Επιστήμη των Υλικών. Πανεπιστήμιο Ιωαννίνων. Τμήμα Φυσικής
|
|
- θάνα Παπαϊωάννου
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Επιστήμη των Υλικών Πανεπιστήμιο Ιωαννίνων Τμήμα Φυσικής 2017 Α. Δούβαλης
2 Κρυσταλλικά Συστήματα Κυβικό Εξαγωνικό Τετραγωνικό Ρομβοεδρικό ή Τριγωνικό Ορθορομβικό Μονοκλινές Τρικλινές
3 Κρυσταλλική δομή των στερεών Μοναδιαία Κυψελίδα Κρυσταλλικό Πλέγμα Μοντέλο σκληρών σφαιρών Απλή κυβική δομή (simple cubic/sc)
4 Κρυσταλλική δομή των στερεών Μοναδιαία Κυψελίδα Κρυσταλλικό Πλέγμα Μοντέλο σκληρών σφαιρών Εδροκεντρωμένη κυβική δομή (face centered cubic/fcc)
5 Κρυσταλλικό Πλέγμα Μοναδιαία Κυψελίδα Μοντέλο σκληρών σφαιρών Χωροκεντρωμένη κυβική δομή (body centered cubic/bcc)
6 Κρυσταλλικό Πλέγμα Μοναδιαία Κυψελίδα Μοντέλο σκληρών σφαιρών Εξαγωνική δομή υψηλής πυκνότητας (hexagonal closed packed/hcp)
7 Κρυσταλλικές δομές διαφόρων (στοιχειακών) μετάλλων
8 Κρυσταλλογραφικά σημεία, διευθύνσεις και επίπεδα Κρυσταλλογραφικά σημεία και διευθύνσεις Κλασματικές συντεταγμένες P (q, r, s) Κρυσταλλογραφικές διευθύνσεις Παράδειγμα εύρεσης διευθύνσεων 1 2 1: μεταφορά της αρχής του ανύσματος (αν δεν βρίσκεται εκεί) στην αρχή του συστήματος συντεταγμένων 2: εύρεση των κλασματικών συντεταγμένων της κορυφής του ανύσματος 3: πολλαπλασιασμός τους με κατάλληλο ακέραιο έτσι ώστε να προκύψει ο ελάχιστος συνδυασμός ακεραίων 4: εγκλεισμός σε τετραγωνικές αγκύλες [uvw]
9 Κρυσταλλογραφικά σημεία, διευθύνσεις και επίπεδα Διεύθυνση Παράδειγμα 2 Μετατροπή δεικτών Εξαγωνικό σύστημα
10 Κρυσταλλογραφικά σημεία, διευθύνσεις και επίπεδα Κρυσταλλογραφικά επίπεδα Τρόπος εύρεσης και καθορισμού κρυσταλλογραφικών επιπέδων 1. Αν το επίπεδο διέρχεται από την αρχή του συστήματος συντεταγμένων, τότε ή κατασκευάζεται άλλο επίπεδο παράλληλο προς αυτό μέσα στην κυψελίδα με κατάλληλη μετατόπιση, ή πρέπει να οριστεί μια νέα αρχή συστήματος συντεταγμένων σε κάποια από τις κορυφές μίας άλλης κυψελίδας. 2. Το κρυσταλλογραφικό επίπεδο είτε θα τέμνει είτε θα είναι παράλληλο με κάθε έναν από τους τρεις άξονες. Το μήκος της τομής με τον κάθε άξονα ορίζεται βάσει των παραμέτρων πλέγματος (πλεγματικών σταθερών) της κρυσταλλικής δομής a, b, c. 3. Υπολογίζονται οι αντίστροφοι των αριθμών αυτών. Όταν ένα επίπεδο είναι παράλληλο προς έναν άξονα μπορεί να θεωρηθεί πως το μήκος της τομής είναι άπειρο και έχει μηδενικό δείκτη. 4. Αν είναι απαραίτητο, οι τρεις τιμές των προβολών πολλαπλασιάζονται ή διαιρούνται με έναν ακόμη κοινό συντελεστή ώστε να αποκτήσουν την μικρότερη δυνατή ακέραια τιμή. 5. Οι τρεις ακέραιοι δείχτες γράφονται μέσα σε παρένθεση (hkl).
11 Κρυσταλλογραφικά σημεία, διευθύνσεις και επίπεδα Κρυσταλλογραφικά επίπεδα Δείκτες Miller (hkl)
12 Κρυσταλλογραφικά επίπεδα Παράδειγμα εύρεσης δεικτών Miller
13 Διατάξεις ατόμων στα κρυσταλλογραφικά επίπεδα (-110) (-101) fcc Επίπεδα {110} (-110) Ατομική πλήρωση bcc Επίπεδα {110} Οικογένεια επιπέδων: κρυσταλλογραφικά ισοδύναμα επίπεδα με ίδια ατομική πλήρωση {hkl}
14 Κρυσταλλικά και μη-κρυσταλλικά υλικά Μονοκρύσταλλοι και πολυκρυσταλλικά υλικά μέγεθος ~ x10 μm - cm μέγεθος ~ x1 nm x10 μm
15 Κρυστάλλωση κατά την διαδικασία στερεοποίησης ενός πολυκρυσταλλικού υλικού ~ nm μm
16 Περίθλαση ακτίνων-χ
17 Περίθλαση ακτίνων-χ Κυβικό σύστημα (α: μήκος κυβικής κυψελίδας)
18 Περίθλαση ακτίνων-χ Δείγμα υλικού πηγή ακτινών-χ ανιχνευτής ακτινοβολίας
19 Περίθλαση ακτίνων-χ και κρυσταλλογραφικά επίπεδα Πολυκρυσταλλικός α-fe (bcc)
20 Κρυσταλλικά, άμορφα υλικά και ημι-κρύσταλλοι (quasi-crystalls) Κρυσταλλικό SiO 2 Άμορφο SiO 2 διατεταγμένο & περιοδικό πλέγμα ημι-κρύσταλλοι διατεταγμένο αλλά μη-περιοδικό πλέγμα Ag/Al-Pd-Mn μη-διατεταγμένο & μη-περιοδικό πλέγμα Κρύσταλλοι άξονες συμμετρίας 2 ης, 3 ης, 4 ης, 6 ης τάξης ημι-κρύσταλλοι άξονας συμμετρίας 5 ης τάξης παράδειγμα ορυκτού ημι-κρυστάλλου (2009) Al 63 Cu 24 Fe 13 Icosahedrite
21 Πολυμορφισμός και αλλοτροπία Carbon Sn Graphite Tetragonal (bct) cubic Fe 912 C Diamond Fullerene bcc fcc Carbon Nanotube
Καταστάσεις της ύλης. Αέρια: Παντελής απουσία τάξεως. Τα µόρια βρίσκονται σε συνεχή τυχαία κίνηση σε σχεδόν κενό χώρο.
Καταστάσεις της ύλης Αέρια: Παντελής απουσία τάξεως. Τα µόρια βρίσκονται σε συνεχή τυχαία κίνηση σε σχεδόν κενό χώρο. Υγρά: Τάξη πολύ µικρού βαθµού και κλίµακας-ελκτικές δυνάµεις-ολίσθηση. Τα µόρια βρίσκονται
Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ. Ενότητα 2: Κρυσταλλική Δομή των Μετάλλων. Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών
Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ Ενότητα 2: Κρυσταλλική Δομή των Μετάλλων Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
ΣΤΟΙΧΕΙΑ ΚΡΥΣΤΑΛΛΟΓΡΑΦΙΑΣ
ΣΤΟΙΧΕΙΑ ΚΡΥΣΤΑΛΛΟΓΡΑΦΙΑΣ 1. ΓΕΝΙΚΑ Από τις καταστάσεις της ύλης τα αέρια και τα υγρά δεν παρουσιάζουν κάποια τυπική διάταξη ατόμων, ενώ από τα στερεά ορισμένα παρουσιάζουν συγκεκριμένη διάταξη ατόμων
ΥΛΙΚΑ ΠΑΡΟΝ ΚΑΙ ΜΕΛΛΟΝ
ΥΛΙΚΑ ΠΑΡΟΝ ΚΑΙ ΜΕΛΛΟΝ Ι 5 Δομή ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ Κρυσταλλικά υλικά Άμορφα υλικά Κρύσταλλος είναι ένα υλικό που παρουσιάζει τρισδιάστατη περιοδική τάξη ατόμων,
Υλικά Ηλεκτρονικής & Διατάξεις
Τμήμα Ηλεκτρονικών Μηχανικών Υλικά Ηλεκτρονικής & Διατάξεις 4 η σειρά διαφανειών Δημήτριος Λαμπάκης Ορισμός και ιδιότητες των μετάλλων Τα χημικά στοιχεία διακρίνονται σε μέταλλα (περίπου 70 τον αριθμό)
Υλικά Ηλεκτρονικής & Διατάξεις
Τμήμα Ηλεκτρονικών Μηχανικών Υλικά Ηλεκτρονικής & Διατάξεις 3 η σειρά διαφανειών Δημήτριος Λαμπάκης Τύποι Στερεών Βασική Ερώτηση: Πως τα άτομα διατάσσονται στο χώρο ώστε να σχηματίσουν στερεά? Τύποι Στερεών
ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΗΛΕΚΤΡΟΛΟΓΙΚΑ ΥΛΙΚΑ. Ενότητα 2: ΚΡΥΣΤΑΛΛΙΚΗ ΔΟΜΗ ΛΙΤΣΑΡΔΑΚΗΣ ΓΕΩΡΓΙΟΣ ΤΗΜΜΥ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΗΛΕΚΤΡΟΛΟΓΙΚΑ ΥΛΙΚΑ Ενότητα 2: ΚΡΥΣΤΑΛΛΙΚΗ ΔΟΜΗ ΛΙΤΣΑΡΔΑΚΗΣ ΓΕΩΡΓΙΟΣ ΤΗΜΜΥ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
οµή των στερεών ιάλεξη 4 η
οµή των στερεών ιάλεξη 4 η Ύλη τέταρτου µαθήµατος Οι καταστάσεις της ύλης, Γιατί τις µελετάµε; Περιοδική τοποθέτηση των ατόµων, Κρυσταλλική και άµορφη δοµή, Κρυσταλλικό πλέγµα κρυσταλλική κυψελίδα, Πλέγµατα
ΝΑΝΟΥΛΙΚΑ ΚΑΙ ΝΑΝΟΤΕΧΝΟΛΟΓΙΑ ΣΤΕΛΛΑ ΚΕΝΝΟΥ ΚΑΘΗΓΗΤΡΙΑ
ΣΤΕΛΛΑ ΚΕΝΝΟΥ ΚΑΘΗΓΗΤΡΙΑ 1 ΚΡΥΣΤΑΛΛΙΚΗ ΔΟΜΗ Πλέγμα στο χώρο Πλέγμα Bravais Διάταξη σημείων στο χώρο έτσι ώστε κάθε σημείο να έχει ταύτοσημο περιβάλλον Αυτό προσδιορίζει δύο ιδιότητες των πλεγμάτων Στον
Κρυσταλλογραφία: επιστήμη που ασχολείται με τη περιγραφή της γεωμετρίας των κρυστάλλων και της διάταξης στο εσωτερικό τους.
I. Κρυσταλλική Δομή Κρυσταλλογραφία Κρυσταλλογραφία: επιστήμη που ασχολείται με τη περιγραφή της γεωμετρίας των κρυστάλλων και της διάταξης στο εσωτερικό τους. Η συμμετρία του κρυστάλλου επηρεάζει τις
Γραπτή εξέταση προόδου στο μάθημα «Επιστήμη & Τεχνολογία Υλικών Ι»-Νοέμβριος 2017
Γραπτή εξέταση προόδου στο μάθημα «Επιστήμη & Τεχνολογία Υλικών Ι»-Νοέμβριος 017 Ερώτηση 1 (5 μονάδες ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΩΝ
Η Δομή των Μετάλλων. Γ.Ν. Χαϊδεμενόπουλος, Καθηγητής
Η Δομή των Μετάλλων Γ.Ν. Χαϊδεμενόπουλος, Καθηγητής Τρισδιάστατο Πλέγμα Οι κυψελίδες των 14 πλεγμάτων Bravais (1) απλό τρικλινές, (2) απλό μονοκλινές, (3) κεντροβασικό μονοκλινές, (4) απλό ορθορομβικό,
ΤΕΧΝΟΛΟΓΙΑ & ΕΠΙΣΤΗΜΗ ΤΩΝ ΥΛΙΚΩΝ
Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνσης Συντήρησης Πολιτισμικής Κληρονομιάς ΤΕΧΝΟΛΟΓΙΑ & ΕΠΙΣΤΗΜΗ ΤΩΝ ΥΛΙΚΩΝ 6 η Ενότητα ΣΤΕΡΕΑ ΚΑΤΑΣΤΑΣΗ Δημήτριος Λαμπάκης Τύποι Στερεών Βασική Ερώτηση: Πως τα άτομα
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Σχολή Θετικών Επιστημών - Τμήμα Φυσικής Εργαστήριο Ακτίνων-Χ, Οπτικού Χαρακτηρισμού και Θερμικής Ανάλυσης
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Σχολή Θετικών Επιστημών - Τμήμα Φυσικής Εργαστήριο Ακτίνων-Χ, Οπτικού Χαρακτηρισμού και Θερμικής Ανάλυσης ΑΣΚΗΣΗ Σκοπός της άσκησης είναι ο υπολογισμός των μηκών
H τέλεια κρυσταλλική δομή των καθαρών μετάλλων
Κεφάλαιο 3 H τέλεια κρυσταλλική δομή των καθαρών μετάλλων Μετά από κάποια εισαγωγικά στοιχεία συζητιέται ο τρόπος δημιουργίας βασικών κρυσταλλικών δομών (SC, BCC, FCC, HCP), ως τρισδιάστατες στοιβάδες
Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο. Φυσική Συμπυκνωμένης Ύλης. Ενότητα 2. Βασίλειος Γιαννόπαπας
Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Φυσική Συμπυκνωμένης Ύλης Ενότητα 2 Βασίλειος Γιαννόπαπας Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Θεωρία Μοριακών Τροχιακών (ΜΟ)
Θεωρία Μοριακών Τροχιακών (ΜΟ) Ετεροπυρηνικά διατομικά μόρια ή ιόντα (πολικοί δεσμοί) Το πιο ηλεκτραρνητικό στοιχείο (με ατομικά τροχιακά χαμηλότερης ενεργειακής στάθμης) συνεισφέρει περισσότερο στο δεσμικό
Εργαστηριακή Άσκηση Β3: Πειράματα περίθλασης από κρύσταλλο λυσοζύμης
Βιοφυσική & Νανοτεχνολογία Εργαστηριακή Άσκηση Β3: Πειράματα περίθλασης από κρύσταλλο λυσοζύμης Ημερομηνία εκτέλεσης άσκησης... Ονοματεπώνυμα... Περίληψη Σκοπός της άσκησης είναι η εξοικείωση με την χρήση
Γενική Φυσική V (Σύγχρονη Φυσική) Φυσική Ακτίνων-Χ και Αλληλεπίδραση Ακτίνων-Χ και Ηλεκτρονίων με την Ύλη
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Εργαστήριο Εφαρμοσμένης Φυσικής Γενική Φυσική V (Σύγχρονη Φυσική) Φυσική Ακτίνων-Χ και Αλληλεπίδραση Ακτίνων-Χ και Ηλεκτρονίων με την Ύλη Περιεχόμενα
ΑΣΚΗΣΗ 1. Περίληψη. Θεωρητική εισαγωγή. Πειραματικό μέρος
ΑΣΚΗΣΗ 1 Περίληψη Σκοπός της πρώτης άσκησης ήταν η εξοικείωση μας με τα όργανα παραγωγής και ανίχνευσης των ακτίνων Χ και την εφαρμογή των κανόνων της κρυσταλλοδομής σε μετρήσεις μεγεθών στο οεργαστήριο.
Γραπτή εξέταση προόδου «Επιστήμη και Τεχνολογία Υλικών Ι»-Νοέμβριος 2015
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ (Καθ. Β.Ζασπάλης) ΘΕΜΑ 1 ο (15 Μονάδες) Πόσα γραμμάρια καθαρού κρυσταλλικού
ΔΙΑΤΑΡΑΧΕΣ (DISLOCATIONS )
ΔΙΑΤΑΡΑΧΕΣ (DISLOCATIONS ) 1. ΕΙΣΑΓΩΓΉ Η αντοχή και η σκληρότητα είναι μέτρα της αντίστασης ενός υλικού σε πλαστική παραμόρφωση Σε μικροσκοπική κλίμακα, πλαστική παραμόρφωση : - συνολική κίνηση μεγάλου
Εργαστηριακή άσκηση 01. Τα επτά συστήματα κρυστάλλωσης και κρυσταλλικές μορφές
Εργαστηριακή άσκηση 01 Τα επτά συστήματα κρυστάλλωσης και κρυσταλλικές μορφές Ηλίας Χατζηθεοδωρίδης Οκτώβριος / Νοέμβριος 2004 Τι περιλαμβάνει η άσκηση Θα μάθετε τα 7 κρυσταλλογραφικά συστήματα και πως
2.1 ΣΤΟΙΧΕΙΑ ΚΡΥΣΤΑΛΛΟΓΡΑΦΙΑΣ
2.1 ΣΤΟΙΧΕΙΑ ΚΡΥΣΤΑΛΛΟΓΡΑΦΙΑΣ ΕΙΣΑΓΩΓΗ Ένας κρύσταλλος ή ακριβέστερα ένας µονοκρύσταλλος, µπορεί να οριστεί µακροσκοπικά ως ένα στερεό αντικείµενο µε οµοιόµορφη χηµική σύσταση που, όπως απαντάται στη φύση
Επιστήμη των Υλικών. Πανεπιστήμιο Ιωαννίνων. Τμήμα Φυσικής
Επιστήμη των Υλικών Πανεπιστήμιο Ιωαννίνων Τμήμα Φυσικής 2017 Α. Δούβαλης Σημειακές ατέλειες Στοιχειακά στερεά Ατέλειες των στερεών Αυτοπαρεμβολή σε ενδοπλεγματική θέση Κενή θέση Αριθμός κενών θέσεων Q
Ερωτησεις στη Βιοφυσική & Νανοτεχνολογία. Χειμερινό Εξάμηνο 2012
Ερωτησεις στη Βιοφυσική & Νανοτεχνολογία. Χειμερινό Εξάμηνο 2012 1) Ποιο φυσικό φαινόμενο βοηθάει στην αυτοσυναρμολόγηση μοριακών συστημάτων? α) Η τοποθέτηση μοριων με χρήση μικροσκοπίου σάρωσης δείγματος
ΟΡΥΚΤΟΛΟΓΙΑ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ - ΜΕΤΑΛΛΟΥΡΓΩΝ
ΟΡΥΚΤΟΛΟΓΙΑ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ - ΜΕΤΑΛΛΟΥΡΓΩΝ ΜΑΘΗΜΑ 3. ΟΙ 32 ΚΡΥΣΤΑΛΛΙΚΕΣ ΤΑΞΕΙΣ Ταξινόμηση των κρυστάλλων σαν στερεά σχήματα και οι συμμετρίες Ηλίας Χατζηθεοδωρίδης,
Επιστήμη των Υλικών. Πανεπιστήμιο Ιωαννίνων. Τμήμα Φυσικής
Επιστήμη των Υλικών Πανεπιστήμιο Ιωαννίνων Τμήμα Φυσικής 2017 Α. Δούβαλης Άνθρακας και υβριδικά υλικά με βάση τον άνθρακα Graphite Diamond Fullerene Nanotube Ηλεκτρονική διαμόρφωση του C, υβριδισμός και
Γραπτή «επί πτυχίω» εξέταση στο μάθημα «Επιστήμη & Τεχνολογία Υλικών Ι»-Ιούνιος 2017
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ (Καθ. Β.Ζασπάλης) Στην παραπάνω Εικόνα δίνονται οι κρυσταλλικές δομές δύο
της δομής νανοσωματιδίων τετραγωνικού κρυσταλλικού πλέγματος
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ΣΤΕΡΕΑΣ ΚΑΤΑΣΤΑΣΗΣ Μελέτη της δομής νανοσωματιδίων τετραγωνικού κρυσταλλικού πλέγματος Παππάς Ευάγγελος
, όπου Α, Γ, l είναι σταθερές με l > 2.
Φυσική Στερεάς Κατάστασης: Εισαγωγή Θέμα 1 Η ηλεκτρική χωρητικότητα ισούται με C=Q/V όπου Q το φορτίο και V η τάση. (α) Εκφράστε τις διαστάσεις του C στις βασικές διαστάσεις L,M,T,I. (β) Σφαίρα είναι φορτισμένη
ΗΛΕΚΤΡΟΤΕΧΝΙΚΑ Υλικα. Θεωρητικη αναλυση
ΗΛΕΚΤΡΟΤΕΧΝΙΚΑ Υλικα Θεωρητικη αναλυση ΧΗΜΙΚΟΙ ΔΕΣΜΟΙ στα στερεα Ομοιοπολικός δεσμός Ιοντικός δεσμός Μεταλλικός δεσμός Δεσμός του υδρογόνου Δεσμός van der Waals ΔΟΜΗ ΑΤΟΜΟΥ Στοιβάδες Χώρος κίνησης των
Θεµατικό Περιεχόµενο Μαθήµατος
Θεµατικό Περιεχόµενο Μαθήµατος 1. Κρυσταλικές δοµές Ιονική ακτίνα Ενέργεια πλέγµατος Πυκνές διατάξεις 4εδρικές 8εδρικές οπές Μέταλλα ιοντικά στερεά Πώς περιγράφεται η δοµή τους Πως προσδιορίζεται η δοµή
2. ΜΕΤΑΛΛΑ - ΚΡΑΜΑΤΑ. 2.2 Κύριοι χημικοί δεσμοί
1 2. ΜΕΤΑΛΛΑ - ΚΡΑΜΑΤΑ 2.1 Γενικά Τα μικρότερα σωματίδια της ύλης, που μπορούν να βρεθούν ελεύθερα και να διατηρούν τις ιδιότητες του σώματος στο οποίο ανήκουν, λέγονται μόρια. Τα ελάχιστα σωματίδια της
Γραπτή εξέταση «Επιστήμη και Τεχνολογία Υλικών Ι»-Σεπτέμβριος 2016
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ (Καθ. Β.Ζασπάλης) ΘΕΜΑ 1 ο (30 Μονάδες) Στην εικόνα δίνονται οι επίπεδες
ΟΡΥΚΤΟΛΟΓΙΑ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ - ΜΕΤΑΛΛΟΥΡΓΩΝ
ΟΡΥΚΤΟΛΟΓΙΑ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ - ΜΕΤΑΛΛΟΥΡΓΩΝ ΜΑΘΗΜΑ 2. ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΚΡΥΣΤΑΛΛΟΓΡΑΦΙΑ Συμμετρία και Κρυσταλλικά Συστήματα Ηλίας Χατζηθεοδωρίδης, Επίκουρος Καθηγητής
ΚΕΦΑΛΑΙΟ 3. Η Δομή των Κεραμικών Υλικών
ΚΕΦΑΛΑΙΟ 3 Η Δομή των Κεραμικών Υλικών Εισαγωγή Κρυσταλλικά και άμορφα στερεά: Παρουσιάζουν τάξη μεγάλης κλίμακας (long range order) τάξη μικρής κλίμακας (short range order) ή και συνδυασμό των δύο. Τα
Μεταλλικός δεσμός - Κρυσταλλικές δομές Ασκήσεις
Μεταλλικός δεσμός - Κρυσταλλικές δομές Ασκήσεις Ποια από τις ακόλουθες προτάσεις ισχύει για τους μεταλλικούς δεσμούς; α) Οι μεταλλικοί δεσμοί σχηματίζονται αποκλειστικά μεταξύ ατόμων του ίδιου είδους μετάλλου.
Κεφάλαιο 2 ΚΡΥΣΤΑΛΛΙΚΗ ΔΟΜΗ
Κεφάλαιο ΚΡΥΣΤΑΛΛΙΚΗ ΔΟΜΗ Προαπαιτούμενη γνώση Πλέγμα Brvis, θεμελιώδης και μοναδιαία κυψελίδα, πλεγματικά επίπεδα, δείκτες Miller, ανάστροφο πλέγμα, ζώνη Brillouin, σημειακές ομάδες χώρου. Πρόβλημα Το
Ασκήσεις ακαδ. έτους
Τμήμα Επιστήμης και Τεχνολογίας Υλικών Πανεπιστήμιο Κρήτης Επιστήμη Επιφανειών - Νανοϋλικών (ETY/METY 346) Μεταπτυχιακό: Νανοτεχνολογία για Ενεργειακές Εφαρμογές ¹ Nanomaterials for Energy (Νανοϋλικά για
Κεφάλαιο 3 Κρυσταλλογραφία
Κεφάλαιο 3 Κρυσταλλογραφία Σύνοψη Μελετάται ο σχηματισμός των κρυστάλλων με τα αντίστοιχα στάδια ανάπτυξης αυτών, τα κρυσταλλικά συστήματα, τα κρυσταλλικά πλέγματα, η μελέτη των κρυσταλλικών δομών μεγίστης
7.14 Προβλήματα για εξάσκηση
7.14 Προβλήματα για εξάσκηση 7.1 Το ορυκτό οξείδιο του αλουμινίου (Corundum, Al 2 O 3 ) έχει κρυσταλλική δομή η οποία μπορεί να περιγραφεί ως HCP πλέγμα ιόντων οξυγόνου με τα ιόντα αλουμινίου να καταλαμβάνουν
(α ) Αποδείξτε ότι λ / σ = φ αλλά και χ / λ = φ όπου χ = σ + ψ + σ. Η χρυσή τομή φ = 1+ 5
Ασκήσεις Κεφαλαίου 1. Άσκηση 1.1 Χωρίζουμε ένα ευθύγραμμο τμήμα σε τέσσερα ίσα μέρη, μετά εξαιρούμε το δεύτερο και το τέταρτο, ενώ συνεχίζουμε αυτή τη διαδικασία επ' άπειρον στα ευθύγραμμα τμήματα που
Γραπτή εξέταση προόδου «Επιστήμη και Τεχνολογία Υλικών Ι»-Νοέμβριος 2016
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ (Καθ. Β.Ζασπάλης) Θέμα 1: Ερωτήσεις (10 Μονάδες) (Σύντομη αιτιολόγηση.
κρυστάλλου απείρου μεγέθους.
Κρυστάλλωση Πολυμερών Θερμοδυναμική της κρυστάλλωσης πολυμερών Θερμοκρασία ρασία τήξης πολυμερών Μεταβολή ειδικού όγκου ως προς τη θερμοκρασία σε γραμμικό πολυαιθυλένιο:., ακλασματοποίητο πολυμερές, ο,
Μελέτη της δομής νανοσωματιδίων κυβικού κρυσταλλικού πλέγματος
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ΣΤΕΡΕΑΣ ΚΑΤΑΣΤΑΣΗΣ Μελέτη της δομής νανοσωματιδίων κυβικού κρυσταλλικού πλέγματος Σπυρίδων Καρύδης Διπλωματική
Γραπτή «επί πτυχίω» εξέταση «Επιστήμη και Τεχνολογία Υλικών Ι»-Ιούνιος 2016
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ΘΕΜΑ 1 ο (25 Μονάδες) (Καθ. Β.Ζασπάλης) Ι) Να προσδιοριστούν οι δείκτες
Επιστήμη των Υλικών. Πανεπιστήμιο Ιωαννίνων. Τμήμα Φυσικής
Επιστήμη των Υλικών Πανεπιστήμιο Ιωαννίνων Τμήμα Φυσικής 2017 Α. Δούβαλης Διαγράμματα Φάσεων Δημιουργία κραμάτων: διάχυση στοιχείων που έρχονται σε άμεση επαφή Πως συμπεριφέρονται τα επιμέρους άτομα των
Ε Ι Σ Α Γ Ω Γ Η. Ε1.1 Κρυσταλλικό Πλέγμα - Κυψελίδα
Ε Ι Σ Α Γ Ω Γ Η Στο Κεφάλαιο αυτό δίνονται ορισμένες έννοιες που θεωρούνται χρήσιμες στην ενότητα 9 και 10 (Δομή των Υλικών-Ακτίνες Χ) του Μαθήματος Γενική Φυσική V. Ε1.1 Κρυσταλλικό Πλέγμα - Κυψελίδα
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ Γραπτό τεστ (συν-)αξιολόγησης στο μάθημα: «ΔΙΑΓΝΩΣΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ ΜΕΛΕΤΗ
Επιστήμη των Υλικών. Πανεπιστήμιο Ιωαννίνων. Τμήμα Φυσικής
Επιστήμη των Υλικών Πανεπιστήμιο Ιωαννίνων Τμήμα Φυσικής 2017 Α. Δούβαλης Ατέλειες, διαταραχές και σχέση τους με τις μηχανικές ιδιότητες των στερεών (μεταλλικά στερεά) μικτή διαταραχή διαταραχή κοχλία
ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8
ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,
11. Υγρά και Στερεά ΣΚΟΠΟΣ
11. Υγρά και Στερεά ΣΚΟΠΟΣ Σκοπός αυτού του κεφαλαίου είναι να γνωρίσουμε τις άλλεςδύοκαταστάσειςτηςύλης, την υγρή και τη στερεά, να μελετήσουμε και να ερμηνεύσουμε τις ιδιότητες των υγρών, να δούμε τους
Τµήµα Επιστήµης και Τεχνολογίας Υλικών Εισαγωγή στη Φυσική Στερεάς Κατάστασης Μάθηµα ασκήσεων 11/10/2006
Τµήµα Επιστήµης και Τεχνολογίας Υλικών Εισαγωγή στη Φυσική Στερεάς Κατάστασης Μάθηµα ασκήσεων 11/10/006 Άσκηση 1 Υπολογίστε τον όγκο ανά ιόν (σε Å ), την απόσταση πρώτων γειτόνων d (σε Å), τη συγκέντρωση
ΚΕΦΑΛΑΙΟ 11: Περίθλαση Ακτίνων-Χ και Νετρονίων από Κρυσταλλικά Υλικά
ΚΕΦΑΛΑΙΟ 11: Περίθλαση Ακτίνων-Χ και Νετρονίων από Κρυσταλλικά Υλικά Εν γένει τρεις µεταβλητές διακυβερνούν τις διαφορετικές τεχνικές περίθλασης ακτίνων-χ: (α) ακτινοβολία µονοχρωµατική ή µεταβλητού λ
1 η ΕΝΟΤΗΤΑ ΔΟΜΙΚΑ ΥΛΙΚΑ (ΕΙΣΑΓΩΓΗ)
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΤΕΧΝΙΚΑ ΥΛΙΚΑ 1 η ΕΝΟΤΗΤΑ ΔΟΜΙΚΑ ΥΛΙΚΑ (ΕΙΣΑΓΩΓΗ) Ε. Βιντζηλαίου (Συντονιστής), Ε. Βουγιούκας, Ε. Μπαδογιάννης Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
ΑΝΟΡΓΑΝΑ ΥΛΙΚΑ. Μάθημα 3ο. Συμμετρία
ΑΝΟΡΓΑΝΑ ΥΛΙΚΑ Μάθημα 3ο Συμμετρία 1 Συμμετρία Μια κατάσταση στην οποία μέρη τα οποία ευρίσκονται σε αντίθετες μεταξύ τους θέσεις ενός επιπέδου, γραμμής ή σημείου φανερώνει διευθετήσεις οι οποίες αλληλοσυνδέονται
Κεφάλαιο 2. Στερεά. 2.1 Βασικές έννοιες κρυσταλλικών πλεγμάτων και κρυστάλλων. Πλέγμα Βάση Εικόνα 2.1
Κεφάλαιο. Στερεά. Σύνοψη:.1 Βασικές έννοιες κρυσταλλικών πλεγμάτων και κρυστάλλων.. Συμμετρία πλεγμάτων και μορίων..3 Κατάταξη ομάδων σημείου..4 Κρύσταλλοι. Κρυσταλλικά Πλέγματα σε 1,, 3 διαστάσεις..5
ΕΤΥ-349 ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΘΕΡΜΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΥΛΙΚΩΝ
ΕΤΥ-349 ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΘΕΡΜΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΥΛΙΚΩΝ Χειμερινό εξάμηνο ακαδημαϊκού έτους 2017-2018 Τμήμα Επιστήμης και Τεχνολογία Υλικών, Πανεπιστήμιο Κρήτης Διδάσκων: Βασίλης Παλτόγλου email: vaspal@physics.uoc.gr
2. H ΔΟΜΗ ΤΩΝ ΜΕΤΑΛΛΩΝ
2. H ΔΟΜΗ ΤΩΝ ΜΕΤΑΛΛΩΝ ΠΕΡΙΛΗΨΗ Τα μέταλλα είναι κρυσταλλικά στερεά, έχουν δηλαδή κρυσταλλική δομή, διότι η σύνταξη των ατόμων που τα αποτελούν παρουσιάζει περιοδικότητα και στις τρεις διευθύνσεις του
Συστηµατικές κατασβέσεις (Περιορισµοί-Απουσίες)
Συστηµατικές κατασβέσεις (Περιορισµοί-Απουσίες) Μοναδιαία κυψελίδα Καθορισµός Ο.Σ.Χ. Υπό τον όρο ότι δεν υπάρχει κανένα πρόβληµα στη δοµή, όπως διδυµίες αταξίες κ.λ.π., έχουµε την δυνατότητα να δηµιουργήσουµε
Παραγωγή ακτίνων Χ. V e = h ν = h c/λ λ min = h c/v e λ min (Å) 12400/V
Παραγωγή ακτίνων Χ Οι ακτίνες Χ είναι ηλεκτροµαγνητική ακτινοβολία µε µήκη κύµατος της τάξης των Å (=10-10 m). Στο ηλεκτροµαγνητικό φάσµα η ακτινοβολία Χ εκτείνεται µεταξύ της περιοχής των ακτίνων γ και
Κρυσταλλικές ατέλειες στερεών
Κρυσταλλικές ατέλειες στερεών Χαράλαμπος Στεργίου Dr.Eng. chstergiou@uowm.gr Ατέλειες Τεχνολογία Υλικών Ι Ατέλειες Ατέλειες στερεών Ο τέλειος κρύσταλλος δεν υπάρχει στην φύση. Η διάταξη των ατόμων σε δομές
ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ
ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ Α.1. 1) Ποιοι φυσικοί αριθμοί λέγονται άρτιοι και ποιοι περιττοί; ( σ. 11 ) 2) Από τι καθορίζεται η αξία ενός ψηφίου σ έναν φυσικό αριθμό; ( σ. 11 ) 3) Τι
Εφαρµογές (και Ερµηνεία) Μεθόδου Σκόνης. Μερικές «περιοχές» εφαρµογής της µεθόδου:
11.3.3 Εφαρµογές (και Ερµηνεία) Μεθόδου Σκόνης Μερικές «περιοχές» εφαρµογής της µεθόδου: Ταυτοποίηση αγνώστων υλικών Προσδιορισµός της καθαρότητας του δείγµατος Προσδιορισµός πλεγµατικών σταθερών ιερεύνηση
ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου
ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη
ΑΝΟΡΓΑΝΑ ΥΛΙΚΑ. Μάθημα 5ο. Δεσμοί στους κρυστάλλους Μεταλλικοί δεσμοί. Ενώσεις υδρογόνου. Ιοντικές ακτίνες. Ενδομεταλλικές ενώσεις
ΑΝΟΡΓΑΝΑ ΥΛΙΚΑ Μάθημα 5ο Δεσμοί στους κρυστάλλους Μεταλλικοί δεσμοί. Ενώσεις υδρογόνου. Ιοντικές ακτίνες. Ενδομεταλλικές ενώσεις 1 Στο σύστημα Cu-Au το κράμα Cu 3 Au υπάρχει σε υψηλή θερμοκρασία και χαρακτηρίζεται
Πανεπιστήµιο Κρήτης ΤΕΤΥ ΤΕΤΥ 344: Μηχανικές και Μηχανικές Ιδιότητες Υλικών. και Σκληροµετρία
Πανεπιστήµιο Κρήτης ΤΕΤΥ ΤΕΤΥ 344: Μηχανικές και Θερµικές Ιδιότητες Υλικών Μηχανικές Ιδιότητες Υλικών και Σκληροµετρία 1 Εφελκυσµός (Tensile Test) Ο εφελκυσµός αποτελεί ένα σηµαντικό διαγνωστικό εργαλείο
ΚΕΦΑΛΑΙΟ 3 Ο 3.2 Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η. (Σ) όπου α, β, α, β, είναι οι
ΚΕΦΑΛΑΙΟ 3 Ο ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ 3. Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΤΟΥ. Ποια είναι η μορφή ενός συστήματος δύο γραμμικών εξισώσεων, δύο αγνώστων; Να δοθεί παράδειγμα.
ΚΕΦΑΛΑΙΟ 4: ΠΕΡΙΟΧΕΣ-WEISS
ΚΕΦΑΛΑΙΟ 4: ΠΕΡΙΟΧΕΣ-WEISS Το πρώτο τμήμα της θεωρίας του Weiss εξηγεί γιατί τα σιδηρομαγνητικά υλικά έχουν αυθόρμητη μαγνήτιση Μ S και πως η μαγνήτιση Μ S μεταβάλλεται με τη θερμοκρασία. Η θεωρία υποθέτει
Μαγνητικά Υλικά Υπεραγωγοί
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαγνητικά Υλικά Υπεραγωγοί ΜΑΓΝΗΤΙΚΗ ΑΝΙΣΟΤΡΟΠΙΑ Διδάσκων: Καθηγητής Ιωάννης Παναγιωτόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.
ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε
2/19/2012 ΕΛΛΕΙΨΟΕΙΔΕΣ ΕΛΛΕΙΨΟΕΙΔΕΣ ΕΛΛΕΙΨΟΕΙΔΕΣ ΤΩΝ ΔΕΙΚΤΩΝ
ΕΛΛΕΙΨΟΕΙΔΕΣ ΤΩΝ ΔΕΙΚΤΩΝ ΕΛΛΕΙΨΟΕΙΔΕΣ ΤΩΝ ΔΕΙΚΤΩΝ ΣΤΟΥΣ ΜΟΝΑΞΟΝΕΣ ΚΡΥΣΤΑΛΛΟΥΣ (τριγωνικό, τετραγωνικό, εξαγωνικό) 1 2 Ελλειψοειδές των δεικτών στους μονάξονες κρυστάλλους Ελλειψοειδές των δεικτών στους
ΟΡΥΚΤΟΛΟΓΙΑ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ - ΜΕΤΑΛΛΟΥΡΓΩΝ ΜΑΘΗΜΑ 4. ΟΝΟΜΑΤΟΛΟΓΙΑ ΕΔΡΩΝ, ΖΩΝΕΣ, ΔΙΚΤΥΟ WULF
ΟΡΥΚΤΟΛΟΓΙΑ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ - ΜΕΤΑΛΛΟΥΡΓΩΝ ΜΑΘΗΜΑ 4. ΟΝΟΜΑΤΟΛΟΓΙΑ ΕΔΡΩΝ, ΖΩΝΕΣ, ΔΙΚΤΥΟ WULF Ηλίας Χατζηθεοδωρίδης, Επίκουρος Καθηγητής, 2006 2012 ΑΔΕΙΑ ΧΡΗΣΗΣ Το
ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ
ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΣΑΝΑΤΛΙΣΜΥ Β ΛΥΚΕΙΥ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΥ Να δώσετε τους ορισμούς: διάνυσμα, μηδενικό διάνυσμα, μέτρο διανύσματος, μοναδιαίο διάνυσμα Διάνυσμα AB ονομάζεται ένα ευθύγραμμο
n, C n, διανύσματα στο χώρο Εισαγωγή
Θα περιοριστούμε σε διανύσματα των οποίων τα στοιχεία προέρχονται από τον χώρο και τον C, χωρίς καμία δυσκολία όμως μπορούν να αναχθούν σε οποιοδήποτε χώρο K Το πρώτο διάνυσμα: Τέρματα που έχουν πέτυχει
Ε Ι Σ Α Γ Ω Γ Η. Ε1.1 Κρυσταλλικό Πλέγμα - Κυψελίδα
Ε Ι Σ Α Γ Ω Γ Η Στο Κεφάλαιο αυτό δίνονται ορισμένες έννοιες που θεωρούνται χρήσιμες στην εκτέλεση των ασκήσεων που ακολουθούν. Ε1.1 Κρυσταλλικό Πλέγμα - Κυψελίδα Θεωρούμε δύο μη συγγραμμικά διανύσματα
1) Να οριστεί η δοµή των στερεών. 2) Ποιες είναι οι καταστάσεις της ύλης; 3) Τι είναι κρυσταλλικό πλέγµα και κρυσταλλική κυψελίδα;
ιάλεξη η 10 ΕΠΑΝΑΛΗΨΗ ιάλεξη 4η 1) Να οριστεί η δοµή των στερεών. 2) Ποιες είναι οι καταστάσεις της ύλης; 3) Τι είναι κρυσταλλικό πλέγµα και κρυσταλλική κυψελίδα; 4) Ποια είναι η ιδιότητα, η οποία ξεχωρίζει
Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους
Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;
Χηµικοίδεσµοί, Μικροδοµή, Παραµόρφωση καιμηχανικές Ιδιότητες
Χηµικοίδεσµοί, Μικροδοµή, Παραµόρφωση καιμηχανικές Ιδιότητες Βασισµένοστο Norman E. Dowling, Mechanical Behavior of Materials, Third Edition, Pearson Education, 2007 Κλίµακες µεγέθους και επιστήµες που
ΠΕΤΡΟΓΕΝΕΤΙΚΑ ΟΡΥΚΤΑ ΙΟΥΝΙΟΣ 2010 ΥΠΟ ΕΙΓΜΑ ΣΩΣΤΩΝ ΑΠΑΝΤΗΣΕΩΝ
ΠΕΤΡΟΓΕΝΕΤΙΚΑ ΟΡΥΚΤΑ ΙΟΥΝΙΟΣ 2010 ΥΠΟ ΕΙΓΜΑ ΣΩΣΤΩΝ ΑΠΑΝΤΗΣΕΩΝ Θέμα 1: Επιλέξτε και απαντήστε σε 6 από τις ακόλουθες 10 ερωτήσεις (30 μονάδες) 1. Τι ονομάζουμε ευθύγραμμα ή γραμμικά πολωμένο φως; Ποια είναι
Μοναδιαία κυψελίδα στον αντίστροφο χώρο (Γενική περίπτωση Τρικλινές σύστημα)
Μοναδιαία κυψελίδα στον αντίστροφο χώρο (Γενική περίπτωση Τρικλινές σύστημα) Εικόνα περίθλασης ακτίνων-x από ένα πραγματικό κρύσταλλο. Αν τοποθετήσουμε ένα κρύσταλλο σε μια δέσμη ακτίνων-x, μερικά από
V (F ) = {(u 1, u 2, u 3 ) P 2 K F (u 1, u 2, u 3 ) = 0}
1 Θεώρημα BEZOU T Ο δακτύλιος K[x 1,..., x n ] είναι περιοχή μονοσήμαντης ανάλυσης. Άρα κάθε πολυώνυμο f K[x 1,..., x n ] (που δεν είναι σταθερά, δηλαδή f / K) αναλύεται σε γινόμενο αναγώγων πολυωνύμων,
Μαθηματικά. Ενότητα 2: Δεκαδικοί αριθμοί, κλάσματα, δυνάμεις, ρίζες και ποσοστά. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής
Μαθηματικά Ενότητα 2: Δεκαδικοί αριθμοί, κλάσματα, δυνάμεις, ρίζες και ποσοστά Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Συσχέτιση. Δομής(structure) Ιδιοτήτων(properties) κατεργασίας(processing) ΙΔΙΟΤΗΤΕΣ ΔΟΜΗ ΚΑΤΕΡΓΑΣΙΑ ΤΕΧΝΟΛΟΓΙΑΥΛΙΚΩΝ- ΜΗΧΑΝΟΥΡΓΙΚΗ ΤΕΧΝΟΛΟΓΙΑ
Συσχέτιση Δομής(structure) Ιδιοτήτων(properties) κατεργασίας(processing) ΕΠΙΣΤΗΜΗ ΤΩΝ ΥΛΙΚΩΝ ΙΔΙΟΤΗΤΕΣ ΤΕΧΝΟΛΟΓΙΑΥΛΙΚΩΝ- ΜΗΧΑΝΟΥΡΓΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΔΟΜΗ ΚΑΤΕΡΓΑΣΙΑ Ορολογία σχετική με τη δομή που θα συναντήσουμε
1,y 1) είναι η C : xx yy 0.
ΘΕΜΑ Α ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ο δείγμα Α. Αν α, β δύο διανύσματα του επιπέδου με συντελεστές διεύθυνσης λ και λ αντίστοιχα, να αποδείξετε ότι α β λ λ.
ΚΕΦΑΛΑΙΟ 6: ΠΕΡΙΟΧΕΣ-WEISS
ΚΕΦΑΛΑΙΟ 6: ΠΕΡΙΟΧΕΣ-WEISS Το πρώτο τμήμα της θεωρίας του Weiss εξηγεί γιατί τα σιδηρομαγνητικά υλικά έχουν αυθόρμητη μαγνήτιση Μ S και πως η μαγνήτιση Μ S μεταβάλλεται με τη θερμοκρασία. Η θεωρία υποθέτει
οµή Επιφανειών Κρυσταλλογραφία Επιφανειών Ιδεώδης Επιφάνεια-Τερµατισµός Τα 5 δι-περιοδικά πλέγµατα Αναδόµηση-Χαλάρωση
οµή Επιφανειών Κρυσταλλογραφία Επιφανειών Ιδεώδης Επιφάνεια-Τερµατισµός Τα 5 δι-περιοδικά πλέγµατα Αναδόµηση-Χαλάρωση Συµµετρία Μεταθέσεως 1δ δ 3δ: Κρυσταλλικό Πλέγµα Ιδεώδης κρυσταλλική επιφάνεια Σε πρώτη
Εισαγωγή σε προχωρημένες μεθόδους υπολογισμού στην Επιστήμη των Υλικών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή σε προχωρημένες μεθόδους υπολογισμού στην Επιστήμη των Υλικών Χτίζοντας τους κρυστάλλους από άτομα Είδη δεσμών Διδάσκων : Επίκουρη Καθηγήτρια
Τελική γραπτή εξέταση «Επιστήμη και Τεχνολογία Υλικών Ι»-Ιανουάριος 2017
Τελική γραπτή εξέταση «Επιστήμη και Τεχνολογία Υλικών Ι»-Ιανουάριος 017 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ
ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί.
ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ ΑΛΓΕΒΡΑ (50 Δ. ώρες) Περιεχόμενα Στόχοι Οδηγίες - ενδεικτικές δραστηριότητες Οι μαθητές να είναι ικανοί: Μπορούμε να ΟΙ ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ χρησιμοποιήσουμε καθημερινά φαινόμενα
ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ
ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών
Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ. Ενότητα 3: Στερεά διαλύματα και ενδομεταλλικές ενώσεις. Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών
Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ Ενότητα 3: Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
ΚΡΥΣΤΑΛΛΙΚΕΣ ΚΑΙ ΜΗ ΚΡΥΣΤΑΛΛΙΚΕΣ ΔΟΜΕΣ Crystalline & Noncrystalline Structures
ΚΡΥΣΤΑΛΛΙΚΕΣ ΚΑΙ ΜΗ ΚΡΥΣΤΑΛΛΙΚΕΣ ΔΟΜΕΣ Crystalline & Noncrystalline Structures Παραδείγματα δομών σε σύγκριση με την κρυσταλλική δομή Αέριο Υδρατμοί Γυαλί Μέταλλο Βασικοί ορισμοί Κρυσταλλικά υλικά (Crystalline
μ B = A m 2, N=
1. Ο σίδηρος κρυσταλλώνεται σε bcc κυβική κυψελίδα με a=.866 Ǻ που περιλαμβάνει δύο άτομα Fe. Kάθε άτομο Fe έχει μαγνητική ροπή ίση με. μ Β. Υπολογίστε την πυκνότητα, την μαγνήτιση κόρου σε Α/m, και την
ΠΕΤΡΟΓΕΝΕΤΙΚΑ ΟΡΥΚΤΑ ΙΟΥΝΙΟΣ 2010 ΥΠΟ ΕΙΓΜΑ ΣΩΣΤΩΝ ΑΠΑΝΤΗΣΕΩΝ
ΠΕΤΡΟΓΕΝΕΤΙΚΑ ΟΡΥΚΤΑ ΙΟΥΝΙΟΣ 2010 ΥΠΟ ΕΙΓΜΑ ΣΩΣΤΩΝ ΑΠΑΝΤΗΣΕΩΝ Θέμα 1: Επιλέξτε και απαντήστε σε 6 από τις ακόλουθες 10 ερωτήσεις (30 μονάδες) 1. Τι ονομάζουμε δείκτη διάθλασης ενός μέσου; Τι αριθμητικές
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Διανύσματα στους Rn, Cn, διανύσματα στο χώρο (1) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΕΝΟΤΗΤΑ: Διανύσματα στους, C, διανύσματα στο χώρο (1) ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Ατομική και ηλεκτρονιακή δομή των στερεών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ατομική και ηλεκτρονιακή δομή των στερεών Μοντέλο Jellum Διδάσκων : Επίκουρη Καθηγήτρια Χριστίνα Λέκκα Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται