UNIVERSITY OF THESSALY FACULTY OF ENGINEERING DEPARTMENT OF PLANNINGAND REGIONAL DEVELOPMENT MASTER «EUROPEAN REGIONAL DEVELOPMENT STUDIES»

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "UNIVERSITY OF THESSALY FACULTY OF ENGINEERING DEPARTMENT OF PLANNINGAND REGIONAL DEVELOPMENT MASTER «EUROPEAN REGIONAL DEVELOPMENT STUDIES»"

Transcript

1 UNIVERSITY OF THESSALY FACULTY OF ENGINEERING DEPARTMENT OF PLANNINGAND REGIONAL DEVELOPMENT MASTER «EUROPEAN REGIONAL DEVELOPMENT STUDIES» METHODS OF SPATIAL ECONOMIC ANALYSIS LECTURE 11 Δρ. Μαρί-Νοέλ Ντυκέν, Αναπληρώτρια Καθηγήτρια, Τηλ Γραφείο Γ.6

2 ΠΕΡΙΕΧΟΜΕΝΟ 1. Χρήση του Μοντέλου Βαρύτητας (Gravity Model) Βασίζεται στον Νόμο της Παγκόσμιας έλξης του Isaac Newton 2. Το λεπτό θέμα της Εξειδίκευσης του Υποδείγματος 3. Μετατροπή από μη γραμμικό σε γραμμικό 4. Εφαρμογή με το SPSS Δεδομένα: DATA_LECTURE11.sav

3 1. Ανάλυση Ροών (εισροές εκροές) ΕΙΣΑΓΩΓΗ Ροές: εισαγωγές εξαγωγές, μετακίνηση στο πλαίσιο της εργασίας (commuting), εσωτερική μετανάστευση (αλλαγή τόπου διαμονής), εξωτερική μετανάστευση Το φαινόμενο που εξετάζεται, μέτρα τις ροές προς το σημείο προορισμού (destination) από όλα τα πιθανά σημεία προέλευσης (origin) = Y do όπου d =1,,n και o = 1,.,n Με n παρατηρήσεις (π.χ. 51 Νομοί της Ελλάδας) έχουμε (n x n) τιμές για την μεταβλητή Y do 2. Το ζητούμενο Ανάδειξη των παραγόντων που εξηγούν τον όγκο των ροών (άτομα, αξία των συναλλαγών κλπ) μεταξύ τόπου προορισμού και τόπων προέλευσης; Εξετάζοντας την εσωτερική μετανάστευση των αλλοδαπών στην Ελλάδα κατά την τελευταία δεκαετία ( ), πως μπορούμε να εξηγήσουμε ότι, ορισμένες περιοχές παρουσιάζουν σημαντικές εισροές ενώ άλλες, πολύ περιορισμένες;

4 ΕΙΣΑΓΩΓΗ 3. Φύση του μοντέλου Εξετάζουμε τις συνολικές ροές από / προς ένα τόπο : πρόκειται για αθροιστικό μοντέλο και όχι εξατομικευμένο μοντέλο που αφορά τις ατομικές προτιμήσεις (δειγματοληπτική έρευνα). Το πρώτο θέμα επομένως είναι η μέτρηση των συνολικών ροών (Y do ) η οποία απαιτεί την κατασκευή ενός Πίνακα διπλής εισόδου: DO όπου τα διαγώνια κελιά = Δύο είναι, σύμφωνα με τη διεθνή βιβλιογραφία, οι βασικές κατηγορίες παραγόντων: Παράγοντες που αντανακλούν την ελκυστικότητα ενός τόπου (ελκτική δύναμη) Παράγοντές που αντανακλούν τον χωρο-χρονικό διαχωρισμό (απόσταση, κόστος μετακίνησης) Ελκυστικότητα Απόσταση Εισροές Εισροές

5 Μοντέλο Βαρύτητας για την ανάλυση ροών (Gravity Model) Η ανάλυση ροών βασίζεται στον περίφημο Νόμο της Παγκόσμιας έλξης του Isaac Newton όπου η ελκτική δύναμη μεταξύ δύο σωμάτων είναι ανάλογη του γινομένου των μαζών τους και αντιστρόφως του τετραγώνου της μεταξύ τους απόστασης. Αν F είναι η ελκτική δύναμη, τότε έχουμε: G = σταθερά της παγκόσμιας έλξης, m 1 και m 2 οι μάζες των δύο σωμάτων, r = απόσταση μεταξύ των 2 σωμάτων

6 Εξειδίκευση του Μοντέλο Βαρύτητας για τις ροές 1. Τα πρώτα εμπειρικά υποδείγματα της Βαρύτητας ( ) (α) Αρχική μορφή του υποδείγματος: ανάλυση μετανάστευσης μεταξύ περιοχών (χώρες, περιφέρειες, κ.ά). Y = a do P P a1 a d o a3 ddo 2 Μη γραμμική εξειδίκευση Υ do = ροές προς την περιοχή d από μια περιοχή o P d (P ο ) = ΑΕΠ της περιοχής d (ανάλογα ο) έννοια των μαζών d do = απόσταση μεταξύ των 2 περιοχών. (β) Εμπλουτισμένη μορφή του υποδείγματος: εισαγωγή άλλων μεταβλητών όπως (ι) πληθυσμός των περιοχών ως έννοια των μαζών και (ιι) ανάπτυξη των περιοχών (ΑΕΠκκ ή ακόμα Ρυθμός ανάπτυξης των περιοχών) Y = a do P a d 1 a2 Po G d a d a5 do 3 G a o 4 P d (P ο ) = Πληθυσμός περιοχής d (ο) G d (G ο ) = Ρυθμός ανάπτυξης περιοχής d (ο)

7 Εξειδίκευση του Μοντέλο Βαρύτητας για τις ροές Μετασχηματισμός σε γραμμική συνάρτηση: Ln(Y do ) = a o + a 1 Ln(P d )+ a 2 Ln(P o ) + a 3 Ln(G d ) + a 4 Ln(G o ) + a 5 Ln(d do ) + e do Όπου : a o = ln(a) 2. Αναπτυγμένη μορφή του υποδείγματος (2000 και επέιτα) Κατά τη τελευταία δεκαετία, η χρήση του μοντέλου βαρύτητας βελτιώθηκε με την εισαγωγή πρόσθετων μεταβλητών για την καλύτερη προσέγγιση: τόσο της ελκυστικότητας (δυναμικότητας) των περιοχών, όσο και του χωρο-χρονικού διαχωρισμού. Σχετικά με τον διαχωρισμό, πολλές έρευνες προτείνουν την εισαγωγή διακριτών μεταβλητών (dummy variables / binary). Ln(Y do ) = a o + a 1 Ln(P d )+ a 2 Ln(P o ) + a 3 Ln(G d ) + a 4 Ln(G o ) + a 5 Ln(d do ) + Π.χ.: dum 1 = 1 όταν οι δύο περιοχές είναι γειτονικές (κοινά σύνορα) k j= 1 b j dum j + e do

8 ΕΦΑΡΜΟΓΗ: οι εσωτερικές μετακινήσεις (αλλαγή τόπου διαμονής) αλλοδαπών στην Ελλάδα, κατά την περίοδο

9 ΠΑΡΟΥΣΙΑΣΗ ΤΩΝ ΜΕΤΑΒΛΗΤΩΝ ΕΞΕΙΔΙΚΕΥΣΗ ΜΟΝΤΕΛΟΥ 1. Εξαρτημένη Y do = Εσωτερικές εισροές αλλοδαπών στο Νομό (d) από όλους τους υπόλοιπους Νομούς (ο) της Χώρας Δεν λαμβάνονται υπόψη τις εισροές από το εξωτερικό. Εξετάζεται αποκλειστικά την εσωτερική μετανάστευση των αλλοδαπών που ήδη είχαν εγκατασταθεί στην Ελλάδα, το Δεν λαμβάνονται υπόψη τις αλλαγές του τόπου διαμονής στο εσωτερικό του Νομού, όποτε όταν d = ο (destination = origin), Y do = 0 Η δημιουργία της μεταβλητής Y do απαιτεί την κατασκευή του Πίνακα Προορισμού Προέλευσης (Πίνακας διπλής εισόδου με 51 γραμμές και 51 στήλες) όπου τα διαγώνια κελιά = 0 Κατά συνέπεια, έχουμε 51 x 50 = 2550 πιθανές παρατηρήσεις. Δεδομένου ότι, ορισμένες παρατηρήσεις μπορεί να είναι μηδενικές: καμία εισροή στο Νομό (d) από ένα συγκεκριμένο Νομό (ο), πρακτικά το μοντέλο θα εφαρμοστεί σε λιγότερες παρατηρήσεις εφόσον δεν υπάρχει ln(0). Τελικά, έχουμε 2115 παρατηρήσεις για την εφαρμογή του μοντέλου.

10 ΠΑΡΟΥΣΙΑΣΗ ΤΩΝ ΜΕΤΑΒΛΗΤΩΝ ΕΞΕΙΔΙΚΕΥΣΗ ΜΟΝΤΕΛΟΥ 2. Ερμηνευτικές Προσοχή: το υπόδειγμα που εξετάζουμε είναι μια σχετικά «απλή» μορφή η οποία βασίζεται στην επιλογή των πιο συνηθισμένων ερμηνευτικών μεταβλητών, σύμφωναμετηβιβλιογραφική ανασκόπηση. Pop_d: Pop_o: Growth_d: Growth_o: Πληθυσμός του Νομού Προορισμού (destination) Πληθυσμός του Νομού Προέλευσης (origin) Ρυθμός ανάπτυξης του Νομού Προορισμού, κατά την εξεταζόμενη περίοδο Ρυθμός ανάπτυξης του Νομού Προέλευσης, κατά την εξεταζόμενη περίοδο QLXenoi_d: Συντελεστής συγκέντρωσης αλλοδαπών στο Νομό Προορισμού στην αρχή της περιόδου (Location Quotient) Distance: Contiguity: Island: Απόσταση μεταξύ έδρας του Νομού Προορισμού & έδρας του Νομού Προέλευσης (χλμ) Διακριτή μεταβλητή (1= κοινά σύνορα μεταξύ των 2 Νομών) Διακριτή μεταβλητή (1= Νησιωτικός Νομός)

11 ΠΑΡΟΥΣΙΑΣΗ ΤΩΝ ΜΕΤΑΒΛΗΤΩΝ ΕΞΕΙΔΙΚΕΥΣΗ ΜΟΝΤΕΛΟΥ 3. Λογαριθμικός μετασχηματισμός των ερμηνευτικών μεταβλητών Για την εφαρμογή της Μ.Ε.Τ., το μοντέλο μετατρέπεται σε γραμμικό μέσω λογαριθμικού μετασχηματισμού των ερμηνευτικών μεταβλητών (με εξαίρεση τις διακριτές μεταβλητές). Για τις μεταβλητές: Pop_d, Pop_o, QLXenoi_d, Distance, ο μετασχηματισμός δεν θέτει κανένα πρόβλημα, δεδομένου ότι όλες οι τιμές αυτών των μεταβλητών είναι θετικές. Για τις μεταβλητές: Growth_d και Growth_o, υπάρχει πρόβλημα εφόσον σε αρκετές περιπτώσεις παρατηρείται αρνητικός ρυθμός. Για να μην «χάσουμε» πληροφορία καθώς και σημαντικό παράγοντα ερμηνείας της ελκυστικότητας, γίνεται συστηματική αλλαγή κλίμακας των δύο μεταβλητών. Η αλλαγή κλίμακας δεν αλλάζει την κατανομή και την συμπεριφορά των σχετικών μεταβλητών (βλέπε διάγραμμα 1), απλώς επιτρέπει τον υπολογισμό του λογαρίθμου. Με την εντολή Analyze > Descriptive Statistics > Descriptives, εξετάζουμε ποια είναι η ελάχιστη τιμή των μεταβλητών Η τιμή αυτή θα προστεθεί στις μεταβλητές Growth_d και Growth_o όταν θα γίνει λογαριθμικό μετασχηματισμό τους.

12 ΠΑΡΟΥΣΙΑΣΗ ΤΩΝ ΜΕΤΑΒΛΗΤΩΝ ΕΞΕΙΔΙΚΕΥΣΗ ΜΟΝΤΕΛΟΥ 3. Λογαριθμικός μετασχηματισμός των ερμηνευτικών μεταβλητών Διάγραμμα 1. Η ελάχιστη τιμή για τις δύο μεταβλητές είναι περίπου 23,5 Για ασφάλεια και για να μην έχουμε μηδενική τιμή, προσθέτουμε στις τιμές των δύο μεταβλητών + 23,6 Ο λογαριθμικός μετασχηματισμός είναι επομένως: LGrowth_d = ln(growth_d + 23,6) LGrowth_0 = ln(growth_0 + 23,6) Αλλαγή κλίμακας: η νέα μεταβλητή παίρνει μόνο θετικές τιμές. Η εξέλιξη της μεταβλητής παραμένει δεν άλλαξε.

13 ΠΑΡΟΥΣΙΑΣΗ ΤΩΝ ΜΕΤΑΒΛΗΤΩΝ ΕΞΕΙΔΙΚΕΥΣΗ ΜΟΝΤΕΛΟΥ 4. Εξειδίκευση του υποδείγματος Ln(Y do ) = a o + a 1 Ln(Pop_d)+ a 2 Ln(Pop_o) + a 3 Ln(Growth_d) + a 4 Ln(Growth_o) + a 5 Ln(QLXenoi_d) + a 6 Ln(Distance) + a 7 Contiguity + a 8 Island + e do Όπου : a o = ln(a) Contiguity & Island: διακριτές μεταβλητές (1/0) N = 2115 K = 9 df = 2106

14 ΕΦΑΡΜΟΓΗ: Αποτελέσματα

15 Εντολές: Analyze > Regression > Linear Dependent: LY do ΕΦΑΡΜΟΓΉ ΤΗΣ Μ.Ε.Τ. ΣΤΟ SPSS Independent(s): Lpop_d, Lpop_o, Lgrowth_d, Lgrowth_o, LQLXenoi_d, Ldistance, Contiguity, Island Statistics: Plots: Save: (1) Regression Coefficients: Estimates, Confidence Intervals (2) Model fit, R squared change, Descriptive, Part and Partial correlation, Collinearity diagnostics Histogram, Normal probability plot Residuals Standardized

16 ΑΠΟΤΕΛΕΣΜΑΤΑ (OUTPUT) [01] Σχεδόν όλες οι ερμηνευτικές μεταβλητές παρουσιάζουν σημαντική γραμμική συσχέτιση με την εξαρτημένη μεταβλητή

17 ΑΠΟΤΕΛΕΣΜΑΤΑ (OUTPUT) [02] Με R 2 της τάξης των 64%, F = 475,8 (p-value =0,000), το υπόδειγμα εξηγεί πραγματικά σημαντικό ποσοστό της διακύμανσης των εσωτερικών ροών αλλοδαπών στους Νομούς της Ελλάδας. Με Ν = 2115 και κ=9 df = 2106, ήταν αναμενόμενο ότι ο διορθωμένος συντελεστής R 2* (Adjusted R Square) δεν διαφέρει από τον απλό συντελεστή.

18 ΑΠΟΤΕΛΕΣΜΑΤΑ (OUTPUT) [03] Όλοι οι συντελεστές TOL είναι > 0,500, δηλαδή πάνω από το 50% της διακύμανσης κάθε ερμηνευτικής μεταβλητής δεν εξηγείται από τις άλλες ερμηνευτικές μεταβλητές. Οι περισσότερες μεταβλητές έχουν ιδιαιτέρα υψηλό δείκτη TOL. π.χ.: ο ρυθμός ανάπτυξης στον Νομό Προορισμού είναι κατά 93,5% ανεξάρτητος από τις υπόλοιπες 7 μεταβλητές. Κατά συνέπεια, μπορούμε χωρίς πρόβλημα να θεωρήσουμε ότι, οι ερμηνευτικές μεταβλητές είναι και ανεξάρτητες μεταξύ τους: βασική προϋπόθεση για την ισχύ του μοντέλου μας και για την ερμηνεία των αποτελεσμάτων..

19 ΑΠΟΤΕΛΕΣΜΑΤΑ (OUTPUT) [04] Όλες οι εκτιμήσεις των συντελεστών του υποδείγματος είναι στατιστικά σημαντικές (pvalue < 0,01). Οι σχέσεις ceteris paribus - μεταξύ της καθεμίας ερμηνευτικής μεταβλητής και της εξαρτημένης μεταβλητής είναι οι αναμενόμενες (βλέπε πρόσημο για κάθε συντελεστή). Ειδικά, παρατηρούμε ότι οι δύο μεταβλητές Growth έχουν αντίθετο πρόσημο. Η αύξηση του ρυθμού ανάπτυξης στον Νομό Προορισμού προκαλεί - ceteris paribus αύξηση των εισροών σε αυτό το Νομό. Αντίθετα, η αύξηση του ρυθμού ανάπτυξης σε οποιοδήποτε Νομό Προέλευσης προκαλεί - ceteris paribus μείωση των εισροών για τον Νομό Προορισμού. Είναι επίσης φανερό ότι, η επιρροή της ανάπτυξης στον Νομό Προορισμού είναι πιο έντονη σχετικά με την επιρροή της ανάπτυξης στον Νομό Προέλευσης.

20 ΑΠΟΤΕΛΕΣΜΑΤΑ (OUTPUT) [05] Η σχετική συγκέντρωση ξένων σε ένα Νομό (Location Quotient) φαίνεται να επηρεάσει την εγκατάσταση επιπροσθέτων αλλοδαπών στο Νομό. Όπως ήταν αναμενόμενο, η απόσταση έχει αρνητική επίδραση στην εσωτερική μετανάστευση ενώ η γειτνίαση παίζει θετικά. Τέλος, ο νησιωτικός χαρακτήρας του Νομού αποτελεί ceteris paribus -παράγοντα ελκυστικότητας. Έμμεσα το υπόδειγμα μας αναδεικνύει ότι, οι περιοχές με σημαντικό τουρισμό (επομένως απασχόληση) όπως είναι η περίπτωση των νησιών αποτελούν τόπο προτίμησης για τους αλλοδαπούς. Τα αποτελέσματα αυτά αναδεικνύουν ότι, θα μπορούσαμε εύκολα να βελτιώσουμε τον μοντέλο με την εισαγωγή επιπροσθέτων χαρακτηριστικών.

21 ΑΠΟΤΕΛΕΣΜΑΤΑ (OUTPUT) [06] Τέλος, η κατανομή των σφαλμάτων είναι πραγματικά κανονική, όπως το αναδεικνύουν τα δύο παραπάνω διαγράμματα.

22 ΑΠΟΤΕΛΕΣΜΑΤΑ (OUTPUT) [07] Σχεδόν όλα τα τυποποιημένα κατάλοιπα (Standardized residuals) κυμαίνονται μεταξύ -1 και +1. Η διακύμανση των κατάλοιπων είναι σχεδόν σταθερή.

ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ

ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ ΠΟΤΕ ΚΑΙ ΓΙΑΤΙ ΧΡΗΣΙΜΟΠΟΙΕΙΤΑΙ ΜΟΝΤΕΛΟ ΕΚΤΙΜΗΣΗ ΠΑΡΑΜΕΤΡΩΝ ΕΡΜΗΝΕΙΑ ΤΩΝ ΕΚΤΙΜΗΤΩΝ ΤΩΝ ΠΑΡΑΜΕΤΡΩΝ ΤΩΝ ΣΥΝΤΕΛΕΣΤΩΝ ΠΑΛΙΝ ΡΟΜΗΣΗΣ ΥΠΟΘΕΣΕΙΣ ΠΙΝΑΚΑΣ ΑΝΑ ΙΑ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ ΓΙΑ ΤΙΣ ΠΑΡΑΜΕΤΡΟΥΣ

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Πολλαπλή Παλινδρόμηση Δρ. Βασίλης Π. Αγγελίδης Ανάλυση Δεδομένων (Εργαστήριο) Διαφάνεια

Διαβάστε περισσότερα

Μοντέλα Πολλαπλής Παλινδρόμησης

Μοντέλα Πολλαπλής Παλινδρόμησης Μοντέλα Πολλαπλής Παλινδρόμησης Πέτρος Ρούσσος Πρόγραμμα Ψυχολογίας, ΦΠΨ, ΕΚΠΑ ΕΙΣΑΓΩΓΙΚΑ 1 Ορολογία Προβλεπτικές μεταβλητές ή παράγοντες (predictors) Μεταβλητή κριτήριο (criterion) Απλή και πολλαπλή παλινδρόμηση

Διαβάστε περισσότερα

Πολλαπλή παλινδρόμηση (Multivariate regression)

Πολλαπλή παλινδρόμηση (Multivariate regression) ΜΑΘΗΜΑ 3 ο 1 Πολλαπλή παλινδρόμηση (Multivariate regression) Η συμπεριφορά των περισσότερων οικονομικών μεταβλητών είναι συνάρτηση όχι μιας αλλά πολλών μεταβλητών Υ = f ( X 1, X 2,... X n ) δηλαδή η Υ

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 4: ΔΙΑΛΕΞΗ 04

ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 4: ΔΙΑΛΕΞΗ 04 ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 4: ΔΙΑΛΕΞΗ 04 Μαρί-Νοέλ Ντυκέν Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας & Περιφερειακής Ανάπτυξης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1. Απλή γραµµική παλινδρόµηση. 1.2 Παράδειγµα 6 (συνέχεια)

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1. Απλή γραµµική παλινδρόµηση. 1.2 Παράδειγµα 6 (συνέχεια) ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 2006-2007, 3ο εξάµηνο ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. Απλή γραµµική παλινδρόµηση Παράδειγµα 6: Χρόνος παράδοσης φορτίου ΜΑΘΗΜΑ

Διαβάστε περισσότερα

ΤΣΑΛΤΑ ΜΑΡΙΑ Α.Μ: 1946 ΠΑΥΛΕΛΛΗ ΛΟΥΙΖΑ Α.Μ: 2342 ΤΣΑΪΛΑΚΗ ΦΑΝΗ Α.Μ: Οικονομετρικά. Εργαστήριο 15/05/11

ΤΣΑΛΤΑ ΜΑΡΙΑ Α.Μ: 1946 ΠΑΥΛΕΛΛΗ ΛΟΥΙΖΑ Α.Μ: 2342 ΤΣΑΪΛΑΚΗ ΦΑΝΗ Α.Μ: Οικονομετρικά. Εργαστήριο 15/05/11 ΤΣΑΛΤΑ ΜΑΡΙΑ Α.Μ: 1946 ΠΑΥΛΕΛΛΗ ΛΟΥΙΖΑ Α.Μ: 34 ΤΣΑΪΛΑΚΗ ΦΑΝΗ Α.Μ: 17 Οικονομετρικά Εργαστήριο 15/5/11 ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ 7 ΕΡΓΑΣΤΗΡΙΟ ΜΗ ΓΡΑΜΜΙΚΑ ΜΟΝΤΕΛΑ Σκοπός του παρόντος µαθήµατος είναι η

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Περιεχόμενα Εισαγωγή Το πρόβλημα - Συντελεστής συσχέτισης Μοντέλο απλής γραμμικής παλινδρόμησης

Διαβάστε περισσότερα

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Θεσσαλονίκης Τμήμα Πληροφορικής Εργαστήριο «Θεωρία Πιθανοτήτων και Στατιστική» ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Περιεχόμενα 1. Συσχέτιση μεταξύ δύο ποσοτικών

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΣΕ ΚΥΡΙΕΣ ΣΥΝΙΣΤΩΣΕΣ Α.Κ.Σ.

ΑΝΑΛΥΣΗ ΣΕ ΚΥΡΙΕΣ ΣΥΝΙΣΤΩΣΕΣ Α.Κ.Σ. ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΑΝΑΛΥΣΗ ΣΕ ΚΥΡΙΕΣ ΣΥΝΙΣΤΩΣΕΣ Α.Κ.Σ. Μ-Ν ΝΤΥΚΕΝ Ορισμός Σκοπός της Α.Κ.Σ. Η Α.Κ.Σ. εντάσσεται στις μεθόδους διερευνητικής ανάλυσης (exploratory) συνθετικών φαινόμενων (Παραγοντικές μεθόδοι).

Διαβάστε περισσότερα

Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 6 ο

Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 6 ο Παράδειγμα 1 Ο παρακάτω πίνακας δίνει τις πωλήσεις (ζήτηση) ενός προϊόντος Υ (σε κιλά) από το delicatessen μιας περιοχής και τις αντίστοιχες τιμές Χ του προϊόντος (σε ευρώ ανά κιλό) για μια ορισμένη χρονική

Διαβάστε περισσότερα

Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας & Περιφερειακής Ανάπτυξης

Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας & Περιφερειακής Ανάπτυξης Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας & Περιφερειακής Ανάπτυξης ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ: ΟΙΚΟΝΟΜΕΤΡΙΑ Οι παραβιάσεις των σημαντικότερων υποθέσεων των γραμμικών υποδειγμάτων

Διαβάστε περισσότερα

Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας & Περιφερειακής Ανάπτυξης

Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας & Περιφερειακής Ανάπτυξης Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας & Περιφερειακής Ανάπτυξης ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ: ΟΙΚΟΝΟΜΕΤΡΙΑ Το Γενικευμένο Γραμμικό Υπόδειγμα (Α) ΔΙΑΛΕΞΗ 05 Μαρί-Νοέλ Ντυκέν,

Διαβάστε περισσότερα

Άσκηση 11. Δίνονται οι παρακάτω παρατηρήσεις:

Άσκηση 11. Δίνονται οι παρακάτω παρατηρήσεις: Άσκηση. Δίνονται οι παρακάτω παρατηρήσεις: X X X X Y 7 50 6 7 6 6 96 7 0 5 55 9 5 59 6 8 8 5 0 59 7 7 8 8 5 5 0 7 69 9 6 6 7 6 9 5 7 6 8 5 6 69 8 0 50 66 0 0 50 8 59 76 8 7 60 7 87 6 5 7 88 9 8 50 0 5

Διαβάστε περισσότερα

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Η χρησιμοποίηση των τεχνικών της παλινδρόμησης για την επίλυση πρακτικών προβλημάτων έχει διευκολύνει εξαιρετικά από την χρήση διαφόρων στατιστικών

Διαβάστε περισσότερα

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ ΠΡΩΤΟ ΘΕΩΡΙΑΣ-ΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ ΕΡΓΑΣΤΗΡΙΟ PASW 18 Δρ. Κουνετάς Η Κωνσταντίνος Ακαδημαϊκό Έτος 2011 2012 ΕΠΙΧ

Διαβάστε περισσότερα

Απλή Ευθύγραµµη Συµµεταβολή

Απλή Ευθύγραµµη Συµµεταβολή Απλή Ευθύγραµµη Συµµεταβολή Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας, Εργαστήριο Γεωργίας Viola adorata Εισαγωγή Ανάλυση Παλινδρόµησης και Συσχέτιση Απλή

Διαβάστε περισσότερα

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ& ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ& ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ& ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑΠΡΟΤΥΠΑΜΑΘΗΜΑ4ο-5ο-6 ο (β) ΠΟΛΛΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ- ΕΡΓΑΣΤΗΡΙΟ PASW 18 Δρ. Κουνετάς Η Κωνσταντίνος Ακαδημαϊκό Έτος 2011-2012 ΕΠΙΧ

Διαβάστε περισσότερα

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1. Πολλαπλή γραµµική παλινδρόµηση. 1.2 Παράδειγµα 7 (συνέχεια)

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1. Πολλαπλή γραµµική παλινδρόµηση. 1.2 Παράδειγµα 7 (συνέχεια) ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 2006-2007, 3ο εξάµηνο ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ ΜΑΘΗΜΑ 12β ΕΡΓΑΣΤΗΡΙΟ 4β ΠΟΛΛΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ ΜΕ ΤΗΝ ΧΡΗΣΗ SPSS

Διαβάστε περισσότερα

Προϋποθέσεις : ! Και οι δύο µεταβλητές να κατανέµονται κανονικά και να έχουν επιλεγεί τυχαία.

Προϋποθέσεις : ! Και οι δύο µεταβλητές να κατανέµονται κανονικά και να έχουν επιλεγεί τυχαία. . ΣΤΑΤΙΣΤΙΚΗ ΣΥΣΧΕΤΙΣΗ. Υπολογισµός συντελεστών συσχέτισης Προκειµένου να ελέγξουµε την ύπαρξη γραµµικής σχέσης µεταξύ δύο ποσοτικών µεταβλητών, χρησιµοποιούµε συνήθως τον παραµετρικό συντελεστή συσχέτισης

Διαβάστε περισσότερα

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ& ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ& ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ& ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ 7o MH ΓΡΑΜΜΙΚΕΣ ΜΟΡΦΕΣ-ΕΡΓΑΣΤΗΡΙΟ PASW 18 Δρ. Κουνετάς Η Κωνσταντίνος Ακαδημαϊκό Έτος 2011-2012 ΕΠΙΧ Οικονοµετρικά

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ Συντελεστής συσχέτισης (εκτιμητής Person: r, Y ( ( Y Y xy ( ( Y Y x y, όπου r, Y (ισχυρή θετική γραμμική συσχέτιση όταν, ισχυρή αρνητική

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

2. ΕΠΙΛΟΓΗ ΤΟΥ ΜΕΓΕΘΟΥΣ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ

2. ΕΠΙΛΟΓΗ ΤΟΥ ΜΕΓΕΘΟΥΣ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ 1. ΕΙΣΑΓΩΓΗ ΣΤΟ SPSS Το SPSS είναι ένα στατιστικό πρόγραμμα γενικής στατιστικής ανάλυσης αρκετά εύκολο στη λειτουργία του. Για να πραγματοποιηθεί ανάλυση χρονοσειρών με τη βοήθεια του SPSS θα πρέπει απαραίτητα

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2 013 [Κεφάλαιο ] ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο Μάθημα Εαρινού Εξάμηνου 01-013 M.E. OE0300 Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής Ανάπτυξης [Οικονομετρία 01-013] Μαρί-Νοέλ

Διαβάστε περισσότερα

Παραβίασητωνβασικώνυποθέσεωντηςπαλινδρόμησης (Violation of the assumptions of the classical linear regression model)

Παραβίασητωνβασικώνυποθέσεωντηςπαλινδρόμησης (Violation of the assumptions of the classical linear regression model) ΜΑΘΗΜΑ 4 ο 1 Παραβίασητωνβασικώνυποθέσεωντηςπαλινδρόμησης (Violation of the assumptions of the classical linear regression model) Αυτοσυσχέτιση (Serial Correlation) Lagrange multiplier test of residual

Διαβάστε περισσότερα

Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας & Περιφερειακής Ανάπτυξης

Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας & Περιφερειακής Ανάπτυξης Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας & Περιφερειακής Ανάπτυξης ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ: ΟΙΚΟΝΟΜΕΤΡΙΑ Το κλασικό Γραμμικό Υπόδειγμα ΔΙΑΛΕΞΗ 0 Μαρί-Νοέλ Ντυκέν, Μαρία

Διαβάστε περισσότερα

Οικονομετρία Ι. Ενότητα 6: Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία Ι. Ενότητα 6: Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Οικονομετρία Ι Ενότητα 6: Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Θεσσαλονίκης Τμήμα Πληροφορικής Εργαστήριο «Θεωρία Πιθανοτήτων και Στατιστική» ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ Περιεχόμενα 1. ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ...

Διαβάστε περισσότερα

+ ε βελτιώνει ουσιαστικά το προηγούμενο (β 3 = 0;) 2. Εξετάστε ποιο από τα παρακάτω τρία μοντέλα:

+ ε βελτιώνει ουσιαστικά το προηγούμενο (β 3 = 0;) 2. Εξετάστε ποιο από τα παρακάτω τρία μοντέλα: ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ, 6-5-0 Άσκηση 8. Δίνονται οι παρακάτω 0 παρατηρήσεις (πίνακας Α) με βάση τις οποίες θέλουμε να δημιουργήσουμε ένα γραμμικό μοντέλο για την πρόβλεψη της Υ μέσω των ανεξάρτητων μεταβλητών

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 7. Παλινδρόµηση

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 7. Παλινδρόµηση ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 7. Παλινδρόµηση Γενικά Επέκταση της έννοιας της συσχέτισης: Πώς µπορούµε να προβλέπουµε τη µια µεταβλητή από την άλλη; Απλή παλινδρόµηση (simple regression): Κατασκευή µοντέλου πρόβλεψης

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων Ι

Στατιστική Επιχειρήσεων Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Στατιστική Επιχειρήσεων Ι Ενότητα 6: Συσχέτιση και παλινδρόμηση εμπειρική προσέγγιση Μιλτιάδης Χαλικιάς, Επίκουρος Καθηγητής Τμήμα Διοίκησης

Διαβάστε περισσότερα

Εργαστήριο Οικονομετρίας Προαιρετική Εργασία 2016 Χειμερινό Εξάμηνο

Εργαστήριο Οικονομετρίας Προαιρετική Εργασία 2016 Χειμερινό Εξάμηνο Εργαστήριο Οικονομετρίας Προαιρετική Εργασία 2016 Χειμερινό Εξάμηνο Χρήσιμες Οδηγίες Με την βοήθεια του λογισμικού E-views να απαντήσετε στα ερωτήματα των επόμενων σελίδων, (οι απαντήσεις πρέπει να περαστούν

Διαβάστε περισσότερα

Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση

Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση Copyright 2009 Cengage Learning 16.1 Ανάλυση Παλινδρόμησης Σκοπός του προβλήματος είναι η ανάλυση της σχέσης μεταξύ συνεχών μεταβλητών. Η ανάλυση παλινδρόμησης

Διαβάστε περισσότερα

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ-ΠΕΜΠΤΟ ΘΕΩΡΙΑΣ- ΠΟΛΛΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟ ΕΙΓΜΑ Σηµειώσεις: Θωµόπουλος Γιώργος Ρογκάκος Γιώργος Καθηγητής: Κουνετάς

Διαβάστε περισσότερα

Το στατιστικό κριτήριο που μας επιτρέπει να. μιας ή πολλών άλλων γνωστών μεταβλητών. Η σχέση ανάμεσα στις μεταβλητές που μελετώνται

Το στατιστικό κριτήριο που μας επιτρέπει να. μιας ή πολλών άλλων γνωστών μεταβλητών. Η σχέση ανάμεσα στις μεταβλητές που μελετώνται Κεφάλαιο 10 Η Ανάλυση Παλινδρόμησης Η Ανάλυση Παλινδρόμησης Το στατιστικό κριτήριο που μας επιτρέπει να προβλέψουμε τις τιμές μιας μεταβλητής από τις τιμές μιας ή πολλών άλλων γνωστών μεταβλητών Η σχέση

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑ ΣΥΓΓΡΑΜΜΙΚΟΤΗΤΑΣ

ΠΡΟΒΛΗΜΑ ΣΥΓΓΡΑΜΜΙΚΟΤΗΤΑΣ ΠΡΟΒΛΗΜΑ ΣΥΓΓΡΑΜΜΙΚΟΤΗΤΑΣ Η συγγραμμικότητα (collinearity) ή πολυσυγγραμμικότητα (multicollinearity) είναι εκείνη η ανεπιθύμητη κατάσταση (εμφανίζεται στην πολυμεταβλητή παλινδρόμηση) όπου μία ανεξάρτητη

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 20 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 20 2.1.1 Αβεβαιότητα

Διαβάστε περισσότερα

Εκπαιδευτική έρευνα Οργάνωση & Παρουσίαση Δεδομένων (Εργαστήριο SPSS) Άγγελος Μάρκος, Λέκτορας Δημοκρίτειο Πανεπιστήμιο Θράκης

Εκπαιδευτική έρευνα Οργάνωση & Παρουσίαση Δεδομένων (Εργαστήριο SPSS) Άγγελος Μάρκος, Λέκτορας Δημοκρίτειο Πανεπιστήμιο Θράκης Εκπαιδευτική έρευνα Οργάνωση & Παρουσίαση Δεδομένων (Εργαστήριο SPSS) Άγγελος Μάρκος, Λέκτορας Δημοκρίτειο Πανεπιστήμιο Θράκης Σύνολα Δεδομένων - Είδη Ποσοτικής Έρευνας: Παράλογες Ιδέες Γονέων (Δειγματοληπτική)

Διαβάστε περισσότερα

Οικονομετρία Ι. Ενότητα 7: Συντελεστής πολλαπλού προσδιορισμού. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία Ι. Ενότητα 7: Συντελεστής πολλαπλού προσδιορισμού. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Οικονομετρία Ι Ενότητα 7: Συντελεστής πολλαπλού προσδιορισμού Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΜΗ ΓΡΑΜΜΙΚΕΣ ΠΑΛΙΝΔΡΟΜΗΣΕΙΣ

ΜΗ ΓΡΑΜΜΙΚΕΣ ΠΑΛΙΝΔΡΟΜΗΣΕΙΣ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΔΙΑΛΕΞΗ 7--05 ΜΗ ΓΡΑΜΜΙΚΕΣ ΠΑΛΙΝΔΡΟΜΗΣΕΙΣ Μ-Ν ΝΤΥΚΕΝ Αναζήτηση της κατάλληλης σχέσης μεταξύ της εξαρτημένης Υ και ανεξάρτητης μεταβλητής Χ Η σχέση μεταξύ της εξαρτημένης μεταβλητής Υ

Διαβάστε περισσότερα

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ 1 ο ΕΡΓΑΣΤΗΡΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ 1 ο ΕΡΓΑΣΤΗΡΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ 1 ο ΕΡΓΑΣΤΗΡΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ ΕΠΙΧ Οικονομετρικά Πρότυπα Διαφάνεια 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης Kozani GR 50100

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης Kozani GR 50100 Ποσοτικές Μέθοδοι Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR 50100 Απλή Παλινδρόμηση Η διερεύνηση του τρόπου συμπεριφοράς

Διαβάστε περισσότερα

1. Ιστόγραμμα. Προκειμένου να αλλάξουμε το εύρος των bins κάνουμε διπλό κλικ οπουδήποτε στο ιστόγραμμα και μετά

1. Ιστόγραμμα. Προκειμένου να αλλάξουμε το εύρος των bins κάνουμε διπλό κλικ οπουδήποτε στο ιστόγραμμα και μετά 1. Ιστόγραμμα Δεδομένα από το αρχείο Data_for_SPSS.xls Αλλαγή σε Variable View (Κάτω αριστερά) και μετονομασία της μεταβλητής σε NormData, Type: numeric και Measure: scale Αλλαγή πάλι σε Data View. Graphs

Διαβάστε περισσότερα

5. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ (GENERAL LINEAR MODEL) 5.1 Εναλλακτικά μοντέλα του απλού γραμμικού μοντέλου: Το εκθετικό μοντέλο

5. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ (GENERAL LINEAR MODEL) 5.1 Εναλλακτικά μοντέλα του απλού γραμμικού μοντέλου: Το εκθετικό μοντέλο 5. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ (GENERAL LINEAR MODEL) 5.1 Εναλλακτικά μοντέλα του απλού γραμμικού μοντέλου: Το εκθετικό μοντέλο Ένα εναλλακτικό μοντέλο της απλής γραμμικής παλινδρόμησης (που χρησιμοποιήθηκε

Διαβάστε περισσότερα

Προσοµοίωση Εξέτασης στο µάθηµα του Γεωργικού Πειραµατισµού

Προσοµοίωση Εξέτασης στο µάθηµα του Γεωργικού Πειραµατισµού Προσοµοίωση Εξέτασης στο µάθηµα του Γεωργικού Πειραµατισµού ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας Viola adorata Σκηνή Πρώτη Ερωτήσεις Σωστού-Λάθους (µέρος Ι). Ο µέσος όρος

Διαβάστε περισσότερα

Λυμένες Ασκήσεις για το μάθημα:

Λυμένες Ασκήσεις για το μάθημα: Λυμένες Ασκήσεις για το μάθημα: ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ ΚΩΝΣΤΑΝΤΙΝΟΣ ΖΑΦΕΙΡΟΠΟΥΛΟΣ Τμήμα: ΔΙΕΘΝΩΝ ΚΑΙ ΕΥΡΩΠΑΪΚΩΝ ΣΠΟΥΔΩΝ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 21 2.1.1 Αβεβαιότητα και Τυχαίο Πείραμα

Διαβάστε περισσότερα

Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS

Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS Ο παρακάτω πίνακας παρουσιάζει θανάτους από καρδιακή ανεπάρκεια ανάμεσα σε άνδρες γιατρούς οι οποίοι έχουν κατηγοριοποιηθεί κατά ηλικία

Διαβάστε περισσότερα

Άσκηση 2. i β. 1 ου έτους (Υ i )

Άσκηση 2. i β. 1 ου έτους (Υ i ) Άσκηση Ο επόμενος πίνακας δίνει τους βαθμούς φοιτητών (Χ i ) στις εισαγωγικές εξετάσεις ενός κολεγίου και τους αντίστοιχους βαθμούς τους (Υ i ) στο τέλος της πρώτης χρονιάς φοίτησης στο συγκεκριμένο κολέγιο.

