Hydrostatics Balance equation Mass balance Momentum balance Bernoulli s equation Energy balance Classification of PDE Examples

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Hydrostatics Balance equation Mass balance Momentum balance Bernoulli s equation Energy balance Classification of PDE Examples"

Transcript

1 Hdrostatics Balance eqation Mass balance Momentm balance Bernolli s eqation Energ balance Classification of DE Eamples καθ. Γ.Μπεγελές Balance Eqations /.1

2 Hdrostatic eqation d d,, ) dd,, ) dd gddd d d,, ),, ) g d d g.1a) d grad g a καθ. Γ.Μπεγελές 0 Balance Eqations /.

3 Forces on srfaces and essels - 0 gh.3) καθ. Γ.Μπεγελές Balance Eqations /.3

4 ascal s la/hdralics F A B B B A A B F F F F A B B A > A F A B A δ καθ. Γ.Μπεγελές S S A B F B δ B Balance Eqations /.4

5 0 1 0 Hdrostatic eqation for compressible flids γ γ 1 g C 0 g C h h.6).5) καθ. Γ.Μπεγελές Balance Eqations /.5

6 Kinematics of Flids,, ) dr dt d d,, dt dt a d dt dφ dt Φ t d dt grad) Φ a a a t t t t t t t t a grad) t καθ. Γ.Μπεγελές d dt t grad t Balance Eqations /.6

7 Balance Eqations /.7 Rate of deformation e e, e ) ) ) k j i k j i rot rot 1 ω καθ. Γ.Μπεγελές

8 Balance Eqations /.8 Neton s la for shear stress ij µ µ µ µ µ ) ) ) Netonian and non-netonian flids καθ. Γ.Μπεγελές

9 Balance Eqations {Rate of Φ accmlated ithin the control olme } {rate of Φ or Φ fl in nit time) entering the control olme throgh the eternal srface} -{rate of Φ eiting the control olme throgh the eternal srface} Sorces or Sinks per nit time καθ. Γ.Μπεγελές Balance Eqations /.9

10 Mass balance,, ) ) ψ, ) 3 3 Mass entering the olme in time dt throgh srfaces AD and DC) d /,, t) ddt, d /, t) ddt Mass leaing the control olme in time dt throgh srfaces BC and AB) d /,, t) ddt, d /, t) ddt Mass accmlating ithin the olme dd) dd) t dt t t ) ) καθ. Γ.Μπεγελές 0 0 Balance Eqations /.10

11 Conseration of linear momentm {Rate of momentm accmlated ithin the control olme} {rate of momentm or momentm fl) entering the control olme throgh the eternal srface} -{rate of momentm eiting the control olme throgh the eternal srface} καθ. Γ.Μπεγελές {eternal forces acting on the mass of the control olme}. Balance Eqations /.11

12 Momentm balance he component of -direction momentm fl entering the control olme throgh srfaces AD and DC) is he corresponding component of momentm fl eiting the control olme throgh srfaces BC and AB) Graitational force Where g is the component of the graitational acceleration. he resltant pressre force in the direction de to pressre acting on srfaces AD and BC ) he resltant -direction component of force de to normal and shear stress forces in the direction on CD, AB, AD and BC srfaces) he rate of accmlation -direction momentm { d} d / { d} d / { d } d / { d} d / ddg pd pd { } d / { } d / d d d d { } d / { } d / { } d / { } d / καθ. Γ.Μπεγελές dd) t Balance Eqations /.1

13 Momentm balance in direction { d} d / { d} d / καθ. Γ.Μπεγελές Balance Eqations /.13

14 Balance Eqations /.14 Naier-Stokes eqations g p t ) ) ) g p t ) ) ) g p t g p t καθ. Γ.Μπεγελές

15 Balance Eqations /.15 arios forms of the N-S eqations g p t g p t g grad t ) rot ) ) g p rot t 1 ) 0 } { rot g καθ. Γ.Μπεγελές

16 Balance Eqations /.16 Bernolli s eqation H g 0 ) } 1 { 0 ) } 1 { d s rot d s g d s t d s rot d s g d s t h t g g C C Ε γ γ γ γ c c καθ. Γ.Μπεγελές

17 Conseration of Energ First La of hermodnamics Heat Q n DE Q Dt Work W Energ E ds d καθ. Γ.Μπεγελές Both Q and W are path fnctions process dependent) bt their difference Q-W is a point fnction de is a total differential a thermodnamic propert) W Balance Eqations /.17

18 Balance Eqations /.18 ) ) Φ µ k q Dt D e k k k q Dt D e 3 Φ Φ συνάηση αποόφησης) Energ balance καθ. Γ.Μπεγελές

19 Balance Eqations /.19 Εξίσωση μεαφοάς ενοπίας 1 d p S d e d Dt D Dt D e Dt s D ) Φ k Dt s D µ 1 S gen k Dt D s Φ K m att k S gen 3 µ καθ. Γ.Μπεγελές

20 Balance Eqations /.0 J H G F t U k e F e U ), Μηωική μοφή εξισώσεων διαήησης καθ. Γ.Μπεγελές

21 Balance Eqations /.1 k e G k e H ) q f f f f f f J 0 Μηώα G,H,J καθ. Γ.Μπεγελές

22 Κλείσιμο συσήμαος ΔΕ Οι πος επίλυση διαφοικές εξισώσεις διαήησης είναι πένε: Διαήηση μάζας 1), διαήηση ομής 3), διαήηση ενέγειας 1). Το σύσημα ων εξισώσεων διαήησης έχει πένε διαφοικές εξισώσεις με έξι αγνώσους,,,, p, ). Η εσωεική ενέγεια e ου ευσού εκφάζεαι με μία εξίσωση ης μοφής p ) e e, που για αέια απλοποιείαι σην e C με C ην ειδική θεμόηα ου αείου υπό σαθεό όγκο και Τα η θεμοκασία ου αείου. Τέλος η πίεση, η πυκνόηα και η θεμοκασία συνδέοναι με ην καασαική εξίσωση p, ) που για αέια παίνει η γνωσή μοφή R καθ. Γ.Μπεγελές Balance Eqations /.

23 A general form of the eqation t Φ) U Φ ΓΦ SΦ Characteristics mltidimensional trblent flos reqire at least 6 eqations strong copling non-linear j j Φ j Φ U H c k ε i,,,,, Γ, καθ. Γ.Μπεγελές φ S φ Balance Eqations /.3

24 -Ö- -S Ö µ µ r r r 1 µ µ µ r r r r r r r 1 Ô 0 k G-ñå å C 1 åg-c ñå )/k G r r r µ Sorce erms SΦ καθ. Γ.Μπεγελές

25 Classification of flo phenomena Stead, nstead Incompressible, compressible D, 3D General form of DE AΦ BΦ CΦ DΦ EΦ FΦG Where A,B,C,D,E,F and G fnctions of,,φ,φ,φ B -AC<,0,> arabolic, elliptic, hperbolic, partiall elliptic directional transport of information tpe of bondar conditions καθ. Γ.Μπεγελές Balance Eqations /.5

26 Model roblems Heat Condction Bondar laers Recirclating flos Spersonic flos ime dependent problems καθ. Γ.Μπεγελές Bondar ale problems Initial ale problems Balance Eqations /.6

27 Hperbolic DE b Hperbolic DEs often model ibrating sstems or ae motion. Eamples: 4ac 0 1D ae eqation t adection eqation elocit > t c 0 καθ. Γ.Μπεγελές displacement concentration Balance Eqations /.7

28 arabolic DE arbolic DEs often describe heat flo and other diffsie processes. α t transient diffsion eqation Eamples: b 4ac 0 t καθ. Γ.Μπεγελές adection diffsion eqation concentration D Balance Eqations /.8

29 Elliptic DE Elliptic DEs sall describe stead state phenomena. Laplace s eqation Eamples: b 4ac oisson s eqation < 0 f 0, ) καθ. Γ.Μπεγελές Balance Eqations /.9

30 Starting steps otline of the engineering problem select dependent ariables select coordinate sstem rite don transport eqations rite don bondar conditions ell posed mathematical problem) non-dimensionalie if possible καθ. Γ.Μπεγελές Balance Eqations /.30

31 Eamples of grids and dependent ariables Boiler geometr E/ geometr καθ. Γ.Μπεγελές 4 4 W Κυψέλες Β-Τύπου B Κυψέλες Α-Τύπου S 3 3 Balance Eqations /.31

32 Eamples of grid/ C/d1.6 C/d3.6 θ α κ Μ. Γ. ς έ λ ε γ ε π Balance Eqations /.3

33 Eamples of grid/3 he intake port U alencia) An I.C engine καθ. Γ.Μπεγελές A graphics package is a mst Balance Eqations /.33

34 Methods for grid generation Soltion of a oisson eqation ith Dirichlet or Nemann bondar conditions-forcing fnctions A Laplacian Eqation Method for Nmerical Generation of Bondar-fitted 3D Orthogonal Grids.heodoropolos, G. C. Bergeles Jornal of Comptational hsics, ol. 8,No,1989,pp69-88 Nmerical Grid Generation echniqefor 3D Comple Spaces Glekas, J., Bergeles, G., Athanassiades, N. 3rd Intern. Conference, Comptational Methods and Eperimental measrements, Sept 1986,orto Carras,Springer erlag,ol,pp καθ. Γ.Μπεγελές Balance Eqations /.34

Mathematical Foundation of Fluid Mechanics

Mathematical Foundation of Fluid Mechanics Mathematical Fondation of Flid Mechanics Otline of the lecte Conseation of tanspotable qantities he geneal fom of the eqations Paabolic-elliptic and hpebolic eqations he choice of dependent and independent

Διαβάστε περισσότερα

Οι νόµοι διατήρησης στη Φυσική Ωκεανογραφία

Οι νόµοι διατήρησης στη Φυσική Ωκεανογραφία Οι όµοι διατήρησης στη Φσική Ωκεαογραφία 4. The conservation las in the ocean dnamics Sarantis Sofianos Dept. of Phsics, niversit of Athens Fndamental dnamics and the eqations for geophsical flids Oceanic

