07_Έλεγχος_Συχνοτήτων. Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ.

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "07_Έλεγχος_Συχνοτήτων. Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ."

Transcript

1 Ν161_(6)_Στατιστική στη Φυσική Αγωγή 07_Έλεγχος_Συχνοτήτων Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.. 1 Σύγκριση παρατηρούμενων συχνοτήτων με τις αντίστοιχες θεωρητικές συχνότητες εωρητικές συχνότητες: - από τη βιβλιογραφία - αναμενόμενες τιμές 1

2 Ερώτημα: αν οι παρατηρούμενες συχνότητες συμφωνούν (είναι ίδιες) με τις θεωρητικές Μηδενική υπόθεση: Δεν υπάρχουν διαφορές μεταξύ των δύο υπό έλεγχο συχνοτήτων 3 Έλεγχος καλής προσαρμογής (μιάς ποιοτικής μεταβλητής) - κατανομή Όταν ένα δείγμα είναι ταξινομημένο σε κλάσεις και διαθέτουμε την κατανομή συχνοτήτων του, αυτή η κατανομή προέρχεται από μια άλλη γνωστή κατανομή ή κάποια που μπορούμε να την υποθέσουμε; 4

3 Παράδειγμα: Σε ένα συγκεκριμένο αριθμό αγώνων μπάσκετ καταγράφεται ο αριθμός των φάουλ (ποιοτική μεταβλητή) των παικτών που συμμετέχουν. Έστω ότι συνολικά καταγράφτηκε ο αριθμός των φάουλ 80 παικτών. Στη συνέχεια υπολογίζεται ο αριθμός των παικτών που σημείωσαν από 1 έως 5 φάουλ (κατηγορίες, κλάσεις, τάξεις), δηλαδή υπολογίζεται η συχνότητα με την οποία πραγματοποιούνται 1,, 3, 4 ή 5 φάουλ σε κάθε αγώνα. Αυτή η συχνότητα πραγματοποίησης του αντίστοιχου αριθμού φάουλ, που αποτελεί την «παρατηρούμενη συχνότητα», παρουσιάζεται στον παρακάτω πίνακα. αριθμός φάουλ παρατηρούμενη συχνότητα= αριθμός παικτών που σημείωσαν τον αντίστοιχο αριθμό φάουλ υπολογισμός θεωρητικής συχνότητας: ίδια πιθανότητα να σημειωθούν από 1 έως 5 φάουλ άθροισμα πραγματικών τιμών θεωρητική συχνότητα: σύνολο περιπτώσεων αριθμός φάουλ παρατηρούμενη συχνότητα= αριθμός παικτών που σημείωσαν τον αντίστοιχο αριθμό φάουλ θεωρητική συχνότητα

4 αριθμός φάουλ παρατηρούμενη συχνότητα (Π) θεωρητική συχνότητα () Μηδενική υπόθεση: Δεν υπάρχουν διαφορές μεταξύ των δύο υπό έλεγχο συχνοτήτων (οι παρατηρούμενες και οι θεωρητικές συχνότητες είναι ίδιες μεταξύ τους) ο έλεγχος πραγματοποιείται μέσω της χ- κατανομής (Π ) i1 7 i1 (Π ) X Π Π- (Π-) (Π ) i1 (Π ) =

5 i1 (Π ) X Π Π- (Π-) (Π ) i1 (Π ) = i1 (Π ) X Π Π- (Π-) (Π ) i1 (Π ) =

6 i1 (Π ) X Π Π- (Π-) (Π ) i1 (Π ) = (Π ) i Η τιμή = θα πρέπει να συγκριθεί με μία κρίσιμη -τιμή για επίπεδο σημαντικότητας α= 0.05 ( = 0.95) και βαθμούς ελευθερίας

7 επίπεδο σημαντικότητας α= = 0.95 β.ε.: -1 (όπου = αριθμός κλάσεων) = 5-1= 4 = 17,375 > κρίσιμο=9.49 df \p = > - κρίσιμο=9.49 απορρίπτουμε τη μηδενική υπόθεση H o : οι πραγματικές τιμές δεν διαφέρουν από τις θεωρητικές αποδεχόμαστε την εναλλακτική υπόθεση Η Α : οι πραγματικές τιμές διαφέρουν από τις θεωρητικές Δεν υπάρχει η ίδια πιθανότητα να σημειωθούν από 1 έως 5 φάουλ 14 7

8 Έλεγχος ανεξαρτησίας (δύο ποιοτικών μεταβλητών) αν δύο ποιοτικά χαρακτηριστικά είναι ανεξάρτητα ή όχι μεταξύ τους Ανεξάρτητα: οι συχνότητες του ενός ΔΕΝ μεταβάλλονται σε σχέση με το άλλο Μη ανεξάρτητα: οι συχνότητες του ενός μεταβάλλονται σε σχέση με το άλλο Μηδενική υπόθεση: Οι συχνότητες του ενός ποιοτικού ο ούχαρακτηριστικού είναι ανεξάρτητες από τις συχνότητες του άλλου ποιοτικού χαρακτηριστικού (οι συχνότητες του ενός ΔΕΝ μεταβάλλονται σε σχέση με το άλλο) 15 Δεδομένα: Πίνακας συνάφειας (συχνοτήτων) (πόσες φορές εμφανίζεται ταυτόχρονα αυτό που αντιστοιχεί στη διασταύρωση της γραμμής και της στήλης) R= γραμμές C= στήλες Πίνακας παρατηρούμενων συχνοτήτων Β1 Β... Βc Σύνολο Α1 N11 N1... N1c N1 Α N1 N... Nc N Α3 N31 N3... N3c N ΑR NR1 NR... NRc NR Σύνολο N1 N... N c N 16 8

9 Β1 Β... Βc Σύνολο Α1 N11 N1... N1c N1 Α N1 N... Nc N Α3 N31 N3... N3c N ΑR NR1 NR... NRc NR Σύνολο N1 N... N c N Καθορισμός θεωρητικών συχνοτήτων Πιθανότητα εμφάνισης οποιουδήποτε στοιχείου N - με το χαρακτηριστικό Α i. i Αν Αi ανεξάρτητο του Βi τότε η πιθανότητα N.. N ταυτόχρονης εμφάνισης Αi και Βi.i και με το χαρακτηριστικό B i N.. Ni. N. i NN i.. i N.. N.. N.. 17 ο έλεγχος πραγματοποιείται μέσω της - κατανομής (Π ) i1 για προεπιλεγμένο επίπεδο σημαντικότητας α: (1-α) και βαθμούς ελευθερίας: (R-1)X(C-1) 18 9

10 παράδειγμα: Ένας ερευνητής καταγράφει ένα δείγμα 100 κολυμβητών σε δύο ποιοτικές μεταβλητές. Η πρώτη ποιοτική μεταβλητή αναφέρεται στο είδος της ξηρής προπόνησης που εκτελούν οι κολυμβητές και διαχωρίζεται σε τρεις κατηγορίες: Α1= «ξηρή προπόνηση μόνο όομε λάστιχα», Α= «ξηρή προπόνηση μόνο με βάρη», Α3= «ξηρή προπόνηση και με λάστιχα και με βάρη». Η δεύτερη ποιοτική μεταβλητή αναφέρεται στην συμμετοχή των κολυμβητών σε αγώνες: B1= «σε προημιτελικές σειρές», Β= «σε ημιτελικές σειρές», Β3 = «σε τελικές σειρές». Το ερώτημα που τίθεται είναι κατά πόσο το είδος της ξηρής προπόνησης που εκτελούν οι κολυμβητές επηρεάζει ή όχι τη συμμετοχή τους σε «προημιτελικές», «ημιτελικές» ή «τελικές» σειρές αγώνων, αν δηλαδή οι δύο ποιοτικές μεταβλητές είναι ανεξάρτητες μεταξύ τους ή όχι. 19 παρατηρούμενες συχνότητες Α1 Α Α3 Σύνολο Β Β Β Σύνολο εωρητικές συχνότητες Α1 Α Α3 Σύνολο Β1 (50 Χ30)/100=15 (50Χ30)/100=15 (50Χ40)/100=0 50 Β (5Χ30)/100=7.5 (5Χ30)/100=7.5 (5Χ40)/100=10 5 Β3 (5Χ30)/100=7.5 (5Χ30)/100=7.5 (5Χ40)/100=10 5 Σύνολο

11 παρατηρούμενες συχνότητες Α1 Α Α3 Σύνολο Β Β Β Σύνολο εωρητικές συχνότητες Α1 Α Α3 Σύνολο Β1 (50 Χ30)/100=15 (50Χ30)/100=15 (50Χ40)/100=0 50 Β (5Χ30)/100=7.5 (5Χ30)/100=7.5 (5Χ40)/100=10 5 Β3 (5Χ30)/100=7.5 (5Χ30)/100=7.5 (5Χ40)/100=10 5 Σύνολο Υπολογισμός -τιμής i1 (Π ) Π Π- (Π-) ( ) i ( 1 =

12 i1 (Π ) Υπολογισμός -τιμής Π Π- (Π-) ( ) i ( 1 = Υπολογισμός -τιμής i1 (Π ) Π Π- (Π-) ( ) i ( 1 =

13 i1 (Π ) Υπολογισμός -τιμής Π Π- (Π-) ( ) i ( 1 = Η τιμή = θα πρέπει να συγκριθεί με μία κρίσιμη -τιμή για επίπεδο σημαντικότητας α= 0.05 ( = 0.95) και βαθμούς ελευθερίας (R-1)X(C-1)= (3-1)Χ(3-1)=

14 επίπεδο σημαντικότητας α= = 0.95 β.ε.: (R-1)X(C-1)= (3-1)Χ(3-1)= 4 = > κρίσιμο=9.49 df \p = > - κρίσιμο=9.49 απορρίπτουμε τη μηδενική υπόθεση H o : Οι συχνότητες του ενός ποιοτικού χαρακτηριστικού είναι ανεξάρτητες από τις συχνότητες του άλλου ποιοτικού χαρακτηριστικού (οι συχνότητες του ενός ΔΕΝ μεταβάλλονται σε σχέση με το άλλο) αποδεχόμαστε την εναλλακτική υπόθεση Η Α : Οι συχνότητες του ενός ποιοτικού χαρακτηριστικού δεν είναι ανεξάρτητες από τις συχνότητες του άλλου ποιοτικού χαρακτηριστικού (οι συχνότητες του ενός μεταβάλλονται σε σχέση με το άλλο) 8 14

15 Παράδειγμα: (έλεγχος της επίδρασης δύο ποιοτικών μεταβλητών): η επίδραση της προθέρμανσης στην εμφάνιση τραυματισμών παρατηρούμενες συχνότητες προθέρμανση απουσία Σύνολο προθέρμανσης τραυματισμοί απουσία τραυματισμών Σύνολο Να εξεταστεί σε επίπεδο σημαντικότητας α=0.05 αν η διεξαγωγή της προθέρμανσης και η εμφάνιση τραυματισμών είναι ανεξάρτητες μεταξύ τους 9 παρατηρούμενες συχνότητες προθέρμανση απουσία Σύνολο προθέρμανσης τραυματισμοί απουσία τραυματισμών Σύνολο εωρητικές συχνότητες προθέρμανση απουσία προθέρμανσης Σύνολο τραυματισμοί μ (0Χ30)/50=1 (0Χ0)/50=8 0 απουσία (30Χ30)/50=18 (30Χ0)/50=1 30 τραυματισμών Σύνολο

16 Υπολογισμός -τιμής i1 (Π ) Π Π- (Π-) (Π ) (49/1)= (49/8)= (49/18)= (49/1)=4.08 i1 (Π ) =17, Υπολογισμός -τιμής i1 (Π ) Π Π- (Π-) (Π ) (49/1)= (49/8)= (49/18)= (49/1)=4.08 i1 (Π ) =17,

17 Υπολογισμός -τιμής i1 (Π ) Π Π- (Π-) (Π ) (49/1)= (49/8)= (49/18)= (49/1)=4.08 i1 (Π ) =17, Υπολογισμός -τιμής i1 (Π ) Π Π- (Π-) (Π ) (49/1)= (49/8)= (49/18)= (49/1)=4.08 i1 (Π ) =17,

18 Η τιμή = θα πρέπει να συγκριθεί με μία κρίσιμη -τιμή για επίπεδο σημαντικότητας α= 0.05 ( = 0.95) και βαθμούς ελευθερίας (R-1)X(C-1)= (-1)Χ(-1)= 1 35 επίπεδο σημαντικότητας α= = 0.95 β.ε.: (R-1)X(C-1)= (-1)Χ(-1)= 1 = > κρίσιμο=3.84 df \p

19 απορρίπτουμε τη μηδενική υπόθεση = > - κρίσιμο=3.84 H o : Οι συχνότητες του ενός ποιοτικού χαρακτηριστικού είναι ανεξάρτητες από τις συχνότητες του άλλου ποιοτικού χαρακτηριστικού (οι συχνότητες του ενός ΔΕΝ μεταβάλλονται σε σχέση με το άλλο) αποδεχόμαστε την εναλλακτική υπόθεση Η Α : Οι συχνότητες του ενός ποιοτικού χαρακτηριστικού δεν είναι ανεξάρτητες από τις συχνότητες του άλλου ποιοτικού χαρακτηριστικού 37 (η συχνότητα των τραυματισμών μεταβάλλεται σε σχέση με την προθέρμανση) 38 19

Έλεγχος ανεξαρτησίας μεταξύ δύο ποιοτικών μεταβλητών (Crosstabs - Chi-Square Tests)

Έλεγχος ανεξαρτησίας μεταξύ δύο ποιοτικών μεταβλητών (Crosstabs - Chi-Square Tests) Έλεγχος ανεξαρτησίας μεταξύ δύο ποιοτικών μεταβλητών (Crosstabs - Chi-Square Tests) Σε αρκετές περιπτώσεις απαιτείται να ελεγχθεί αν η συχνότητα εμφάνισης κάποιων συγκεκριμένων τιμών (κατηγοριών) μιας

Διαβάστε περισσότερα

Εξαρτημένα δείγματα (εξαρτημένες μετρήσεις)

Εξαρτημένα δείγματα (εξαρτημένες μετρήσεις) Ν6_(6)_Στατιστική στη Φυσική Αγωγή 06_0_Έλεγχος_Υποθέσεων0 Ανεξάρτητα δείγματα Εξαρτημένα δείγματα Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. Ανεξάρτητα δείγματα (ανεξάρτητες μετρήσεις)

Διαβάστε περισσότερα

Έλεγχος υπόθεσης: διαδικασία αποδοχής ή απόρριψης της υπόθεσης

Έλεγχος υπόθεσης: διαδικασία αποδοχής ή απόρριψης της υπόθεσης Ν161_(262)_Στατιστική στη Φυσική Αγωγή 06_01_Έλεγχος_Υποθέσεων Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. 1 Υπόθεση: "μπορεί ο αριθμητικός μέσος του δείγματος να είναι ίδιος με τον αριθμητικό

Διαβάστε περισσότερα

09_Μη παραμετρικοί έλεγχοι υποθέσεων. Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ.

09_Μη παραμετρικοί έλεγχοι υποθέσεων. Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. Ν161_(6)_Στατιστική στη Φυσική Αγωγή 09_Μη παραμετρικοί έλεγχοι υποθέσεων Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. 1 Όταν δεν υπάρχουν διαθέσιμες πληροφορίες για την κατανομή των πληθυσμών,

Διαβάστε περισσότερα

Έλεγχος καλής προσαρμογής για μια ποιοτική μεταβλητή (Nonparametric Tests Chi-Square)

Έλεγχος καλής προσαρμογής για μια ποιοτική μεταβλητή (Nonparametric Tests Chi-Square) Έλεγχος καλής προσαρμογής για μια ποιοτική μεταβλητή (Nonparametric Tests Chi-Square) Το Chi Square τεστ αποτελεί ένα μη παραμετρικό τεστ και εφαρμόζεται σε ονομαστικές μεταβλητές, βάσει των οποίων τα

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ στο τέλος του εξαμήνου με ΑΝΟΙΧΤΑ βιβλία ΕΞΕΤΑΣΕΙΣ ο καθένας θα πρέπει να έχει το ΔΙΚΟ του βιβλίο ΔΕΝ θα μπορείτε να ανταλλάσετε βιβλία ή να

ΕΞΕΤΑΣΕΙΣ στο τέλος του εξαμήνου με ΑΝΟΙΧΤΑ βιβλία ΕΞΕΤΑΣΕΙΣ ο καθένας θα πρέπει να έχει το ΔΙΚΟ του βιβλίο ΔΕΝ θα μπορείτε να ανταλλάσετε βιβλία ή να N161 _ (262) Στατιστική στη Φυσική Αγωγή Βιβλία ή 1 ΕΞΕΤΑΣΕΙΣ στο τέλος του εξαμήνου με ΑΝΟΙΧΤΑ βιβλία ΕΞΕΤΑΣΕΙΣ ο καθένας θα πρέπει να έχει το ΔΙΚΟ του βιβλίο ΔΕΝ θα μπορείτε να ανταλλάσετε βιβλία ή να

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ Μ.Ν. Ντυκέν, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. Ε. Αναστασίου, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. ΔΙΑΛΕΞΕΙΣ 11 ΣΗΜΠΕΡΑΣΜΑΤΙΚΗ ΣΤΑΤΙΣΤΙΚΗ: Σχέση μεταξύ δύο μεταβλητών Βόλος, 2016-2017

Διαβάστε περισσότερα

Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή:

Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή: Δειγματοληψία Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ συμβολίζουμε την μέση τιμή: Επομένως στην δειγματοληψία πινάκων συνάφειας αναφερόμαστε στον

Διαβάστε περισσότερα

Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή:

Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή: Δειγματοληψία Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ συμβολίζουμε την μέση τιμή: Επομένως στην δειγματοληψία πινάκων συνάφειας αναφερόμαστε στον

Διαβάστε περισσότερα

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα 2: Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται οι βασικές

Διαβάστε περισσότερα

03 _ Παράμετροι θέσης και διασποράς. Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ.

03 _ Παράμετροι θέσης και διασποράς. Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. 6_Στατιστική στη Φυσική Αγωγή 03 _ Παράμετροι θέσης και διασποράς Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. Παράμετροι θέσης όταν θέλουμε να εκφράσουμε μια μεταβλητή με έναν αριθμό π.χ.

Διαβάστε περισσότερα

Στατιστικοί έλεγχοι του Χ 2

Στατιστικοί έλεγχοι του Χ 2 ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΔΙΑΛΕΞΗ 30-10-015 Στατιστικοί έλεγχοι του Χ ΠΟΛΥΩΝΥΜΙΚΗ ΚΑΤΑΝΟΜΗ Αν. Καθ. Μαρί-Νοέλ Ντυκέν ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΔΙΑΛΕΞΗ 30-10-015 1. Στατιστικός έλεγχος του Χ Ανάλυση με μια κατηγορική μεταβλητή

Διαβάστε περισσότερα

04_Κανονική Τυπική κατανομή εύρεση εμβαδού. Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ.

04_Κανονική Τυπική κατανομή εύρεση εμβαδού. Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. Ν161_(262)_Στατιστική στη Φυσική Αγωγή 04_Κανονική Τυπική κατανομή εύρεση εμβαδού Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. 1 Κατανομές Κάθε κατανομή συχνότητας (λίστα από ζεύγη X i,

Διαβάστε περισσότερα

Έλεγχος Ανεξαρτησίας x2 του Pearson x2 του Pearson

Έλεγχος Ανεξαρτησίας x2 του Pearson x2 του Pearson Έλεγχος Ανεξαρτησίας x του Parso Έστω ότι λαμβάνουμε δείγμα μεγέθους. Η πιθανότητα π εμφάνισης ενός χαρακτηριστικού να βρεθεί στο κελί (i,j) κάτω από την υπόθεση Η 0 της ανεξαρτησίας δίνεται από την σχέση

Διαβάστε περισσότερα

5.1 Ο ΕΛΕΓΧΟΣ SMIRNOV

5.1 Ο ΕΛΕΓΧΟΣ SMIRNOV 5. Ο ΕΛΕΓΧΟΣ SMIRNOV Έστω δύο ανεξάρτητα τυχαία δείγματα, 2,..., n και, 2,..., m n και m παρατηρήσεων πάνω στις τυχαίες μεταβλητές και, αντίστοιχα. Έστω, επίσης, ότι F (), (, ) και F (y), y (, ) είναι

Διαβάστε περισσότερα

Εργαστήριο Μαθηματικών & Στατιστικής 2η Πρόοδος στο Μάθημα Στατιστική 28/01/2011 (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) 1ο Θέμα [40] α) στ) 2ο Θέμα [40]

Εργαστήριο Μαθηματικών & Στατιστικής 2η Πρόοδος στο Μάθημα Στατιστική 28/01/2011 (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) 1ο Θέμα [40] α) στ) 2ο Θέμα [40] Εργαστήριο Μαθηματικών & Στατιστικής η Πρόοδος στο Μάθημα Στατιστική 8// (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) ο Θέμα [4] Τα τελευταία χρόνια παρατηρείται συνεχώς αυξανόμενο ενδιαφέρον για τη μελέτη της συγκέντρωσης

Διαβάστε περισσότερα

5. Έλεγχοι Υποθέσεων

5. Έλεγχοι Υποθέσεων 5. Έλεγχοι Υποθέσεων Υποθέσεις Η μηδενική υπόθεση Η (ή ΗΑ) εναλλακτική υπόθεση Δεχόμαστε Η Απορρίπτουμε Η Η σωστή Σωστή απόφαση -α Σφάλμα τύπου Ι α Η λάθος Σφάλμα τύπου ΙΙ β Σωστή απόφαση -β ΒΙΟ39-Έλεγχος

Διαβάστε περισσότερα

χ 2 = με β.ε =1 και a=0.05 το κρίσιμο χ 2 =3.841

χ 2 = με β.ε =1 και a=0.05 το κρίσιμο χ 2 =3.841 Έστω, ότι ένα δείγμα ελέγχου χρησιμοποιήθηκε σε ένα πείραμα ελέγχου ποιότητας μιας μεθόδου για 30 συνεχόμενες ημέρες. Η θεωρητική (ισχυριζόμενη) συγκέντρωση της γλυκόζης στο δείγμα αυτό είναι 0 mg/l. Ο

Διαβάστε περισσότερα

Κεφάλαιο 15 Έλεγχοι χ-τετράγωνο

Κεφάλαιο 15 Έλεγχοι χ-τετράγωνο Κεφάλαιο 15 Έλεγχοι χ-τετράγωνο Copyright 2009 Cengage Learning 15.1 Ένα Κοινό Θέμα Τι πρέπει να γίνει; Τύπος Δεδομένων; Πλήθος Κατηγοριών; Στατιστική Μέθοδος; Περιγραφή ενός πληθυσμού Ονομαστικά Δύο ή

Διαβάστε περισσότερα

Πανεπιστήμιο Θεσσαλίας Τμήμα Επιστήμης Φυσικής Αγωγής & Αθλητισμού. ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ & ΣΤΑΤΙΣΤΙΚΗ Γ Εξάμηνο

Πανεπιστήμιο Θεσσαλίας Τμήμα Επιστήμης Φυσικής Αγωγής & Αθλητισμού. ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ & ΣΤΑΤΙΣΤΙΚΗ Γ Εξάμηνο Πανεπιστήμιο Θεσσαλίας Τμήμα Επιστήμης Φυσικής Αγωγής & Αθλητισμού ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ & ΣΤΑΤΙΣΤΙΚΗ Γ Εξάμηνο Διδάσκοντες Χατζηγεωργιάδης Αντώνης / Zουρμπάνος Νίκος ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ & ΣΤΑΤΙΣΤΙΚΗ Μορφή

Διαβάστε περισσότερα

Σύγκριση μέσου όρου πληθυσμού με τιμή ελέγχου. One-Sample t-test

Σύγκριση μέσου όρου πληθυσμού με τιμή ελέγχου. One-Sample t-test 1 Σύγκριση μέσου όρου πληθυσμού με τιμή ελέγχου One-Sample t-test 2 Μια σύντομη αναδρομή Στα τέλη του 19 ου αιώνα μια μεγάλη αλλαγή για την επιστήμη ζυμώνονταν στην ζυθοποιία Guinness. Ο William Gosset

Διαβάστε περισσότερα

Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες

Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες Πινάκες συνάφειας εξερεύνηση σχέσεων μεταξύ τυχαίων μεταβλητών. Είναι λογικό λοιπόν, στην ανάλυση των κατηγορικών δεδομένων να μας ενδιαφέρει η σχέση μεταξύ δύο ή περισσότερων κατηγορικών μεταβλητών. Έστω

Διαβάστε περισσότερα

ΟΚΙΜΑΣΙΕΣ χ 2 (CHI-SQUARE)

ΟΚΙΜΑΣΙΕΣ χ 2 (CHI-SQUARE) ΔΟΚΙΜΑΣΙΕΣ χ (CI-SQUARE) ΟΚΙΜΑΣΙΕΣ χ (CI-SQUARE). Εισαγωγή Οι στατιστικές δοκιμασίες που μελετήσαμε μέχρι τώρα ονομάζονται παραμετρικές (paramtrc) διότι χαρακτηρίζονται από υποθέσεις σχετικές είτε για

Διαβάστε περισσότερα

Γ. Πειραματισμός - Βιομετρία

Γ. Πειραματισμός - Βιομετρία Γ. Πειραματισμός - Βιομετρία Πληθυσμοί και δείγματα Πληθυσμός Περιλαμβάνει όλες τις πιθανές τιμές μιας μεταβλητής, δηλαδή αναφέρεται σε μια παρατήρηση σε όλα τα άτομα του πληθυσμού Ο πληθυσμός προσδιορίζεται

Διαβάστε περισσότερα

Κεφάλαιο 13. Εισαγωγή στην. Η Ανάλυση ιακύµανσης

Κεφάλαιο 13. Εισαγωγή στην. Η Ανάλυση ιακύµανσης Κεφάλαιο 13 Εισαγωγή στην Ανάλυση ιακύµανσης 1 Η Ανάλυση ιακύµανσης Από τα πιο συχνά χρησιµοποιούµενα στατιστικά κριτήρια στην κοινωνική έρευνα Γιατί; 1. Ενώ αναφέρεται σε διαφορές µέσων όρων, όπως και

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ Χ 2 test ανεξαρτησίας: σχέση 2 ποιοτικών μεταβλητών

Διαβάστε περισσότερα

συγκέντρωση της ουσίας στον παραπόταμο είναι αυξημένη σε σχέση με τον ίδιο τον ποταμό;

συγκέντρωση της ουσίας στον παραπόταμο είναι αυξημένη σε σχέση με τον ίδιο τον ποταμό; Γραπτή Εξέταση Περιόδου Ιουνίου 008 στο Μάθημα Στατιστική /07/08. Η πιθανότητα να υπάρχει στο υπέδαφος μιας συγκεκριμένης περιοχής εκμεταλλεύσιμο κοίτασμα πετρελαίου είναι 50%. Μια εταιρεία, που πρόκειται

Διαβάστε περισσότερα

Μεθοδολογία της Έρευνας και Εφαρμοσμένη Στατιστική

Μεθοδολογία της Έρευνας και Εφαρμοσμένη Στατιστική Μεθοδολογία της Έρευνας και Εφαρμοσμένη Στατιστική Μη παραμετρικοί στατιστικοί έλεγχοι Καθηγητής ΔΠΘ Κων/νος Τσαγκαράκης Δευτέρα 6 Μαρτίου 13:00-16:00 Ώρα για εξ αποστάσεως συνεργασία Τρίτη 7 Μαρτίου 12:00-14:00

Διαβάστε περισσότερα

2.4 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΜΙΑ ΠΙΘΑΝΟΤΗΤΑ

2.4 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΜΙΑ ΠΙΘΑΝΟΤΗΤΑ .4 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΜΙΑ ΠΙΘΑΝΟΤΗΤΑ Η μέθοδος για τον προσδιορισμό ενός διαστήματος εμπιστοσύνης για την άγνωστη πιθανότητα =P(A) ενός ενδεχομένου A συνδέεται στενά με τον διωνυμικό έλεγχο. Ένα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7 ο ΜΕΘΟ ΟΛΟΓΙΑ ΤΗΣ ΕΡΕΥΝΑΣ

ΚΕΦΑΛΑΙΟ 7 ο ΜΕΘΟ ΟΛΟΓΙΑ ΤΗΣ ΕΡΕΥΝΑΣ ΚΕΦΑΛΑΙΟ 7 ο ΜΕΘΟ ΟΛΟΓΙΑ ΤΗΣ ΕΡΕΥΝΑΣ ΕΙΣΑΓΩΓΗ Οι δυό βασικές κατευθύνσεις της ανάλυσης των δεδοµένων της έρευνας, επιχειρούν ανιχνεύοντας τους παράγοντες που προσδιορίζουν την πρόσβαση στις υπηρεσίες υγείας,

Διαβάστε περισσότερα

Έλεγχοι Χ 2 (Μέρος 1 ο ) 28/4/2017

Έλεγχοι Χ 2 (Μέρος 1 ο ) 28/4/2017 Έλεγχοι Χ 2 (Μέρος 1 ο ) 28/4/2017 2 Έλεγχοι Χ 2 Οι έλεγχοι που μπορούν να πραγματοποιηθούν είναι οι εξής: 1. Έλεγχος Χ 2 καλής προσαρμογής 2. Έλεγχος Χ 2 ανεξαρτησίας 3. Έλεγχος Χ 2 ομογένειας Αυτό που

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 2015 Πληθυσμός: Εισαγωγή Ονομάζεται το σύνολο των χαρακτηριστικών που

Διαβάστε περισσότερα

3.4.2 Ο Συντελεστής Συσχέτισης τ Του Kendall

3.4.2 Ο Συντελεστής Συσχέτισης τ Του Kendall 3..2 Ο Συντελεστής Συσχέτισης τ Του Kendall Ο συντελεστής συχέτισης τ του Kendall μοιάζει με τον συντελεστή ρ του Spearman ως προς το ότι υπολογίζεται με βάση την τάξη μεγέθους των παρατηρήσεων και όχι

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 4A: Έλεγχοι Υποθέσεων και Διαστήματα Εμπιστοσύνης Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ

Διαβάστε περισσότερα

6.3 Ο ΑΜΦΙΠΛΕΥΡΟΣ ΕΛΕΓΧΟΣ SMIRNOV ΓΙΑ k ΑΝΕΞΑΡΤΗΤΑ ΔΕΙΓΜΑΤΑ

6.3 Ο ΑΜΦΙΠΛΕΥΡΟΣ ΕΛΕΓΧΟΣ SMIRNOV ΓΙΑ k ΑΝΕΞΑΡΤΗΤΑ ΔΕΙΓΜΑΤΑ 6.3 Ο ΑΜΦΙΠΛΕΥΡΟΣ ΕΛΕΓΧΟΣ SMIRNOV ΓΙΑ k ΑΝΕΞΑΡΤΗΤΑ ΔΕΙΓΜΑΤΑ Το 1965, από τον Conover και πάλι προτάθηκε ένας άλλος έλεγχος τύπου Smirnov για k ανεξάρτητα δείγματα. Ο έλεγχος αυτός διαφέρει από τον προηγούμενο

Διαβάστε περισσότερα

Αναλυτική Στατιστική

Αναλυτική Στατιστική Αναλυτική Στατιστική Συμπερασματολογία Στόχος: εξαγωγή συμπερασμάτων για το σύνολο ενός πληθυσμού, αντλώντας πληροφορίες από ένα μικρό υποσύνολο αυτού Ορισμοί Πληθυσμός: σύνολο όλων των υπό εξέταση μονάδων

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ 3.1 Τυχαίοι αριθμοί Στην προσομοίωση διακριτών γεγονότων γίνεται χρήση ακολουθίας τυχαίων αριθμών στις περιπτώσεις που απαιτείται η δημιουργία στοχαστικών

Διαβάστε περισσότερα

Στατιστική και Θεωρία Πιθανοτήτων (ΓΓ04) ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Εαρινό Εξάμηνο

Στατιστική και Θεωρία Πιθανοτήτων (ΓΓ04) ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Εαρινό Εξάμηνο Εαρινό εξάμηνο 2009-2010 Στατιστική και Θεωρία Πιθανοτήτων (ΓΓ04) ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Εαρινό Εξάμηνο 2009-2010 Στατιστική και Θεωρία Πιθανοτήτων users.att.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr

Διαβάστε περισσότερα

Για το δείγμα από την παραγωγή της εταιρείας τροφίμων δίνεται επίσης ότι, = 1.3 και για το δείγμα από το συνεταιρισμό ότι, x

Για το δείγμα από την παραγωγή της εταιρείας τροφίμων δίνεται επίσης ότι, = 1.3 και για το δείγμα από το συνεταιρισμό ότι, x Εργαστήριο Μαθηματικών & Στατιστικής η Πρόοδος στο Μάθημα Στατιστική // (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) ο Θέμα [] Επιλέξαμε φακελάκια (της μισής ουγκιάς) που περιέχουν σταφίδες από την παραγωγή μιας εταιρείας

Διαβάστε περισσότερα

ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ

ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ A εξάμηνο 2009-2010 ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ Μεθοδολογία Έρευνας και Στατιστική ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Χειμερινό Εξάμηνο 2009-2010 Ποιοτικές και Ποσοτικές

Διαβάστε περισσότερα

Εξέταση Φεβρουαρίου (2011/12) στο Μάθηµα: Γεωργικός Πειραµατισµός. Ζήτηµα 1 ο (2 µονάδες) Για κάθε λανθασµένη απάντηση δεν λαµβάνεται υπόψη µία σωστή

Εξέταση Φεβρουαρίου (2011/12) στο Μάθηµα: Γεωργικός Πειραµατισµός. Ζήτηµα 1 ο (2 µονάδες) Για κάθε λανθασµένη απάντηση δεν λαµβάνεται υπόψη µία σωστή Σειρά Β Εξέταση Φεβρουαρίου (0/) στο Μάθηµα: Γεωργικός Πειραµατισµός Θεσσαλονίκη: 4/0/0 Επώνυµο Όνοµα Αρ. Μητρώου Κατεύθυνση Ζήτηµα ο ( µονάδες) Για κάθε λανθασµένη απάντηση δεν λαµβάνεται υπόψη µία σωστή

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ Μ.Ν. Ντυκέν, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. Ε. Αναστασίου, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. ΔΙΑΛΕΞΕΙΣ 09-10 ΣΗΜΠΕΡΑΣΜΑΤΙΚΗ ΣΤΑΤΙΣΤΙΚΗ: Έλεγχοι υποθέσεων Βόλος, 2016-2017

Διαβάστε περισσότερα

α) t-test µε ίσες διακυµάνσεις β) ανάλυση διακύµανσης µε έναν παράγοντα Έλεγχος t δύο δειγμάτων με υποτιθέμενες ίσες διακυμάνσεις

α) t-test µε ίσες διακυµάνσεις β) ανάλυση διακύµανσης µε έναν παράγοντα Έλεγχος t δύο δειγμάτων με υποτιθέμενες ίσες διακυμάνσεις ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΤΜΗΜΑ ΙΕΘΝΩΝ ΟΙΚΟΝΟΜΙΚΩΝ ΣΧΕΣΕΩΝ ΚΑΙ ΑΝΑΠΤΥΞΗΣ ΜΑΘΗΜΑ: ΣΤΑΤΙΣΤΙΚΗ IΙ ΕΙΣΗΓΗΤΡΙΑ: ΣΑΒΒΑΣ ΠΑΠΑ ΟΠΟΥΛΟΣ ΠΑΛΑΙΑ ΘΕΜΑΤΑ ********************************************************************

Διαβάστε περισσότερα

και τυπική απόκλιση σ = 40mg ανά μπανάνα. α) Ποια είναι η πιθανότητα μια μπανάνα να περιέχει i)

και τυπική απόκλιση σ = 40mg ανά μπανάνα. α) Ποια είναι η πιθανότητα μια μπανάνα να περιέχει i) Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ Γραπτή Εξέταση Περιόδου Ιανουαρίου 8 στο Μάθημα Στατιστική 7..8. [] Ο ανθρώπινος οργανισμός χρειάζεται καθημερινά από έως 6 mg (mllgrams) καλίου. Η ποσότητα καλίου που περιέχεται στα τρόφιμα

Διαβάστε περισσότερα

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα 2: Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται οι βασικές

Διαβάστε περισσότερα

Κεφάλαιο 9. Έλεγχοι υποθέσεων

Κεφάλαιο 9. Έλεγχοι υποθέσεων Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ. Πίνακας 9. Ποσοστιαία Σημεία της Ελεγχοσυνάρτησης των. Προσημασμένων Τάξεων Μεγέθους του Wilcoxon

ΠΑΡΑΡΤΗΜΑ. Πίνακας 9. Ποσοστιαία Σημεία της Ελεγχοσυνάρτησης των. Προσημασμένων Τάξεων Μεγέθους του Wilcoxon ΠΑΡΑΡΤΗΜΑ ΠΙΝΑΚΕΣ Πίνακας. Διωνυμική Κατανομή Πίνακας. Τυποποιημένη Κανονική Κατανομή Πίνακας. Ποσοστιαία Σημεία της Κατανομή t Πίνακας. Ποσοστιαία Σημεία της Κατανομής X Πίνακας 5. Ποσοστιαία Σημεία της

Διαβάστε περισσότερα

7.1.1 Η Μέθοδος των Ελαχίστων Τετραγώνων

7.1.1 Η Μέθοδος των Ελαχίστων Τετραγώνων 7.. Η Μέθοδος των Ελαχίστων Τετραγώνων Όπως ήδη αναφέρθηκε, μία ευρύτατα διαδεδομένη μέθοδος για την εκτίμηση των σταθερών α και β είναι η μέθοδος των ελαχίστων τετραγώνων. Η μέθοδος αυτή επιλέγει εκτιμήτριες

Διαβάστε περισσότερα

Προσδιοριστικοί όροι και μοναδιαία ρίζα (από κοινού υποθέσεις)

Προσδιοριστικοί όροι και μοναδιαία ρίζα (από κοινού υποθέσεις) ΜΑΘΗΜΑ 6ο Προσδιοριστικοί όροι και μοναδιαία ρίζα (από κοινού υποθέσεις) Είδαμε στους παραπάνω ελέγχους (DF και ADF) που κάναμε προηγουμένως ότι εξετάζουμε στη μηδενικήυπόθεσημόνοτοσυντελεστήδ 2. Δεν αναφερόμαστε

Διαβάστε περισσότερα

Ενότητα 3. Έλεγχος υπόθεσης. Σύγκριση μέσων τιμών

Ενότητα 3. Έλεγχος υπόθεσης. Σύγκριση μέσων τιμών Ενότητα 3 Έλεγχος υπόθεσης. Σύγκριση μέσων τιμών Εκτός από τις μέσες τιμές, τυπικές αποκλίσεις κλπ, θέλουμε να βρούμε κατά πόσον αυτές οι παρατηρούμενες τάσεις εξαρτώνται από συγκεκριμένες συνθήκες ή προϋποθέσεις.

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ

ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ Ενότητα 7: Έλεγχοι σημαντικότητας πολλών ανεξάρτητων δειγμάτων Κωνσταντίνος Ζαφειρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Γ. Πειραματισμός Βιομετρία

Γ. Πειραματισμός Βιομετρία Γενικά Πειραματικό σχέδιο και ANOVA Η βασική διαφορά μεταξύ των πειραματικών σχεδίων είναι ο τρόπος με τον οποίο ταξινομούνται ή κατατάσσονται οι πειραματικές μονάδες (πειραματικά τεμάχια) Σε όλα τα σχέδια

Διαβάστε περισσότερα

Δισδιάστατη ανάλυση. Για παράδειγμα, έστω ότι 11 άτομα δήλωσαν ότι είναι άγαμοι (Α), 26 έγγαμοι (Ε), 12 χήροι (Χ) και 9 διαζευγμένοι (Δ).

Δισδιάστατη ανάλυση. Για παράδειγμα, έστω ότι 11 άτομα δήλωσαν ότι είναι άγαμοι (Α), 26 έγγαμοι (Ε), 12 χήροι (Χ) και 9 διαζευγμένοι (Δ). Δισδιάστατη ανάλυση Πίνακες διπλής εισόδου Σε πολλές περιπτώσεις μελετάμε περισσότερες από μία μεταβλητές ταυτόχρονα. Π.χ. μία έρευνα που έγινε σε ένα δείγμα 58 ατόμων περιείχε τις ερωτήσεις «ποια είναι

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 22 Μαΐου /32

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 22 Μαΐου /32 Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπιστήμιο Κρήτης 22 Μαΐου 2017 1/32 Εισαγωγή: Τυπικό παράδειγμα στατιστικού ελέγχου υποθέσεων. Ενας νέος τύπος

Διαβάστε περισσότερα

Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο ανεξάρτητων δειγμάτων, που ακολουθούν την κανονική κατανομή (t-test για ανεξάρτητα δείγματα)

Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο ανεξάρτητων δειγμάτων, που ακολουθούν την κανονική κατανομή (t-test για ανεξάρτητα δείγματα) Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο ανεξάρτητων δειγμάτων, που ακολουθούν την κανονική κατανομή (t-test για ανεξάρτητα δείγματα) Όταν απαιτείται ο έλεγχος της ύπαρξης στατιστικά σημαντικών

Διαβάστε περισσότερα

Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο εξαρτημένων δειγμάτων, που ακολουθούν την κανονική κατανομή (t-test για εξαρτημένα δείγματα)

Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο εξαρτημένων δειγμάτων, που ακολουθούν την κανονική κατανομή (t-test για εξαρτημένα δείγματα) Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο εξαρτημένων δειγμάτων, που ακολουθούν την κανονική κατανομή (t-test για εξαρτημένα δείγματα) Όπως αναφέρθηκε στο προηγούμενο κεφάλαιο σε ορισμένες

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

5. Έλεγχοι Υποθέσεων

5. Έλεγχοι Υποθέσεων 5. Έλεγοι Υποθέσεων Υποθέσεις Η : μηδενική υπόθεση Η (ή ΗΑ): εναλλακτική υπόθεση Σφάλματα εόμαστε Η Απορρίπτουμε Η Η σωστή Σωστή απόφαση -α Σφάλμα τύπου Ι α Η λάθος Σφάλμα τύπου ΙΙ β Σωστή απόφαση -β ΒΙΟ39-Έλεγος

Διαβάστε περισσότερα

Στατιστικοί Ελεγχοι. t - Έλεγχος για τον μέσο μ ενός πληθυσμού. t-έλεγχος για την σύγκριση των μέσων δύο πληθυσμών

Στατιστικοί Ελεγχοι. t - Έλεγχος για τον μέσο μ ενός πληθυσμού. t-έλεγχος για την σύγκριση των μέσων δύο πληθυσμών Στατιστικοί Ελεγχοι Έλεγχος 1: Ζ-Έλεγχος για τον μέσο μ ενός πληθυσμού Έλεγχος : t - Έλεγχος για τον μέσο μ ενός πληθυσμού Έλεγχος 3: I -τετράγωνο Έλεγχος για την διακύμανση Έλεγχος 4: t-έλεγχος για την

Διαβάστε περισσότερα

Προσοχή: Για κάθε λανθασµένη απάντηση δεν θα λαµβάνεται υπόψη µία σωστή

Προσοχή: Για κάθε λανθασµένη απάντηση δεν θα λαµβάνεται υπόψη µία σωστή Σειρά Α σ1 Επώνυµο Όνοµα Αρ. Μητρώου Ζήτηµα 1 ο (3 µονάδες) Εξετάσεις Φεβρουαρίου (2011/12) στο Μάθηµα: Στατιστική Θεσσαλονίκη: 03/03/2012 Προσοχή: Για κάθε λανθασµένη απάντηση δεν θα λαµβάνεται υπόψη

Διαβάστε περισσότερα

ΔΙΕΡΕΥΝΗΣΗ ΚΛΙΜΑΤΙΚΩΝ ΑΛΛΑΓΩΝ ΓΙΑ ΤΟ ΝΗΣΙ ΤΗΣ ΝΑΞΟΥ

ΔΙΕΡΕΥΝΗΣΗ ΚΛΙΜΑΤΙΚΩΝ ΑΛΛΑΓΩΝ ΓΙΑ ΤΟ ΝΗΣΙ ΤΗΣ ΝΑΞΟΥ ΔΙΕΡΕΥΝΗΣΗ ΚΛΙΜΑΤΙΚΩΝ ΑΛΛΑΓΩΝ ΓΙΑ ΤΟ ΝΗΣΙ ΤΗΣ ΝΑΞΟΥ ΜΑΜΜΑΣ ΚΩΝ/ΝΟΣ ΑΜ:331/2003032 ΝΟΕΜΒΡΙΟΣ 2010 Ευχαριστίες Σε αυτό το σημείο θα ήθελα να ευχαριστήσω όλους όσους με βοήθησαν να δημιουργήσω την παρούσα

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ 1 ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1. Ένα σηµείο Α(χ, ψ) ανήκει στη γραφική παράσταση της f αν f(ψ)=χ. 2. Αν µια συνάρτηση είναι γνησίως αύξουσα σε ένα διάστηµα A,

Διαβάστε περισσότερα

2.5 ΕΛΕΓΧΟΣ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ (The Quantile Test)

2.5 ΕΛΕΓΧΟΣ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ (The Quantile Test) .5 ΕΛΕΓΧΟΣ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ (The Quantile Test) Ο διωνυμικός έλεγχος μπορεί να χρησιμοποιηθεί για τον έλεγχο υποθέσεων αναφερομένων στα ποσοστιαία σημεία μίας τυχαίας μεταβλητής. Στην

Διαβάστε περισσότερα

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης 1 Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης Όπως γνωρίζουμε από προηγούμενα κεφάλαια, στόχος των περισσότερων στατιστικών αναλύσεων, είναι η έγκυρη γενίκευση των συμπερασμάτων, που προέρχονται από

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΜΕΛΕΤΗ ΑΠΟ ΟΣΗΣ ΚΑΙ ΕΠΙΤΥΧΙΑΣ ΗΜΕΡΗΣΙΩΝ ΗΜΟΣΙΩΝ ΚΑΙ Ι ΙΩΤΙΚΩΝ ΛΥΚΕΙΩΝ ΕΙΣΑΓΩΓΗ

ΚΕΦΑΛΑΙΟ 3 ΜΕΛΕΤΗ ΑΠΟ ΟΣΗΣ ΚΑΙ ΕΠΙΤΥΧΙΑΣ ΗΜΕΡΗΣΙΩΝ ΗΜΟΣΙΩΝ ΚΑΙ Ι ΙΩΤΙΚΩΝ ΛΥΚΕΙΩΝ ΕΙΣΑΓΩΓΗ ΚΕΦΑΛΑΙΟ 3 ΜΕΛΕΤΗ ΑΠΟ ΟΣΗΣ ΚΑΙ ΕΠΙΤΥΧΙΑΣ ΗΜΕΡΗΣΙΩΝ ΗΜΟΣΙΩΝ ΚΑΙ Ι ΙΩΤΙΚΩΝ ΛΥΚΕΙΩΝ ΕΙΣΑΓΩΓΗ Στο κεφάλαιο αυτό θα εξετάσουµε την απόδοση και την επιτυχία των υποψηφίων η µερησίων δηµοσίων και ιδιωτικών λυκείων

Διαβάστε περισσότερα

3.4.1 Ο Συντελεστής ρ του Spearman

3.4.1 Ο Συντελεστής ρ του Spearman 3.4. Ο Συντελεστής ρ του Spearma Έστω (, ), (, ),..., (, ) ένα δείγμα παρατηρήσεων πάνω στο τυχαίο διάνυσμα (, ). Έστω ( ) ο βαθμός ή η τάξη μεγέθους της μεταβλητής όταν αυτή συγκρίνεται με τις άλλες Χ

Διαβάστε περισσότερα

Εισαγωγή στην Ανάλυση Δεδομένων

Εισαγωγή στην Ανάλυση Δεδομένων ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΔΙΑΛΕΞΗ 09-10-2015 Εισαγωγή στην Ανάλυση Δεδομένων Βασικές έννοιες Αν. Καθ. Μαρί-Νοέλ Ντυκέν ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΔΙΑΛΕΞΗ 30-10-2015 1. Στατιστικοί παράμετροι - Διάστημα εμπιστοσύνης Υπολογισμός

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ 2. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ

ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ 2. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΕΝΟΤΗΤΕΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ (One-Way Analyss of Varance) Η ανάλυση

Διαβάστε περισσότερα

14. Έλεγχος Χ 2 (καλής προσαρμογής, ανεξαρτησίας και ομογένειας)

14. Έλεγχος Χ 2 (καλής προσαρμογής, ανεξαρτησίας και ομογένειας) Έλεγχος Χ 4. Έλεγχος Χ (καλής προσαρμογής, ανεξαρτησίας και ομογένειας Από διασταύρωση ορισμένου είδους πειραματόζωων προκύπτουν τρεις τύποι απογόνων, Α, Β και Γ. Στο πλαίσιο ενός πειράματος, από μια τέτοια

Διαβάστε περισσότερα

Στατιστική για Οικονομολόγους ΙΙ ΛΥΜΕΝΑ ΘΕΜΑΤΑ παλαιοτέρων ετών από «ανώνυμο φοιτητή» (Στις ΛΥΣΕΙΣ ενδεχομένως να υπάρχουν λάθη. )

Στατιστική για Οικονομολόγους ΙΙ ΛΥΜΕΝΑ ΘΕΜΑΤΑ παλαιοτέρων ετών από «ανώνυμο φοιτητή» (Στις ΛΥΣΕΙΣ ενδεχομένως να υπάρχουν λάθη. ) Στατιστική για Οικονομολόγους ΙΙ ΛΥΜΕΝΑ ΘΕΜΑΤΑ παλαιοτέρων ετών από «ανώνυμο φοιτητή» (Στις ΛΥΣΕΙΣ ενδεχομένως να υπάρχουν λάθη. ) Πίνακας Περιεχομένων Εργασία η... Θέμα ο :... Θέμα ο :... 4 Θέμα 3 ο :...

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ

ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Είδη μεταβλητών Ποσοτικά δεδομένα (π.χ. ηλικία, ύψος, αιμοσφαιρίνη) Ποιοτικά δεδομένα (π.χ. άνδρας/γυναίκα, ναι/όχι) Διατεταγμένα (π.χ. καλό/μέτριο/κακό) 2 Περιγραφή ποσοτικών

Διαβάστε περισσότερα

ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ 3 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΣΤΑΤΙΣΤΙΚΗ ΘΕΜΑΤΑ

ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ 3 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΣΤΑΤΙΣΤΙΚΗ ΘΕΜΑΤΑ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ 3 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΣΤΑΤΙΣΤΙΚΗ ΘΕΜΑΤΑ ΘΕΜΑ 1 ο Τα δεδομένα της στήλης Grade (Αρχείο Excel, Φύλλο Ask1) αναφέρονται στη βαθμολογία 63 φοιτητών που έλαβαν μέρος σε

Διαβάστε περισσότερα

05_01_Εκτίμηση παραμέτρων και διαστημάτων. Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ.

05_01_Εκτίμηση παραμέτρων και διαστημάτων. Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. Ν161_Στατιτική τη Φυική Αγωγή 05_01_Εκτίμηη παραμέτρων και διατημάτων Γούργουλης Βαίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. 1 Για την περιγραφή μιας μεταβλητής, που μετριέται ε έναν πληθυμό ή ε ένα

Διαβάστε περισσότερα

Κεφάλαιο 9. Έλεγχοι υποθέσεων

Κεφάλαιο 9. Έλεγχοι υποθέσεων Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές

Διαβάστε περισσότερα

Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n..

Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n.. Μέτρα Κινδύνου για Δίτιμα Κατηγορικά Δεδομένα Σε αυτή την ενότητα θα ορίσουμε δείκτες μέτρησης του κινδύνου εμφάνισης μίας νόσου όταν έχουμε δίτιμες κατηγορικές μεταβλητές. Στην πιο απλή περίπτωση μας

Διαβάστε περισσότερα

Περιγραφική Ανάλυση ποσοτικών μεταβλητών

Περιγραφική Ανάλυση ποσοτικών μεταβλητών Περιγραφική Ανάλυση ποσοτικών μεταβλητών Στο data file Worldsales.sav (αρχείο υποθετικών πωλήσεων ανά ήπειρο και προϊόν) Analyze Descriptive Statistics Frequencies Επιλογή μεταβλητής Revenue Πατάμε στο

Διαβάστε περισσότερα

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα : Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται οι βασικές

Διαβάστε περισσότερα

ΑΠΟ ΤΟ ΔΕΙΓΜΑ ΣΤΟΝ ΠΛΗΘΥΣΜΟ

ΑΠΟ ΤΟ ΔΕΙΓΜΑ ΣΤΟΝ ΠΛΗΘΥΣΜΟ ΑΠΟ ΤΟ ΔΕΙΓΜΑ ΣΤΟΝ ΠΛΗΘΥΣΜΟ Το ενδιαφέρον επικεντρώνεται πάντα στον πληθυσμό Το δείγμα χρησιμεύει για εξαγωγή συμπερασμάτων για τον πληθυσμό π.χ. το ετήσιο εισόδημα των κατοίκων μιας περιοχής Τα στατιστικά

Διαβάστε περισσότερα

Διαδικασία Ελέγχου Μηδενικών Υποθέσεων

Διαδικασία Ελέγχου Μηδενικών Υποθέσεων Διαδικασία Ελέγχου Μηδενικών Υποθέσεων Πέτρος Ρούσσος, Τμήμα Ψυχολογίας, ΕΚΠΑ Η λογική της διαδικασίας Ο σάκος περιέχει έναν μεγάλο αλλά άγνωστο αριθμό (αρκετές χιλιάδες) λευκών και μαύρων βόλων: 1 Το

Διαβάστε περισσότερα

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2011 για τα Τμήματα Ε.Τ.Τ. και Γ.Β. στη Στατιστική 25/02/2011

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2011 για τα Τμήματα Ε.Τ.Τ. και Γ.Β. στη Στατιστική 25/02/2011 Εργαστήριο Μαθηματικών & Στατιστικής Γραπτή Εξέταση Περιόδου Φεβρουαρίου για τα Τμήματα Ε.Τ.Τ. και Γ.Β. στη Στατιστική 5//. [] Η ποσότητα, έστω Χ, ενός συντηρητικού που περιέχεται σε φιάλες αναψυκτικού

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Ανάλυση διακύμανσης (Μέρος 3 ο ) 7/4/2017

Ανάλυση διακύμανσης (Μέρος 3 ο ) 7/4/2017 Ανάλυση διακύμανσης (Μέρος 3 ο ) 7/4/2017 2 α x b Παραγοντικό Πείραμα (1) Όταν θέλουμε να μελετήσουμε την επίδραση (στη μεταβλητή απόφασης) δύο παραγόντων, έστω Α και Β, με α στάθμες ο Α και b στάθμες

Διαβάστε περισσότερα

Μαθηματικά Και Στατιστική Στη Βιολογία

Μαθηματικά Και Στατιστική Στη Βιολογία ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά Και Στατιστική Στη Βιολογία Ενότητα 6 : Έλεγχος Υποθέσεων Ι. Αντωνίου, Χ. Μπράτσας Τμήμα Μαθηματικών Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Οι στατιστικοί έλεγχοι x τετράγωνο, t- test, ANOVA & Correlation. Σταμάτης Πουλακιδάκος

Οι στατιστικοί έλεγχοι x τετράγωνο, t- test, ANOVA & Correlation. Σταμάτης Πουλακιδάκος Οι στατιστικοί έλεγχοι x τετράγωνο, t- test, ANOVA & Correlation Σταμάτης Πουλακιδάκος Μερικά εισαγωγικά λόγια Οι έλεγχοι των ερευνητικών υποθέσεων πραγματοποιούνται με διάφορους στατιστικούς ελέγχους,

Διαβάστε περισσότερα

Δημήτρης Ι. Οικονομόπουλος Δάσκαλος

Δημήτρης Ι. Οικονομόπουλος Δάσκαλος Eπιστημονικό Bήμα, τ. 10, - Ιανουάριος 2009 Επίδοση στο γυμνάσιο και εγκατάλειψη της εννιάχρονης υποχρεωτικής εκπαίδευσης για τους μαθητές που προέρχονται από ολιγοθέσια και πολυθέσια δημοτικά σχολεία

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5 ΜΕΛΕΤΗ ΑΠΟ ΟΣΗΣ ΚΑΙ ΕΠΙΤΥΧΙΑΣ ΙΑΦΟΡΩΝ ΚΑΤΗΓΟΡΙΩΝ ΜΕΓΕΘΩΝ ΗΜΕΡΗΣΙΩΝ ΛΥΚΕΙΩΝ ΕΙΣΑΓΩΓΗ

ΚΕΦΑΛΑΙΟ 5 ΜΕΛΕΤΗ ΑΠΟ ΟΣΗΣ ΚΑΙ ΕΠΙΤΥΧΙΑΣ ΙΑΦΟΡΩΝ ΚΑΤΗΓΟΡΙΩΝ ΜΕΓΕΘΩΝ ΗΜΕΡΗΣΙΩΝ ΛΥΚΕΙΩΝ ΕΙΣΑΓΩΓΗ ΚΕΦΑΛΑΙΟ 5 ΜΕΛΕΤΗ ΑΠΟ ΟΣΗΣ ΚΑΙ ΕΠΙΤΥΧΙΑΣ ΙΑΦΟΡΩΝ ΚΑΤΗΓΟΡΙΩΝ ΜΕΓΕΘΩΝ ΗΜΕΡΗΣΙΩΝ ΛΥΚΕΙΩΝ ΕΙΣΑΓΩΓΗ Μια διαφορετική κατανοµή των λυκείων µπορούµε να πάρουµε αν µελετήσουµε την κατηγορία του λυκείου ανάλογα

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5.1 5.8

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5.1 5.8 ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5. 5.8 5. Ένας υγειονοµικός σταθµός θέλει να ελέγξει αν ο µέσος αριθµός βακτηριδίων ανά µονάδα όγκου θαλασσινού νερού σε µια παραλία υπερβαίνει το επίπεδο ασφαλείας των 9 µονάδων. ώδεκα

Διαβάστε περισσότερα

Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α. Δ.Π.Θ.

Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α. Δ.Π.Θ. Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ περισσότερων από δύο ανεξάρτητων δειγμάτων, που διαχωρίζονται βάσει ενός ανεξάρτητου παράγοντα (Ανάλυση διακύμανσης για ανεξάρτητα δείγματα ως προς

Διαβάστε περισσότερα

Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο ) 24/2/2017

Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο ) 24/2/2017 Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο ) 24/2/2017 2 Η γενική ιδέα της διαδικασίας στατιστικού ελέγχου υποθέσεων Πρόκειται για μια διαδικασία απόφασης μεταξύ δύο υποθέσεων Η μια υπόθεση ονομάζεται μηδενική

Διαβάστε περισσότερα

3. Κατανομές πιθανότητας

3. Κατανομές πιθανότητας 3. Κατανομές πιθανότητας Τυχαία Μεταβλητή Τυχαία μεταβλητή (τ.μ.) (X) είναι μια συνάρτηση που σε κάθε σημείο (ω) ενός δειγματικού χώρου (Ω) αντιστοιχεί έναν πραγματικό αριθμό. Ω ω X (ω ) R Διακριτή τ.μ.

Διαβάστε περισσότερα

Γ. Πειραματισμός Βιομετρία

Γ. Πειραματισμός Βιομετρία Γενικά Συσχέτιση και Συμμεταβολή Όταν σε ένα πείραμα παραλλάσουν ταυτόχρονα δύο μεταβλητές, τότε ενδιαφέρει να διερευνηθεί εάν και πως οι αλλαγές στη μία μεταβλητή σχετίζονται με τις αλλαγές στην άλλη.

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 6Γ: κατά Ζεύγη t test Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι Ανάλυσης στις Κοινωνικές Επιστήμες

Ποσοτικές Μέθοδοι Ανάλυσης στις Κοινωνικές Επιστήμες ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ποσοτικές Μέθοδοι Ανάλυσης στις Κοινωνικές Επιστήμες Ενότητα 9 : Περιγραφή του ελέγχου Χ 2 Θεόδωρος Χατζηπαντελής Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ. Διάλεξη 8 Εφαρμογές της στατιστικής στην έρευνα - Ι. Υπεύθυνος Καθηγητής Χατζηγεωργιάδης Αντώνης

ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ. Διάλεξη 8 Εφαρμογές της στατιστικής στην έρευνα - Ι. Υπεύθυνος Καθηγητής Χατζηγεωργιάδης Αντώνης ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ Διάλεξη 8 Εφαρμογές της στατιστικής στην έρευνα - Ι Υπεύθυνος Καθηγητής Χατζηγεωργιάδης Αντώνης 1 Μέρη της Έρευνας Περιγραφική στατιστική Πολυδιάστατη στατιστική Σχέσεις μεταξύ μεταβλητών

Διαβάστε περισσότερα

Χημική Τεχνολογία. Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων. Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε.

Χημική Τεχνολογία. Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων. Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Χημική Τεχνολογία Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. Άδειες Χρήσης

Διαβάστε περισσότερα

(f(x)+g(x)) =f (x)+g (x), x R

(f(x)+g(x)) =f (x)+g (x), x R ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑ ΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Α. Αν οι συναρτήσεις, g είναι παραγωγίσιµες στο IR, να αποδείξετε ότι (()+g()) ()+g (), R Μονάδες 7 Α.

Διαβάστε περισσότερα

Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017

Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017 Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017 2 Γιατί ανάλυση διακύμανσης; (1) Ας θεωρήσουμε k πληθυσμούς με μέσες τιμές μ 1, μ 2,, μ k, αντίστοιχα Πως μπορούμε να συγκρίνουμε τις μέσες τιμές k πληθυσμών

Διαβάστε περισσότερα

Στατιστική Συμπερασματολογία

Στατιστική Συμπερασματολογία Στατιστική Συμπερασματολογία Διαφάνειες 2 ου κεφαλαίου Σταύρος Χατζόπουλος 20/02/2017, 06/03/2017, 13/03/2017 1 Κεφάλαιο 2. Έλεγχος Απλών Υποθέσεων Τα προβλήματα ελέγχου υποθέσεων απορρέουν από παρατηρήσεις

Διαβάστε περισσότερα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα Ανάλυση Διασποράς Έστω ότι μας δίνονται δείγματα που προέρχονται από άγνωστους πληθυσμούς. Πόσο διαφέρουν οι μέσες τιμές τους; Με άλλα λόγια: πόσο πιθανό είναι να προέρχονται από πληθυσμούς με την ίδια

Διαβάστε περισσότερα

Κεφάλαιο 16. Σύγκριση συχνοτήτων κατηγοριών: το στατιστικό κριτήριο χ 2. Προϋποθέσεις για τη χρήση του τεστ. ιαφορές ή συσχέτιση.

Κεφάλαιο 16. Σύγκριση συχνοτήτων κατηγοριών: το στατιστικό κριτήριο χ 2. Προϋποθέσεις για τη χρήση του τεστ. ιαφορές ή συσχέτιση. Κεφάλαιο 16 Σύγκριση συχνοτήτων κατηγοριών: το στατιστικό κριτήριο χ 1 Προϋποθέσεις για τη χρήση του τεστ ιαφορές ή συσχέτιση Κλίµακα µέτρησης Σχεδιασµός Σηµείωση ιαφορές Κατηγορική Ανεξάρτητα δείγµατα

Διαβάστε περισσότερα