Διαβάστε περισσότερα

ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ

ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ A εξάμηνο 2009-2010 ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ Μεθοδολογία Έρευνας και Στατιστική ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Χειμερινό Εξάμηνο 2009-2010 Ποιοτικές και Ποσοτικές

Διαβάστε περισσότερα

Επαυξημένος έλεγχος Dickey - Fuller (ADF)

Επαυξημένος έλεγχος Dickey - Fuller (ADF) ΜΑΘΗΜΑ 5ο Επαυξημένος έλεγχος Dickey - Fuller (ADF) Στον έλεγχο των Dickey Fuller (DF) και στα τρία υποδείγματα που χρησιμοποιήσαμε προηγουμένως κάνουμε την υπόθεση ότι ο διαταρακτικός όρος e είναι μια

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 8ο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 8ο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 8ο Επιλογή του αριθμού των χρονικών υστερήσεων Στις περισσότερες οικονομικές χρονικές σειρές υπάρχει υψηλή συσχέτιση μεταξύ της τρέχουσας

Διαβάστε περισσότερα

ΜΕΘΟΔΟΙ ΕΡΥΕΝΑΣ ΔΙΑΛΕΞΗ 1: ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΜΕΘΟΔΟΥΣ ΕΡΕΥΝΑΣ - ΠΕΡΙΓΡΑΜΜΑ

ΜΕΘΟΔΟΙ ΕΡΥΕΝΑΣ ΔΙΑΛΕΞΗ 1: ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΜΕΘΟΔΟΥΣ ΕΡΕΥΝΑΣ - ΠΕΡΙΓΡΑΜΜΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΧΩΡΟΤΑΞΙΑΣ, ΠΟΛΕΟΔΟΜΙΑΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΑΝΑΠΤΥΞΗΣ ΠΜΣ «ΕΠΕΝΔΥΣΕΙΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΗ ΑΝΑΠΤΥΞΗ» ΜΕΘΟΔΟΙ ΕΡΥΕΝΑΣ ΔΙΑΛΕΞΗ 1: ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΜΕΘΟΔΟΥΣ

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ ΠΡΩΤΟ

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ ΠΡΩΤΟ ΠΕΡΙΕΧΟΜΕΝΑ Εισαγωγή 1. Γενικά... 25 2. Έννοια και Είδη Μεταβλητών... 26 3. Κλίμακες Μέτρησης Μεταβλητών... 29 3.1 Ονομαστική κλίμακα... 30 3.2. Τακτική κλίμακα... 31 3.3 Κλίμακα ισοδιαστημάτων... 34 3.4

Διαβάστε περισσότερα

ΕΙ Η ΠΑΛΙΝ ΡΟΜΗΣΗΣ. ΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΛΙΝ ΡΟΜΗΣΗ (Simple Linear Regression) ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ (Regression) ΠΑΛΙΝ ΡΟΜΗΣΗ.

ΕΙ Η ΠΑΛΙΝ ΡΟΜΗΣΗΣ. ΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΛΙΝ ΡΟΜΗΣΗ (Simple Linear Regression) ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ (Regression) ΠΑΛΙΝ ΡΟΜΗΣΗ. ΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΛΙΝ ΡΟΜΗΣΗ (Smple Lear Regresso) Να κατανοηθεί η έννοια της παλινδρόµησης Ποιες οι προϋποθέσεις για να εφαρµοσθεί η γραµµική παλινδρόµηση; Τι είναι το γραµµικό µοντέλο και πως εκτιµούνται

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ Εισαγωγή

ΟΙΚΟΝΟΜΕΤΡΙΑ Εισαγωγή 2013 [Πρόλογος] ΟΙΚΟΝΟΜΕΤΡΙΑ Εισαγωγή Μάθημα Εαρινού Εξάμηνου 2012-2013 Μ.Επ. ΟΕ0300 Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής Ανάπτυξης Μαρί-Νοέλ Ντυκέν, Επ. Καθηγητρία

Διαβάστε περισσότερα

Αν οι προϋποθέσεις αυτές δεν ισχύουν, τότε ανατρέχουµε σε µη παραµετρικό τεστ.

Αν οι προϋποθέσεις αυτές δεν ισχύουν, τότε ανατρέχουµε σε µη παραµετρικό τεστ. ΣΤ. ΑΝΑΛΥΣΗ ΙΑΣΠΟΡΑΣ (ANALYSIS OF VARIANCE - ANOVA) ΣΤ 1. Ανάλυση ιασποράς κατά µία κατεύθυνση. Όπως έχουµε δει στη παράγραφο Β 2, όταν θέλουµε να ελέγξουµε, αν η µέση τιµή µιας ποσοτικής µεταβλητής διαφέρει

Διαβάστε περισσότερα

Εισαγωγή στη μεθοδολογία της Εκπαιδευτικής Έρευνας

Εισαγωγή στη μεθοδολογία της Εκπαιδευτικής Έρευνας Εισαγωγή στη μεθοδολογία της Εκπαιδευτικής Έρευνας Νίκος Καλογερόπουλος 2014 Τι είναι έρευνα στην στατιστική Αρχική παρατήρηση: κάτι που πρέπει να διευκρινιστεί Κάθε χρόνο υπόσχομαι στον εαυτό μου ότι

Διαβάστε περισσότερα

Μοντέλα Παλινδρόμησης. Άγγελος Μάρκος, Λέκτορας ΠΤ Ε, ΠΘ

Μοντέλα Παλινδρόμησης. Άγγελος Μάρκος, Λέκτορας ΠΤ Ε, ΠΘ Μοντέλα Παλινδρόμησης Άγγελος Μάρκος, Λέκτορας ΠΤ Ε, ΠΘ Εισαγωγή (1) Σε αρκετές περιπτώσεις επίλυσης προβλημάτων ενδιαφέρει η ταυτόχρονη μελέτη δύο ή περισσότερων μεταβλητών, για να προσδιορίσουμε με ποιο

Διαβάστε περισσότερα

H ΑΝΑΛΥΣΗ ΣΥΣΧΕΤΙΣΗΣ (PEARSON s r)

H ΑΝΑΛΥΣΗ ΣΥΣΧΕΤΙΣΗΣ (PEARSON s r) 5 H ΑΝΑΛΥΣΗ ΣΥΣΧΕΤΙΣΗΣ (PEARSON s r) Περίληψη Σκοπός του κεφαλαίου είναι η εφαρμογή της ανάλυσης συσχέτισης (Pearson r) μέσω του PASW. H ανάλυση συσχέτισης Pearson r χρησιμοποιείται για να εξεταστεί η

Διαβάστε περισσότερα

Οικονομετρία. Εξειδίκευση του υποδείγματος. Μορφή της συνάρτησης: Γραμμική, διπλή λογαριθμική, ημιλογαριθμική. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης

Οικονομετρία. Εξειδίκευση του υποδείγματος. Μορφή της συνάρτησης: Γραμμική, διπλή λογαριθμική, ημιλογαριθμική. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Οικονομετρία Εξειδίκευση του υποδείγματος Μορφή της συνάρτησης: Γραμμική, διπλή λογαριθμική, ημιλογαριθμική Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι Γνώση

Διαβάστε περισσότερα

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για τους Μέσους - Εξαρτημένα Δείγματα (Paired samples t-test) Το κριτήριο Paired samples t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7 ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 1.1. Εισαγωγή 13 1.2. Μοντέλο ή Υπόδειγμα 13 1.3. Η Ανάλυση Παλινδρόμησης 16 1.4. Το γραμμικό μοντέλο Παλινδρόμησης 17 1.5. Πρακτική χρησιμότητα

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 21 2.1.1 Αβεβαιότητα και Τυχαίο Πείραμα

Διαβάστε περισσότερα

Άσκηση 10, σελ. 119. Για τη μεταβλητή x (άτυπος όγκος) έχουμε: x censored_x 1 F 3 F 3 F 4 F 10 F 13 F 13 F 16 F 16 F 24 F 26 F 27 F 28 F

Άσκηση 10, σελ. 119. Για τη μεταβλητή x (άτυπος όγκος) έχουμε: x censored_x 1 F 3 F 3 F 4 F 10 F 13 F 13 F 16 F 16 F 24 F 26 F 27 F 28 F Άσκηση 0, σελ. 9 από το βιβλίο «Μοντέλα Αξιοπιστίας και Επιβίωσης» της Χ. Καρώνη (i) Αρχικά, εισάγουμε τα δεδομένα στο minitab δημιουργώντας δύο μεταβλητές: τη x για τον άτυπο όγκο και την y για τον τυπικό

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ,

ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ, ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ, -- Άσκηση. Δίνονται τα παρακάτω δεδομένα 5 7 8 9 5 X 8 5 5 5 9 7 Y. 5.. 7..7.7.9.. 5.... 8.. α) Να γίνει το διάγραμμα διασποράς β) εξετάστε τα μοντέλα Υ = β + β Χ + ε, (linear),

Διαβάστε περισσότερα

Η βιτρίνα των καταστημάτων ως εργαλείο δημοσίων σχέσεων. Ονοματεπώνυμο: Ειρήνη Πορτάλιου Σειρά: 8 η Επιβλέπουσα: Αν. Καθηγήτρια : Βεντούρα Ζωή

Η βιτρίνα των καταστημάτων ως εργαλείο δημοσίων σχέσεων. Ονοματεπώνυμο: Ειρήνη Πορτάλιου Σειρά: 8 η Επιβλέπουσα: Αν. Καθηγήτρια : Βεντούρα Ζωή Η βιτρίνα των καταστημάτων ως εργαλείο δημοσίων σχέσεων Ονοματεπώνυμο: Ειρήνη Πορτάλιου Σειρά: 8 η Επιβλέπουσα: Αν. Καθηγήτρια : Βεντούρα Ζωή Δεκέμβριος 2011 Στόχος Έρευνας H βιτρίνα των καταστημάτων αποτελεί

Διαβάστε περισσότερα

ΣΧΕΣΗ ΜΕΤΑΞΥ ΠΟΙΟΤΙΚΩΝ ΜΕΤΑΒΛΗΤΩΝ

ΣΧΕΣΗ ΜΕΤΑΞΥ ΠΟΙΟΤΙΚΩΝ ΜΕΤΑΒΛΗΤΩΝ ΣΧΕΣΗ ΜΕΤΑΞΥ ΠΟΙΟΤΙΚΩΝ ΜΕΤΑΒΛΗΤΩΝ Θα δούμε ένα παράδειγμα από 141 νεογνά που εγχειρίστηκαν σε ένα νοσοκομείο (surgery.sav). Οι παράμετροι που καταγράφηκαν είναι οι εξής: Κωδικός νεογνού (ID), Φύλο Νεογνού

Διαβάστε περισσότερα

Εξερευνώντας τα δεδομένα μας-περιγραφική Στατιστική

Εξερευνώντας τα δεδομένα μας-περιγραφική Στατιστική ΚΕΦΑΛΑΙΟ ΔΕΥΤΕΡΟ Εξερευνώντας τα δεδομένα μας-περιγραφική Στατιστική Το πρώτο βήμα στην ανάλυση ενός συνόλου δεδομένων, που αποτελούν μετρήσεις ενός δείγματος είναι η παρουσίαση και σύνοψη των πληροφοριών

Διαβάστε περισσότερα

ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ΔΕΙΓΜΑ ΟΙΚΟΝΟΜΕΤΡΙΑ Ι (3ο Εξάμηνο) Όνομα εξεταζόμενου: Α.Α. Οικονομικό Πανεπιστήμιο Αθήνας -- Τμήμα ΔΕΟΣ Καθηγητής: Γιάννης Μπίλιας

ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ΔΕΙΓΜΑ ΟΙΚΟΝΟΜΕΤΡΙΑ Ι (3ο Εξάμηνο) Όνομα εξεταζόμενου: Α.Α. Οικονομικό Πανεπιστήμιο Αθήνας -- Τμήμα ΔΕΟΣ Καθηγητής: Γιάννης Μπίλιας ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ΔΕΙΓΜΑ ΟΙΚΟΝΟΜΕΤΡΙΑ Ι (3ο Εξάμηνο) Όνομα εξεταζόμενου: Α.Α. Οικονομικό Πανεπιστήμιο Αθήνας -- Τμήμα ΔΕΟΣ Καθηγητής: Γιάννης Μπίλιας ΟΔΗΓΙΕΣ: Απαντήστε σε όλα τα θέματα. Απαντήστε με ακρίβεια

Διαβάστε περισσότερα

ΜΕΘΟΔΟΣ ΤΗΣ ΒΗΜΑΤΙΚΗΣ ΠΑΛΙΝΔΡΟΜΗΣΗΣ (STEPWISE REGRESSION)

ΜΕΘΟΔΟΣ ΤΗΣ ΒΗΜΑΤΙΚΗΣ ΠΑΛΙΝΔΡΟΜΗΣΗΣ (STEPWISE REGRESSION) 4. ΜΕΘΟΔΟΣ ΤΗΣ ΒΗΜΑΤΙΚΗΣ ΠΑΛΙΝΔΡΟΜΗΣΗΣ (STEPWISE REGRESSION) Η μέθοδος της βηματικής παλινδρόμησης (stepwise regression) είναι μιά άλλη μέθοδος επιλογής ενός "καλού" υποσυνόλου ανεξαρτήτων μεταβλητών.

Διαβάστε περισσότερα

ICAP GROUP S.A. ΑΝΑΘΕΩΡΗΣΗ ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΩΝ ΥΠΟΔΕΙΓΜΑΤΩΝ

ICAP GROUP S.A. ΑΝΑΘΕΩΡΗΣΗ ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΩΝ ΥΠΟΔΕΙΓΜΑΤΩΝ ICAP GROUP S.A. ΑΝΑΘΕΩΡΗΣΗ ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΩΝ ΥΠΟΔΕΙΓΜΑΤΩΝ Φεβρουάριος 2015 1 Table of Contents ΔΙΟΙΚΗΤΙΚΗ ΠΕΡΙΛΗΨΗ... 3 1. ΕΙΣΑΓΩΓΗ... 4 2. ΑΝΑΘΕΩΡΗΣΗ ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΩΝ ΜΟΝΤΕΛΩΝ... 4 2.1 ΔΕΔΟΜΕΝΑ... 4 2.1.1

Διαβάστε περισσότερα

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ΚΕΦΑΛΑΙΟ 10 ο 10.1 Πολλαπλή Γραµµική Παλινδρόµηση 10.2 Η εφαρµογή της Πολλαπλής Γραµµικής Παλινδρόµησης 10.3 Παράδειγµα

Διαβάστε περισσότερα

Χ. Εμμανουηλίδης, 1

Χ. Εμμανουηλίδης, 1 Εφαρμοσμένη Στατιστική Έρευνα Απλό Γραμμικό Υπόδειγμα AΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟ ΕΙΓΜΑ Δρ. Χρήστος Εμμανουηλίδης Αν. Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εφαρμοσμένη Στατιστική, Τμήμα Ο.Ε. ΑΠΘ Χ. Εμμανουηλίδης,

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΒΙΝΤΕΟ ΣΤΑΤΙΣΤΙΚΗ

ΕΠΑΝΑΛΗΠΤΙΚΟ ΒΙΝΤΕΟ ΣΤΑΤΙΣΤΙΚΗ ΕΠΑΝΑΛΗΠΤΙΚΟ ΒΙΝΤΕΟ ΣΤΑΤΙΣΤΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Άσκηση 1: Μια τράπεζα ενδιαφέρεται να μελετήσει την αποταμιευτική συμπεριφορά των πελατών της. Θεωρείται ως δεδομένο ότι η ετήσια αποταμίευση των πελατών της

Διαβάστε περισσότερα

Διαχείριση Υδατικών Πόρων

Διαχείριση Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Διαχείριση Υδατικών Πόρων Γ.. Τσακίρης Μάθημα 3 ο Λεκάνη απορροής Υπάρχουσα κατάσταση Σενάριο 1: Μέσες υδρολογικές συνθήκες Σενάριο : Δυσμενείς υδρολογικές συνθήκες Μελλοντική

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 16. Απλή Γραμμική Παλινδρόμηση και Συσχέτιση

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 16. Απλή Γραμμική Παλινδρόμηση και Συσχέτιση ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

1ο ΣΤΑΔΙΟ ΓΕΝΕΣΗ ΜΕΤΑΚΙΝΗΣΕΩΝ

1ο ΣΤΑΔΙΟ ΓΕΝΕΣΗ ΜΕΤΑΚΙΝΗΣΕΩΝ ΠΡΟΒΛΗΜΑ 1ο ΣΤΑΔΙΟ ΓΕΝΕΣΗ ΜΕΤΑΚΙΝΗΣΕΩΝ πόσες μετακινήσεις δημιουργούνται σε και για κάθε κυκλοφοριακή ζώνη; ΟΡΙΣΜΟΙ μετακίνηση μετακίνηση με βάση την κατοικία μετακίνηση με βάση άλλη πέρα της κατοικίας

Διαβάστε περισσότερα

ΣΕΜΙΝΑΡΙΟ ΧΩΡΟΣ ΚΑΙ ΠΟΣΟΤΙΚΕΣ ΑΝΑΛΥΣΕΙΣ ΜΕΘΟΔΟΙ ΚΑΙ ΤΕΧΝΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ. Εισηγητής: Πανταζής Παναγιώτης

ΣΕΜΙΝΑΡΙΟ ΧΩΡΟΣ ΚΑΙ ΠΟΣΟΤΙΚΕΣ ΑΝΑΛΥΣΕΙΣ ΜΕΘΟΔΟΙ ΚΑΙ ΤΕΧΝΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ. Εισηγητής: Πανταζής Παναγιώτης ΣΕΜΙΝΑΡΙΟ ΧΩΡΟΣ ΚΑΙ ΠΟΣΟΤΙΚΕΣ ΑΝΑΛΥΣΕΙΣ ΜΕΘΟΔΟΙ ΚΑΙ ΤΕΧΝΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ Εισηγητής: Πανταζής Παναγιώτης Μάιος 2005 Θεματική Χαρτογραφία 1. ΒΑΣΙΚΑ ΣΗΜΕΙΑ ΧΑΡΤΟΓΡΑΦΙΚΗΣ ΑΠΕΙΚΟΝΙΣΗΣ 1.1 Εννοιολογική αποσαφήνιση

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων

Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων Ενότητα: Γραμμική παλινδρόμηση Διδάσκων: Επίκ. Καθ. Απόστολος Μπατσίδης Τμήμα: Μαθηματικών ΚΕΦΑΛΑΙΟ ΟΓΔΟΟ Γραμμική παλινδρόμηση Σε προηγούμενο κεφάλαιο είδαμε

Διαβάστε περισσότερα

Α.4 Η καμπύλη ζήτησης με ελαστικότητα ζήτησης ίση με το μηδέν σε όλα τα σημεία της είναι ευθεία παράλληλη προς τον άξονα των ποσοτήτων.