Διαβάστε περισσότερα

Introduction to Theory of. Elasticity. Kengo Nakajima Summer

Introduction to Theory of. Elasticity. Kengo Nakajima Summer Introduction to Theor of lasticit Summer Kengo Nakajima Technical & Scientific Computing I (48-7) Seminar on Computer Science (48-4) elast Theor of lasticit Target Stress Governing quations elast 3 Theor

Διαβάστε περισσότερα

Αλληλεπίδραση θάλασσας-ατμόσφαιρας

Αλληλεπίδραση θάλασσας-ατμόσφαιρας Αλληλεπίδραση θάλασσας-ατμόσφαιρας ΙΑΛΕΞΗ Περιεχόμενα: Ελεύθερα επιφανειακά κύματα (free-aes) ( απουσία γήινης περιστροφής) Προσεγγίσεις βραχέων/μακρών κυμάτων Ανεμογεννή κύματα (ind-aes) Κυματικά μοντέλα

Διαβάστε περισσότερα

ΔΙΑΛΕΞΗ 6 Ρεύματα παρουσία τριβής Ανεμογεννής Κυκλοφορία

ΔΙΑΛΕΞΗ 6 Ρεύματα παρουσία τριβής Ανεμογεννής Κυκλοφορία ΔΙΑΛΕΞΗ 6 Ρεύμαα παουσία ιβής Ανεμογεννής Κυκλοφοία Πειεχόμενα: Ανεμογενής κυκλοφοία Θεωία Ekman Θεωία Serdrp Ρεύμαα ου δυικού οίου g P V Ω r r r r Naier-Stokes Eqation ( ) t dt d r r r r cceleration dection

Διαβάστε περισσότερα

STEADY, INVISCID ( potential flow, irrotational) INCOMPRESSIBLE + V Φ + i x. Ψ y = Φ. and. Ψ x

STEADY, INVISCID ( potential flow, irrotational) INCOMPRESSIBLE + V Φ + i x. Ψ y = Φ. and. Ψ x STEADY, INVISCID ( potential flow, iotational) INCOMPRESSIBLE constant Benolli's eqation along a steamline, EQATION MOMENTM constant is a steamline the Steam Fnction is sbsititing into the continit eqation,

Διαβάστε περισσότερα

Chapter 5 Stress Strain Relation

Chapter 5 Stress Strain Relation Chapter 5 Stress Strain Relation 5.1 General Stress Strain sstem Parallelepiped, cube F 5.1.1 Surface Stress Surface stresses: normal stress shear stress, lim A 0 ( A ) F A lim F lim A 0 A A 0 F A lim

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Αλληλεπίδραση θάλασσας ατμόσφαιρας

Αλληλεπίδραση θάλασσας ατμόσφαιρας Αλληλεπίδαση θάλασσας αμόσφαιας ΔΙΑΛΕΞΗ 3 Το σώμα Ekman Πειεχόμενα: Θεωία Ekman Ανεμογενής κυκλοφοία Αποελέσμαα ης θεωίας Ekman Η γενική ανεμογεννής κυκλοφοία ου παγκόσμιου ωκεανού (θεωία Serdrp - εύμαα

Διαβάστε περισσότερα

ECON 381 SC ASSIGNMENT 2

ECON 381 SC ASSIGNMENT 2 ECON 8 SC ASSIGNMENT 2 JOHN HILLAS UNIVERSITY OF AUCKLAND Problem Consider a consmer with wealth w who consmes two goods which we shall call goods and 2 Let the amont of good l that the consmer consmes

Διαβάστε περισσότερα

ADVANCED STRUCTURAL MECHANICS

ADVANCED STRUCTURAL MECHANICS VSB TECHNICAL UNIVERSITY OF OSTRAVA FACULTY OF CIVIL ENGINEERING ADVANCED STRUCTURAL MECHANICS Lecture 1 Jiří Brožovský Office: LP H 406/3 Phone: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast10.vsb.cz/brozovsky/

Διαβάστε περισσότερα

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3 Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point

Διαβάστε περισσότερα

Differential equations

Differential equations Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential

Διαβάστε περισσότερα

GEEPLUS VM1614. Force (N) vs Displacement (mm) Peak. Max 'ON' time. Force. Model No. VM

GEEPLUS VM1614. Force (N) vs Displacement (mm) Peak. Max 'ON' time. Force. Model No. VM VM1614 2 VM1614 18 VM1614 125 VM1614 1 GEEPLUS VM1614 P 1 is the continuous (1% ED) excitation power at mounted to a massive heatsink at 2 C P 1 5 W Total Mass 15 g T max 13 C Coil Mass 3 g R 2 2.8.2 mh.7

Διαβάστε περισσότερα

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves: 3.0 Marine Hydrodynamics, Fall 004 Lecture 0 Copyriht c 004 MIT - Department of Ocean Enineerin, All rihts reserved. 3.0 - Marine Hydrodynamics Lecture 0 Free-surface waves: wave enery linear superposition,

Διαβάστε περισσότερα

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Stresses in a Plane. Mohr s Circle. Cross Section thru Body. MET 210W Mohr s Circle 1. Some parts experience normal stresses in

Stresses in a Plane. Mohr s Circle. Cross Section thru Body. MET 210W Mohr s Circle 1. Some parts experience normal stresses in ME 10W E. Evans Stresses in a Plane Some parts eperience normal stresses in two directions. hese tpes of problems are called Plane Stress or Biaial Stress Cross Section thru Bod z angent and normal to

Διαβάστε περισσότερα

Computing the Gradient

Computing the Gradient FMIA F. Moukalled L. Mangani M. Darwish An Advanced Introduction with OpenFOAM and Matlab This textbook explores both the theoretical oundation o the Finite Volume Method (FVM) and its applications in

Διαβάστε περισσότερα

Forced Pendulum Numerical approach

Forced Pendulum Numerical approach Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane. upplement on Radiation tress and Wave etup/et down Radiation tress oncerned wit te force (or momentum flu) eerted on te rit and side of a plane water on te left and side of te plane. plane z "Radiation

Διαβάστε περισσότερα

Chapter 2. Stress, Principal Stresses, Strain Energy

Chapter 2. Stress, Principal Stresses, Strain Energy Chapter Stress, Principal Stresses, Strain nergy Traction vector, stress tensor z z σz τ zy ΔA ΔF A ΔA ΔF x ΔF z ΔF y y τ zx τ xz τxy σx τ yx τ yz σy y A x x F i j k is the traction force acting on the

Διαβάστε περισσότερα

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E. DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM by Zoran VARGA, Ms.C.E. Euro-Apex B.V. 1990-2012 All Rights Reserved. The 2 DOF System Symbols m 1 =3m [kg] m 2 =8m m=10 [kg] l=2 [m] E=210000

Διαβάστε περισσότερα

Finite difference method for 2-D heat equation

Finite difference method for 2-D heat equation Finite difference method for 2-D heat equation Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Κύµατα παρουσία βαρύτητας

Κύµατα παρουσία βαρύτητας Κύµατα παουσία βαύτητας 8. Grait as in th ocan Sarantis Sofianos Dpt. of hsics, Unirsit of thns Was in th ocan Srfac grait as Short and long limit in grait as Wa charactristics Intrnal as Charactristic

Διαβάστε περισσότερα

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model 1 Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis Applied Mathematics & Computers Laboratory Technical University of Crete Chania 73100,

Διαβάστε περισσότερα

Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ

Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ Ó³ Ÿ. 218.. 15, º 2(214).. 171Ä176 Š Œ œ ƒˆˆ ˆ ˆŠ ˆ ˆ ˆ Š Š Œ Œ Ÿ ˆ Š ˆ Š ˆ ˆŠ Œ œ ˆ.. Š Ö,, 1,.. ˆ μ,,.. μ³ μ,.. ÉÓÖ μ,,.š. ʳÖ,, Í μ ²Ó Ò ² μ É ²Ó ± Ö Ò Ê É É Œˆ ˆ, Œμ ± Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê μ ± Ê É

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

6.4 Superposition of Linear Plane Progressive Waves

6.4 Superposition of Linear Plane Progressive Waves .0 - Marine Hydrodynamics, Spring 005 Lecture.0 - Marine Hydrodynamics Lecture 6.4 Superposition of Linear Plane Progressive Waves. Oblique Plane Waves z v k k k z v k = ( k, k z ) θ (Looking up the y-ais

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

VARIATIONAL APPROACH TO SOLITARY SOLUTIONS USING JACOBI-ELLIPTIC FUNCTIONS. Yue Wu

VARIATIONAL APPROACH TO SOLITARY SOLUTIONS USING JACOBI-ELLIPTIC FUNCTIONS. Yue Wu Mathematical and Comptational Applications, Vol., No., pp. 9-93,. Association for Scientific Research VARIATIONAL APPROACH TO SOLITARY SOLUTIONS USING JACOBI-ELLIPTIC FUNCTIONS Ye W Economical Mathematics

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3. Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (, 1,0). Find a unit vector in the direction of A. Solution: A = ˆx( 1)+ŷ( 1 ( 1))+ẑ(0 ( 3)) = ˆx+ẑ3, A = 1+9 = 3.16, â = A A = ˆx+ẑ3 3.16

Διαβάστε περισσότερα

ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΣΤΟ ΟΡΟΣ ΠΗΛΙΟ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ

ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΣΤΟ ΟΡΟΣ ΠΗΛΙΟ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ EΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΕΙΟ Τμήμα Μηχανικών Μεταλλείων-Μεταλλουργών ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Κιτσάκη Μαρίνα

Διαβάστε περισσότερα

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhysicsAndMathsTutor.com June 2005 1. A car of mass 1200 kg moves along a straight horizontal road. The resistance to motion of the car from non-gravitational forces is of constant magnitude 600 N. The

Διαβάστε περισσότερα

Lecture 26: Circular domains

Lecture 26: Circular domains Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains

Διαβάστε περισσότερα

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Dr. D. Dinev, Department of Structural Mechanics, UACEG Lecture 4 Material behavior: Constitutive equations Field of the game Print version Lecture on Theory of lasticity and Plasticity of Dr. D. Dinev, Department of Structural Mechanics, UACG 4.1 Contents

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

The ε-pseudospectrum of a Matrix

The ε-pseudospectrum of a Matrix The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems

Διαβάστε περισσότερα

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B Problem 3.6 Given B = ˆxz 3y) +ŷx 3z) ẑx+y), find a unit vector parallel to B at point P =,0, ). Solution: At P =,0, ), B = ˆx )+ŷ+3) ẑ) = ˆx+ŷ5 ẑ, ˆb = B B = ˆx+ŷ5 ẑ = ˆx+ŷ5 ẑ. +5+ 7 Problem 3.4 Convert

Διαβάστε περισσότερα

Classical Theory (3): Thermostatics of Continuous Systems with External Forces

Classical Theory (3): Thermostatics of Continuous Systems with External Forces Insttute of Flu- & Thermoynamcs Unersty of Segen Classcal Theory (3): Thermostatcs of Contnuous Systems wth External Forces 3/ Σ: Equlbrum State? Isolaton, Inhomogenety External Forces F ϕ Components:...

Διαβάστε περισσότερα

Eulerian Simulation of Large Deformations

Eulerian Simulation of Large Deformations Eulerian Simulation of Large Deformations Shayan Hoshyari April, 2018 Some Applications 1 Biomechanical Engineering 2 / 11 Some Applications 1 Biomechanical Engineering 2 Muscle Animation 2 / 11 Some Applications

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

CONSULTING Engineering Calculation Sheet

CONSULTING Engineering Calculation Sheet E N G I N E E R S Consulting Engineers jxxx 1 Structure Design - EQ Load Definition and EQ Effects v20 EQ Response Spectra in Direction X, Y, Z X-Dir Y-Dir Z-Dir Fundamental period of building, T 1 5.00

Διαβάστε περισσότερα

Surface Mount Aluminum Electrolytic Capacitors

Surface Mount Aluminum Electrolytic Capacitors FEATURES CYLINDRICAL V-CHIP CONSTRUCTION LOW COST, GENERAL PURPOSE, 2000 HOURS AT 85 O C NEW EXPANDED CV RANGE (up to 6800µF) ANTI-SOLVENT (2 MINUTES) DESIGNED FOR AUTOMATIC MOUNTING AND REFLOW SOLDERING

Διαβάστε περισσότερα

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v. hp://www.nd.ed/~gryggva/cfd-corse/ The Eler Eqaions The Eler Eqaions The Eler eqaions for D flow: + + p = x E E + p where Define E = e + / H = h + /; h = e + p/ Gréar Tryggvason Spring 3 Ideal Gas: p =

Διαβάστε περισσότερα

Συγκριτική Αξιολόγηση Προσοµοιωµάτων Τοιχείων και Πυρήνων Κτηρίων µε τη Μέθοδο των Πεπερασµένων Στοιχείων και Πειραµατικά Αποτελέσµατα

Συγκριτική Αξιολόγηση Προσοµοιωµάτων Τοιχείων και Πυρήνων Κτηρίων µε τη Μέθοδο των Πεπερασµένων Στοιχείων και Πειραµατικά Αποτελέσµατα Συγκριτική Αξιολόγηση Προσοµοιωµάτων Τοιχείων και Πυρήνων Κτηρίων µε τη Μέθοδο των Πεπερασµένων Στοιχείων και Πειραµατικά Αποτελέσµατα Experimental verification of shear wall modeling using finite element

Διαβάστε περισσότερα

cz+d d (ac + cd )z + bc + dd c z + d

cz+d d (ac + cd )z + bc + dd c z + d T (z) = az + b cz + d ; a, b, c, d C, ad bc 0 ( ) a b M T (z) = (z) az + b c d cz + d (T T )(z) = T (T (z) (T T )(z) = az+b a + cz+d b c az+b + = (aa + cb )z + a b + b d a z + b cz+d d (ac + cd )z + bc

Διαβάστε περισσότερα

SMD Transient Voltage Suppressors

SMD Transient Voltage Suppressors SMD Transient Suppressors Feature Full range from 0 to 22 series. form 4 to 60V RMS ; 5.5 to 85Vdc High surge current ability Bidirectional clamping, high energy Fast response time

Διαβάστε περισσότερα

Two-mass Equivalent Link

Two-mass Equivalent Link Notes_08_0 1 of 0 Two-ass Equivalent ink B G JG C B G C = total ass B centroid location CG B = = BC BG BC check approxiate ass oent J J = ( BG ) ( CG ) G G _ APP (for slender rod J = J ) G _ APP G _ ACTUA

Διαβάστε περισσότερα

CYLINDRICAL & SPHERICAL COORDINATES

CYLINDRICAL & SPHERICAL COORDINATES CYLINDRICAL & SPHERICAL COORDINATES Here we eamine two of the more popular alternative -dimensional coordinate sstems to the rectangular coordinate sstem. First recall the basis of the Rectangular Coordinate

Διαβάστε περισσότερα

Geodesic Equations for the Wormhole Metric

Geodesic Equations for the Wormhole Metric Geodesic Equations for the Wormhole Metric Dr R Herman Physics & Physical Oceanography, UNCW February 14, 2018 The Wormhole Metric Morris and Thorne wormhole metric: [M S Morris, K S Thorne, Wormholes

Διαβάστε περισσότερα

Rectangular Polar Parametric

Rectangular Polar Parametric Harold s Precalculus Rectangular Polar Parametric Cheat Sheet 15 October 2017 Point Line Rectangular Polar Parametric f(x) = y (x, y) (a, b) Slope-Intercept Form: y = mx + b Point-Slope Form: y y 0 = m

Διαβάστε περισσότερα

Simplex Crossover for Real-coded Genetic Algolithms

Simplex Crossover for Real-coded Genetic Algolithms Technical Papers GA Simplex Crossover for Real-coded Genetic Algolithms 47 Takahide Higuchi Shigeyoshi Tsutsui Masayuki Yamamura Interdisciplinary Graduate school of Science and Engineering, Tokyo Institute

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) ( ) λ = 1 + t t. θ = t ε t. Continuum Mechanics. Chapter 1. Description of Motion dt t. Chapter 2. Deformation and Strain

( ) ( ) ( ) ( ) ( ) λ = 1 + t t. θ = t ε t. Continuum Mechanics. Chapter 1. Description of Motion dt t. Chapter 2. Deformation and Strain Continm Mechanics. Official Fom Chapte. Desciption of Motion χ (,) t χ (,) t (,) t χ (,) t t Chapte. Defomation an Stain s S X E X e i ij j i ij j F X X U F J T T T U U i j Uk U k E ( F F ) ( J J J J)

Διαβάστε περισσότερα

Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα

DuPont Suva 95 Refrigerant

DuPont Suva 95 Refrigerant Technical Information T-95 ENG DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 95 Refrigerant (R-508B) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

Thin Film Chip Resistors

Thin Film Chip Resistors FEATURES PRECISE TOLERANCE AND TEMPERATURE COEFFICIENT EIA STANDARD CASE SIZES (0201 ~ 2512) LOW NOISE, THIN FILM (NiCr) CONSTRUCTION REFLOW SOLDERABLE (Pb FREE TERMINATION FINISH) Type Size EIA PowerRating

Διαβάστε περισσότερα

www.smarterglass.com 978 65 6190 sales@smarterglass.com &&$'()!"#$%$# !!"# "#$%&'! &"# $() &() (, -. #)/ 0-.#! 0(, 0-. #)/ 1!2#! 13#25 631% -. #)/ 013#7-8(,83%&)( 2 %! 1%!#!#2!9&8!,:!##!%%3#9&8!,:!#,#!%63

Διαβάστε περισσότερα

L p approach to free boundary problems of the Navier-Stokes equation

L p approach to free boundary problems of the Navier-Stokes equation L p approach to free boundary problems of the Navier-Stokes equation e-mail address: yshibata@waseda.jp 28 4 1 e-mail address: ssshimi@ipc.shizuoka.ac.jp Ω R n (n 2) v Ω. Ω,,,, perturbed infinite layer,

Διαβάστε περισσότερα

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -

Διαβάστε περισσότερα

PP #1 Μηχανικές αρχές και η εφαρµογή τους στην Ενόργανη Γυµναστική

PP #1 Μηχανικές αρχές και η εφαρµογή τους στην Ενόργανη Γυµναστική PP #1 Μηχανικές αρχές και η εφαρµογή τους στην Ενόργανη Γυµναστική Σηµαντικοί παράγοντες στην εκτέλεση από µηχανικής απόψεως ικανότητα απόκτησης ύψους ικανότητα περιστροφής ικανότητα αιώρησης ικανότητα

Διαβάστε περισσότερα

(, ) (SEM) [4] ,,,, , Legendre. [6] Gauss-Lobatto-Legendre (GLL) Legendre. Dubiner ,,,, (TSEM) Vol. 34 No. 4 Dec. 2017

(, ) (SEM) [4] ,,,, , Legendre. [6] Gauss-Lobatto-Legendre (GLL) Legendre. Dubiner ,,,, (TSEM) Vol. 34 No. 4 Dec. 2017 34 4 17 1 JOURNAL OF SHANGHAI POLYTECHNIC UNIVERSITY Vol. 34 No. 4 Dec. 17 : 11-4543(174-83-8 DOI: 1.1957/j.cnki.jsspu.17.4.6 (, 19 :,,,,,, : ; ; ; ; ; : O 41.8 : A, [1],,,,, Jung [] Legendre, [3] Chebyshev

Διαβάστε περισσότερα

Τεχνική Έκθεση Συνοπτική παρουσίαση... 3

Τεχνική Έκθεση Συνοπτική παρουσίαση... 3 Δ2.3/2 1.1 Συνοπτική παρουσίαση....................... 3 Δ2.3/3 Σύμφωνα με το τεχνικό δελτίο του έργου η δράση της παρούσας έκθεσης συνοψίζεται ως εξής. Δράση 2.3: ΣΤΟΧΑΣΤΙΚΕΣ/ΝΤΕΤΕΡΜΙΝΙΣΤΙΚΕΣ ΥΒΡΙΔΙΚΕΣ

Διαβάστε περισσότερα

the total number of electrons passing through the lamp.

the total number of electrons passing through the lamp. 1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy

Διαβάστε περισσότερα

Applications. 100GΩ or 1000MΩ μf whichever is less. Rated Voltage Rated Voltage Rated Voltage

Applications. 100GΩ or 1000MΩ μf whichever is less. Rated Voltage Rated Voltage Rated Voltage Features Rated Voltage: 100 VAC, 4000VDC Chip Size:,,,,, 2220, 2225 Electrical Dielectric Code EIA IEC COG 1BCG Applications Modems LAN / WAN Interface Industrial Controls Power Supply Back-Lighting Inverter

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Parts Manual. Trio Mobile Surgery Platform. Model 1033 Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische

Διαβάστε περισσότερα

SIEMENS Squirrel Cage Induction Standard Three-phase Motors

SIEMENS Squirrel Cage Induction Standard Three-phase Motors - SIEMENS Squirrel Cage Induction Standard Three-phase Motors 2 pole 3000 rpm 50Hz Rated current Power Efficiency Rated Ratio Noise Output Frame Speed Weight 3V 400V 415V factor Class 0%Load 75%Load torque

Διαβάστε περισσότερα

SAW FILTER - RF RF SAW FILTER

SAW FILTER - RF RF SAW FILTER FEATURES - Frequencies from 0MHz to 700MHz - Custom specifications available - Industry standard package configurations - Low-loss saw component - Low amplitude ripple - RoHS compliance - Electrostatic

Διαβάστε περισσότερα

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example: (B t, S (t) t P AND P,..., S (p) t ): securities P : actual probability P : risk neutral probability Realtionship: mutual absolute continuity P P For example: P : ds t = µ t S t dt + σ t S t dw t P : ds

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

ECTS ΕΥΡΩΠΑΪΚΟ ΣΥΣΤΗΜΑ ΜΕΤΑΦΟΡΑΣ ΑΚΑΔΗΜΑΪΚΩΝ ΜΟΝΑΔΩΝ ΣΤΗΝ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ. (Α) Λίστα με τα στοιχεία των μαθημάτων στα ελληνικά. Κυματομηχανική Κωδικός

ECTS ΕΥΡΩΠΑΪΚΟ ΣΥΣΤΗΜΑ ΜΕΤΑΦΟΡΑΣ ΑΚΑΔΗΜΑΪΚΩΝ ΜΟΝΑΔΩΝ ΣΤΗΝ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ. (Α) Λίστα με τα στοιχεία των μαθημάτων στα ελληνικά. Κυματομηχανική Κωδικός ECTS ΕΥΡΩΠΑΪΚΟ ΣΥΣΤΗΜΑ ΜΕΤΑΦΟΡΑΣ ΑΚΑΔΗΜΑΪΚΩΝ ΜΟΝΑΔΩΝ ΣΤΗΝ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ (Α) Λίστα με τα στοιχεία των μαθημάτων στα ελληνικά Γενικές πληροφορίες μαθήματος: Τίτλος Κυματομηχανική Κωδικός CE0 μαθήματος:

Διαβάστε περισσότερα

. (1) 2c Bahri- Bahri-Coron u = u 4/(N 2) u

. (1) 2c Bahri- Bahri-Coron u = u 4/(N 2) u . (1) Nehari c (c, 2c) 2c Bahri- Coron Bahri-Lions (2) Hénon u = x α u p α (3) u(x) u(x) + u(x) p = 0... (1) 1 Ω R N f : R R Neumann d 2 u + u = f(u) d > 0 Ω f Dirichlet 2 Ω R N ( ) Dirichlet Bahri-Coron

Διαβάστε περισσότερα

4.4 Superposition of Linear Plane Progressive Waves

4.4 Superposition of Linear Plane Progressive Waves .0 Marine Hydrodynamics, Fall 08 Lecture 6 Copyright c 08 MIT - Department of Mechanical Engineering, All rights reserved..0 - Marine Hydrodynamics Lecture 6 4.4 Superposition of Linear Plane Progressive

Διαβάστε περισσότερα

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint 1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,

Διαβάστε περισσότερα

μ μ dω I ν S da cos θ da λ λ Γ α/β MJ Capítulo 1 % βpic ɛ Eridani V ega β P ic F ormalhaut 10 9 15% 70 Virgem 47 Ursa Maior Debris Disk Debris Disk μ 90% L ac = GM M ac R L ac R M M ac L J T

Διαβάστε περισσότερα

CURVILINEAR COORDINATES

CURVILINEAR COORDINATES CURVILINEAR COORDINATES Cartesian Co-ordinate System A Cartesian coordinate system is a coordinate system that specifies each point uniquely in a plane by a pair of numerical coordinates, which are the

Διαβάστε περισσότερα

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03).. Supplemental Material (not for publication) Persistent vs. Permanent Income Shocks in the Buffer-Stock Model Jeppe Druedahl Thomas H. Jørgensen May, A Additional Figures and Tables Figure A.: Wealth and

Διαβάστε περισσότερα

A research on the influence of dummy activity on float in an AOA network and its amendments

A research on the influence of dummy activity on float in an AOA network and its amendments 2008 6 6 :100026788 (2008) 0620106209,, (, 102206) : NP2hard,,..,.,,.,.,. :,,,, : TB11411 : A A research on the influence of dummy activity on float in an AOA network and its amendments WANG Qiang, LI

Διαβάστε περισσότερα

(Mechanical Properties)

(Mechanical Properties) 109101 Engineering Materials (Mechanical Properties-I) 1 (Mechanical Properties) Sheet Metal Drawing / (- Deformation) () 3 Force -Elastic deformation -Plastic deformation -Fracture Fracture 4 Mode of

Διαβάστε περισσότερα

Distributed by: www.jameco.com -800-83-4242 The content and copyrights of the attached material are the property of its owner. Single-Chip Voice Record/Playback Devices 60-, 75-, 90-, and 20-Second Durations

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response

Διαβάστε περισσότερα

Data sheet Thick Film Chip Resistor 5% - RS Series 0201/0402/0603/0805/1206

Data sheet Thick Film Chip Resistor 5% - RS Series 0201/0402/0603/0805/1206 Data sheet Thick Film Chip Resistor 5% - RS Series 0201/0402/0603/0805/1206 Scope -This specification applies to all sizes of rectangular-type fixed chip resistors with Ruthenium-base as material. Features

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

m r = F m r = F ( r) m r = F ( v) F = F (x) m dv dt = F (x) vdv = F (x)dx d dt = dx dv dt dx = v dv dx

m r = F m r = F ( r) m r = F ( v) F = F (x) m dv dt = F (x) vdv = F (x)dx d dt = dx dv dt dx = v dv dx m r = F m r = F ( r) m r = F ( v) x F = F (x) m dv dt = F (x) d dt = dx dv dt dx = v dv dx vdv = F (x)dx 2 mv2 x 2 mv2 0 = F (x )dx x 0 K = 2 mv2 W x0 x = x x 0 F (x)dx K K 0 = W x0 x x, x 2 x K 2 K =

Διαβάστε περισσότερα

Trimmable Thick Film Chip Resistor

Trimmable Thick Film Chip Resistor rimmable hick ilm Chip Resistor R Series rimmable hick ilm Chip Resistor Scope -his specification applies to all sizes of rectangular-type fixed chip resistors with Ruthenium-base as material. eatures

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

Περίπτωση Μελέτης Θαλάσσιας Κατασκευής με χρήση λογισμικού και με βάση Κώδικες (Compliant Tower) (8.1.10)

Περίπτωση Μελέτης Θαλάσσιας Κατασκευής με χρήση λογισμικού και με βάση Κώδικες (Compliant Tower) (8.1.10) Επιχειρησιακό Πρόγραμμα Εκπαίδευση και ια Βίου Μάθηση Πρόγραμμα ια Βίου Μάθησης ΑΕΙ για την Επικαιροποίηση Γνώσεων Αποφοίτων ΑΕΙ: Σύγχρονες Εξελίξεις στις Θαλάσσιες Κατασκευές Α.Π.Θ. Πολυτεχνείο Κρήτης

Διαβάστε περισσότερα

Chapter 7 Transformations of Stress and Strain

Chapter 7 Transformations of Stress and Strain Chapter 7 Transformations of Stress and Strain INTRODUCTION Transformation of Plane Stress Mohr s Circle for Plane Stress Application of Mohr s Circle to 3D Analsis 90 60 60 0 0 50 90 Introduction 7-1

Διαβάστε περισσότερα

Πρόγραμμα Μεταπτυχιακών Σπουδών «Πληροφορική και Εφαρμογές»

Πρόγραμμα Μεταπτυχιακών Σπουδών «Πληροφορική και Εφαρμογές» Πρόγραμμα Μεταπτυχιακών Σπουδών «Πληροφορική και Εφαρμογές» Αρχές Ψηφιακής Τεχνολογίας Σχεδιασμός σύνθετων συστημάτων Γιάννης Βογιατζής 28-29 Βασικές λογικές πύλες = Driver = AND = + OR = XOR = Inverter

Διαβάστε περισσότερα

Navigation Mathematics: Kinematics (Coordinate Frame Transformation) EE 565: Position, Navigation and Timing

Navigation Mathematics: Kinematics (Coordinate Frame Transformation) EE 565: Position, Navigation and Timing Lecture Navigation Mathematics: Kinematics (Coordinate Frame Transformation) EE 565: Position, Navigation and Timing Lecture Notes Update on Feruary 20, 2018 Aly El-Osery and Kevin Wedeward, Electrical

Διαβάστε περισσότερα