Hydrostatics Balance equation Mass balance Momentum balance Bernoulli s equation Energy balance Classification of PDE Examples
|
|
- Πολυξένη Κούνδουρος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Hdrostatics Balance eqation Mass balance Momentm balance Bernolli s eqation Energ balance Classification of DE Eamples καθ. Γ.Μπεγελές Balance Eqations /.1
2 Hdrostatic eqation d d,, ) dd,, ) dd gddd d d,, ),, ) g d d g.1a) d grad g a καθ. Γ.Μπεγελές 0 Balance Eqations /.
3 Forces on srfaces and essels - 0 gh.3) καθ. Γ.Μπεγελές Balance Eqations /.3
4 ascal s la/hdralics F A B B B A A B F F F F A B B A > A F A B A δ καθ. Γ.Μπεγελές S S A B F B δ B Balance Eqations /.4
5 0 1 0 Hdrostatic eqation for compressible flids γ γ 1 g C 0 g C h h.6).5) καθ. Γ.Μπεγελές Balance Eqations /.5
6 Kinematics of Flids,, ) dr dt d d,, dt dt a d dt dφ dt Φ t d dt grad) Φ a a a t t t t t t t t a grad) t καθ. Γ.Μπεγελές d dt t grad t Balance Eqations /.6
7 Balance Eqations /.7 Rate of deformation e e, e ) ) ) k j i k j i rot rot 1 ω καθ. Γ.Μπεγελές
8 Balance Eqations /.8 Neton s la for shear stress ij µ µ µ µ µ ) ) ) Netonian and non-netonian flids καθ. Γ.Μπεγελές
9 Balance Eqations {Rate of Φ accmlated ithin the control olme } {rate of Φ or Φ fl in nit time) entering the control olme throgh the eternal srface} -{rate of Φ eiting the control olme throgh the eternal srface} Sorces or Sinks per nit time καθ. Γ.Μπεγελές Balance Eqations /.9
10 Mass balance,, ) ) ψ, ) 3 3 Mass entering the olme in time dt throgh srfaces AD and DC) d /,, t) ddt, d /, t) ddt Mass leaing the control olme in time dt throgh srfaces BC and AB) d /,, t) ddt, d /, t) ddt Mass accmlating ithin the olme dd) dd) t dt t t ) ) καθ. Γ.Μπεγελές 0 0 Balance Eqations /.10
11 Conseration of linear momentm {Rate of momentm accmlated ithin the control olme} {rate of momentm or momentm fl) entering the control olme throgh the eternal srface} -{rate of momentm eiting the control olme throgh the eternal srface} καθ. Γ.Μπεγελές {eternal forces acting on the mass of the control olme}. Balance Eqations /.11
12 Momentm balance he component of -direction momentm fl entering the control olme throgh srfaces AD and DC) is he corresponding component of momentm fl eiting the control olme throgh srfaces BC and AB) Graitational force Where g is the component of the graitational acceleration. he resltant pressre force in the direction de to pressre acting on srfaces AD and BC ) he resltant -direction component of force de to normal and shear stress forces in the direction on CD, AB, AD and BC srfaces) he rate of accmlation -direction momentm { d} d / { d} d / { d } d / { d} d / ddg pd pd { } d / { } d / d d d d { } d / { } d / { } d / { } d / καθ. Γ.Μπεγελές dd) t Balance Eqations /.1
13 Momentm balance in direction { d} d / { d} d / καθ. Γ.Μπεγελές Balance Eqations /.13
14 Balance Eqations /.14 Naier-Stokes eqations g p t ) ) ) g p t ) ) ) g p t g p t καθ. Γ.Μπεγελές
15 Balance Eqations /.15 arios forms of the N-S eqations g p t g p t g grad t ) rot ) ) g p rot t 1 ) 0 } { rot g καθ. Γ.Μπεγελές
16 Balance Eqations /.16 Bernolli s eqation H g 0 ) } 1 { 0 ) } 1 { d s rot d s g d s t d s rot d s g d s t h t g g C C Ε γ γ γ γ c c καθ. Γ.Μπεγελές
17 Conseration of Energ First La of hermodnamics Heat Q n DE Q Dt Work W Energ E ds d καθ. Γ.Μπεγελές Both Q and W are path fnctions process dependent) bt their difference Q-W is a point fnction de is a total differential a thermodnamic propert) W Balance Eqations /.17
18 Balance Eqations /.18 ) ) Φ µ k q Dt D e k k k q Dt D e 3 Φ Φ συνάηση αποόφησης) Energ balance καθ. Γ.Μπεγελές
19 Balance Eqations /.19 Εξίσωση μεαφοάς ενοπίας 1 d p S d e d Dt D Dt D e Dt s D ) Φ k Dt s D µ 1 S gen k Dt D s Φ K m att k S gen 3 µ καθ. Γ.Μπεγελές
20 Balance Eqations /.0 J H G F t U k e F e U ), Μηωική μοφή εξισώσεων διαήησης καθ. Γ.Μπεγελές
21 Balance Eqations /.1 k e G k e H ) q f f f f f f J 0 Μηώα G,H,J καθ. Γ.Μπεγελές
22 Κλείσιμο συσήμαος ΔΕ Οι πος επίλυση διαφοικές εξισώσεις διαήησης είναι πένε: Διαήηση μάζας 1), διαήηση ομής 3), διαήηση ενέγειας 1). Το σύσημα ων εξισώσεων διαήησης έχει πένε διαφοικές εξισώσεις με έξι αγνώσους,,,, p, ). Η εσωεική ενέγεια e ου ευσού εκφάζεαι με μία εξίσωση ης μοφής p ) e e, που για αέια απλοποιείαι σην e C με C ην ειδική θεμόηα ου αείου υπό σαθεό όγκο και Τα η θεμοκασία ου αείου. Τέλος η πίεση, η πυκνόηα και η θεμοκασία συνδέοναι με ην καασαική εξίσωση p, ) που για αέια παίνει η γνωσή μοφή R καθ. Γ.Μπεγελές Balance Eqations /.
23 A general form of the eqation t Φ) U Φ ΓΦ SΦ Characteristics mltidimensional trblent flos reqire at least 6 eqations strong copling non-linear j j Φ j Φ U H c k ε i,,,,, Γ, καθ. Γ.Μπεγελές φ S φ Balance Eqations /.3
24 -Ö- -S Ö µ µ r r r 1 µ µ µ r r r r r r r 1 Ô 0 k G-ñå å C 1 åg-c ñå )/k G r r r µ Sorce erms SΦ καθ. Γ.Μπεγελές
25 Classification of flo phenomena Stead, nstead Incompressible, compressible D, 3D General form of DE AΦ BΦ CΦ DΦ EΦ FΦG Where A,B,C,D,E,F and G fnctions of,,φ,φ,φ B -AC<,0,> arabolic, elliptic, hperbolic, partiall elliptic directional transport of information tpe of bondar conditions καθ. Γ.Μπεγελές Balance Eqations /.5
26 Model roblems Heat Condction Bondar laers Recirclating flos Spersonic flos ime dependent problems καθ. Γ.Μπεγελές Bondar ale problems Initial ale problems Balance Eqations /.6
27 Hperbolic DE b Hperbolic DEs often model ibrating sstems or ae motion. Eamples: 4ac 0 1D ae eqation t adection eqation elocit > t c 0 καθ. Γ.Μπεγελές displacement concentration Balance Eqations /.7
28 arabolic DE arbolic DEs often describe heat flo and other diffsie processes. α t transient diffsion eqation Eamples: b 4ac 0 t καθ. Γ.Μπεγελές adection diffsion eqation concentration D Balance Eqations /.8
29 Elliptic DE Elliptic DEs sall describe stead state phenomena. Laplace s eqation Eamples: b 4ac oisson s eqation < 0 f 0, ) καθ. Γ.Μπεγελές Balance Eqations /.9
30 Starting steps otline of the engineering problem select dependent ariables select coordinate sstem rite don transport eqations rite don bondar conditions ell posed mathematical problem) non-dimensionalie if possible καθ. Γ.Μπεγελές Balance Eqations /.30
31 Eamples of grids and dependent ariables Boiler geometr E/ geometr καθ. Γ.Μπεγελές 4 4 W Κυψέλες Β-Τύπου B Κυψέλες Α-Τύπου S 3 3 Balance Eqations /.31
32 Eamples of grid/ C/d1.6 C/d3.6 θ α κ Μ. Γ. ς έ λ ε γ ε π Balance Eqations /.3
33 Eamples of grid/3 he intake port U alencia) An I.C engine καθ. Γ.Μπεγελές A graphics package is a mst Balance Eqations /.33
34 Methods for grid generation Soltion of a oisson eqation ith Dirichlet or Nemann bondar conditions-forcing fnctions A Laplacian Eqation Method for Nmerical Generation of Bondar-fitted 3D Orthogonal Grids.heodoropolos, G. C. Bergeles Jornal of Comptational hsics, ol. 8,No,1989,pp69-88 Nmerical Grid Generation echniqefor 3D Comple Spaces Glekas, J., Bergeles, G., Athanassiades, N. 3rd Intern. Conference, Comptational Methods and Eperimental measrements, Sept 1986,orto Carras,Springer erlag,ol,pp καθ. Γ.Μπεγελές Balance Eqations /.34
Mathematical Foundation of Fluid Mechanics
Mathematical Fondation of Flid Mechanics Otline of the lecte Conseation of tanspotable qantities he geneal fom of the eqations Paabolic-elliptic and hpebolic eqations he choice of dependent and independent
Οι νόµοι διατήρησης στη Φυσική Ωκεανογραφία
Οι όµοι διατήρησης στη Φσική Ωκεαογραφία 4. The conservation las in the ocean dnamics Sarantis Sofianos Dept. of Phsics, niversit of Athens Fndamental dnamics and the eqations for geophsical flids Oceanic
Introduction to Theory of. Elasticity. Kengo Nakajima Summer
Introduction to Theor of lasticit Summer Kengo Nakajima Technical & Scientific Computing I (48-7) Seminar on Computer Science (48-4) elast Theor of lasticit Target Stress Governing quations elast 3 Theor
Αλληλεπίδραση θάλασσας-ατμόσφαιρας
Αλληλεπίδραση θάλασσας-ατμόσφαιρας ΙΑΛΕΞΗ Περιεχόμενα: Ελεύθερα επιφανειακά κύματα (free-aes) ( απουσία γήινης περιστροφής) Προσεγγίσεις βραχέων/μακρών κυμάτων Ανεμογεννή κύματα (ind-aes) Κυματικά μοντέλα
ΔΙΑΛΕΞΗ 6 Ρεύματα παρουσία τριβής Ανεμογεννής Κυκλοφορία
ΔΙΑΛΕΞΗ 6 Ρεύμαα παουσία ιβής Ανεμογεννής Κυκλοφοία Πειεχόμενα: Ανεμογενής κυκλοφοία Θεωία Ekman Θεωία Serdrp Ρεύμαα ου δυικού οίου g P V Ω r r r r Naier-Stokes Eqation ( ) t dt d r r r r cceleration dection
STEADY, INVISCID ( potential flow, irrotational) INCOMPRESSIBLE + V Φ + i x. Ψ y = Φ. and. Ψ x
STEADY, INVISCID ( potential flow, iotational) INCOMPRESSIBLE constant Benolli's eqation along a steamline, EQATION MOMENTM constant is a steamline the Steam Fnction is sbsititing into the continit eqation,
Chapter 5 Stress Strain Relation
Chapter 5 Stress Strain Relation 5.1 General Stress Strain sstem Parallelepiped, cube F 5.1.1 Surface Stress Surface stresses: normal stress shear stress, lim A 0 ( A ) F A lim F lim A 0 A A 0 F A lim
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
Αλληλεπίδραση θάλασσας ατμόσφαιρας
Αλληλεπίδαση θάλασσας αμόσφαιας ΔΙΑΛΕΞΗ 3 Το σώμα Ekman Πειεχόμενα: Θεωία Ekman Ανεμογενής κυκλοφοία Αποελέσμαα ης θεωίας Ekman Η γενική ανεμογεννής κυκλοφοία ου παγκόσμιου ωκεανού (θεωία Serdrp - εύμαα
ECON 381 SC ASSIGNMENT 2
ECON 8 SC ASSIGNMENT 2 JOHN HILLAS UNIVERSITY OF AUCKLAND Problem Consider a consmer with wealth w who consmes two goods which we shall call goods and 2 Let the amont of good l that the consmer consmes
ADVANCED STRUCTURAL MECHANICS
VSB TECHNICAL UNIVERSITY OF OSTRAVA FACULTY OF CIVIL ENGINEERING ADVANCED STRUCTURAL MECHANICS Lecture 1 Jiří Brožovský Office: LP H 406/3 Phone: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast10.vsb.cz/brozovsky/
Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3
Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point
Differential equations
Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential
GEEPLUS VM1614. Force (N) vs Displacement (mm) Peak. Max 'ON' time. Force. Model No. VM
VM1614 2 VM1614 18 VM1614 125 VM1614 1 GEEPLUS VM1614 P 1 is the continuous (1% ED) excitation power at mounted to a massive heatsink at 2 C P 1 5 W Total Mass 15 g T max 13 C Coil Mass 3 g R 2 2.8.2 mh.7
wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:
3.0 Marine Hydrodynamics, Fall 004 Lecture 0 Copyriht c 004 MIT - Department of Ocean Enineerin, All rihts reserved. 3.0 - Marine Hydrodynamics Lecture 0 Free-surface waves: wave enery linear superposition,
ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems
ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Stresses in a Plane. Mohr s Circle. Cross Section thru Body. MET 210W Mohr s Circle 1. Some parts experience normal stresses in
ME 10W E. Evans Stresses in a Plane Some parts eperience normal stresses in two directions. hese tpes of problems are called Plane Stress or Biaial Stress Cross Section thru Bod z angent and normal to
Computing the Gradient
FMIA F. Moukalled L. Mangani M. Darwish An Advanced Introduction with OpenFOAM and Matlab This textbook explores both the theoretical oundation o the Finite Volume Method (FVM) and its applications in
Forced Pendulum Numerical approach
Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.
upplement on Radiation tress and Wave etup/et down Radiation tress oncerned wit te force (or momentum flu) eerted on te rit and side of a plane water on te left and side of te plane. plane z "Radiation
Chapter 2. Stress, Principal Stresses, Strain Energy
Chapter Stress, Principal Stresses, Strain nergy Traction vector, stress tensor z z σz τ zy ΔA ΔF A ΔA ΔF x ΔF z ΔF y y τ zx τ xz τxy σx τ yx τ yz σy y A x x F i j k is the traction force acting on the
DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.
DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM by Zoran VARGA, Ms.C.E. Euro-Apex B.V. 1990-2012 All Rights Reserved. The 2 DOF System Symbols m 1 =3m [kg] m 2 =8m m=10 [kg] l=2 [m] E=210000
Finite difference method for 2-D heat equation
Finite difference method for 2-D heat equation Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
Κύµατα παρουσία βαρύτητας
Κύµατα παουσία βαύτητας 8. Grait as in th ocan Sarantis Sofianos Dpt. of hsics, Unirsit of thns Was in th ocan Srfac grait as Short and long limit in grait as Wa charactristics Intrnal as Charactristic
Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model
1 Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis Applied Mathematics & Computers Laboratory Technical University of Crete Chania 73100,
Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ
Ó³ Ÿ. 218.. 15, º 2(214).. 171Ä176 Š Œ œ ƒˆˆ ˆ ˆŠ ˆ ˆ ˆ Š Š Œ Œ Ÿ ˆ Š ˆ Š ˆ ˆŠ Œ œ ˆ.. Š Ö,, 1,.. ˆ μ,,.. μ³ μ,.. ÉÓÖ μ,,.š. ʳÖ,, Í μ ²Ó Ò ² μ É ²Ó ± Ö Ò Ê É É Œˆ ˆ, Œμ ± Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê μ ± Ê É
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
6.4 Superposition of Linear Plane Progressive Waves
.0 - Marine Hydrodynamics, Spring 005 Lecture.0 - Marine Hydrodynamics Lecture 6.4 Superposition of Linear Plane Progressive Waves. Oblique Plane Waves z v k k k z v k = ( k, k z ) θ (Looking up the y-ais
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
( y) Partial Differential Equations
Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate
VARIATIONAL APPROACH TO SOLITARY SOLUTIONS USING JACOBI-ELLIPTIC FUNCTIONS. Yue Wu
Mathematical and Comptational Applications, Vol., No., pp. 9-93,. Association for Scientific Research VARIATIONAL APPROACH TO SOLITARY SOLUTIONS USING JACOBI-ELLIPTIC FUNCTIONS Ye W Economical Mathematics
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.
Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (, 1,0). Find a unit vector in the direction of A. Solution: A = ˆx( 1)+ŷ( 1 ( 1))+ẑ(0 ( 3)) = ˆx+ẑ3, A = 1+9 = 3.16, â = A A = ˆx+ẑ3 3.16
ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΣΤΟ ΟΡΟΣ ΠΗΛΙΟ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ
EΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΕΙΟ Τμήμα Μηχανικών Μεταλλείων-Μεταλλουργών ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Κιτσάκη Μαρίνα
PhysicsAndMathsTutor.com
PhysicsAndMathsTutor.com June 2005 1. A car of mass 1200 kg moves along a straight horizontal road. The resistance to motion of the car from non-gravitational forces is of constant magnitude 600 N. The
Lecture 26: Circular domains
Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains
Dr. D. Dinev, Department of Structural Mechanics, UACEG
Lecture 4 Material behavior: Constitutive equations Field of the game Print version Lecture on Theory of lasticity and Plasticity of Dr. D. Dinev, Department of Structural Mechanics, UACG 4.1 Contents
Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =
Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n
The ε-pseudospectrum of a Matrix
The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems
Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B
Problem 3.6 Given B = ˆxz 3y) +ŷx 3z) ẑx+y), find a unit vector parallel to B at point P =,0, ). Solution: At P =,0, ), B = ˆx )+ŷ+3) ẑ) = ˆx+ŷ5 ẑ, ˆb = B B = ˆx+ŷ5 ẑ = ˆx+ŷ5 ẑ. +5+ 7 Problem 3.4 Convert
Classical Theory (3): Thermostatics of Continuous Systems with External Forces
Insttute of Flu- & Thermoynamcs Unersty of Segen Classcal Theory (3): Thermostatcs of Contnuous Systems wth External Forces 3/ Σ: Equlbrum State? Isolaton, Inhomogenety External Forces F ϕ Components:...
Eulerian Simulation of Large Deformations
Eulerian Simulation of Large Deformations Shayan Hoshyari April, 2018 Some Applications 1 Biomechanical Engineering 2 / 11 Some Applications 1 Biomechanical Engineering 2 Muscle Animation 2 / 11 Some Applications
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
CONSULTING Engineering Calculation Sheet
E N G I N E E R S Consulting Engineers jxxx 1 Structure Design - EQ Load Definition and EQ Effects v20 EQ Response Spectra in Direction X, Y, Z X-Dir Y-Dir Z-Dir Fundamental period of building, T 1 5.00
Surface Mount Aluminum Electrolytic Capacitors
FEATURES CYLINDRICAL V-CHIP CONSTRUCTION LOW COST, GENERAL PURPOSE, 2000 HOURS AT 85 O C NEW EXPANDED CV RANGE (up to 6800µF) ANTI-SOLVENT (2 MINUTES) DESIGNED FOR AUTOMATIC MOUNTING AND REFLOW SOLDERING
The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.
hp://www.nd.ed/~gryggva/cfd-corse/ The Eler Eqaions The Eler Eqaions The Eler eqaions for D flow: + + p = x E E + p where Define E = e + / H = h + /; h = e + p/ Gréar Tryggvason Spring 3 Ideal Gas: p =
Συγκριτική Αξιολόγηση Προσοµοιωµάτων Τοιχείων και Πυρήνων Κτηρίων µε τη Μέθοδο των Πεπερασµένων Στοιχείων και Πειραµατικά Αποτελέσµατα
Συγκριτική Αξιολόγηση Προσοµοιωµάτων Τοιχείων και Πυρήνων Κτηρίων µε τη Μέθοδο των Πεπερασµένων Στοιχείων και Πειραµατικά Αποτελέσµατα Experimental verification of shear wall modeling using finite element
cz+d d (ac + cd )z + bc + dd c z + d
T (z) = az + b cz + d ; a, b, c, d C, ad bc 0 ( ) a b M T (z) = (z) az + b c d cz + d (T T )(z) = T (T (z) (T T )(z) = az+b a + cz+d b c az+b + = (aa + cb )z + a b + b d a z + b cz+d d (ac + cd )z + bc
SMD Transient Voltage Suppressors
SMD Transient Suppressors Feature Full range from 0 to 22 series. form 4 to 60V RMS ; 5.5 to 85Vdc High surge current ability Bidirectional clamping, high energy Fast response time
Two-mass Equivalent Link
Notes_08_0 1 of 0 Two-ass Equivalent ink B G JG C B G C = total ass B centroid location CG B = = BC BG BC check approxiate ass oent J J = ( BG ) ( CG ) G G _ APP (for slender rod J = J ) G _ APP G _ ACTUA
CYLINDRICAL & SPHERICAL COORDINATES
CYLINDRICAL & SPHERICAL COORDINATES Here we eamine two of the more popular alternative -dimensional coordinate sstems to the rectangular coordinate sstem. First recall the basis of the Rectangular Coordinate
Geodesic Equations for the Wormhole Metric
Geodesic Equations for the Wormhole Metric Dr R Herman Physics & Physical Oceanography, UNCW February 14, 2018 The Wormhole Metric Morris and Thorne wormhole metric: [M S Morris, K S Thorne, Wormholes
Rectangular Polar Parametric
Harold s Precalculus Rectangular Polar Parametric Cheat Sheet 15 October 2017 Point Line Rectangular Polar Parametric f(x) = y (x, y) (a, b) Slope-Intercept Form: y = mx + b Point-Slope Form: y y 0 = m
Simplex Crossover for Real-coded Genetic Algolithms
Technical Papers GA Simplex Crossover for Real-coded Genetic Algolithms 47 Takahide Higuchi Shigeyoshi Tsutsui Masayuki Yamamura Interdisciplinary Graduate school of Science and Engineering, Tokyo Institute
( ) ( ) ( ) ( ) ( ) λ = 1 + t t. θ = t ε t. Continuum Mechanics. Chapter 1. Description of Motion dt t. Chapter 2. Deformation and Strain
Continm Mechanics. Official Fom Chapte. Desciption of Motion χ (,) t χ (,) t (,) t χ (,) t t Chapte. Defomation an Stain s S X E X e i ij j i ij j F X X U F J T T T U U i j Uk U k E ( F F ) ( J J J J)
Lecture 34 Bootstrap confidence intervals
Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α
DuPont Suva 95 Refrigerant
Technical Information T-95 ENG DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 95 Refrigerant (R-508B) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered
Strain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified
Thin Film Chip Resistors
FEATURES PRECISE TOLERANCE AND TEMPERATURE COEFFICIENT EIA STANDARD CASE SIZES (0201 ~ 2512) LOW NOISE, THIN FILM (NiCr) CONSTRUCTION REFLOW SOLDERABLE (Pb FREE TERMINATION FINISH) Type Size EIA PowerRating
www.smarterglass.com 978 65 6190 sales@smarterglass.com &&$'()!"#$%$# !!"# "#$%&'! &"# $() &() (, -. #)/ 0-.#! 0(, 0-. #)/ 1!2#! 13#25 631% -. #)/ 013#7-8(,83%&)( 2 %! 1%!#!#2!9&8!,:!##!%%3#9&8!,:!#,#!%63
L p approach to free boundary problems of the Navier-Stokes equation
L p approach to free boundary problems of the Navier-Stokes equation e-mail address: yshibata@waseda.jp 28 4 1 e-mail address: ssshimi@ipc.shizuoka.ac.jp Ω R n (n 2) v Ω. Ω,,,, perturbed infinite layer,
Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -
PP #1 Μηχανικές αρχές και η εφαρµογή τους στην Ενόργανη Γυµναστική
PP #1 Μηχανικές αρχές και η εφαρµογή τους στην Ενόργανη Γυµναστική Σηµαντικοί παράγοντες στην εκτέλεση από µηχανικής απόψεως ικανότητα απόκτησης ύψους ικανότητα περιστροφής ικανότητα αιώρησης ικανότητα
(, ) (SEM) [4] ,,,, , Legendre. [6] Gauss-Lobatto-Legendre (GLL) Legendre. Dubiner ,,,, (TSEM) Vol. 34 No. 4 Dec. 2017
34 4 17 1 JOURNAL OF SHANGHAI POLYTECHNIC UNIVERSITY Vol. 34 No. 4 Dec. 17 : 11-4543(174-83-8 DOI: 1.1957/j.cnki.jsspu.17.4.6 (, 19 :,,,,,, : ; ; ; ; ; : O 41.8 : A, [1],,,,, Jung [] Legendre, [3] Chebyshev
Τεχνική Έκθεση Συνοπτική παρουσίαση... 3
Δ2.3/2 1.1 Συνοπτική παρουσίαση....................... 3 Δ2.3/3 Σύμφωνα με το τεχνικό δελτίο του έργου η δράση της παρούσας έκθεσης συνοψίζεται ως εξής. Δράση 2.3: ΣΤΟΧΑΣΤΙΚΕΣ/ΝΤΕΤΕΡΜΙΝΙΣΤΙΚΕΣ ΥΒΡΙΔΙΚΕΣ
the total number of electrons passing through the lamp.
1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy
Applications. 100GΩ or 1000MΩ μf whichever is less. Rated Voltage Rated Voltage Rated Voltage
Features Rated Voltage: 100 VAC, 4000VDC Chip Size:,,,,, 2220, 2225 Electrical Dielectric Code EIA IEC COG 1BCG Applications Modems LAN / WAN Interface Industrial Controls Power Supply Back-Lighting Inverter
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α
Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ
Parts Manual. Trio Mobile Surgery Platform. Model 1033
Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische
SIEMENS Squirrel Cage Induction Standard Three-phase Motors
- SIEMENS Squirrel Cage Induction Standard Three-phase Motors 2 pole 3000 rpm 50Hz Rated current Power Efficiency Rated Ratio Noise Output Frame Speed Weight 3V 400V 415V factor Class 0%Load 75%Load torque
SAW FILTER - RF RF SAW FILTER
FEATURES - Frequencies from 0MHz to 700MHz - Custom specifications available - Industry standard package configurations - Low-loss saw component - Low amplitude ripple - RoHS compliance - Electrostatic
P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:
(B t, S (t) t P AND P,..., S (p) t ): securities P : actual probability P : risk neutral probability Realtionship: mutual absolute continuity P P For example: P : ds t = µ t S t dt + σ t S t dw t P : ds
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
ECTS ΕΥΡΩΠΑΪΚΟ ΣΥΣΤΗΜΑ ΜΕΤΑΦΟΡΑΣ ΑΚΑΔΗΜΑΪΚΩΝ ΜΟΝΑΔΩΝ ΣΤΗΝ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ. (Α) Λίστα με τα στοιχεία των μαθημάτων στα ελληνικά. Κυματομηχανική Κωδικός
ECTS ΕΥΡΩΠΑΪΚΟ ΣΥΣΤΗΜΑ ΜΕΤΑΦΟΡΑΣ ΑΚΑΔΗΜΑΪΚΩΝ ΜΟΝΑΔΩΝ ΣΤΗΝ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ (Α) Λίστα με τα στοιχεία των μαθημάτων στα ελληνικά Γενικές πληροφορίες μαθήματος: Τίτλος Κυματομηχανική Κωδικός CE0 μαθήματος:
. (1) 2c Bahri- Bahri-Coron u = u 4/(N 2) u
. (1) Nehari c (c, 2c) 2c Bahri- Coron Bahri-Lions (2) Hénon u = x α u p α (3) u(x) u(x) + u(x) p = 0... (1) 1 Ω R N f : R R Neumann d 2 u + u = f(u) d > 0 Ω f Dirichlet 2 Ω R N ( ) Dirichlet Bahri-Coron
4.4 Superposition of Linear Plane Progressive Waves
.0 Marine Hydrodynamics, Fall 08 Lecture 6 Copyright c 08 MIT - Department of Mechanical Engineering, All rights reserved..0 - Marine Hydrodynamics Lecture 6 4.4 Superposition of Linear Plane Progressive
1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint
1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,
μ μ dω I ν S da cos θ da λ λ Γ α/β MJ Capítulo 1 % βpic ɛ Eridani V ega β P ic F ormalhaut 10 9 15% 70 Virgem 47 Ursa Maior Debris Disk Debris Disk μ 90% L ac = GM M ac R L ac R M M ac L J T
CURVILINEAR COORDINATES
CURVILINEAR COORDINATES Cartesian Co-ordinate System A Cartesian coordinate system is a coordinate system that specifies each point uniquely in a plane by a pair of numerical coordinates, which are the
Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..
Supplemental Material (not for publication) Persistent vs. Permanent Income Shocks in the Buffer-Stock Model Jeppe Druedahl Thomas H. Jørgensen May, A Additional Figures and Tables Figure A.: Wealth and
A research on the influence of dummy activity on float in an AOA network and its amendments
2008 6 6 :100026788 (2008) 0620106209,, (, 102206) : NP2hard,,..,.,,.,.,. :,,,, : TB11411 : A A research on the influence of dummy activity on float in an AOA network and its amendments WANG Qiang, LI
(Mechanical Properties)
109101 Engineering Materials (Mechanical Properties-I) 1 (Mechanical Properties) Sheet Metal Drawing / (- Deformation) () 3 Force -Elastic deformation -Plastic deformation -Fracture Fracture 4 Mode of
Distributed by: www.jameco.com -800-83-4242 The content and copyrights of the attached material are the property of its owner. Single-Chip Voice Record/Playback Devices 60-, 75-, 90-, and 20-Second Durations
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response
Data sheet Thick Film Chip Resistor 5% - RS Series 0201/0402/0603/0805/1206
Data sheet Thick Film Chip Resistor 5% - RS Series 0201/0402/0603/0805/1206 Scope -This specification applies to all sizes of rectangular-type fixed chip resistors with Ruthenium-base as material. Features
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3
m r = F m r = F ( r) m r = F ( v) F = F (x) m dv dt = F (x) vdv = F (x)dx d dt = dx dv dt dx = v dv dx
m r = F m r = F ( r) m r = F ( v) x F = F (x) m dv dt = F (x) d dt = dx dv dt dx = v dv dx vdv = F (x)dx 2 mv2 x 2 mv2 0 = F (x )dx x 0 K = 2 mv2 W x0 x = x x 0 F (x)dx K K 0 = W x0 x x, x 2 x K 2 K =
Trimmable Thick Film Chip Resistor
rimmable hick ilm Chip Resistor R Series rimmable hick ilm Chip Resistor Scope -his specification applies to all sizes of rectangular-type fixed chip resistors with Ruthenium-base as material. eatures
TMA4115 Matematikk 3
TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet
Περίπτωση Μελέτης Θαλάσσιας Κατασκευής με χρήση λογισμικού και με βάση Κώδικες (Compliant Tower) (8.1.10)
Επιχειρησιακό Πρόγραμμα Εκπαίδευση και ια Βίου Μάθηση Πρόγραμμα ια Βίου Μάθησης ΑΕΙ για την Επικαιροποίηση Γνώσεων Αποφοίτων ΑΕΙ: Σύγχρονες Εξελίξεις στις Θαλάσσιες Κατασκευές Α.Π.Θ. Πολυτεχνείο Κρήτης
Chapter 7 Transformations of Stress and Strain
Chapter 7 Transformations of Stress and Strain INTRODUCTION Transformation of Plane Stress Mohr s Circle for Plane Stress Application of Mohr s Circle to 3D Analsis 90 60 60 0 0 50 90 Introduction 7-1
Πρόγραμμα Μεταπτυχιακών Σπουδών «Πληροφορική και Εφαρμογές»
Πρόγραμμα Μεταπτυχιακών Σπουδών «Πληροφορική και Εφαρμογές» Αρχές Ψηφιακής Τεχνολογίας Σχεδιασμός σύνθετων συστημάτων Γιάννης Βογιατζής 28-29 Βασικές λογικές πύλες = Driver = AND = + OR = XOR = Inverter
Navigation Mathematics: Kinematics (Coordinate Frame Transformation) EE 565: Position, Navigation and Timing
Lecture Navigation Mathematics: Kinematics (Coordinate Frame Transformation) EE 565: Position, Navigation and Timing Lecture Notes Update on Feruary 20, 2018 Aly El-Osery and Kevin Wedeward, Electrical