Α.4 Η καμπύλη ζήτησης με ελαστικότητα ζήτησης ίση με το μηδέν σε όλα τα σημεία της είναι ευθεία παράλληλη προς τον άξονα των ποσοτήτων. ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 3 ΙΟΥΝΙΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων

Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων Ενότητα: Εξερευνώντας τα δεδομένα μας-περιγραφική Στατιστική Διδάσκων: Επίκ. Καθ. Απόστολος Μπατσίδης Τμήμα: Μαθηματικών ΚΕΦΑΛΑΙΟ ΔΕΥΤΕΡΟ Εξερευνώντας τα

Διαβάστε περισσότερα

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ 1. ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: Προχωρημένη Στατιστική 2. ΠΕΡΙΓΡΑΜΜΑ ΕΙΣΗΓΗΣΕΩΝ

Διαβάστε περισσότερα

Εκπαιδευτική Έρευνα: Μέθοδοι Συλλογής και Ανάλυσης εδομένων Συσχέτιση

Εκπαιδευτική Έρευνα: Μέθοδοι Συλλογής και Ανάλυσης εδομένων Συσχέτιση Εκπαιδευτική Έρευνα: Μέθοδοι Συλλογής και Ανάλυσης εδομένων Συσχέτιση Οι επιδόσεις δέκα μαθητών σε τέσσερα μαθήματα Μαθητής Άλγεβρα Φυσική Νέα Ελληνικά Μουσική Α 65 63 35 61 Β 60 58 38 35 Γ 60 60 40 46

Διαβάστε περισσότερα

ΜΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΙΣΗ

ΜΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΙΣΗ ΜΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΙΣΗ Τα μη γραμμικά μοντέλα έχουν την πιο κάτω μορφή: η μορφή αυτή μοιάζει με τη μορφή που έχουμε για τα γραμμικά μοντέλα ( δηλαδή η παρατήρηση Y i είναι το άθροισμα της αναμενόμενης

Διαβάστε περισσότερα

Ποσοτική & Ποιοτική Ανάλυση εδομένων Συσχέτιση. Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη,

Ποσοτική & Ποιοτική Ανάλυση εδομένων Συσχέτιση. Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη, Ποσοτική & Ποιοτική Ανάλυση εδομένων Συσχέτιση Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη, 2013-2014 Οι επιδόσεις δέκα μαθητών σε τέσσερα μαθήματα Μαθητής Άλγεβρα

Διαβάστε περισσότερα

Οικονομετρία Ι. Ενότητα 3: Θεώρημα των Gauss Markov. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία Ι. Ενότητα 3: Θεώρημα των Gauss Markov. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Οικονομετρία Ι Ενότητα 3: Θεώρημα των Gauss Markov Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ Καθ Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 5 Έστω για την σύγκριση δειγμάτων συλλέγουμε παρατηρήσεις Υ =,,, από

Διαβάστε περισσότερα

Δείγμα πριν τις διορθώσεις

Δείγμα πριν τις διορθώσεις Εισαγωγή Α ΜΕΡΟΣ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ 1 ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ 1.1 Εισαγωγή 1.1.1 Περιγραφική Στατιστική (Descriptive Statistics) 1.1.2 Επαγωγική ή Αναλυτική Στατιστική (Inferential or Αnalytical Statistics)

Διαβάστε περισσότερα

ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ

ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ ΧΑΡΑΞΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ Δημήτρης Στεφανάκης Η Μέθοδος των Ελαχίστων Τετραγώνων (ΜΕΤ) χρησιμοποιείται για την κατασκευή της γραφικής παράστασης που περιγράφει ένα φαινόμενο,

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΤΡΑΠΕΖΙΚΗ Θεματική Ενότητα: ΤΡΑ-61 Στρατηγική Τραπεζών Ακαδημαϊκό Έτος: 2013-2014

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΤΡΑΠΕΖΙΚΗ Θεματική Ενότητα: ΤΡΑ-61 Στρατηγική Τραπεζών Ακαδημαϊκό Έτος: 2013-2014 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΤΡΑΠΕΖΙΚΗ Θεματική Ενότητα: ΤΡΑ-61 Στρατηγική Τραπεζών Ακαδημαϊκό Έτος: 2013-2014 Γενικές οδηγίες για την εργασία Τέταρτη Γραπτή Εργασία Όλες οι ερωτήσεις

Διαβάστε περισσότερα

Συσχέτιση και Παλινδρόμηση Correlation and Regression. Γρηγόρης Χλουβεράκης, Ph.D. Αναπληρωτής Καθηγητής Βιοστατιστικής

Συσχέτιση και Παλινδρόμηση Correlation and Regression. Γρηγόρης Χλουβεράκης, Ph.D. Αναπληρωτής Καθηγητής Βιοστατιστικής Συσχέτιση και Παλινδρόμηση Correlation and Regression Γρηγόρης Χλουβεράκης, Ph.D. Αναπληρωτής Καθηγητής Βιοστατιστικής Συσχέτιση μεταξύ δυο μεταβλητών Η συσχέτιση (correlation) ή συνάφεια (association)

Διαβάστε περισσότερα

Στατιστική ΙΙΙ-Εφαρμογές Χρονολογικές Σειρές(Μέθοδοι Εξομάλυνσης ΙΙΙ-Εφαρμογές)

Στατιστική ΙΙΙ-Εφαρμογές Χρονολογικές Σειρές(Μέθοδοι Εξομάλυνσης ΙΙΙ-Εφαρμογές) Στατιστική ΙΙΙ-Εφαρμογές Χρονολογικές Σειρές(Μέθοδοι Εξομάλυνσης ΙΙΙ-Εφαρμογές) Γεώργιος Τσιώτας Τμήμα Οικονομικών Επιστημών Σχολή Κοινωνικών Επιστημών Πανεπιστήμιο Κρήτης Στατιστική ΙΙΙ(ΣΤΑΟ 230) Περιγραφή

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ Μ.Ν. Ντυκέν, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. E. Αναστασίου Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α ΕΝΑΡΞΗ ΜΑΘΗΜΑΤΟΣ Βόλος, 2015-2016 1 ΓΕΝΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΜΑΘΗΜΑ: ΠΙΣΤΩΤΙΚΕΣ ΜΟΝΑΔΕΣ

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

Δελτίο Τύπου. Αθήνα, 21 Ιανουαρίου 2010

Δελτίο Τύπου. Αθήνα, 21 Ιανουαρίου 2010 Αθήνα, 21 Ιανουαρίου 2010 Δελτίο Τύπου Παρουσιάστηκε, σήμερα στις 21 Ιανουαρίου 2010 στο ξενοδοχείο St.George Lycabettus, το τρίτο τεύχος της Εξαμηνιαίας Έκθεσης Ανάλυσης των Τουριστικών Τάσεων με τις

Διαβάστε περισσότερα

ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ SPSS

ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ SPSS ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ SPSS ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ Κωνσταντίνος Ζαφειρόπουλος Τμήμα Διεθνών και Ευρωπαϊκών Σπουδών Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Μακεδονίας Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΤΕΙ ΠΕΙΡΑΙΑ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΠΙΣΤΗΜΗ ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΜΕ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ

ΤΕΙ ΠΕΙΡΑΙΑ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΠΙΣΤΗΜΗ ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΜΕ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΤΕΙ ΠΕΙΡΑΙΑ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΠΙΣΤΗΜΗ ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΜΕ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΜΑΘΗΜΑ: Ανάλυση Πολυδιάστατων (Πολυμεταβλητών) Δεδομένων και Συστήματα Εξόρυξης Δεδομένων (Multivariate Data

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 2: Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 2: Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 2: Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα