξάρτητοι και ομοιόμορφα κατανεμημένοι αριθμοί στο διάστημα [0,1]. Επιλέγοντας ικανοποιούμε την υπόθεση της απλής ομοιόμορφης διασποράς. Η παραπάνω ιδιότητα απαιτεί γνώση της κατανομής των κλειδιών, που συνήθως δεν είναι γνωστή.

28 Συναρτήσεις Διασποράς Πότε είναι μία συνάρτηση διασποράς καλή; Επιθυμητή ιδιότητα: να ικανοποιεί την υπόθεση της απλής ομοιόμορφης διασποράς (δηλ. κάθε νέο στοιχείο έχει ίση πιθανότητα να διασπαρεί σε οποιαδήποτε από τις m θέσεις). Διαιρετική μέθοδος κακή επιλογή : m = δύναμη του 2 καλή επιλογή : m = πρώτος αριθμός Πολλαπλασιαστική μέθοδος Πολλαπλασίασε πρόσθεσε και διαίρεσε (Multiply Add and Divide) πρώτος αριθμός ακέραιοι στο διάστημα με

29 Καθολική Διασπορά Για κάθε καθορισμένη συνάρτηση διασποράς μπορούμε να επιλέξουμε κλειδιά που θα δίνουν τη χειρότερη δυνατή επίδοση. Προκειμένου να βελτιώσουμε την κατάσταση μπορούμε να βασιστούμε σε τυχαιοκρατικούς αλγόριθμους: Ορίζουμε μία οικογένεια συναρτήσεων και κατά τη διάρκεια της εκτέλεσης επιλέγουμε τυχαία μία από αυτές τις συναρτήσεις ως συνάρτηση διασποράς. Περιορίζουμε την πιθανότητα εμφάνισης παθολογικών περιπτώσεων.

30 Καθολική Διασπορά πεπερασμένη συλλογή συναρτήσεων Η συλλογή είναι καθολική αν για κάθε ζεύγος διαφορετικών κλειδιών υπάρχουν το πολύ συναρτήσεις με

31 Καθολική Διασπορά πεπερασμένη συλλογή συναρτήσεων Η συλλογή είναι καθολική αν για κάθε ζεύγος διαφορετικών κλειδιών υπάρχουν το πολύ συναρτήσεις με Συνεπώς

32 Καθολική Διασπορά πεπερασμένη συλλογή συναρτήσεων Η συλλογή είναι καθολική αν για κάθε ζεύγος διαφορετικών κλειδιών υπάρχουν το πολύ συναρτήσεις με Συνεπώς Πιθανότητα σύμπτωσης όταν και επιλέγονται τυχαία και ανεξάρτητα.

33 Καθολική Διασπορά Θεώρημα Έστω ότι επιλέγουμε τυχαία και κάνουμε εισαγωγή κλειδιών σε πίνακα μεγέθους. Έστω. Τότε Πόρισμα Ο αναμενόμενος χρόνος εκτέλεσης μίας ακολουθίας πράξεων με πράξεις εισαγωγής είναι Συνεπάγεται από το παραπάνω θεώρημα και την παρατήρηση ότι

34 Μια Καθολική Οικογένεια Συναρτήσεων Διασποράς πρώτος αριθμός, μεγαλύτερος από κάθε κλειδί Για και Παράδειγμα

35 Μια Καθολική Οικογένεια Συναρτήσεων Διασποράς πρώτος αριθμός, μεγαλύτερος από κάθε κλειδί Για και Περιλαμβάνει συναρτήσεις

36 Μέθοδος Μεταβλητών Διευθύνσεων (Ανοιχτή Διευθυνσιοδότηση) Η συνάρτηση διασποράς αντιστοιχεί σε κάθε κλειδί μία ακολουθία από διευθύνσεις του πίνακα Τ βολιδοσκοπική ακολουθία Συνάρτηση Διασποράς μετάθεση του

37 Μέθοδος Μεταβλητών Διευθύνσεων (Ανοιχτή Διευθυνσιοδότηση) Η συνάρτηση διασποράς αντιστοιχεί σε κάθε κλειδί μία ακολουθία από διευθύνσεις του πίνακα Τ βολιδοσκοπική ακολουθία Συνάρτηση Διασποράς μετάθεση του T 0 αναζήτηση (Τ,k): βολιδοσκοπεί τις θέσεις T[h(k,i)] για i=0,1,,m-1 μέχρι να βρει το αντικείμενο με κλειδί k ή μία κενή θέση. m-1

38 Μέθοδος Μεταβλητών Διευθύνσεων (Ανοιχτή Διευθυνσιοδότηση) Η συνάρτηση διασποράς αντιστοιχεί σε κάθε κλειδί μία ακολουθία από διευθύνσεις του πίνακα Τ βολιδοσκοπική ακολουθία Συνάρτηση Διασποράς μετάθεση του T 0 αναζήτηση (Τ,k): βολιδοσκοπεί τις θέσεις T[h(k,i)] για i=0,1,,m-1 μέχρι να βρει το αντικείμενο με κλειδί k ή μία κενή θέση. εισαγωγή (Τ,k): βολιδοσκοπεί τις θέσεις Τ[h(κλειδί[x],i)] για i=0,1,,m-1 μέχρι να βρει την πρώτη κενή θέση και τοποθετεί το αντικείμενο εκεί. m-1

39 Μέθοδος Μεταβλητών Διευθύνσεων (Ανοιχτή Διευθυνσιοδότηση) Η συνάρτηση διασποράς αντιστοιχεί σε κάθε κλειδί μία ακολουθία από διευθύνσεις του πίνακα Τ βολιδοσκοπική ακολουθία Συνάρτηση Διασποράς μετάθεση του T x k 0 m-1 αναζήτηση (Τ,k): βολιδοσκοπεί τις θέσεις T[h(k,i)] για i=0,1,,m-1 μέχρι να βρει το αντικείμενο με κλειδί k ή μία κενή θέση. εισαγωγή (Τ,k): βολιδοσκοπεί τις θέσεις Τ[h(κλειδί[x],i)] για i=0,1,,m-1 μέχρι να βρει την πρώτη κενή θέση και τοποθετεί το αντικείμενο εκεί. διαγραφή (Τ,x):?

40 Μέθοδος Μεταβλητών Διευθύνσεων (Ανοιχτή Διευθυνσιοδότηση) Η συνάρτηση διασποράς αντιστοιχεί σε κάθε κλειδί μία ακολουθία από διευθύνσεις του πίνακα Τ βολιδοσκοπική ακολουθία Συνάρτηση Διασποράς T x k 0 m-1 Ο χρόνος εκτέλεσης δεν εξαρτάται από τον συντελεστή πληρότητας! μετάθεση του αναζήτηση (Τ,k): βολιδοσκοπεί τις θέσεις T[h(k,i)] για i=0,1,,m-1 μέχρι να βρει το αντικείμενο με κλειδί k ή μία κενή θέση. εισαγωγή (Τ,k): βολιδοσκοπεί τις θέσεις Τ[h(κλειδί[x],i)] για i=0,1,,m-1 μέχρι να βρει την πρώτη κενή θέση και τοποθετεί το αντικείμενο εκεί. διαγραφή (Τ,x): σήμανση της θέσης του x ως διαγεγραμμένης. Η αναζήτηση αντιπαρέρχεται τέτοιες θέσεις.

41 Μέθοδος Μεταβλητών Διευθύνσεων (Ανοιχτή Διευθυνσιοδότηση) T Εισαγωγή zebra κλειδί k 0 1 seal frog tiger bat dog puma rabbit zebra

42 Μέθοδος Μεταβλητών Διευθύνσεων (Ανοιχτή Διευθυνσιοδότηση) T Εισαγωγή zebra κλειδί k 0 1 seal frog tiger bat dog puma rabbit zebra

43 Μέθοδος Μεταβλητών Διευθύνσεων (Ανοιχτή Διευθυνσιοδότηση) T Εισαγωγή zebra κλειδί k 0 1 zebra seal frog tiger bat dog puma rabbit zebra

44 Μέθοδος Μεταβλητών Διευθύνσεων (Ανοιχτή Διευθυνσιοδότηση) Η συνάρτηση διασποράς αντιστοιχεί σε κάθε κλειδί μία ακολουθία από διευθύνσεις του πίνακα Τ βολιδοσκοπική ακολουθία Συνάρτηση Διασποράς μετάθεση της Υπόθεση της ομοιόμορφης διασποράς : η βολιδοσκοπική ακολουθία κάθε κλειδιού είναι μία τυχαία μετάθεση της

45 Μέθοδος Μεταβλητών Διευθύνσεων (Ανοιχτή Διευθυνσιοδότηση) Η συνάρτηση διασποράς αντιστοιχεί σε κάθε κλειδί μία ακολουθία από διευθύνσεις του πίνακα Τ βολιδοσκοπική ακολουθία Συνάρτηση Διασποράς μετάθεση της Υπόθεση της ομοιόμορφης διασποράς : η βολιδοσκοπική ακολουθία κάθε κλειδιού είναι μία τυχαία μετάθεση της Δύσκολο να υλοποιηθεί!

46 Μέθοδος Μεταβλητών Διευθύνσεων (Ανοιχτή Διευθυνσιοδότηση) Γραμμική Βολιδοσκόπηση βοηθητική συνάρτηση διασποράς

47 Μέθοδος Μεταβλητών Διευθύνσεων (Ανοιχτή Διευθυνσιοδότηση) Γραμμική Βολιδοσκόπηση βοηθητική συνάρτηση διασποράς 0 1 T zebra seal frog tiger bat zebra dog puma rabbit zebra

48 Μέθοδος Μεταβλητών Διευθύνσεων (Ανοιχτή Διευθυνσιοδότηση) Γραμμική Βολιδοσκόπηση βοηθητική συνάρτηση διασποράς Δίνει μόνο m ακολουθίες Αν i διαδοχικές θέσεις είναι κατειλημμένες τότε η πιθανότητα να συμπληρωθεί η επόμενη είναι Πρωτεύουσα ομαδοποίηση : οι μακριές αλληλουχίες τείνουν να επεκτείνονται

49 Μέθοδος Μεταβλητών Διευθύνσεων (Ανοιχτή Διευθυνσιοδότηση) Τετραγωνική Βολιδοσκόπηση βοηθητική συνάρτηση διασποράς σταθερές Δίνει μόνο m ακολουθίες Δευτερεύουσα ομαδοποίηση : πιο ήπιας μορφής ομαδοποίηση

50 Μέθοδος Μεταβλητών Διευθύνσεων (Ανοιχτή Διευθυνσιοδότηση) Διπλή Διασπορά βοηθητικές συναρτήσεις διασποράς

51 Μέθοδος Μεταβλητών Διευθύνσεων (Ανοιχτή Διευθυνσιοδότηση) Διπλή Διασπορά βοηθητικές συναρτήσεις διασποράς μετάθεση της Πρέπει και να είναι αμοιβαία πρώτοι π.χ. μπορούμε να έχουμε ίσο με μία δύναμη του 2 και περιττό

52 Μέθοδος Μεταβλητών Διευθύνσεων (Ανοιχτή Διευθυνσιοδότηση) Διπλή Διασπορά βοηθητικές συναρτήσεις διασποράς μετάθεση της Πρέπει και να είναι αμοιβαία πρώτοι π.χ. μπορούμε να έχουμε ίσο με μία δύναμη του 2 και περιττό Δίνει ακολουθίες Καλή προσέγγιση της ομοιόμορφης διασποράς

53 Μέθοδος Μεταβλητών Διευθύνσεων (Ανοιχτή Διευθυνσιοδότηση) Υπόθεση της ομοιόμορφης διασποράς : η βολιδοσκοπική ακολουθία κάθε κλειδιού είναι μία τυχαία μετάθεση της Συντελεστής πληρότητας έχουμε. Για τη μέθοδο των μεταβλητών διευθύνσεων Θεώρημα Το αναμενόμενο πλήθος βολιδοσκοπήσεων είναι το πολύ : σε μία ανεπιτυχή αναζήτηση σε μία επιτυχή αναζήτηση Π.χ. Για α=0.5 έχουμε U=2 και S=1.386 Για α=0.9 έχουμε U=10 και S=2.558

54 Μέθοδος Μεταβλητών Διευθύνσεων (Ανοιχτή Διευθυνσιοδότηση) Υπόθεση της ομοιόμορφης διασποράς : η βολιδοσκοπική ακολουθία κάθε κλειδιού είναι μία τυχαία μετάθεση της Αν ισχύει η υπόθεση ομοιόμορφης διασποράς, τότε η πιθανότητα η j-οστή βολιδοσκόπηση να βρει κατειλημμένη θέση δεδομένου ότι οι πρώτες (j-1) πράξεις βολιδοσκόπησης βρήκαν κατειλημμένες θέσεις είναι Άρα η πιθανότητα να χρειαστούν τουλάχιστον βολιδοσκοπήσεις είναι Επομένως, το αναμενόμενο πλήθος βολιδοσκοπήσεων σε ανεπιτυχή αναζήτηση είναι

55 Μέθοδος Μεταβλητών Διευθύνσεων (Ανοιχτή Διευθυνσιοδότηση) Υπόθεση της ομοιόμορφης διασποράς : η βολιδοσκοπική ακολουθία κάθε κλειδιού είναι μία τυχαία μετάθεση της Το αναμενόμενο πλήθος προσπελάσεων σε επιτυχημένη αναζήτηση είναι ίσο με το αναμενόμενο πλήθος προσπελάσεων για την εισαγωγή κάθε ενός από τα n κλειδιά. Το αναμενόμενο πλήθος προσπελάσεων για την εισαγωγή του i-οστού κλειδιού είναι ίσο με το αναμενόμενο πλήθος προσπελάσεων σε μη επιτυχημένη αναζήτηση όταν έχουν ήδη εισαχθεί (i-1) κλειδιά. Επομένως: Ν-οστός αρμονικός αριθμός

56 Μέθοδος Μεταβλητών Διευθύνσεων (Ανοιχτή Διευθυνσιοδότηση) Υπόθεση της ομοιόμορφης διασποράς : η βολιδοσκοπική ακολουθία κάθε κλειδιού είναι μία τυχαία μετάθεση της Το αναμενόμενο πλήθος προσπελάσεων σε επιτυχημένη αναζήτηση είναι ίσο με το αναμενόμενο πλήθος προσπελάσεων για την εισαγωγή κάθε ενός από τα n κλειδιά. Το αναμενόμενο πλήθος προσπελάσεων για την εισαγωγή του i-οστού κλειδιού είναι ίσο με το αναμενόμενο πλήθος προσπελάσεων σε μη επιτυχημένη αναζήτηση όταν έχουν ήδη εισαχθεί (i-1) κλειδιά. Επομένως:

57 Ταξινομημένοι Πίνακες Διασποράς Αν τα κλειδιά είναι ταξινομημένα έχουμε μείωση του χρόνου για αποτυχημένες αναζητήσεις: Αν ένα μεγαλύτερο κλειδί από το ζητούμενο k προσπελαστεί τερματίζει η αναζήτηση. Μέθοδος με Αλυσίδες Διατηρούμε τα κλειδιά στις αλυσίδες ταξινομημένα. Μέθοδος Ανοικτής Διευθυνσιοδότησης Τα κλειδιά πρέπει να εισαχθούν έτσι ώστε τα κλειδιά που προηγούνται στην ακολουθία αναζήτησης από το k, θα πρέπει να είναι μικρότερα από το k. Ιδέα Αν στην ακολουθία αναζήτησης για το κλειδί k δούμε κλειδί k >k, τότε αντικαθιστούμε το k με το k και συνεχίζουμε με την εισαγωγή του k βάσει της ακολουθίας αναζήτησης του k.

58 Ταξινομημένοι Πίνακες Διασποράς Η τελική μορφή του πίνακα διασποράς μετά τις εισαγωγές των κλειδιών είναι η ίδια ανεξάρτητα από τη σειρά εισαγωγής των κλειδιών. Υπόθεση Η πιθανότητα να επιλεγεί ένα συγκεκριμένο κλειδί από τον χώρο κλειδιών είναι η ίδια για όλα τα κλειδιά του χώρου. Τότε: Ο αναμενόμενος χρόνος για επιτυχημένη αναζήτηση δεν αλλάζει. Ο αναμενόμενος χρόνος για μη επιτυχημένη αναζήτηση γίνεται περίπου ίδιος με το χρόνο επιτυχημένης αναζήτησης.

59 Πλήρης Διασπορά Όταν το σύνολο των κλειδιών είναι στατικό μπορούμε να πετύχουμε άριστη επίδοση : O(1) χρόνο χειρότερης περίπτωσης ανά πράξη

60 Πλήρης Διασπορά Όταν το σύνολο των κλειδιών είναι στατικό μπορούμε να πετύχουμε άριστη επίδοση : O(1) χρόνο χειρότερης περίπτωσης ανά πράξη k 5 k 2 k 5 T 0 Ιδέα: Διασπορά δύο επιπέδων με χρήση καθολικής διασποράς ανά επίπεδο K k 2 k 1 k 4 k 1 k 3 k 4 k 3 m-1

61 Πλήρης Διασπορά Όταν το σύνολο των κλειδιών είναι στατικό μπορούμε να πετύχουμε άριστη επίδοση : O(1) χρόνο χειρότερης περίπτωσης ανά πράξη k 5 k 2 k 5 T 0 Ιδέα: Διασπορά δύο επιπέδων με χρήση καθολικής διασποράς ανά επίπεδο K k 2 k 1 k 4 k 1 k 3 k 4 k 3 m-1 2 ο επίπεδο : δευτερογενής πίνακας διασποράς για κάθεt[i] 1 ο επίπεδο

62 Πλήρης Διασπορά Όταν το σύνολο των κλειδιών είναι στατικό μπορούμε να πετύχουμε άριστη επίδοση : O(1) χρόνο χειρότερης περίπτωσης ανά πράξη k 5 k 2 k 5 T 0 Ιδέα: Διασπορά δύο επιπέδων με χρήση καθολικής διασποράς ανά επίπεδο K k 2 k 1 k 4 k 1 k 3 k 4 k 3 m-1 2 ο επίπεδο : δευτερογενής πίνακας διασποράς για κάθεt[i] 1 ο επίπεδο Στο 2 ο επίπεδο αποφεύγουμε τις συμπτώσεις

63 Δυναμικοί Πίνακες Διασποράς Συντελεστής πληρότητας Η απόδοση του κατακερματισμού επιδεινώνεται όσο αυξάνει ο συντελεστής Επιπλέον στην μέθοδο των μεταβλητών διευθύνσεων πρέπει

64 Δυναμικοί Πίνακες Διασποράς Συντελεστής πληρότητας Η απόδοση του κατακερματισμού επιδεινώνεται όσο αυξάνει ο συντελεστής Επιπλέον στην μέθοδο των μεταβλητών διευθύνσεων πρέπει Για να αντιμετωπίσουμε το παραπάνω ζήτημα μπορούμε να διπλασιάσουμε το μέγεθος του πίνακα διασποράς κάθε φορά που ο συντελεστής φθάνει μία συγκεκριμένη τιμή (π.χ. 50% για τη μέθοδο των μεταβλητών διευθύνσεων) T T

65 Δυναμικοί Πίνακες Διασποράς Συντελεστής πληρότητας Η απόδοση του κατακερματισμού επιδεινώνεται όσο αυξάνει ο συντελεστής Επιπλέον στην μέθοδο των μεταβλητών διευθύνσεων πρέπει Για να αντιμετωπίσουμε το παραπάνω ζήτημα μπορούμε να διπλασιάσουμε το μέγεθος του πίνακα διασποράς κάθε φορά που ο συντελεστής φθάνει μία συγκεκριμένη τιμή (π.χ. 50% για τη μέθοδο των μεταβλητών διευθύνσεων) T T Παίρνει (αναμενόμενο) χρόνο γιατί όλα τα στοιχεία πρέπει να εισαχθούν στο νέο πίνακα. Ευτυχώς ο διπλασιασμός δε συμβαίνει συχνά, αποτελεί καλή λύση όταν μας ενδιαφέρει να είναι χαμηλό το μέσο κόστος ανά πράξη (σε αντίθεση με το κόστος χειρότερης περίπτωσης)

Δομές Αναζήτησης. εισαγωγή αναζήτηση επιλογή. εισαγωγή. αναζήτηση

Δομές Αναζήτησης. εισαγωγή αναζήτηση επιλογή. εισαγωγή. αναζήτηση Δομές Αναζήτησης χειρότερη περίπτωση μέση περίπτωση εισαγωγή αναζήτηση επιλογή εισαγωγή αναζήτηση διατεταγμένος πίνακας διατεταγμένη λίστα μη διατεταγμένος πίνακας μη διατεταγμένη λίστα δένδρο αναζήτησης

Διαβάστε περισσότερα

Δομές Δεδομένων. Λουκάς Γεωργιάδης. http://www.cs.uoi.gr/~loukas/courses/data_structures/ email: loukas@cs.uoi.gr

Δομές Δεδομένων. Λουκάς Γεωργιάδης. http://www.cs.uoi.gr/~loukas/courses/data_structures/ email: loukas@cs.uoi.gr Δομές Δεδομένων http://www.cs.uoi.gr/~loukas/courses/data_structures/ Λουκάς Γεωργιάδης email: loukas@cs.uoi.gr Αλγόριθμος: Μέθοδος για την επίλυση ενός προβλήματος Δεδομένα: Σύνολο από πληροφορίες που

Διαβάστε περισσότερα

Ενότητα 6: Κατακερματισμός Ασκήσεις και Λύσεις

Ενότητα 6: Κατακερματισμός Ασκήσεις και Λύσεις ΗΥ2, Ενότητα : Ασκήσεις και Λύσεις Ενότητα : Κατακερματισμός Ασκήσεις και Λύσεις Άσκηση 1 Χρησιμοποιήστε τη συνάρτηση κατακερματισμού της διαίρεσης ως πρωτεύουσα συνάρτηση κατακερματισμού και τη συνάρτηση

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 8 KATAKEΡΜΑΤΙΣΜΟΣ (HASHING)

ΕΝΟΤΗΤΑ 8 KATAKEΡΜΑΤΙΣΜΟΣ (HASHING) ΕΝΟΤΗΤΑ 8 KATAKEΡΜΑΤΙΣΜΟΣ (HASHING) Κατακερµατισµός Στόχος Έχουµε ένα σύνολο από κλειδιά {Κ 0,, Κ n-1 } και θέλουµε να υλοποιήσουµε Insert() και LookUp() (ίσως και Delete()) απλά και γρήγορα στην πράξη.

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Κατακερματισμός. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Κατακερματισμός. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Κατακερματισμός Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Λεξικό Dictionary Ένα λεξικό (dictionary) είναι ένας αφηρημένος τύπος δεδομένων (ΑΤΔ) που διατηρεί

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 19 Hashing - Κατακερματισμός 1 / 23 Πίνακες απευθείας πρόσβασης (Direct Access Tables) Οι πίνακες απευθείας

Διαβάστε περισσότερα

Δομές Δεδομένων. Ενότητα 11: Τεχνικές Κατακερματισμού. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής.

Δομές Δεδομένων. Ενότητα 11: Τεχνικές Κατακερματισμού. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής. Ενότητα 11: Τεχνικές Κατακερματισμού Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Εισαγωγή ενός νέου στοιχείου. Επιλογή i-οστoύ στοιχείου : Εύρεση στοιχείου με το i-οστό μικρότερο κλειδί

Εισαγωγή ενός νέου στοιχείου. Επιλογή i-οστoύ στοιχείου : Εύρεση στοιχείου με το i-οστό μικρότερο κλειδί Δομές Αναζήτησης Χειριζόμαστε ένα σύνολο στοιχείων κλειδί από ολικά διατεταγμένο σύνολο όπου το κάθε στοιχείο έχει ένα Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου με

Διαβάστε περισσότερα

ΛΥΣΗ ΤΗΣ ΔΕΥΤΕΡΗΣ ΑΣΚΗΣΗΣ Όλγα Γκουντούνα

ΛΥΣΗ ΤΗΣ ΔΕΥΤΕΡΗΣ ΑΣΚΗΣΗΣ Όλγα Γκουντούνα ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΜΑΘΗΜΑ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΑΚΑΔ. ΕΤΟΣ 2011-12 ΔΙΔΑΣΚΟΝΤΕΣ Ιωάννης Βασιλείου Καθηγητής Τιμολέων Σελλής Καθηγητής Άσκηση 1

Διαβάστε περισσότερα

Διάλεξη 22: Τεχνικές Κατακερματισμού I (Hashing)

Διάλεξη 22: Τεχνικές Κατακερματισμού I (Hashing) Διάλεξη 22: Τεχνικές Κατακερματισμού I (Hashing) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ανασκόπηση Προβλήματος και Προκαταρκτικών Λύσεων Bit Διανύσματα Τεχνικές Κατακερματισμού & Συναρτήσεις

Διαβάστε περισσότερα

Τα δεδομένα (περιεχόμενο) μιας βάσης δεδομένων αποθηκεύεται στο δίσκο

Τα δεδομένα (περιεχόμενο) μιας βάσης δεδομένων αποθηκεύεται στο δίσκο Κατακερματισμός 1 Αποθήκευση εδομένων (σύνοψη) Τα δεδομένα (περιεχόμενο) μιας βάσης δεδομένων αποθηκεύεται στο δίσκο Παραδοσιακά, μία σχέση (πίνακας/στιγμιότυπο) αποθηκεύεται σε ένα αρχείο Αρχείο δεδομένων

Διαβάστε περισσότερα

Κατακερματισμός. 4/3/2009 Μ.Χατζόπουλος 1

Κατακερματισμός. 4/3/2009 Μ.Χατζόπουλος 1 Κατακερματισμός 4/3/2009 Μ.Χατζόπουλος 1 H ιδέα που βρίσκεται πίσω από την τεχνική του κατακερματισμού είναι να δίνεται μια συνάρτησης h, που λέγεται συνάρτηση κατακερματισμού ή παραγωγής τυχαίων τιμών

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΛΥΣΗ ΣΤΗΝ ΕΥΤΕΡΗ ΑΣΚΗΣΗ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΛΥΣΗ ΣΤΗΝ ΕΥΤΕΡΗ ΑΣΚΗΣΗ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΛΥΣΗ ΣΤΗΝ ΕΥΤΕΡΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑ ΒΑΣΕΙΣ Ε ΟΜΕΝΩΝ ΑΚΑ. ΕΤΟΣ 2012-13 Ι ΑΣΚΟΝΤΕΣ Ιωάννης Βασιλείου Καθηγητής, Τοµέας Τεχνολογίας

Διαβάστε περισσότερα

Δένδρα Αναζήτησης Πολλαπλής Διακλάδωσης

Δένδρα Αναζήτησης Πολλαπλής Διακλάδωσης Δένδρα Αναζήτησης Πολλαπλής Διακλάδωσης Δένδρα στα οποία κάθε κόμβος μπορεί να αποθηκεύει ένα ή περισσότερα κλειδιά. Κόμβος με d διακλαδώσεις : k 1 k 2 k 3 k 4 d-1 διατεταγμένα κλειδιά d διατεταγμένα παιδιά

Διαβάστε περισσότερα

Διάλεξη 23: Τεχνικές Κατακερματισμού II (Hashing)

Διάλεξη 23: Τεχνικές Κατακερματισμού II (Hashing) ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 23: Τεχνικές Κατακερματισμού II (Hashing) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Διαχείριση Συγκρούσεων με Ανοικτή Διεύθυνση a) Linear

Διαβάστε περισσότερα

Πληροφορική 2. Δομές δεδομένων και αρχείων

Πληροφορική 2. Δομές δεδομένων και αρχείων Πληροφορική 2 Δομές δεδομένων και αρχείων 1 2 Δομή Δεδομένων (data structure) Δομή δεδομένων είναι μια συλλογή δεδομένων που έχουν μεταξύ τους μια συγκεκριμένη σχέση Παραδείγματα δομών δεδομένων Πίνακες

Διαβάστε περισσότερα

Αριθμοθεωρητικοί Αλγόριθμοι

Αριθμοθεωρητικοί Αλγόριθμοι Αλγόριθμοι που επεξεργάζονται μεγάλους ακέραιους αριθμούς Μέγεθος εισόδου: Αριθμός bits που απαιτούνται για την αναπαράσταση των ακεραίων. Έστω ότι ένας αλγόριθμος λαμβάνει ως είσοδο έναν ακέραιο Ο αλγόριθμος

Διαβάστε περισσότερα

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή Ισορροπημένα Δένδρα Μπορούμε να επιτύχουμε για κάθε λειτουργία; χρόνο εκτέλεσης Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή μετά από Περιστροφές x αριστερή περιστροφή από το x y α β y

Διαβάστε περισσότερα

Προγραμματιστικές Τεχνικές

Προγραμματιστικές Τεχνικές Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αγρονόμων Τοπογράφων Μηχανικών Προγραμματιστικές Τεχνικές Βασίλειος Βεσκούκης Δρ. Ηλεκτρολόγος Μηχανικός & Μηχανικός Υπολογιστών ΕΜΠ Επικ. Καθηγητής ΕΜΠ v.vescoukis@cs.ntua.gr

Διαβάστε περισσότερα

Άσκηση 1. με κόκκινο χρώμα σημειώνονται οι κρίσιμοι κόμβοι

Άσκηση 1. με κόκκινο χρώμα σημειώνονται οι κρίσιμοι κόμβοι Άσκηση 1 α) Παρουσιάστε τα AVL δέντρα που προκύπτουν από τις εισαγωγές των κλειδιών 1, 4, 9,, 7,,, 1, 4 και σε ένα αρχικά άδειο AVL δέντρο με κόκκινο χρώμα σημειώνονται οι κρίσιμοι κόμβοι +4 +9 + 1 1 1

Διαβάστε περισσότερα

viii 20 Δένδρα van Emde Boas 543

viii 20 Δένδρα van Emde Boas 543 Περιεχόμενα Πρόλογος xi I Θεμελιώδεις έννοιες Εισαγωγή 3 1 Ο ρόλος των αλγορίθμων στις υπολογιστικές διαδικασίες 5 1.1 Αλγόριθμοι 5 1.2 Οι αλγόριθμοι σαν τεχνολογία 12 2 Προκαταρκτικές έννοιες και παρατηρήσεις

Διαβάστε περισσότερα

Επιµέλεια Θοδωρής Πιερράτος

Επιµέλεια Θοδωρής Πιερράτος εδοµένα οµές δεδοµένων και αλγόριθµοι Τα δεδοµένα είναι ακατέργαστα γεγονότα. Η συλλογή των ακατέργαστων δεδοµένων και ο συσχετισµός τους δίνει ως αποτέλεσµα την πληροφορία. Η µέτρηση, η κωδικοποίηση,

Διαβάστε περισσότερα

Αντισταθμιστική ανάλυση

Αντισταθμιστική ανάλυση Αντισταθμιστική ανάλυση Θεωρήστε έναν αλγόριθμο Α που χρησιμοποιεί μια δομή δεδομένων Δ : Κατά τη διάρκεια εκτέλεσης του Α η Δ πραγματοποιεί μία ακολουθία από πράξεις. Παράδειγμα: Θυμηθείτε το πρόβλημα

Διαβάστε περισσότερα

Κεφάλαιο 13. Αποθήκευση σε ίσκους, Βασικές οµέςαρχείων, και Κατακερµατισµός. ιαφάνεια 13-1

Κεφάλαιο 13. Αποθήκευση σε ίσκους, Βασικές οµέςαρχείων, και Κατακερµατισµός. ιαφάνεια 13-1 ιαφάνεια 13-1 Κεφάλαιο 13 Αποθήκευση σε ίσκους, Βασικές οµέςαρχείων, και Κατακερµατισµός ίαβλος, Επιµ.Μ.Χατζόπουλος 1 Γιατί θα µιλήσουµε Μονάδες Αποθήκευσης ίσκων Αρχεία Εγγραφών Πράξεις σε αρχεία Αρχεία

Διαβάστε περισσότερα

3 ΟΥ και 9 ΟΥ ΚΕΦΑΛΑΙΟΥ

3 ΟΥ και 9 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 3 ΟΥ και 9 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΝΑΚΩΝ ΣΤΟΙΒΑΣ ΚΑΙ ΟΥΡΑΣ Α ΜΕΡΟΣ ΘΕΩΡΙΑ ΓΙΑ ΠΙΝΑΚΕΣ 3.1

Διαβάστε περισσότερα

Ευρετήρια. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Ευρετήρια. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Ευρετήρια Ευαγγελία Πιτουρά 1 τιμή γνωρίσματος Ευρετήρια Ένα ευρετήριο (index) είναι μια βοηθητική δομή αρχείου που κάνει πιο αποδοτική την αναζήτηση μιας εγγραφής σε ένα αρχείο Το ευρετήριο καθορίζεται

Διαβάστε περισσότερα

Δομές Δεδομένων (Data Structures)

Δομές Δεδομένων (Data Structures) Δομές Δεδομένων (Data Structures) Γραμμικές Λίστες Βασικές Έννοιες Βασικές Έννοιες. Αναπαράσταση με τύπο και με δείκτη. Γραμμικές Λίστες. Βασικές Λειτουργίες. Δομές Δεδομένων: Βασικές Έννοιες Αντικείμενο

Διαβάστε περισσότερα

Ανάλυση αλγορίθμων. Χρόνος εκτέλεσης: Αναμενόμενη περίπτωση. - απαιτεί γνώση της κατανομής εισόδου

Ανάλυση αλγορίθμων. Χρόνος εκτέλεσης: Αναμενόμενη περίπτωση. - απαιτεί γνώση της κατανομής εισόδου Ανάλυση αλγορίθμων Παράμετροι απόδοσης ενός αλγόριθμου: Χρόνος εκτέλεσης Απαιτούμενοι πόροι, π.χ. μνήμη, επικοινωνία (π.χ. σε κατανεμημένα συστήματα) Προσπάθεια υλοποίησης Ανάλυση της απόδοσης Θεωρητική

Διαβάστε περισσότερα

Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις

Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις Άσκηση 1 Γράψτε μία αναδρομική συνάρτηση που θα παίρνει ως παράμετρο ένα δείκτη στη ρίζα ενός δυαδικού δένδρου και θα επιστρέφει το βαθμό του

Διαβάστε περισσότερα

Προηγμένη Ευρετηρίαση Δεδομένων (ΠΜΣ) Ενδεικτικές ερωτήσεις-θέματα για την εξέταση της θεωρίας

Προηγμένη Ευρετηρίαση Δεδομένων (ΠΜΣ) Ενδεικτικές ερωτήσεις-θέματα για την εξέταση της θεωρίας Προηγμένη Ευρετηρίαση Δεδομένων (ΠΜΣ) Ενδεικτικές ερωτήσεις-θέματα για την εξέταση της θεωρίας 1. Πως δομούνται οι ιεραρχικές μνήμες; Αναφέρετε τα διάφορα επίπεδά τους από τον επεξεργαστή μέχρι τη δευτερεύουσα

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 5: Αναδρομικές σχέσεις - Υπολογισμός Αθροισμάτων Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

εισαγωγικές έννοιες Παύλος Εφραιμίδης Δομές Δεδομένων και

εισαγωγικές έννοιες Παύλος Εφραιμίδης Δομές Δεδομένων και Παύλος Εφραιμίδης 1 περιεχόμενα ενθετική ταξινόμηση ανάλυση αλγορίθμων σχεδίαση αλγορίθμων 2 ενθετική ταξινόμηση 3 ενθετική ταξινόμηση Βασική αρχή: Επιλέγει ένα-έναταστοιχείατηςμηταξινομημένης ακολουθίας

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Ταξινόμηση. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Ταξινόμηση. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Ταξινόμηση Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Το πρόβλημα Είσοδος n αντικείμενα a 1, a 2,..., a n με κλειδιά (συνήθως σε ένα πίνακα, ή λίστα, κ.τ.λ)

Διαβάστε περισσότερα

Φροντιστήριο Αποθήκευση σε δίσκο, βασικές οργανώσεις αρχείων κατακερματισμός και δομές ευρετηρίων για αρχεία

Φροντιστήριο Αποθήκευση σε δίσκο, βασικές οργανώσεις αρχείων κατακερματισμός και δομές ευρετηρίων για αρχεία ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Ι Φροντιστήριο 17-1-2011 Αποθήκευση σε δίσκο, βασικές οργανώσεις αρχείων κατακερματισμός και δομές ευρετηρίων για αρχεία Θεωρία Άτρακτος/αυλάκι : ομόκεντροι κύκλοι στον δίσκο Κύλινδρος:

Διαβάστε περισσότερα

Ευρετήρια. Ευρετήρια. Βάσεις Δεδομένων 2009-2010: Ευρετήρια 1

Ευρετήρια. Ευρετήρια. Βάσεις Δεδομένων 2009-2010: Ευρετήρια 1 Ευρετήρια 1 Ευρετήρια Ένα ευρετήριο (index) είναι μια βοηθητική δομή αρχείου που κάνει πιο αποδοτική την αναζήτηση μιας εγγραφής σε ένα αρχείο Το ευρετήριο καθορίζεται (συνήθως) σε ένα γνώρισμα του αρχείου

Διαβάστε περισσότερα

Πληροφορική 2. Αλγόριθμοι

Πληροφορική 2. Αλγόριθμοι Πληροφορική 2 Αλγόριθμοι 1 2 Τι είναι αλγόριθμος; Αλγόριθμος είναι ένα διατεταγμένο σύνολο από σαφή βήματα το οποίο παράγει κάποιο αποτέλεσμα και τερματίζεται σε πεπερασμένο χρόνο. Ο αλγόριθμος δέχεται

Διαβάστε περισσότερα

3 ο ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ - ΠΙΝΑΚΕΣ

3 ο ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ - ΠΙΝΑΚΕΣ Δημοκρίτειο Πανεπιστήμιο Θράκης Πολυτεχνική Σχολή Τμήμα Μηχανικών Παραγωγής & Διοίκησης Ακαδ. έτος 2016-2017 Τομέας Συστημάτων Παραγωγής Εξάμηνο A Αναπληρωτής Καθηγητής Στέφανος Δ. Κατσαβούνης 23 ΝΟΕ 2016

Διαβάστε περισσότερα

ΚΑΤΑΚΕΡΜΑΤΙΣΜΟΣ HASHING

ΚΑΤΑΚΕΡΜΑΤΙΣΜΟΣ HASHING ΚΑΤΑΚΕΡΜΑΤΙΣΜΟΣ HASHING ΣΑΛΤΟΓΙΑΝΝΗ ΑΘΑΝΑΣΙΑ saltogiann@ceid.upatras.gr ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΤΟ ΠΡOΒΛΗΜΑ ΤΟΥ ΚΑΤΑΚΕΡΜΑΤΙΣΜΟY Θέλουμε τα δεδομένα που διαθέτουμε να μπορούν να αποθηκευτούν σε κάποιο πίνακα ή

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ ΚΕΦΑΛΑΙΟ ΔΙΑΤΑΞΕΙΣ ΜΕΤΑΘΕΣΕΙΣ ΣΥΝΔΥΑΣΜΟΙ Εισαγωγή. Οι σχηματισμοί που προκύπτουν με την επιλογή ενός συγκεκριμένου αριθμού στοιχείων από το ίδιο σύνολο καλούνται διατάξεις αν μας ενδιαφέρει η σειρά καταγραφή

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 1 Εισαγωγή 1 / 14 Δομές Δεδομένων και Αλγόριθμοι Δομή Δεδομένων Δομή δεδομένων είναι ένα σύνολο αποθηκευμένων

Διαβάστε περισσότερα

Γ ε ν ι κ ό Λ ύ κ ε ι ο Ε λ ε υ θ ε ρ ο ύ π ο λ η ς. Α λ γ ό ρ ι θ μ ο ι

Γ ε ν ι κ ό Λ ύ κ ε ι ο Ε λ ε υ θ ε ρ ο ύ π ο λ η ς. Α λ γ ό ρ ι θ μ ο ι Α λ γ ό ρ ι θ μ ο ι Αριθμητικοί τελεστές Οι αριθμητικοί τελεστές είναι: πρόσθεση, αφαίρεση, πολλαπλασιασμός και διαίρεση +,-,*,/ ύψωση σε δύναμη ^ πηλίκο ακέραιης διαίρεσης δύο ακεραίων αριθμών div υπόλοιπο

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 4 ΣΥΝΟΛΑ - ΛΕΞΙΚΑ

ΕΝΟΤΗΤΑ 4 ΣΥΝΟΛΑ - ΛΕΞΙΚΑ ΕΝΟΤΗΤΑ 4 ΣΥΝΟΛΑ - ΛΕΞΙΚΑ ΗΥ240 - Παναγιώτα Φατούρου Σύνολα (Sets) Τα µέλη ενός συνόλου προέρχονται από κάποιο χώρο U αντικειµένων/στοιχείων (π.χ., σύνολα αριθµών, λέξεων, ζευγών αποτελούµενων από έναν

Διαβάστε περισσότερα

Ευρετήρια. Ευρετήρια. Βάσεις Δεδομένων : Ευρετήρια 1

Ευρετήρια. Ευρετήρια. Βάσεις Δεδομένων : Ευρετήρια 1 Ευρετήρια 1 Ευρετήρια Ένα ευρετήριο (index) είναι μια βοηθητική δομή αρχείου που κάνει πιο αποδοτική την αναζήτηση μιας εγγραφής σε ένα αρχείο Το ευρετήριο καθορίζεται (συνήθως) σε ένα γνώρισμα του αρχείου

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ Α : ΘΕΜΑΤΑ ΒΑΣΗΣ 1. ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ...11 2. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ...30

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ Α : ΘΕΜΑΤΑ ΒΑΣΗΣ 1. ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ...11 2. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ...30 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ Α : ΘΕΜΑΤΑ ΒΑΣΗΣ 1. ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ...11 1.1 Τι είναι Πληροφορική;...11 1.1.1 Τι είναι η Πληροφορική;...12 1.1.2 Τι είναι ο Υπολογιστής;...14 1.1.3 Τι είναι το Υλικό και το

Διαβάστε περισσότερα

Τι είναι αλγόριθμος; Υποπρογράμματα (υποαλγόριθμοι) Βασικές αλγοριθμικές δομές

Τι είναι αλγόριθμος; Υποπρογράμματα (υποαλγόριθμοι) Βασικές αλγοριθμικές δομές Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16 Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Τι είναι

Διαβάστε περισσότερα

Στοιχειώδεις Δομές Δεδομένων

Στοιχειώδεις Δομές Δεδομένων Στοιχειώδεις Δομές Δεδομένων Τύποι δεδομένων στη Java Ακέραιοι (int, long) Αριθμοί κινητής υποδιαστολής (float, double) Χαρακτήρες (char) Δυαδικοί (boolean) Από τους παραπάνω μπορούμε να φτιάξουμε σύνθετους

Διαβάστε περισσότερα

Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον

Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον ΚΕΦΑΛΑΙΑ 3 και 9 ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ ΠΙΝΑΚΕΣ Δεδομένα αφαιρετική αναπαράσταση της πραγματικότητας και συνεπώς μία απλοποιημένη όψη της δηλαδή.

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες...

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες... Περιεχόμενα Πρόλογος... 5 Κεφάλαιο Βασικές αριθμητικές πράξεις... 5. Τέσσερις πράξεις... 5. Σύστημα πραγματικών αριθμών... 5. Γραφική αναπαράσταση πραγματικών αριθμών... 6.4 Οι ιδιότητες της πρόσθεσης

Διαβάστε περισσότερα

Οι βασικές λειτουργίες (ή πράξεις) που γίνονται σε μια δομή δεδομένων είναι:

Οι βασικές λειτουργίες (ή πράξεις) που γίνονται σε μια δομή δεδομένων είναι: ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Μια δομή δεδομένων στην πληροφορική, συχνά αναπαριστά οντότητες του φυσικού κόσμου στον υπολογιστή. Για την αναπαράσταση αυτή, δημιουργούμε πρώτα ένα αφηρημένο μοντέλο στο οποίο προσδιορίζονται

Διαβάστε περισσότερα

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης 1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης Στη συγκεκριμένη ενότητα εξετάζουμε θέματα σχετικά με την αριθμητική πεπερασμένης ακρίβειας που χρησιμοποιούν οι σημερινοί υπολογιστές και τα

Διαβάστε περισσότερα

Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα:

Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Τεχνικές Κατακερµατισµού Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Τεχνικές Κατακερµατισµού ιαχείριση Συγκρούσεων µε Αλυσίδωση ιαχείριση Συγκρούσεων µε Ανοικτή ιεύθυνση ιπλός Κατακερµατισµός,

Διαβάστε περισσότερα

Copyright 2007 Ramez Elmasri and Shamkant B. Navathe, Ελληνική Έκδοση, Δίαβλος, Επιμέλεια Μ.Χατζόπουλος Διαφάνεια 14-1

Copyright 2007 Ramez Elmasri and Shamkant B. Navathe, Ελληνική Έκδοση, Δίαβλος, Επιμέλεια Μ.Χατζόπουλος Διαφάνεια 14-1 Δίαβλος, Επιμέλεια Μ.Χατζόπουλος Διαφάνεια 14-1 Κεφάλαιο 14 Δομές Ευρετηρίων για Αρχεία Copyright 2007 Ramez Elmasri and Shamkant B. Navathe Ελληνική Έκδοση, Διαβλος, Επιμέλεια Μ.Χατζόπουλος Θα μιλήσουμε

Διαβάστε περισσότερα

6. Αφού δημιουργήσετε ένα πίνακα 50 θέσεων με ονόματα μαθητών να τον ταξινομήσετε αλφαβητικά με την μέθοδο της φυσαλίδας

6. Αφού δημιουργήσετε ένα πίνακα 50 θέσεων με ονόματα μαθητών να τον ταξινομήσετε αλφαβητικά με την μέθοδο της φυσαλίδας Ανάπτυξη εφαρμογών Γ' Λυκείου Τεχνολογικής κατεύθυνσης ΑΣΚΗΣΕΙΣ ΜΕ ΜΟΝΟΔΙΑΣΤΑΤΟΥΣ ΠΙΝΑΚΕΣ ΒΑΣΙΚΕΣ 1. Να γράψετε πρόγραμμα το οποίο:3. Να γράψετε αλγόριθμο ή πρόγραμμα το οποίο: α. Θα δημιουργεί ένα πίνακα

Διαβάστε περισσότερα

Οι δυναμικές δομές δεδομένων στην ΑΕΠΠ

Οι δυναμικές δομές δεδομένων στην ΑΕΠΠ Καθηγητής Πληροφορικής Απαγορεύεται η αναπαραγωγή των σημειώσεων χωρίς αναφορά στην πηγή Οι σημειώσεις, αν και βασίζονται στο διδακτικό πακέτο, αποτελούν προσωπική θεώρηση της σχετικής ύλης και όχι επίσημο

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 22 Counting sort, bucket sort και radix sort 1 / 16 Ιδιότητες αλγορίθμων ταξινόμησης ευστάθεια (stable

Διαβάστε περισσότερα

Ενότητα 6 Κατακερµατισµός

Ενότητα 6 Κατακερµατισµός Ενότητα 6 Κατακερµατισµός ΗΥ24 - Παναγιώτα Φατούρου Κατακερµατισµός - Αρχές ειτουργίας Έστω S U ένα σύνολο κλειδιών προς αποθήκευση. Βασική Ιδέα «Αν το κλειδί k S ενός στοιχείου s ήταν ακέραιος Type LookUp(array

Διαβάστε περισσότερα

Κεφάλαιο 13. Αποθήκευση σε Δίσκους, Βασικές Δομές Αρχείων, και Κατακερματισμός

Κεφάλαιο 13. Αποθήκευση σε Δίσκους, Βασικές Δομές Αρχείων, και Κατακερματισμός Κεφάλαιο 13 Αποθήκευση σε Δίσκους, Βασικές Δομές Αρχείων, και Κατακερματισμός Δίαβλος, Επιμ.Μ.Χατζόπουλος Γιατί θα μιλήσουμε Μονάδες Αποθήκευσης Δίσκων Αρχεία Εγγραφών Πράξεις σε αρχεία Αρχεία Σωρού Ταξινομημένα

Διαβάστε περισσότερα

Ενότητα 6 Κατακερµατισµός

Ενότητα 6 Κατακερµατισµός Ενότητα 6 Κατακερµατισµός ΗΥ240 - Παναγιώτα Φατούρου Κατακερµατισµός - Αρχές ειτουργίας Έστω U το σύνολο των φυσικών αριθµών και S U ένα σύνολο κλειδιών προς αποθήκευση. Βασική Ιδέα «Αφού το κλειδί k S

Διαβάστε περισσότερα

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή Ισορροπημένα Δένδρα Μπορούμε να επιτύχουμε για κάθε λειτουργία; χρόνο εκτέλεσης Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή μετά από Περιστροφές x αριστερή περιστροφή από το x y α β y

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών. Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι

Εισαγωγή στην επιστήμη των υπολογιστών. Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι Εισαγωγή στην επιστήμη των υπολογιστών Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι 1 Έννοια Ανεπίσημα, ένας αλγόριθμος είναι μια βήμα προς βήμα μέθοδος για την επίλυση ενός προβλήματος ή την διεκπεραίωση

Διαβάστε περισσότερα

Ενότητα 3. Στρώµα Ζεύξης: Αρχές Λειτουργίας & Το Υπόδειγµα του Ethernet

Ενότητα 3. Στρώµα Ζεύξης: Αρχές Λειτουργίας & Το Υπόδειγµα του Ethernet Ενότητα 3 Στρώµα Ζεύξης: Αρχές Λειτουργίας & Το Υπόδειγµα του Ethernet Εισαγωγή στις βασικές έννοιες του στρώµατος Ζεύξης (Data Link Layer) στα δίκτυα ΗΥ Γενικές Αρχές Λειτουργίας ηµιουργία Πλαισίων Έλεγχος

Διαβάστε περισσότερα

Επιλέξτε Σωστό ή Λάθος για καθένα από τα παρακάτω:

Επιλέξτε Σωστό ή Λάθος για καθένα από τα παρακάτω: Επιλέξτε Σωστό ή Λάθος για καθένα από τα παρακάτω: 1ο ΓΕΛ Καστοριάς Βασικές Έννοιες Αλγορίθμων Δομή Ακολουθίας (κεφ. 2 και 7 σχολικού βιβλίου) 1. Οι μεταβλητές αντιστοιχίζονται από τον μεταγλωττιστή κάθε

Διαβάστε περισσότερα

Οργάνωση Αρχείων. Βάσεις Δεδομένων : Οργάνωση Αρχείων 1. Blobs

Οργάνωση Αρχείων. Βάσεις Δεδομένων : Οργάνωση Αρχείων 1. Blobs Αρχεία Τα δεδομένα συνήθως αποθηκεύονται σε αρχεία στο δίσκο Οργάνωση Αρχείων Η μεταφορά δεδομένων από το δίσκο στη μνήμη και από τη μνήμη στο δίσκο γίνεται σε μονάδες blocks Βασικός στόχος η ελαχιστοποίηση

Διαβάστε περισσότερα

Δυναμικά Πολυεπίπεδα Ευρετήρια (Β-δένδρα) Μ.Χατζόπουλος 1

Δυναμικά Πολυεπίπεδα Ευρετήρια (Β-δένδρα) Μ.Χατζόπουλος 1 Δυναμικά Πολυεπίπεδα Ευρετήρια (Β-δένδρα) Μ.Χατζόπουλος 1 Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ.Χατζόπουλος 2 Δένδρο αναζήτησης είναι ένας ειδικός τύπος δένδρου που χρησιμοποιείται για να καθοδηγήσει την αναζήτηση μιας

Διαβάστε περισσότερα

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Πληροφορική II. Ενότητα 6 : Δομές αρχείων. Δρ. Γκόγκος Χρήστος

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Πληροφορική II. Ενότητα 6 : Δομές αρχείων. Δρ. Γκόγκος Χρήστος 1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Πληροφορική II Ενότητα 6 : Δομές αρχείων Δρ. Γκόγκος Χρήστος 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Τμήμα Χρηματοοικονομικής & Ελεγκτικής

Διαβάστε περισσότερα

Τα δεδομένα συνήθως αποθηκεύονται σε αρχεία στο δίσκο

Τα δεδομένα συνήθως αποθηκεύονται σε αρχεία στο δίσκο Οργάνωση Αρχείων 1 Αρχεία Τα δεδομένα συνήθως αποθηκεύονται σε αρχεία στο δίσκο Η μεταφορά δεδομένων από το δίσκο στη μνήμη και από τη μνήμη στο δίσκο γίνεται σε μονάδες blocks Βασικός στόχος η ελαχιστοποίηση

Διαβάστε περισσότερα

Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ

Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΕΝΟΤΗΤΑ Μ1 ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ Εκπαιδευτής: Γ. Π. ΠΑΤΣΗΣ, Επικ. Καθηγητής, Τμήμα Ηλεκτρονικών Μηχανικών, ΤΕΙ Αθήνας ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ 1. Ποια είναι η βάση

Διαβάστε περισσότερα

Πρόλογος 1. 1 Μαθηµατικό υπόβαθρο 9

Πρόλογος 1. 1 Μαθηµατικό υπόβαθρο 9 Πρόλογος 1 Μαθηµατικό υπόβαθρο 7 1 Μαθηµατικό υπόβαθρο 9 1.1 Η αριθµητική υπολοίπων.............. 10 1.2 Η πολυωνυµική αριθµητική............ 14 1.3 Θεωρία πεπερασµένων οµάδων και σωµάτων.... 17 1.4 Πράξεις

Διαβάστε περισσότερα

Περιεχόμενα. Περιεχόμενα

Περιεχόμενα. Περιεχόμενα Περιεχόμενα xv Περιεχόμενα 1 Αρχές της Java... 1 1.1 Προκαταρκτικά: Κλάσεις, Τύποι και Αντικείμενα... 2 1.1.1 Βασικοί Τύποι... 5 1.1.2 Αντικείμενα... 7 1.1.3 Τύποι Enum... 14 1.2 Μέθοδοι... 15 1.3 Εκφράσεις...

Διαβάστε περισσότερα

1 Ο Λύκειο Ρόδου. Β ΓΕΛ ΕισΑρχΕπ Η/Υ. Γεωργαλλίδης Δημήτρης

1 Ο Λύκειο Ρόδου. Β ΓΕΛ ΕισΑρχΕπ Η/Υ. Γεωργαλλίδης Δημήτρης 1 Ο Λύκειο Ρόδου Β ΓΕΛ ΕισΑρχΕπ Η/Υ Γεωργαλλίδης Δημήτρης Μάθημα 1 Παράγραφοι: 2.2.1 ορισμός αλγορίθμου (σελ.19) 2.2.7 Εντολές και δομές αλγορίθμου (σελ.. 31-34) 34) ΑΛΓΟΡΙΘΜΟΣ Πεπερασμένη σειρά βημάτων

Διαβάστε περισσότερα

Δομές Δεδομένων. Ενότητα 4: Ο ΑΤΔ Λίστα & Υλοποίηση Λίστας με σειριακή αποθήκευση- Ο ΑΤΔ Συνδεδεμένη Λίστα- Υλοποίηση ΑΤΔ Συνδεδεμένη Λίστα με πίνακα

Δομές Δεδομένων. Ενότητα 4: Ο ΑΤΔ Λίστα & Υλοποίηση Λίστας με σειριακή αποθήκευση- Ο ΑΤΔ Συνδεδεμένη Λίστα- Υλοποίηση ΑΤΔ Συνδεδεμένη Λίστα με πίνακα Ενότητα 4: Ο ΑΤΔ Λίστα & Υλοποίηση Λίστας με σειριακή αποθήκευση- Ο ΑΤΔ Συνδεδεμένη Λίστα- Υλοποίηση ΑΤΔ Συνδεδεμένη Λίστα με πίνακα Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 3: Ασυμπτωτικός συμβολισμός Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βασικές Έννοιες Προγραμματισμού. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βασικές Έννοιες Προγραμματισμού. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Βασικές Έννοιες Προγραμματισμού Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Αριθμητικά συστήματα Υπάρχουν 10 τύποι ανθρώπων: Αυτοί

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

2.1. Εντολές. 2.2. Σχόλια. 2.3. Τύποι Δεδομένων

2.1. Εντολές. 2.2. Σχόλια. 2.3. Τύποι Δεδομένων 2 Βασικές Εντολές 2.1. Εντολές Οι στην Java ακολουθούν το πρότυπο της γλώσσας C. Έτσι, κάθε εντολή που γράφουμε στη Java θα πρέπει να τελειώνει με το ερωτηματικό (;). Όπως και η C έτσι και η Java επιτρέπει

Διαβάστε περισσότερα

Ανάπτυξη και Σχεδίαση Λογισμικού

Ανάπτυξη και Σχεδίαση Λογισμικού Ανάπτυξη και Σχεδίαση Λογισμικού Η γλώσσα προγραμματισμού C Γεώργιος Δημητρίου Βασικά Στοιχεία Το αλφάβητο της C Οι βασικοί τύποι της C Δηλώσεις μεταβλητών Είσοδος/Έξοδος Βασικές εντολές της C Αλφάβητο

Διαβάστε περισσότερα

3. Προσομοίωση ενός Συστήματος Αναμονής.

3. Προσομοίωση ενός Συστήματος Αναμονής. 3. Προσομοίωση ενός Συστήματος Αναμονής. 3.1. Διατύπωση του Προβλήματος. Τα συστήματα αναμονής (queueing systems), βρίσκονται πίσω από τα περισσότερα μοντέλα μελέτης της απόδοσης υπολογιστικών συστημάτων,

Διαβάστε περισσότερα

C: Από τη Θεωρία στην Εφαρµογή 2 ο Κεφάλαιο

C: Από τη Θεωρία στην Εφαρµογή 2 ο Κεφάλαιο C: Από τη Θεωρία στην Εφαρµογή Κεφάλαιο 2 ο Τύποι Δεδοµένων Δήλωση Μεταβλητών Έξοδος Δεδοµένων Γ. Σ. Τσελίκης Ν. Δ. Τσελίκας Μνήµη και Μεταβλητές Σχέση Μνήµης Υπολογιστή και Μεταβλητών Η µνήµη (RAM) ενός

Διαβάστε περισσότερα

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 12: Δέντρα ΙΙ -Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Δυαδικά Δένδρα - Δυαδικά Δένδρα Αναζήτησης(ΔΔΑ) - Εύρεση Τυχαίου, Μέγιστου, Μικρότερου στοιχείου - Εισαγωγή

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΚΕΦΑΛΑΙΟ ΟΙ ΥΠΟΛΟΓΙΣΤΕΣ ΑΠΟ ΤΗΝ ΑΡΧΑΙΟΤΗΤΑ ΜΕΧΡΙ ΣΗΜΕΡΑ Ιστορική αναδρομή Υπολογιστικές μηχανές

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΚΕΦΑΛΑΙΟ ΟΙ ΥΠΟΛΟΓΙΣΤΕΣ ΑΠΟ ΤΗΝ ΑΡΧΑΙΟΤΗΤΑ ΜΕΧΡΙ ΣΗΜΕΡΑ Ιστορική αναδρομή Υπολογιστικές μηχανές ΠΕΡΙΕΧΟΜΕΝΑ 1 ΚΕΦΑΛΑΙΟ 1... 11 ΟΙ ΥΠΟΛΟΓΙΣΤΕΣ ΑΠΟ ΤΗΝ ΑΡΧΑΙΟΤΗΤΑ ΜΕΧΡΙ... 11 ΣΗΜΕΡΑ... 11 1.1 Ιστορική αναδρομή... 13 1.1.1 Υπολογιστικές μηχανές στην αρχαιότητα... 13 1.1.2 17ο έως τον 19ο... 14 1.1.3

Διαβάστε περισσότερα

Η πρώτη παράμετρος είναι ένα αλφαριθμητικό μορφοποίησης

Η πρώτη παράμετρος είναι ένα αλφαριθμητικό μορφοποίησης Η συνάρτηση printf() Η συνάρτηση printf() χρησιμοποιείται για την εμφάνιση δεδομένων στο αρχείο εξόδου stdout (standard output stream), το οποίο εξ ορισμού συνδέεται με την οθόνη Η συνάρτηση printf() δέχεται

Διαβάστε περισσότερα

5. Γεννήτριες Τυχαίων Αριθµών.

5. Γεννήτριες Τυχαίων Αριθµών. 5. Γεννήτριες Τυχαίων Αριθµών. 5.1. Εισαγωγή. Στο Κεφάλαιο αυτό θα δούµε πώς µπορούµε να δηµιουργήσουµε τυχαίους αριθµούς από την οµοιόµορφη κατανοµή στο διάστηµα [0,1]. Την κατανοµή αυτή, συµβολίζουµε

Διαβάστε περισσότερα

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Κατακερµατισµός Κεφάλαιο 14. Ε. Μαρκάκης Επίκουρος Καθηγητής

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Κατακερµατισµός Κεφάλαιο 14. Ε. Μαρκάκης Επίκουρος Καθηγητής ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Κατακερµατισµός Κεφάλαιο 14 Ε. Μαρκάκης Επίκουρος Καθηγητής Περίληψη Εισαγωγή στον κατακερµατισµό Συναρτήσεις κατακερµατισµού Χωριστή αλυσίδωση Γραµµική διερεύνηση Διπλός κατακερµατισµός

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Συνολικό Πλαίσιο Ασφάλεια ΠΕΣ Εμπιστευτικότητα Ακεραιότητα Πιστοποίηση Μη-αποποίηση Κρυπτογράφηση

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών

Εισαγωγή στην επιστήμη των υπολογιστών Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 3ο Αναπαράσταση Αριθμών www.di.uoa.gr/~organosi 1 Δεκαδικό και Δυαδικό Δεκαδικό σύστημα 2 3 Δεκαδικό και Δυαδικό Δυαδικό Σύστημα

Διαβάστε περισσότερα

Διάλεξη 14: Δέντρα IV B Δένδρα. Διδάσκων: Παναγιώτης Ανδρέου

Διάλεξη 14: Δέντρα IV B Δένδρα. Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 14: Δέντρα IV B Δένδρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: 2 3 Δένδρα, Εισαγωγή και άλλες πράξεις Άλλα Δέντρα: Β δένδρα, Β+ δέντρα, R δέντρα Διδάσκων: Παναγιώτης Ανδρέου ΕΠΛ231

Διαβάστε περισσότερα

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Γ' ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 26 ΑΠΡΙΛΙΟΥ 2012 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΛΥΣΕΙΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: 7 Α1. Κάθε σωστή απάντηση

Διαβάστε περισσότερα

Εισαγωγή στους Αλγόριθµους. Αλγόριθµοι. Ιστορικά Στοιχεία. Ο πρώτος Αλγόριθµος. Παραδείγµατα Αλγορίθµων. Τι είναι Αλγόριθµος

Εισαγωγή στους Αλγόριθµους. Αλγόριθµοι. Ιστορικά Στοιχεία. Ο πρώτος Αλγόριθµος. Παραδείγµατα Αλγορίθµων. Τι είναι Αλγόριθµος Εισαγωγή στους Αλγόριθµους Αλγόριθµοι Τι είναι αλγόριθµος; Τι µπορεί να υπολογίσει ένας αλγόριθµος; Πως αξιολογείται ένας αλγόριθµος; Παύλος Εφραιµίδης pefraimi@ee.duth.gr Αλγόριθµοι Εισαγωγικές Έννοιες

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Ανάλυση Αλγορίθμων Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ανάλυση Αλγορίθμων Η ανάλυση αλγορίθμων περιλαμβάνει τη διερεύνηση του τρόπου

Διαβάστε περισσότερα

Διάλεξη 23: Τεχνικές Κατακερματισμού II (Hashing)

Διάλεξη 23: Τεχνικές Κατακερματισμού II (Hashing) Διάλεξη 23: Τεχνικές Κατακερματισμού II (Hashing) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Διαχείριση Συγκρούσεων με Ανοικτή Διεύθυνση a) Linear Probing, b) Quadratic Probing c) Double

Διαβάστε περισσότερα

Περιεχόμενα. Δομές δεδομένων. Τεχνικές σχεδίασης αλγορίθμων. Εισαγωγή στον προγραμματισμό. Υποπρογράμματα. Επαναληπτικά κριτήρια αξιολόγησης

Περιεχόμενα. Δομές δεδομένων. Τεχνικές σχεδίασης αλγορίθμων. Εισαγωγή στον προγραμματισμό. Υποπρογράμματα. Επαναληπτικά κριτήρια αξιολόγησης Περιεχόμενα Δομές δεδομένων 37. Δομές δεδομένων (θεωρητικά στοιχεία)...11 38. Εισαγωγή στους μονοδιάστατους πίνακες...16 39. Βασικές επεξεργασίες στους μονοδιάστατους πίνακες...25 40. Ασκήσεις στους μονοδιάστατους

Διαβάστε περισσότερα

Ουρά Προτεραιότητας (priority queue)

Ουρά Προτεραιότητας (priority queue) Ουρά Προτεραιότητας (priority queue) Δομή δεδομένων που υποστηρίζει δύο βασικές λειτουργίες : Εισαγωγή στοιχείου με δεδομένο κλειδί. Επιστροφή ενός στοιχείου με μέγιστο (ή ελάχιστο) κλειδί και διαγραφή

Διαβάστε περισσότερα

! Εάν ο αριθμός διαθέτει περισσότερα bits, χρησιμοποιούμε μεγαλύτερες δυνάμεις του 2. ! Προσοχή στη θέση του περισσότερο σημαντικού bit!

! Εάν ο αριθμός διαθέτει περισσότερα bits, χρησιμοποιούμε μεγαλύτερες δυνάμεις του 2. ! Προσοχή στη θέση του περισσότερο σημαντικού bit! Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (αριθμητικές ) http://di.ionio.gr/~mistral/tp/csintro/ Αριθμοί Πράξεις με δυαδικούς αριθμούς

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 1: Εισαγωγή- Χαρακτηριστικά Παραδείγματα Αλγορίθμων Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 3: Αριθμητικά Περιγραφικά Μέτρα Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

Προγραμματισμός Δομές Δεδομένων

Προγραμματισμός Δομές Δεδομένων Προγραμματισμός Δομές Δεδομένων Προγραμματισμός Δομές Δεδομένων (Data Structures) Καινούργιοι τύποι δεδομένων που αποτελούνται από την ομαδοποίηση υπαρχόντων τύπων δεδομένων Ομαδοποίηση πληροφορίας που

Διαβάστε περισσότερα

Διαδικασιακός Προγραμματισμός

Διαδικασιακός Προγραμματισμός Τμήμα ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ Διαδικασιακός Προγραμματισμός Διάλεξη 12 η Αναζήτηση/Ταξινόμηση Πίνακα Οι διαλέξεις βασίζονται στο βιβλίο των Τσελίκη και Τσελίκα C: Από τη Θεωρία στην

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΙI

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΙI ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΙI Δομές Ευρετηρίων και Κατακερματισμός Αρχείων II Β. Μεγαλοοικονόμου Δ. Χριστοδουλάκης (παρουσίαση βασισμένη εν μέρη σε σημειώσεις των Silberchatz, Korth και

Διαβάστε περισσότερα

Διαδικασιακός Προγραμματισμός

Διαδικασιακός Προγραμματισμός Τμήμα ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ Διαδικασιακός Προγραμματισμός Διάλεξη 14 η Διαχείριση Μνήμης και Δομές Δεδομένων Οι διαλέξεις βασίζονται στο βιβλίο των Τσελίκη και Τσελίκα C: Από τη

Διαβάστε περισσότερα