Ανάλυση και Σχεδιασμός Μεταφορών Ι Γένεση Μετακινήσεων

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ανάλυση και Σχεδιασμός Μεταφορών Ι Γένεση Μετακινήσεων"

Transcript

1 Γένεση Μετακινήσεων Παναγιώτης Παπαντωνίου Δρ. Πολιτικός Μηχανικός, Συγκοινωνιολόγος Πάτρα, 2017

2 Εισαγωγή Αθροιστικά μοντέλα (Aggregate models) Ανάλυση κατά ζώνη πόσες μετακινήσεις ξεκινούν από κάθε ζώνη? πόσες μετακινήσεις καταλήγουν σε κάθε ζώνη? Εξατομικευμένα μοντέλα (Disaggregate models) Ανάλυση κατά άτομο / νοικοκυριό πόσες μετακινήσεις κάνει ένας μετακινούμενος / νοικοκυριό κατά την διάρκεια μιας μέσης εβδομάδας/ημέρας?

3 Γένεση μετακινήσεων Ορισμός H διαδικασία με την οποία μεγέθη μιας δραστηριότητας (εργασία, αγορές, ψυχαγωγία εκπαίδευση, κλπ.) μετατρέπονται σε αριθμό μετακινήσεων. Σκοπός να ποσοτικοποιήσει τη σχέση μεταξύ δραστηριοτήτων και της ζήτησης για μετακίνηση να προβλέψει τον αριθμό των μετακινήσεων που παράγονται από, και έλκονται από κάθε ζώνη

4 Κυκλοφοριακή ζώνη Η μονάδα ανάλυσης είναι η κυκλοφοριακή ζώνη Για τη διαμόρφωση των ορίων της κυκλοφοριακής ζώνης λαμβάνονται υπόψη οι ακόλουθοι παράγοντες: Γεωγραφικά χαρακτηριστικά Ομοιομορφία χρήσεων γης Μεταφορικά δίκτυα Θέση των κύριων κέντρων δραστηριότητας Τα όρια των διοικητικών ενοτήτων Κεντροϊδές: χρησιμοποιείται για να προσδιορίσει το κέντρο της δραστηριότητας μέσα σε μια ζώνη και να συνδέσει την ζώνη με τα μεταφορικά δίκτυα

5 Μετακινήσεις (1/2) Μια μετακίνηση είναι η κίνηση κατά μια συγκεκριμένη κατεύθυνση η οποία Ξεκινάει από ένα σημείο το σημείο προέλευσης της μετακίνησης μια συγκεκριμένη χρονική στιγμή χρόνος έναρξης της μετακίνησης Καταλήγει σε ένα άλλο σημείο το σημείο προορισμού μια συγκεκριμένη χρονική στιγμή χρόνος άφιξης στον προορισμό Γίνεται για ένα συγκεκριμένο σκοπό σκοπός μετακίνησης

6 Μετακινήσεις (2/2) Μία διαδρομή π.χ. από τον τόπο κατοικίας προς τον τόπο εργασίας θεωρείται ότι είναι μία μετακίνηση που έχει δύο άκρα Μια Μετακίνηση Δύο άκρα μετακίνησης (κατοικία και εργασία). Κάθε μετακίνηση χαρακτηρίζεται από τον τόπο παραγωγής της και από τον τόπο έλξης της Η Γένεση των μετακινήσεων προβλέπει τον αριθμό των μετακινήσεων (π.χ. για μετακινήσεις με βάση την κατοικία και για μετακινήσεις που δεν έχουν βάση την κατοικία) Σε ένα κλειστό σύστημα ο συνολικός αριθμός των παραγόμενων μετακινήσεων είναι ίσος με τον συνολικό αριθμό των προσελκυόμενων μετακινήσεων

7 Κατηγοριοποίηση μετακινήσεων Σκοπός μετακίνησης Εργασία Ψώνια - Αγορές Εκπαίδευση Κοινωνικοί λόγοι/ Αναψυχή άλλα Ξεχωριστά μοντέλα γένεσης μετακινήσεων Χρόνος κατά την διάρκεια της ημέρας Προσωπικά χαρακτηριστικά μετακινούμενων Κατηγορία εισοδήματος Ιδιοκτησία Ι.Χ. Δομή και μέγεθος νοικοκυριού

8 Κατηγορίες μοντέλων Υπάρχουν δύο τύποι μοντέλων γένεσης των μετακινήσεων Μοντέλα της Παραγωγής των Μετακινήσεων ή μοντέλα παραγόμενων μετακινήσεων Μοντέλα Προσέλκυσης (έλξης) των Μετακινήσεων ή μοντέλα προσελκυόμενων (ελκυόμενων) μετακινήσεων. Διαφορετικά μοντέλα Παραγωγής και Προσέλκυσης μετακινήσεων χρησιμοποιούνται για κάθε σκοπό μετακίνησης Ειδικά μοντέλα γένεσης μετακινήσεων χρησιμοποιούνται για να εκτιμήσουμε τις μετακινήσεις με βάση όχι την κατοικία, εξωτερικές μετακινήσεις, μεταφορές εμπορευμάτων κ.α.

9 Διαδικασία ανάπτυξης μοντέλων Ομαδοποίηση των μονάδων λήψης απόφασης Η πρόβλεψη της γένεσης των μετακινήσεων απλοποιείται με το να ομαδοποιήσουμε σχετικά ομοιογενείς μονάδες Άθροιση μετακινήσεων μιας Χρονικής περιόδου Πρόβλεψη του συνολικού αριθμού των μετακινήσεων που διεξάγονται κατά τη διάρκεια μιας χρονικής περιόδου, αντί του πότε θα μετακινηθεί ο κάθε μετακινούμενος Διαχωρισμός ανά τύπο μετακίνησης Διαφορετικές κατηγορίες μετακινήσεων είναι πιο πιθανόν να πραγματοποιούνται κατά τη διάρκεια συγκεκριμένων χρονικών περιόδων κατά την διάρκεια της ημέρας. οι μετακινήσεις προς και από την εργασία οι μετακινήσεις για ψώνια/αγορές οι μετακινήσεις για κοινωνικούς λόγους/ για αναψυχή

10 Παράγοντες επιρροής Ο αριθμός των μετακινήσεων που κάνει ένας μετακινούμενος είναι γενικά συνάρτηση διαφόρων κοινωνικοοικονομικών χαρακτηριστικών (π.χ. ηλικία, εισόδημα) ή/και χαρακτηριστικών της χωρικής κατανομής των δραστηριοτήτων του (τόπος κατοικίας, τόπος εμπορικής δραστηριότητας, εργασίας κ.α.) Η μορφή των μεταβλητών που περιλαμβάνονται στα μοντέλα γένεσης εξαρτάται από το τύπο του μοντέλου δηλ. αν προβλέπει μετακινήσεις ανά ζώνη ή ανά νοικοκυριό Παράγοντες που έχουν χρησιμοποιηθεί ευρέως σε μελέτες περιλαμβάνουν: Εισόδημα, Ιδιοκτησία Ι.Χ., Δομή Νοικοκυριού, Μέγεθος οικογένειας, Αξία γης, Πυκνότητα δόμησης, Προσιτότητα (ελαστικότητα της ζήτησης)

11 Μοντέλα Γένεσης Μετακινήσεων Μέθοδοι ανάλυσης της γένεσης των μετακινήσεων Μοντέλα του Συντελεστή Ανάπτυξης (growth factor models) Μοντέλα Ανάλυσης κατά κατηγορίες (Cross classification - Category analysis) Μοντέλα Ανάλυσης Παλινδρόμησης (Regression Analysis)

12 Μοντέλα Γένεσης Μετακινήσεων Μοντέλα του Συντελεστή Ανάπτυξης (Growth factor models)

13 Μοντέλα του Συντελεστή Ανάπτυξης - Γενικά Βασική Παραδοχή: Όπου: Ti = Fi x ti Ti = μελλοντικές μετακινήσεις ti = οι παρατηρούμενες μετακινήσεις στο έτος βάση Fi = συντελεστής ανάπτυξης Fi σχετίζεται με τον πληθυσμό, το εισόδημα, και ιδιοκτησία ΙΧ στην υπάρχουσα και στην μελλοντική κατάσταση

14 Μοντέλα του Συντελεστή Ανάπτυξης - Παράδειγμα Ζώνη με 250 νοικοκυριά με 1 ΙΧ, και 250 με 0 ΙΧ. t 1-ΙΧ = 6.0 μετακινήσεις/ημέρα; t 0-ΙΧ = 2.5 μετακινήσεις/ημέρα Συνολικός αριθμός μετακινήσεων : t i = 6.0* *250 = 2125 Στο έτος βάσης (σημερινή κατάσταση) η μέση ιδιοκτησία ΙΧ είναι 0,5 ΙΧ ανά νοικοκυριό. Στην μελλοντική κατάσταση όλα τα νοικοκυριά θα έχουν 1 ΙΧ F i = 1 / 0.5 = 2 Υφιστάμενος δείκτης ιδιοκτησίας ΙΧ (έτος βάση) Μελλοντικός δείκτης ιδιοκτησίας ΙΧ

15 Μοντέλα του Συντελεστή Ανάπτυξης - Παράδειγμα Ζώνη με 250 νοικοκυριά με 1 ΙΧ, και 250 με 0 ΙΧ. t 1-ΙΧ = 6.0 μετακινήσεις/ημέρα; t 0-ΙΧ = 2.5 μετακινήσεις/ημέρα Συνολικός αριθμός μετακινήσεων : t i = 6.0* *250 = 2125 Στο έτος βάσης (σημερινή κατάσταση) η μέση ιδιοκτησία ΙΧ είναι 0,5 ΙΧ ανά νοικοκυριό. Στην μελλοντική κατάσταση όλα τα νοικοκυριά θα έχουν 1 ΙΧ F i = 1 / 0.5 = 2 Ti = Fi x ti = 2*2.125 = μετακινήσεις/ημέρα Υφιστάμενος δείκτης ιδιοκτησίας ΙΧ (έτος βάση) Μελλοντικός δείκτης ιδιοκτησίας ΙΧ

16 Μοντέλα του Συντελεστή Ανάπτυξης - Αξιολόγηση Απλοποιητικές παραδοχές Χρησιμοποιείται κυρίως για τον υπολογισμό των εξωτερικών μετακινήσεων της περιοχής μελέτης Π.χ. μετακινήσεις από γειτονικές χώρες (με βάση την εξέλιξη του Α.Ε.Π.)

17 Μοντέλα Γένεσης Μετακινήσεων Μοντέλα Ανάλυσης κατά Κατηγορίες Cross classification - Category analysis)

18 Μοντέλα Ανάλυσης κατά Κατηγορίες - Γενικά Χρησιμοποιούν σαν μονάδα ανάλυσης το νοικοκυριό και βασίζουν την εκτίμηση της ζήτησης (πχ. αριθμό των μετακινήσεων που παράγονται) σε συνάρτηση των χαρακτηριστικών του νοικοκυριού Τα νοικοκυριά ταξινομούνται σε κατηγορίες ανάλογα με τα χαρακτηριστικά τους (πχ. εισόδημα, διαθεσιμότητα ΙΧ, μέγεθος, αριθμός εργαζόμενων) Για κάθε κατηγορία υπολογίζεται ο ρυθμός γένεσης των μετακινήσεων από μετρήσεις για την υπάρχουσα κατάσταση

19 Μοντέλα Ανάλυσης κατά Κατηγορίες

20 Μοντέλα Ανάλυσης κατά Κατηγορίες Βασική Παραδοχή Ο ρυθμός γένεσης μετακινήσεων σε κάθε κατηγορία παραμένει σταθερός (δηλ. είναι σταθερός για όλη την περίοδο που αναφέρονται οι προβλέψεις) Όπου: P i (t) Hk i, m, n( t f k, m, n ) P i (t) k, m, n H i k, m, n ( t) f k, m, n ο αριθμός των μετακινήσεων που παράγονται στην ζώνη i στον χρονικό ορίζοντα των προβλέψεων t ο αριθμός των νοικοκυριών ζώνης i που προβλέπεται ότι θα ανήκουν στην κατηγορία k,m,n, στον χρονικό ορίζοντα t ο ρυθμός των μετακινήσεων (πχ. μετακινήσεις/ημέρα) που παράγονται από ένα νοικοκυριό που ανήκει στην κατηγορία k,m,n - παραμένει σταθερός

21 Επιλογή κατηγοριών Ο ρυθμός των μετακινήσεων f k,m,n υπολογίζεται από στοιχεία που συλλέγονται από έρευνες σε δείγματα από τα νοικοκυριά κάθε κατηγορίας. Το μέγεθος του δείγματος προσδιορίζεται με βάση τις στατιστικές μεθόδους της δειγματοληψίας. Ο προσδιορισμός των κατηγοριών πρέπει να γίνει έτσι ώστε η τυπική απόκλιση της κατανομής του f k,m,n να ελαχιστοποιείται.

22 Μοντέλα Ανάλυσης κατά Κατηγορίες Πλεονεκτήματα Η κατηγοριοποίηση είναι ανεξάρτητη από το ζωνικό σύστημα Η μορφή της σχέσης μεταξύ μετακινήσεων και των επεξηγηματικών μεταβλητών δεν προσδιορίζεται εκ των προτέρων (πχ. γραμμική, μονοτονική) Οι σχέσεις μπορεί να διαφέρουν από κατηγορία σε κατηγορία (πχ. Οι επιπτώσεις της μεταβολής του μεγέθους του νοικοκυριού για νοικοκυριά με 1 ή 2 Ι.Χ. μπορεί να είναι διαφορετικές) Μειονεκτήματα Δεν επιτρέπει την εξαγωγή συμπερασμάτων για κατηγορίες πέρα αυτών που περιλαμβάνονται στην ανάλυση του έτους βάση Δεν υπάρχουν στατιστικές μέθοδοι ελέγχου της αξιοπιστίας των προβλέψεων Απαιτεί μεγάλα δείγματα Δεν υπάρχει συγκεκριμένη μέθοδος επιλογής των κατηγοριών απαιτεί μια μακρά διαδικασία «δοκιμής και λάθους»

23 Μοντέλα Γένεσης Μετακινήσεων Μοντέλα Ανάλυσης Παλινδρόμησης (Regression Analysis)

24 Μοντέλα Ανάλυσης παλινδρόμησης Εκφράζουν τον αριθμό των παραγόμενων ή ελκόμενων μετακινήσεων σαν συνάρτηση των κοινωνικο-οικονομικών και λοιπών χαρακτηριστικών κάθε ζώνης. Οι συναρτήσεις είναι συνήθως γραμμικές - μη γραμμικές σχέσεις μπορούν να μετασχηματισθούν σε γραμμικές με κατάλληλο μετασχηματισμό των μεταβλητών, π.χ. y = α.βx log(y) = log(α)+x.log(β) Η μορφή της συναρτησιακής σχέσης και οι τιμές των παραμέτρων (συντελεστών) υπολογίζονται χρησιμοποιώντας την θεωρία της ανάλυσης παλινδρόμησης από την στατιστική.

25 Μοντέλα Ανάλυσης κατά Κατηγορίες μια Τυπική Μορφή ενός μοντέλου γένεσης μετακινήσεων είναι: Y = α + β 1 *x 1 + β 2 *x β ν *x ν όπου Y = εξαρτημένη μεταβλητή δηλ. ο αριθμός των παραγόμενων ελκόμενων μετακινήσεων σε μια ζώνη xi = ανεξάρτητες (επεξηγηματικές) μεταβλητές δηλ. οι τιμές των που επηρεάζουν τον αριθμό των μετακινήσεων, πχ. Μέσο εισόδημα νοικοκυριού, αριθμός, μέση ιδιοκτησία ΙΧ ανά νοικοκυριό, μέσο μέγεθος νοικοκυριού κ.α. α, βi= παράμετροι/συντελεστές του μοντέλου που προσδιορίζονται στην φάση της βαθμονόμησης

26 Διάγραμμα Διασποράς (1/2) Το διάγραμμα διασποράς απεικονίζει τη σχέση μεταξύ δυο ποσοτικών μεταβλητών. Απομακρυσμένο σημείο (outlier) Κάθε στοιχείο από τα δεδομένα αναπαρίσταται από ένα σημείο του διαγράμματος που ορίζεται από τις τιμές των δύο μεταβλητών που το χαρακτηρίζουν Στοιχεία τα οποία αποκλίνουν σημαντικά από την μορφή της σχέσης που εμφανίζουν οι μεταβλητές θα πρέπει να μην λαμβάνονται υπόψη

27 Διάγραμμα Διασποράς (2/2) Γραμμική σχέση Μη Γραμμική σχέση

28 Διάγραμμα Διασποράς (1/2) Από ένα διάγραμμα διασποράς είναι δύσκολο να προσδιορίσουμε εάν η σχέση μεταξύ δύο μεταβλητών είναι ισχυρή. Η κλίμακα που χρησιμοποιείται στο διάγραμμα διασποράς μπορεί να επηρεάσει την ερμηνεία ενός διαγράμματος. Για αυτό τον λόγο, χρησιμοποιείται ένας ποσοτικός δείκτης που ονομάζεται συντελεστής συσχέτισης και μετράει την σχέση της γραμμικότητας μεταξύ δύο μεταβλητών. Ο συντελεστής παίρνει τιμές μεταξύ 1 και 1.

29 Συντελεστή συσχέτισης y x i i i xy s s N y y x x r. 1). ( ) ).( ( N i i x x x N s 1 2 ) (. 1 1 Συντελεστής συσχέτισης Τυπική απόκλιση

30 Συντελεστή συσχέτισης

31 Συντελεστή συσχέτισης

32 Συντελεστή συσχέτισης

33 Προϋποθέσεις για την χρήση της μεθόδου Για δεδομένη τιμή της ή των ανεξάρτητων μεταβλητών, η κατανομή των σφαλμάτων απόκλισης πρέπει να έχει μέση τιμή 0 και σταθερή διακύμανση ανεξαρτήτως της τιμής των xi Στοιχεία για τα οποία η διακύμανση του σφάλματος δεν είναι σταθερή ονομάζονται ετεροσκεδαστικά. Οι ανεξάρτητες μεταβλητές δεν συσχετίζονται. Αν συσχετίζονται τότε δεν είναι δυνατόν να προσδιορισθεί η επίδραση της κάθε μιας στην τιμή της εξαρτημένης μεταβλητής

34 Στάδια προσδιορισμού 1. Επιλογή των ανεξάρτητων μεταβλητών που θα εξετασθούν και πιθανά να περιληφθούν στο μοντέλο 2. Ανάλυση της σχέσης κάθε ανεξάρτητης μεταβλητής με την εξαρτημένη μεταβλητή. Αν η σχέση με μια ανεξάρτητη μεταβλητή δεν είναι γραμμική, διερευνάται η δυνατότητα χρησιμοποίησης κατάλληλου μετασχηματισμού 3. Υπολογισμός του πίνακα συντελεστών συσχέτισης για όλα τα δυνατά ζεύγη μεταβλητών (ανεξάρτητων μεταβλητών μεταξύ τους και με την εξαρτημένη μεταβλητή 4. Υπολογισμός των συντελεστών της σχέσης παλινδρόμησης. Οι ανεξάρτητες μεταβλητές εισάγονται σταδιακά στην εξίσωση και υπολογίζονται κάθε φορά οι διάφοροι στατιστικοί δείκτες. Σε κάθε στάδιο, μια μεταβλητή παραμένει στην εξίσωση ή απορρίπτεται ανάλογα με την συμβολή της στην αύξηση της ακρίβειας του μοντέλου. 5. Υπολογίζονται τα τελικά στατιστικά μεγέθη και ελέγχεται η αξιοπιστία του μοντέλου

35 Στατιστικά μεγέθη Τα στατιστικά μεγέθη που υπολογίζονται είναι: Ο συντελεστής προσδιορισμού R 2 (coefficient of determination) ή συντελεστής συσχέτισης R Ορίζεται ως το ποσοστό της συνολικής μεταβλητότητας της εξαρτημένης μεταβλητής που εξηγείται από την σχέση της παλινδρόμησης Το μέσο τετραγωνικό σφάλμα εκτίμησης (standard error of the estimate). Χρησιμοποιείται για να συγκριθούν τα αποτελέσματα του μοντέλου με τις πραγματικές τιμές που μετρήθηκαν. Ισχύουν οι ακόλουθες σχέσεις y* - St. Err < y < y* + St. Err με πιθανότητα 68% y* - 2 St. Err < y < y* + 2 St. Err με πιθανότητα 95% όπου y η πραγματική τιμή που μετρήθηκε, y* η τιμή που υπολογίζει το μοντέλο και St. Err το σφάλμα εκτιμησης.

36 Έλεγχοι Το μέγεθος του σταθερού όρου δεν πρέπει να είναι μεγάλο. Θεωρητικά η γραμμή της παλινδρόμησης θα πρέπει να διέρχεται από το 0. Αυτό όμως δεν είναι πάντα δυνατό. Το πρόσημο και το μέγεθος της σταθεράς δεν πρέπει να είναι τέτοια που να συνεπάγονται παράλόγες εκτιμήσεις (π.χ. υψηλό αριθμό αρνητικών μετακινήσεων) Το μοντέλο πρέπει να περιλαμβάνει μεταβλητές που σχετίζονται με χαρακτηριστικά των μετακινούμενων ή/και δραστηριοτήτων που δεν παραμένουν αμετάβλητα, αλλά που εξελίσσονται (π.χ. εισόδημα, ιδιοκτησία ΙΧ, επιφάνεια εμπορικών κέντρων κλπ) Οι προβλέψεις των μελλοντικών τιμών των ανεξάρτητων μεταβλητών (που περιλαμβάνονται στο μοντέλο) πρέπει να είναι αξιόπιστες Το πρόσημο και το μέγεθος των συντελεστών πρέπει να είναι σύμφωνο με τον βαθμό και τον τύπο της επιρροής που έχει η ανεξάρτητη μεταβλητή στις τιμές της εξαρτημένης μεταβλητής (πχ. το πρόσημο του συντελεστή του πληθυσμού σε ένα μοντέλο παραγόμενων μετακινήσεων δεν μπορεί να είναι αρνητικό, ούτε η τιμή του να είναι διαφορετικής τάξης μεγέθους από ότι ο μέσος ρυθμός μετακινήσεων ανά άτομο)

37 Παραδείγματα (1/3) Στην περιοχή μελέτης ο μέσος αριθμός μετακινήσεων που παράγονται από την ζώνη i, Yi, είναι 1100 μετακινήσεις/ημέρα και δίδεται από την σχέση: Υi = ,05*Πληθυσμός(i) + 0,002 * Αριθμ ΙΧ(i) Ο μέσος αριθμός των μετακινήσεων / νοικοκυριό, Υi, κατά τη διάρκεια της πρωινής αιχμής δίνεται από την σχέση: Yi = 0,2 + 9,7 * (Εργαζόμενοι ανά νοικοκυριό) + 1,7 *(ΙΧ ανά νοικοκυριό)

38 Παραδείγματα (2/3) Για τον υπολογισμό της ΕΜΗΚ, στο υπεραστικό Εθνικό δίκτυο της χώρας χρησιμοποιήθηκε το μοντέλο γένεσης των μετακινήσεων: Yi = 0,009 * (Πληθυσμός στην ζώνη i) + 0,004 (ΙΧ στην ζώνη i) από την Αθήνα έχει μετρηθεί οτι κατά μέσο όρο καθημερινά γεννώνται μετακινήσεις πρός άλλες πόλεις δείκτης ιδιοκτησίας ΙΧ = 0,5 / κάτοικο

39 Παραδείγματα (3/3) Για τον υπολογισμό της ΕΜΗΚ, στο υπεραστικό Εθνικό δίκτυο της χώρας χρησιμοποιήθηκε το μοντέλο γένεσης των μετακινήσεων: Yi = 0,009 * (Πληθυσμός στην ζώνη i) + 0,004 (ΙΧ στην ζώνη i) από την Αθήνα έχει μετρηθεί ότι κατά μέσο όρο καθημερινά γεννώνται μετακινήσεις πρoς άλλες πόλεις δείκτης ιδιοκτησίας ΙΧ = 0,5 / κάτοικο Λύση Πληθυσμός: * 0,009 = ΙΧ: * 0,5 * 0,004 = Συνολικά:

40 Διαδικασία πρόβλεψης μελλοντικών μετακινήσεων Συλλογή στοιχείων από την υπάρχουσα κατάσταση (έτος βάση) σχετικά με τον αριθμό των γενόμενων μετακινήσεων Υ, και τις τιμές των διαφόρων παραγόντων που τις επηρεάζουν, Χ1, Χ2,.., Χν Προσδιορισμός της εξίσωσης παλινδρόμησης που περιλαμβάνει α) τη μορφή της συναρτησιακής σχέσης δηλ. ποιες επεξηγηματικές μεταβλητές περιλαμβάνονται και β) τις τιμές των παραμέτρων β1, β2,, βν Η εξίσωση αποτελεί το μοντέλο της παραγωγής (ή έλξης) των μετακινήσεων. Χρησιμοποιώντας τις μελλοντικές τιμές των επεξηγηματικών μεταβλητών υπολογίζουμε τον αριθμό των μελλοντικών μετακινήσεων

41 Ελκόμενες μετακινήσεις Οι Προσελκυόμενες μετακινήσεις μπορούν να προσδιορισθούν αναλύοντας τις δραστηριότητες που προσελκύουν μετακινήσεις. Μετακινήσεις προσελκύονται σε διάφορες ζώνες. Ο αριθμός των μετακινήσεων εξαρτάται από τα χαρακτηριστικά της κάθε ζώνης, π.χ. τον αριθμό και μέγεθος των δραστηριοτήτων που λαμβάνει χώρα σε κάθε ζώνη. Οι ίδιες μέθοδοι χρησιμοποιούνται για την προτυποποίηση των προσελκυόμενων μετακινήσεων, αλλά οι ανεξάρτητες μεταβλητές είναι προφανώς διαφορετικές Απασχόληση Εμπορική Δραστηριότητα Πυκνότητα Δραστηριοτήτων

42 Συνολικές μετακινήσεις Το σύνολο των παραγόμενων και ελκόμενων μετακινήσεων στην περιοχή μελέτης πρέπει να είναι το ίδιο. Συνήθως όμως δεν είναι, δεδομένου ότι τα μεγέθη αυτά υπολογίζονται χρησιμοποιώντας διαφορετικά μοντέλα. Επειδή τα μοντέλα παραγωγής μετακινήσεων είναι συνήθως πιο ακριβή από τα μοντέλα έλξης μετακινήσεων, συνήθως ο συνολικός αριθμός των ελκόμενων μετακινήσεων προσαρμόζεται στον συνολικό αριθμό των παραγόμενων μετακινήσεων χρησιμοποιώντας τον παράγοντα F F P A z z Pz = παραγόμενες μετακινήσεις από ζώνη z AZ = ελκόμενες μετακινήσεις στην z

43 Άσκηση Παλινδρόμησης Επιλέξτε ένα από τα παρακάτω μοντέλα έλξης μετακινήσεων και εξηγείστε γιατί. Το μέγεθος του δείγματος είναι 300. Πίνακας συντελεστών συσχέτισης όπου Y είναι οι μετακινήσεις με σκοπό την εργασία που έλκονται στην ζώνη Χ 1 η συνολική απασχόληση, Χ 2 η απασχόληση στην βιομηχανία, Χ 3 η απασχόληση στο εμπόριο και Χ 4 η απασχόληση σε υπηρεσίες Χ 1 Χ 2 Χ 3 Χ 4 Υ Χ 1 1,00 0,48 0,97 0,11 0,99 Χ 2-1,00 0,31 0,06 0,96 Χ ,00 0,08 0,55 Χ ,00 0,12 Υ ,00

44 Γένεση Μετακινήσεων Παναγιώτης Παπαντωνίου Δρ. Πολιτικός Μηχανικός, Συγκοινωνιολόγος Πάτρα, 2017

γένεση των µετακινήσεων

γένεση των µετακινήσεων 3 γένεση των µετακινήσεων εισαγωγή το υπό διερεύνηση θέµα: πόσες µετακινήσεις ξεκινούν από κάθε ζώνη? πόσες µετακινήσεις κάνει ένας µετακινούµενος κατά την διάρκεια µιας µέσης εβδοµάδας? Ανάλυση κατά ζώνη

Διαβάστε περισσότερα

γένεση των µετακινήσεων

γένεση των µετακινήσεων Κυκλοφοριακές Ζώνες κυκλοφοριακή ζώνη Η µονάδα ανάλυσης είναι η κυκλοφοριακή Ζώνη 3 γένεση των µετακινήσεων Κυκλοφοριακή ζώνη Κεντροϊδές (κέντρο της δραστηριότητας) Για την διαµόρφωση των ορίων της Κυκλοφοριακής

Διαβάστε περισσότερα

1ο ΣΤΑΔΙΟ ΓΕΝΕΣΗ ΜΕΤΑΚΙΝΗΣΕΩΝ

1ο ΣΤΑΔΙΟ ΓΕΝΕΣΗ ΜΕΤΑΚΙΝΗΣΕΩΝ ΠΡΟΒΛΗΜΑ 1ο ΣΤΑΔΙΟ ΓΕΝΕΣΗ ΜΕΤΑΚΙΝΗΣΕΩΝ πόσες μετακινήσεις δημιουργούνται σε και για κάθε κυκλοφοριακή ζώνη; ΟΡΙΣΜΟΙ μετακίνηση μετακίνηση με βάση την κατοικία μετακίνηση με βάση άλλη πέρα της κατοικίας

Διαβάστε περισσότερα

καταµερισµός στα µεταφορικά µέσα

καταµερισµός στα µεταφορικά µέσα 5 καταµερισµός στα µεταφορικά µέσα πόσες µετακινήσεις από την ζώνη i στην ζώνη j γίνονται µε κάθε µεταφορικό µέσο? το υπό διερεύνηση θέµα : εισαγωγή Ποιο µεταφορικό µέσο θα επιλέξει ένας µετακινούµενος

Διαβάστε περισσότερα

Στατιστική Ι. Ανάλυση Παλινδρόμησης

Στατιστική Ι. Ανάλυση Παλινδρόμησης Στατιστική Ι Ανάλυση Παλινδρόμησης Ανάλυση παλινδρόμησης Η πρόβλεψη πωλήσεων, εσόδων, κόστους, παραγωγής, κτλ. είναι η βάση του επιχειρηματικού σχεδιασμού. Η ανάλυση παλινδρόμησης και συσχέτισης είναι

Διαβάστε περισσότερα

Καταµερισµός. µεταφορικό µέσο. Καταµερισµός στα µέσα. το υπό διερεύνηση θέµα :

Καταµερισµός. µεταφορικό µέσο. Καταµερισµός στα µέσα. το υπό διερεύνηση θέµα : καταµερισµός στα µεταφορικά µέσα προς ζώνη.... ν 00 00 από ζώνη 0πίνακας Π-Π....... ν 0 00 00 00 0 Μελλοντικές Ελκόµενες µετακινήσεις Μελλοντικές Παραγόµενες µετακινήσεις 0 00 70 ΚΑΤΑΜΕΡΙΣΜΟΣ ΣΤΑ ΜΕΣΑ

Διαβάστε περισσότερα

των µετακινήσεων κατανοµή των µετακινήσεων Κατανοµή το υπό διερεύνηση θέµα: παραγόµενων µετακινήσεων ελκόµενων Γένεση Μετακινήσεων

των µετακινήσεων κατανοµή των µετακινήσεων Κατανοµή το υπό διερεύνηση θέµα: παραγόµενων µετακινήσεων ελκόµενων Γένεση Μετακινήσεων εισαγωγή κατανοµή των µετακινήσεων Γένεση Μετακινήσεων Παραγόµενες ελκόµενες πόσες µετακινήσεις ξεκινούν από την ζώνη και καταλήγουν στην ζώνη? το υπό διερεύνηση θέµα: εισαγωγή Ποιόν προορισµό θα επιλέξει

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

Kαταμερισμός των μετακινήσεων κατά μέσο

Kαταμερισμός των μετακινήσεων κατά μέσο Kαταμερισμός των μετακινήσεων κατά μέσο Στόχος: Προσδιορισμός των μετακινήσεων κατά μεταφορικό μέσο (οδικό, σιδηροδρομικό, θαλάσσιο, αεροπορικό, ή ιδιωτικής και δημόσιας χρήσης). Στάδιο: α. Γένεση μετακινήσεων

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

9. Παλινδρόμηση και Συσχέτιση

9. Παλινδρόμηση και Συσχέτιση 9. Παλινδρόμηση και Συσχέτιση Παλινδρόμηση και Συσχέτιση Υπάρχει σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές; Αν ναι, ποια είναι αυτή η σχέση; Πως μπορεί αυτή η σχέση να χρησιμοποιηθεί για να προβλέψουμε

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης Kozani GR 50100

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης Kozani GR 50100 Ποσοτικές Μέθοδοι Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR 50100 Απλή Παλινδρόμηση Η διερεύνηση του τρόπου συμπεριφοράς

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

Μοντέλα Παλινδρόμησης. Άγγελος Μάρκος, Λέκτορας ΠΤ Ε, ΠΘ

Μοντέλα Παλινδρόμησης. Άγγελος Μάρκος, Λέκτορας ΠΤ Ε, ΠΘ Μοντέλα Παλινδρόμησης Άγγελος Μάρκος, Λέκτορας ΠΤ Ε, ΠΘ Εισαγωγή (1) Σε αρκετές περιπτώσεις επίλυσης προβλημάτων ενδιαφέρει η ταυτόχρονη μελέτη δύο ή περισσότερων μεταβλητών, για να προσδιορίσουμε με ποιο

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική: Συντελεστής συσχέτισης. Παλινδρόμηση απλή γραμμική, πολλαπλή γραμμική

Εφαρμοσμένη Στατιστική: Συντελεστής συσχέτισης. Παλινδρόμηση απλή γραμμική, πολλαπλή γραμμική ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕΡΟΣ B Δημήτρης Κουγιουμτζής e-mal: dkugu@auth.gr Ιστοσελίδα αυτού του τμήματος του μαθήματος: http://uer.auth.gr/~dkugu/teach/cvltraport/dex.html Εφαρμοσμένη Στατιστική:

Διαβάστε περισσότερα

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Θεσσαλονίκης Τμήμα Πληροφορικής Εργαστήριο «Θεωρία Πιθανοτήτων και Στατιστική» ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Περιεχόμενα 1. Συσχέτιση μεταξύ δύο ποσοτικών

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 2: Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 2: Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 2: Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Χ. Εμμανουηλίδης, 1

Χ. Εμμανουηλίδης, 1 Εφαρμοσμένη Στατιστική Έρευνα Απλό Γραμμικό Υπόδειγμα AΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟ ΕΙΓΜΑ Δρ. Χρήστος Εμμανουηλίδης Αν. Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εφαρμοσμένη Στατιστική, Τμήμα Ο.Ε. ΑΠΘ Χ. Εμμανουηλίδης,

Διαβάστε περισσότερα

Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis)

Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis) Μέρος V. Ανάλυση Παλινδρόμηση (Regresso Aalss) Βασικές έννοιες Απλή Γραμμική Παλινδρόμηση Πολλαπλή Παλινδρόμηση Εφαρμοσμένη Στατιστική Μέρος 5 ο - Κ. Μπλέκας () Βασικές έννοιες Έστω τ.μ. Χ,Υ όπου υπάρχει

Διαβάστε περισσότερα

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ο Κεφάλαιο: Στατιστική ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός: Λέγεται ένα σύνολο στοιχείων που θέλουμε να εξετάσουμε με ένα ή περισσότερα χαρακτηριστικά. Μεταβλητές X: Ονομάζονται

Διαβάστε περισσότερα

Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική

Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη MSc Τραπεζική & Χρηματοοικονομική Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα Εισαγωγή στο

Διαβάστε περισσότερα

Συνοπτικά περιεχόμενα

Συνοπτικά περιεχόμενα b Συνοπτικά περιεχόμενα 1 Τι είναι η στατιστική;... 25 2 Περιγραφικές τεχνικές... 37 3 Επιστήμη και τέχνη των διαγραμματικών παρουσιάσεων... 119 4 Αριθμητικές μέθοδοι της περιγραφικής στατιστικής... 141

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Ενότητα: Αναγνώριση Διεργασίας - Προσαρμοστικός Έλεγχος (Process Identification) Αλαφοδήμος Κωνσταντίνος

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ Εισαγωγή

ΟΙΚΟΝΟΜΕΤΡΙΑ Εισαγωγή 2013 [Πρόλογος] ΟΙΚΟΝΟΜΕΤΡΙΑ Εισαγωγή Μάθημα Εαρινού Εξάμηνου 2012-2013 Μ.Επ. ΟΕ0300 Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής Ανάπτυξης Μαρί-Νοέλ Ντυκέν, Επ. Καθηγητρία

Διαβάστε περισσότερα

Διαχείριση Υδατικών Πόρων

Διαχείριση Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Διαχείριση Υδατικών Πόρων Γ.. Τσακίρης Μάθημα 3 ο Λεκάνη απορροής Υπάρχουσα κατάσταση Σενάριο 1: Μέσες υδρολογικές συνθήκες Σενάριο : Δυσμενείς υδρολογικές συνθήκες Μελλοντική

Διαβάστε περισσότερα

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας.

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας. 7 ο ΜΑΘΗΜΑ ΚΕΦΑΛΑΙΟ 2 ΣΤΑΤΙΣΤΙΚΗ Σκοπός Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας. Προσδοκώμενα αποτελέσματα Όταν θα έχετε ολοκληρώσει τη μελέτη αυτού του κεφαλαίου

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ Καθ Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 5 Έστω για την σύγκριση δειγμάτων συλλέγουμε παρατηρήσεις Υ =,,, από

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ

ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ ιαφάνειες για το µάθηµα Information Management ΑθανάσιοςΝ. Σταµούλης 1 ΠΗΓΗ Κονδύλης Ε. (1999) Στατιστικές τεχνικές διοίκησης επιχειρήσεων, Interbooks 2 1 Γραµµική παλινδρόµηση Είναι

Διαβάστε περισσότερα

ΟΙ ΜΕΘΟΔΟΙ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΑΝΑΛΥΣΗΣ Χ. ΑΠ. ΛΑΔΙΑΣ

ΟΙ ΜΕΘΟΔΟΙ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΑΝΑΛΥΣΗΣ Χ. ΑΠ. ΛΑΔΙΑΣ ΟΙ ΜΕΘΟΔΟΙ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΑΝΑΛΥΣΗΣ Χ. ΑΠ. ΛΑΔΙΑΣ ΔΙΑΣΠΟΡΑ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΕΣ ΑΝΙΣΟΤΗΤΕΣ Τα μέτρα διασποράς χρησιμεύουν για τη μέτρηση των περιφερειακών ανισοτήτων. Τα περιφερειακά χαρακτηριστικά που χρησιμοποιούνται

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436 A εξάμηνο 2009-2010 Περιγραφική Στατιστική Ι users.att.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr Μέτρα θέσης Η θέση αντιπροσωπεύει τη θέση της κατανομής κατά

Διαβάστε περισσότερα

Το στατιστικό κριτήριο που μας επιτρέπει να. μιας ή πολλών άλλων γνωστών μεταβλητών. Η σχέση ανάμεσα στις μεταβλητές που μελετώνται

Το στατιστικό κριτήριο που μας επιτρέπει να. μιας ή πολλών άλλων γνωστών μεταβλητών. Η σχέση ανάμεσα στις μεταβλητές που μελετώνται Κεφάλαιο 10 Η Ανάλυση Παλινδρόμησης Η Ανάλυση Παλινδρόμησης Το στατιστικό κριτήριο που μας επιτρέπει να προβλέψουμε τις τιμές μιας μεταβλητής από τις τιμές μιας ή πολλών άλλων γνωστών μεταβλητών Η σχέση

Διαβάστε περισσότερα

5. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ (GENERAL LINEAR MODEL) 5.1 Εναλλακτικά μοντέλα του απλού γραμμικού μοντέλου: Το εκθετικό μοντέλο

5. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ (GENERAL LINEAR MODEL) 5.1 Εναλλακτικά μοντέλα του απλού γραμμικού μοντέλου: Το εκθετικό μοντέλο 5. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ (GENERAL LINEAR MODEL) 5.1 Εναλλακτικά μοντέλα του απλού γραμμικού μοντέλου: Το εκθετικό μοντέλο Ένα εναλλακτικό μοντέλο της απλής γραμμικής παλινδρόμησης (που χρησιμοποιήθηκε

Διαβάστε περισσότερα

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος xi 1 Αντικείμενα των Πιθανοτήτων και της Στατιστικής 1 1.1 Πιθανοτικά Πρότυπα και Αντικείμενο των Πιθανοτήτων, 1 1.2 Αντικείμενο της Στατιστικής, 3 1.3 Ο Ρόλος των Πιθανοτήτων

Διαβάστε περισσότερα

(2.8) Η αθροιστική πιθανότητα, που προκύπτει με ολοκλήρωση της παραπάνω σχέσης (2.8), δίνεται από τη σχέση: σ π

(2.8) Η αθροιστική πιθανότητα, που προκύπτει με ολοκλήρωση της παραπάνω σχέσης (2.8), δίνεται από τη σχέση: σ π Κεφάλαιο Στατιστικές έννοιες στην Υδρολογία Τα φυσικά γεγονότα όπως είναι οι βροχοπτώσεις, η εξατμισοδιαπνοή και η απορροή είναι από τη φύση τους τυχαία. Οι παρατηρήσεις μας γι αυτά συχνά περιλαμβάνουν

Διαβάστε περισσότερα

γ. Η διακύμανση είναι μέτρο διασποράς και είναι καθαρός αριθμός, δηλαδή δεν έχει μονάδες. Μονάδες 9

γ. Η διακύμανση είναι μέτρο διασποράς και είναι καθαρός αριθμός, δηλαδή δεν έχει μονάδες. Μονάδες 9 ΟΝΟΜΑΤΕΠΩΝΥΜΟ:........................................... ΤΜΗΜΑ:....... ΗΜΕΡΟΜΗΝΙΑ:.... / 0 / 20 ΘΕΜΑ A. Έστω μεταβλητή Χ, με τιμές x, x 2,...., x k, που αφορά τα άτομα ενός δείγματος μεγέθους ν, με k,

Διαβάστε περισσότερα

Πρόλογος... xv. Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1

Πρόλογος... xv. Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1 Πρόλογος... xv Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1 1.1.Ιστορική Αναδρομή... 1 1.2.Βασικές Έννοιες... 5 1.3.Πλαίσιο ειγματοληψίας (Sampling Frame)... 9 1.4.Κατηγορίες Ιατρικών Μελετών.... 11 1.4.1.Πειραµατικές

Διαβάστε περισσότερα

Μοντέλο πρόβλεψης αγοραίων αξιών ακινήτων βάσει των μεθόδων OLS και GWR με χρήση GIS Η περίπτωση του Δήμου Θεσσαλονίκης

Μοντέλο πρόβλεψης αγοραίων αξιών ακινήτων βάσει των μεθόδων OLS και GWR με χρήση GIS Η περίπτωση του Δήμου Θεσσαλονίκης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΓΙΑ ΣΤΕΛΕΧΗ (EMBA) Διατριβή μεταπτυχιακού Μοντέλο πρόβλεψης αγοραίων αξιών ακινήτων

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις,

Διαβάστε περισσότερα

ΠΑΛΙΝΔΡΟΜΗΣΗ ΤΑΞΗΣ ΜΕΓΕΘΟΥΣ

ΠΑΛΙΝΔΡΟΜΗΣΗ ΤΑΞΗΣ ΜΕΓΕΘΟΥΣ . ΠΑΛΙΝΔΡΟΜΗΣΗ ΤΑΞΗΣ ΜΕΓΕΘΟΥΣ (RANK REGRESSION).1 Μονότονη Παλινδρόμηση (Monotonic Regression) Από τη γραφική παράσταση των δεδομένων του προηγουμένου προβλήματος παρατηρούμε ότι τα ζευγάρια (Χ i, i )

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων Ι

Στατιστική Επιχειρήσεων Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Στατιστική Επιχειρήσεων Ι Ενότητα 5: Παλινδρόμηση Συσχέτιση θεωρητική προσέγγιση Μιλτιάδης Χαλικιάς, Επίκουρος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα

Δειγματοληψία στην Ερευνα. Ετος

Δειγματοληψία στην Ερευνα. Ετος ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Αγροτικής Οικονομίας & Ανάπτυξης Μέθοδοι Γεωργοοικονομικής και Κοινωνιολογικής Ερευνας Δειγματοληψία στην Έρευνα (Μέθοδοι Δειγματοληψίας - Τρόποι Επιλογής Τυχαίου Δείγματος)

Διαβάστε περισσότερα

Kruskal-Wallis H... 176

Kruskal-Wallis H... 176 Περιεχόμενα KΕΦΑΛΑΙΟ 1: Περιγραφή, παρουσίαση και σύνοψη δεδομένων................. 15 1.1 Τύποι μεταβλητών..................................................... 16 1.2 Κλίμακες μέτρησης....................................................

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7 ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 1.1. Εισαγωγή 13 1.2. Μοντέλο ή Υπόδειγμα 13 1.3. Η Ανάλυση Παλινδρόμησης 16 1.4. Το γραμμικό μοντέλο Παλινδρόμησης 17 1.5. Πρακτική χρησιμότητα

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium iv Στατιστική Συμπερασματολογία Ι Σημειακές Εκτιμήσεις Διαστήματα Εμπιστοσύνης Στατιστική Συμπερασματολογία (Statistical Inference) Το πεδίο της Στατιστικής Συμπερασματολογία,

Διαβάστε περισσότερα

2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για

2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για 2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για τον καθορισμό του καλύτερου υποσυνόλου από ένα σύνολο

Διαβάστε περισσότερα

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1. Απλή γραµµική παλινδρόµηση. 1.2 Παράδειγµα 6 (συνέχεια)

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1. Απλή γραµµική παλινδρόµηση. 1.2 Παράδειγµα 6 (συνέχεια) ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 2006-2007, 3ο εξάµηνο ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. Απλή γραµµική παλινδρόµηση Παράδειγµα 6: Χρόνος παράδοσης φορτίου ΜΑΘΗΜΑ

Διαβάστε περισσότερα

Μ Ε Τ Ρ Α Δ Ι Α Σ Π Ο Ρ Α Σ.

Μ Ε Τ Ρ Α Δ Ι Α Σ Π Ο Ρ Α Σ. Μ Ε Τ Ρ Α Δ Ι Α Σ Π Ο Ρ Α Σ. π.χ. Βαθμολογία διαγωνίσματος σε τμήματα: Α : 7, 11,16, 16,,. Β : 11, 13, 16, 16, 17, 17. Παρατήρηση : Για τέτοιους λόγους χρειάζεται και η εξέταση κάποιων μέτρων διασποράς

Διαβάστε περισσότερα

στατιστική θεωρεία της δειγµατοληψίας

στατιστική θεωρεία της δειγµατοληψίας στατιστική θεωρεία της δειγµατοληψίας ΕΙΓΜΑΤΟΛΗΨΙΑ : Εισαγωγή δειγµατοληψία Τα στοιχεία που απαιτούνται τόσο για την ανάλυση των µεταφορικών συστηµάτων και όσο και για την ανάπτυξη των συγκοινωνιακών µοντέλων

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ 1 Τί λέγεται πληθυσμός τι άτομα και τι μεταβλητή ενός πληθυσμού 2. Ποιες μεταβλητές λέγονται ποιοτικές ή κατηγορικές; 3.

ΣΤΑΤΙΣΤΙΚΗ 1 Τί λέγεται πληθυσμός τι άτομα και τι μεταβλητή ενός πληθυσμού 2. Ποιες μεταβλητές λέγονται ποιοτικές ή κατηγορικές; 3. .. ΣΤΑΤΙΣΤΙΚΗ 1 Τί λέγεται πληθυσμός τι άτομα και τι μεταβλητή ενός πληθυσμού 2. Ποιες μεταβλητές λέγονται ποιοτικές ή κατηγορικές; 3. Ποιες μεταβλητές λέγονται ποσοτικές; 4. Πότε μια ποσοτική μεταβλητή

Διαβάστε περισσότερα

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες Ορισμός Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες αβεβαιότητας. Βασικές έννοιες Η μελέτη ενός πληθυσμού

Διαβάστε περισσότερα

Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση

Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση Copyright 2009 Cengage Learning 16.1 Ανάλυση Παλινδρόμησης Σκοπός του προβλήματος είναι η ανάλυση της σχέσης μεταξύ συνεχών μεταβλητών. Η ανάλυση παλινδρόμησης

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

1η Ελληνο - Γαλλική & Διεθνής Συνάντηση, SD-MED:

1η Ελληνο - Γαλλική & Διεθνής Συνάντηση, SD-MED: Ε ΘΝΙΚΟ Μ ΕΤΣΟΒΙΟ Π ΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ & ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΓΕΩΓΡΑΦΙΑΣ & ΠΕΡΙΦΕΡΕΙΑΚΟΥ ΣΧΕΔΙΑΣΜΟΥ 1η Ελληνο - Γαλλική & Διεθνής Συνάντηση, SD-MED: «Πολιτικές χωρικού σχεδιασμού και διευθέτησης

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 4: Στατιστική Ι (4/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Στατιστική Ι. Ενότητα 4: Στατιστική Ι (4/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Στατιστική Ι Ενότητα 4: Στατιστική Ι (4/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΜΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΙΣΗ

ΜΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΙΣΗ ΜΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΙΣΗ Τα μη γραμμικά μοντέλα έχουν την πιο κάτω μορφή: η μορφή αυτή μοιάζει με τη μορφή που έχουμε για τα γραμμικά μοντέλα ( δηλαδή η παρατήρηση Y i είναι το άθροισμα της αναμενόμενης

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΒΙΝΤΕΟ ΣΤΑΤΙΣΤΙΚΗ

ΕΠΑΝΑΛΗΠΤΙΚΟ ΒΙΝΤΕΟ ΣΤΑΤΙΣΤΙΚΗ ΕΠΑΝΑΛΗΠΤΙΚΟ ΒΙΝΤΕΟ ΣΤΑΤΙΣΤΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Άσκηση 1: Μια τράπεζα ενδιαφέρεται να μελετήσει την αποταμιευτική συμπεριφορά των πελατών της. Θεωρείται ως δεδομένο ότι η ετήσια αποταμίευση των πελατών της

Διαβάστε περισσότερα

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ ΠΡΩΤΟ ΘΕΩΡΙΑΣ-ΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ ΕΡΓΑΣΤΗΡΙΟ PASW 18 Δρ. Κουνετάς Η Κωνσταντίνος Ακαδημαϊκό Έτος 2011 2012 ΕΠΙΧ

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ 1.1 Πίνακες, κατανομές, ιστογράμματα... 1 1.2 Πυκνότητα πιθανότητας, καμπύλη συχνοτήτων... 5 1.3

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ Συντελεστής συσχέτισης (εκτιμητής Person: r, Y ( ( Y Y xy ( ( Y Y x y, όπου r, Y (ισχυρή θετική γραμμική συσχέτιση όταν, ισχυρή αρνητική

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων ΙΙ

Στατιστική Επιχειρήσεων ΙΙ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Στατιστική Επιχειρήσεων ΙΙ Ενότητα #: Επαγωγική Στατιστική - Δειγματοληψία Μιλτιάδης Χαλικιάς Τμήμα Διοίκησης Επιχειρήσεων Άδειες

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 2015 Πληθυσμός: Εισαγωγή Ονομάζεται το σύνολο των χαρακτηριστικών που

Διαβάστε περισσότερα

ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ 3 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΣΤΑΤΙΣΤΙΚΗ ΘΕΜΑΤΑ

ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ 3 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΣΤΑΤΙΣΤΙΚΗ ΘΕΜΑΤΑ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ 3 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΣΤΑΤΙΣΤΙΚΗ ΘΕΜΑΤΑ ΘΕΜΑ 1 ο Τα δεδομένα της στήλης Grade (Αρχείο Excel, Φύλλο Ask1) αναφέρονται στη βαθμολογία 63 φοιτητών που έλαβαν μέρος σε

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 20 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 20 2.1.1 Αβεβαιότητα

Διαβάστε περισσότερα

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Η χρησιμοποίηση των τεχνικών της παλινδρόμησης για την επίλυση πρακτικών προβλημάτων έχει διευκολύνει εξαιρετικά από την χρήση διαφόρων στατιστικών

Διαβάστε περισσότερα

ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΕΡΕΥΝΩΝ 14 Οκτωβρίου 2011 ΔΙΕΥΘΥΝΣΗ ΕΘΝΙΚΩΝ ΛΟΓΑΡΙΑΣΜΩΝ

ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΕΡΕΥΝΩΝ 14 Οκτωβρίου 2011 ΔΙΕΥΘΥΝΣΗ ΕΘΝΙΚΩΝ ΛΟΓΑΡΙΑΣΜΩΝ ΕΛΛΗΝΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΡΧΗ ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΕΡΕΥΝΩΝ 14 Οκτωβρίου 2011 ΔΙΕΥΘΥΝΣΗ ΕΘΝΙΚΩΝ ΛΟΓΑΡΙΑΣΜΩΝ Η Ελληνική Στατιστική Αρχή (ΕΛΣΤΑΤ), στο πλαίσιο ενός ολοκληρωμένου στατιστικού σχεδίου δράσης

Διαβάστε περισσότερα

3η Ενότητα Προβλέψεις

3η Ενότητα Προβλέψεις ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων 3η Ενότητα Προβλέψεις (Μέρος 4 ο ) http://www.fsu.gr

Διαβάστε περισσότερα

Πολλαπλή παλινδρόμηση (Multivariate regression)

Πολλαπλή παλινδρόμηση (Multivariate regression) ΜΑΘΗΜΑ 3 ο 1 Πολλαπλή παλινδρόμηση (Multivariate regression) Η συμπεριφορά των περισσότερων οικονομικών μεταβλητών είναι συνάρτηση όχι μιας αλλά πολλών μεταβλητών Υ = f ( X 1, X 2,... X n ) δηλαδή η Υ

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 16. Απλή Γραμμική Παλινδρόμηση και Συσχέτιση

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 16. Απλή Γραμμική Παλινδρόμηση και Συσχέτιση ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

Ο ΤΟΠΟΣ ΕΓΚΑΤΑΣΤΑΣΗΣ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Ο ΤΟΠΟΣ ΕΓΚΑΤΑΣΤΑΣΗΣ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ Ο ΤΟΠΟΣ ΕΓΚΑΤΑΣΤΑΣΗΣ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ Οι κλασικές προσεγγίσεις αντιμετωπίζουν τη διαδικασία της επιλογής του τόπου εγκατάστασης των επιχειρήσεων ως αποτέλεσμα επίδρασης ορισμένων μεμονωμένων παραγόντων,

Διαβάστε περισσότερα

Στατιστική ανάλυση αποτελεσμάτων

Στατιστική ανάλυση αποτελεσμάτων HELLENIC OPEN UNIVERSITY School of Social Sciences ΜΒΑ Programme Στατιστική ανάλυση αποτελεσμάτων Βασίλης Αγγελής Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Πανεπιστήμιο Αιγαίου Κατερίνα Δημάκη Αν. Καθηγήτρια

Διαβάστε περισσότερα

ICAP GROUP S.A. ΑΝΑΘΕΩΡΗΣΗ ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΩΝ ΥΠΟΔΕΙΓΜΑΤΩΝ

ICAP GROUP S.A. ΑΝΑΘΕΩΡΗΣΗ ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΩΝ ΥΠΟΔΕΙΓΜΑΤΩΝ ICAP GROUP S.A. ΑΝΑΘΕΩΡΗΣΗ ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΩΝ ΥΠΟΔΕΙΓΜΑΤΩΝ Φεβρουάριος 2015 1 Table of Contents ΔΙΟΙΚΗΤΙΚΗ ΠΕΡΙΛΗΨΗ... 3 1. ΕΙΣΑΓΩΓΗ... 4 2. ΑΝΑΘΕΩΡΗΣΗ ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΩΝ ΜΟΝΤΕΛΩΝ... 4 2.1 ΔΕΔΟΜΕΝΑ... 4 2.1.1

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ 1 ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1. Ένα σηµείο Α(χ, ψ) ανήκει στη γραφική παράσταση της f αν f(ψ)=χ. 2. Αν µια συνάρτηση είναι γνησίως αύξουσα σε ένα διάστηµα A,

Διαβάστε περισσότερα

ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ

ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΓΙΑ ΤΟΝ ΕΝΤΟΠΙΣΜΟ ΓΕΩΧΗΜΙΚΗΣ ΑΝΩΜΑΛΙΑΣ Στατιστική ανάλυση του γεωχημικού δείγματος μας δίνει πληροφορίες για τον

Διαβάστε περισσότερα

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος 75 Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 1.1. Τυχαία γεγονότα ή ενδεχόμενα 17 1.2. Πειράματα τύχης - Δειγματικός χώρος 18 1.3. Πράξεις με ενδεχόμενα 20 1.3.1. Ενδεχόμενα ασυμβίβαστα

Διαβάστε περισσότερα

Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Μάθημα 4 ο :Τυχαίες μεταβλητές Διδάσκουσα: Κοντογιάννη Αριστούλα

Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Μάθημα 4 ο :Τυχαίες μεταβλητές Διδάσκουσα: Κοντογιάννη Αριστούλα Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Μάθημα 4 ο :Τυχαίες μεταβλητές Διδάσκουσα: Κοντογιάννη Αριστούλα Ορισμός τυχαίας μεταβλητής Τυχαία μεταβλητή λέγεται η συνάρτηση

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2 013 [Κεφάλαιο ] ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο Μάθημα Εαρινού Εξάμηνου 01-013 M.E. OE0300 Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής Ανάπτυξης [Οικονομετρία 01-013] Μαρί-Νοέλ

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Χειμερινό εξάμηνο 2010-2011 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ.Μ. 436 Περιγραφική Στατιστική Ι users.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr Μέτρα θέσης Η θέση αντιπροσωπεύει τη θέση της κατανομής

Διαβάστε περισσότερα

Βιοστατιστική ΒΙΟ-309

Βιοστατιστική ΒΙΟ-309 Βιοστατιστική ΒΙΟ-309 Χειμερινό Εξάμηνο Ακαδ. Έτος 2015-2016 Ντίνα Λύκα lika@biology.uoc.gr 1. Εισαγωγή Εισαγωγικές έννοιες Μεταβλητότητα : ύπαρξη διαφορών μεταξύ ομοειδών μετρήσεων Μεταβλητή: ένα χαρακτηριστικό

Διαβάστε περισσότερα

Θεματολογία. Δεδομένα και αβεβαιότητα. Αντικείμενο της Στατιστικής. Βασικές έννοιες. Δεδομένα και αβεβαιότητα. Στατιστική Ι

Θεματολογία. Δεδομένα και αβεβαιότητα. Αντικείμενο της Στατιστικής. Βασικές έννοιες. Δεδομένα και αβεβαιότητα. Στατιστική Ι Ενότητα η : Εισαγωγή στη Στατιστική Θεματολογία Στατιστική Ι Ενότητα : Εισαγωγή Δρ. Χρήστος Εμμανουηλίδης Επίκουρος Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Αντικείμενο της Στατιστικής : μεταβλητές,πληθυσμός,

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ ΠΡΩΤΟ

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ ΠΡΩΤΟ ΠΕΡΙΕΧΟΜΕΝΑ Εισαγωγή 1. Γενικά... 25 2. Έννοια και Είδη Μεταβλητών... 26 3. Κλίμακες Μέτρησης Μεταβλητών... 29 3.1 Ονομαστική κλίμακα... 30 3.2. Τακτική κλίμακα... 31 3.3 Κλίμακα ισοδιαστημάτων... 34 3.4

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 12ο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 12ο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 12ο ΑΙΤΙΟΤΗΤΑ Ένα από τα βασικά προβλήματα που υπάρχουν στην εξειδίκευση ενός υποδείγματος είναι να προσδιοριστεί η κατεύθυνση που μία μεταβλητή

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 21 2.1.1 Αβεβαιότητα και Τυχαίο Πείραμα

Διαβάστε περισσότερα

ΜΕΘΟΔΟΙ ΕΛΕΓΧΟΥ ΑΚΡΙΒΕΙΑΣ (ACCURACY)

ΜΕΘΟΔΟΙ ΕΛΕΓΧΟΥ ΑΚΡΙΒΕΙΑΣ (ACCURACY) ΜΕΘΟΔΟΙ ΕΛΕΓΧΟΥ ΑΚΡΙΒΕΙΑΣ (ACCURACY) 1) Ανάλυση 1 δείγματος (Πιστοποιημένο Υλικό Αναφοράς (CRM), εμπορικό δείγμα ελέγχου (control sample), υπόλειμμα διεργαστηριακού) με γνωστή τιμή αναφοράς (μ). Αναλύεται

Διαβάστε περισσότερα

f x g x f x g x, x του πεδίου ορισμού της; Μονάδες 4 είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w

f x g x f x g x, x του πεδίου ορισμού της; Μονάδες 4 είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 0 ΜΑΪΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α Α1 Αν οι συναρτήσεις f,g

Διαβάστε περισσότερα

ΑΚΑΔΗΜΙΑ ΤΩΝ ΠΟΛΙΤΩΝ

ΑΚΑΔΗΜΙΑ ΤΩΝ ΠΟΛΙΤΩΝ ΑΚΑΔΗΜΙΑ ΤΩΝ ΠΟΛΙΤΩΝ Αστική Μη Κερδοσκοπική Εταιρεία- ISO 9001 Σαπφούς 3, 81100 Μυτιλήνη (1ος Όροφος) 2251054739 (09:00-14:30) academy@aigaion.org civilacademy.ucoz.org «ΠΡΟΓΡΑΜΜΑ ΜΕΘΟΔΟΛΟΓΙΑΣ ΕΡΕΥΝΑΣ

Διαβάστε περισσότερα

Σχεδιασμός και Διεξαγωγή Πειραμάτων

Σχεδιασμός και Διεξαγωγή Πειραμάτων Σχεδιασμός και Διεξαγωγή Πειραμάτων Πρώτο στάδιο: λειτουργικοί ορισμοί της ανεξάρτητης και της εξαρτημένης μεταβλητής Επιλογή της ανεξάρτητης μεταβλητής Επιλέγουμε μια ανεξάρτητη μεταβλητή (ΑΜ), την οποία

Διαβάστε περισσότερα

Συλλογή και παρουσίαση στατιστικών δεδομένων

Συλλογή και παρουσίαση στατιστικών δεδομένων Συλλογή και παρουσίαση στατιστικών δεδομένων Απογραφή Δειγματοληψία Συνεχής καταγραφή Πίνακες Διαγράμματα Στατιστικές εκθέσεις Τρόποι συλλογής δεδομένων Οι μέθοδοι συλλογής δεδομένων ποικίλουν και κυρίως

Διαβάστε περισσότερα

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 3 ΜΑΪΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

Μεταπτυχιακό Πρόγραμμα. MSc in Accounting & Finance ΤΕΙ ΠΕΙΡΑΙΑ Μάθημα: ΕΠΕΝΔΥΣΕΙΣ. Μέτρηση Κινδύνου & Απόδοσης Επενδύσεων

Μεταπτυχιακό Πρόγραμμα. MSc in Accounting & Finance ΤΕΙ ΠΕΙΡΑΙΑ Μάθημα: ΕΠΕΝΔΥΣΕΙΣ. Μέτρηση Κινδύνου & Απόδοσης Επενδύσεων Μεταπτυχιακό Πρόγραμμα MSc in Accounting & Finance ΤΕΙ ΠΕΙΡΑΙΑ Μάθημα: ΕΠΕΝΔΥΣΕΙΣ Μέτρηση Κινδύνου & Απόδοσης Επενδύσεων Μέτρηση Κινδύνου & Απόδοσης Επενδύσεων Οτιδήποτε δύναται να μετρηθεί, δύναται και

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

ΤΕΧΝΙΚΕΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ ΓΕΩΡΓΙΟΣ ΛΑΓΟΥΜΙΝΤΖΗΣ, ΒΙΟΧΗΜΙΚΟΣ, PHD ΙΑΤΡΙΚΗΣ

ΤΕΧΝΙΚΕΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ ΓΕΩΡΓΙΟΣ ΛΑΓΟΥΜΙΝΤΖΗΣ, ΒΙΟΧΗΜΙΚΟΣ, PHD ΙΑΤΡΙΚΗΣ ΤΕΧΝΙΚΕΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ ΓΕΩΡΓΙΟΣ ΛΑΓΟΥΜΙΝΤΖΗΣ, ΒΙΟΧΗΜΙΚΟΣ, PHD ΙΑΤΡΙΚΗΣ ΤΕΧΝΙΚΕΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ Οι τεχνικές δειγματοληψίας είναι ένα σύνολο μεθόδων που επιτρέπει να μειώσουμε το μέγεθος των δεδομένων που

Διαβάστε περισσότερα

ΗΡΑΚΛΕΙΟ 2007 ΙΩΑΝΝΑ ΚΑΠΕΤΑΝΟΥ

ΗΡΑΚΛΕΙΟ 2007 ΙΩΑΝΝΑ ΚΑΠΕΤΑΝΟΥ ΙΩΑΝΝΑ ΚΑΠΕΤΑΝΟΥ ΠΕΡΙΕΧΟΜΕΝΑ ΕΙΣΑΓΩΓΗ 1.1 Γιατί οι επιχειρήσεις έχουν ανάγκη την πρόβλεψη σελ.1 1.2 Μέθοδοι πρόβλεψης....σελ.2 ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ 2.1 Υπόδειγμα του Κινητού μέσου όρου.σελ.5 2.2 Υπόδειγμα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΤΡΑΠΕΖΙΚΗΣ ΔΙΟΙΚΗΤΙΚΗΣ ΑΝΑΚΟΙΝΩΣΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΤΡΑΠΕΖΙΚΗΣ ΔΙΟΙΚΗΤΙΚΗΣ ΑΝΑΚΟΙΝΩΣΗ ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΤΡΑΠΕΖΙΚΗΣ ΔΙΟΙΚΗΤΙΚΗΣ Πειραιάς, 2/10/2014 ΑΝΑΚΟΙΝΩΣΗ ΚΑΤΑΤΑΚΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 Η κατάταξη των υποψηφίων στο Τμήμα για το ακαδημαϊκό έτος 2014-15, θα

Διαβάστε περισσότερα

Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων

Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών

Διαβάστε περισσότερα

ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» Τριανταφυλλίδου Ιωάννα Μαθηματικός

ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» Τριανταφυλλίδου Ιωάννα Μαθηματικός ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΕ ΤΟ SPSS To SPSS θα: - Κάνει πολύπλοκη στατιστική ανάλυση σε δευτερόλεπτα -

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες

Διαβάστε περισσότερα

H ΑΝΑΛΥΣΗ ΣΥΣΧΕΤΙΣΗΣ (PEARSON s r)

H ΑΝΑΛΥΣΗ ΣΥΣΧΕΤΙΣΗΣ (PEARSON s r) 5 H ΑΝΑΛΥΣΗ ΣΥΣΧΕΤΙΣΗΣ (PEARSON s r) Περίληψη Σκοπός του κεφαλαίου είναι η εφαρμογή της ανάλυσης συσχέτισης (Pearson r) μέσω του PASW. H ανάλυση συσχέτισης Pearson r χρησιμοποιείται για να εξεταστεί η

Διαβάστε περισσότερα

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρμοσμένες Επιστήμες Στατιστικός Πληθυσμός και Δείγμα Το στατιστικό

Διαβάστε περισσότερα

Εκπαιδευτική Έρευνα: Μέθοδοι Συλλογής και Ανάλυσης εδομένων Συσχέτιση

Εκπαιδευτική Έρευνα: Μέθοδοι Συλλογής και Ανάλυσης εδομένων Συσχέτιση Εκπαιδευτική Έρευνα: Μέθοδοι Συλλογής και Ανάλυσης εδομένων Συσχέτιση Οι επιδόσεις δέκα μαθητών σε τέσσερα μαθήματα Μαθητής Άλγεβρα Φυσική Νέα Ελληνικά Μουσική Α 65 63 35 61 Β 60 58 38 35 Γ 60 60 40 46

Διαβάστε περισσότερα