m r = F m r = F ( r) m r = F ( v) F = F (x) m dv dt = F (x) vdv = F (x)dx d dt = dx dv dt dx = v dv dx
|
|
- É Κίρκη Κοντολέων
- 8 χρόνια πριν
- Προβολές:
Transcript
1
2 m r = F m r = F ( r) m r = F ( v) x F = F (x) m dv dt = F (x) d dt = dx dv dt dx = v dv dx vdv = F (x)dx
3 2 mv2 x 2 mv2 0 = F (x )dx x 0 K = 2 mv2 W x0 x = x x 0 F (x)dx K K 0 = W x0 x x, x 2 x K 2 K = W x x 2 x x 0 x (x) = x 0 F (x )dx x, x 2 x x2 x x2 x x 0 F (x)dx = F (x)dx F (x)dx = (x ) (x 2 ) x 0 K 2 K = 2 K + = K 2 + 2
4 E = K + (x) = 2 mv2 + (x) z m F = mgˆk z0 < z 2 mv2 2 mv2 0 = z z 0 mgdz = mg(z 0 z ) z z 0 = h v = 0 h = v2 0 2g F ( r) c = r(t) n r () r (2) n s i,i+ r (i) r (i+) r (i) = r (i+) r (i) r (i) F ( r(i) ) r (i) W F ( r () ) r () + F ( r (2) ) r (2) + = n i= F ( r (i) ) r (i) n n F ( r (i) ) r (i) n i= c F d r
5 F r F r. ri + r. i r n. ri- F F c = r(t) W = F d r. t c = r(t) c F d r = tn t c F d r tn ( r) dt d t = F ( r) v dt t t t n c m d v dt = F ( r)
6 d r m d v dt d r = F ( r) d r d r = vdt m d v v = F ( r) d r P, P 2 2 m v 2 2 P2 2 m v 2 = F ( r) d r P P P 2 P2 W 2 = F ( r) d r P K 2 K = K = 2 m v 2 2 F d r = W 2 F m l ϕ 0 B = m g N r = l dr = 0 d r = ê r dr + ê ϕ rdϕ = êϕldϕ
7 N N d r = 0 W = B d r g d r = g ê ϕ l dϕ = gl (ϕ π 2 ) ϕ W = mgl ϕdϕ = mgl( ϕ 0 ϕ) ϕ 0 v 0 = 0 2 mv2 = mgl( ϕ 0 ϕ) v = 2mgl( ϕ 0 ϕ) N B=mg
8 ê r v 0 = v 0r ê r + v 0ϕ ê ϕ v = v r ê r + v ϕ ê ϕ ê ϕ v x v x = 0ê r + v ϕx ê ϕ = v ϕx ê ϕ K x K x K 0 = F d r K = 2 m v 2 F = G Mm r 2 êr R r O
9 d r = ê r dr + ê ϕ rdϕ R r r F d r = GMm R ( dr = GMm r2 r ) R 2 m v 2 ( 2 m v 0 2 = GMm r ) R v 2 v 0 2 = 2 GM ( ) ( ) R R R 2 R r 2gR r v 0 2 = v 2 0r + v2 0ϕ v x 2 = v 2 ϕ x ( ) R vϕ 2 x (v0r 2 + v0ϕ 2 ) = 2gR r x r x v ϕx r x L = r p = mrv ϕˆk ˆk ê r, ê ϕ r = R r = r x L = mrv 0ϕ = mr x v ϕ v ϕ v ϕ = R r x v 0ϕ R 2 ( ) R rx 2 v0ϕ 2 (v2 0r + v0ϕ 2 ) = 2gR r x
10 R r x r x g, R h r x = R + h R r x = R R + h h R, R 2 (R + h) 2 2 h R h = v2 0r 2g v 0ϕ = 0 v2 0ϕ gr h = v2 0r 2g
11 F = yî + axĵ (0, 0) (, ) (xy) x : (0, 0) (, 0) y : (, 0) (, ) x = y x = y dx = dy, d r = îdx + ĵdy = (î + ĵ)dx F = x(î + aĵ) W O A (C ) = 0 x(î + aĵ) (î + ĵ)dx = + a 2 y = 0, dy = 0 F d r = 0 x = dx = 0, dr = ĵdy F = yî + aĵ W O A (C 2 ) = a W O A (C ) W O A (C 2 ) 0 dy = a a =
12 a F = yî+xĵ F F W U(r) = r r 0 F d r r 0 r r, r 2 U(r ) U(r 2 ) = r2 r F d r U(r ) U(r 2 ) = K 2 K U(r i ) = U i U + K = U 2 + K 2 E = K + U = 2 mv2 + U F ϵξ
13 P 2 P F ϵξ d r = 0 c a c b P 2 P 2 F ϵξ d r = Fϵξ d r + Fϵξ d r c a,p 2 c b,p 2 Fϵξ d r c b P 2 = Fϵξ d r c b,p 2 Fϵξ d r c b,p 2 = Fϵξ d r c a,p 2 f m f = µmg W = µmgl l U( r) r 0 F
14 U r 0 r r U( r) = F d r r 0 F ( r) = U( r) U( r) F = G Mm r 2 êr r ( U( r) = F d r = GMm ) r 0 r 0 r 0 r 0 = U r = r = x 2 + y 2 + z 2 U(r) = G Mm r U(r) U(r) = k G Mm r = k r = k GMm
15 x 2 + y 2 + z 2 = c 2 U(r) U(r) F ( r) = U(r) h R R = mgh r = R + h r = R + h ( h ) R R (r) = U(r) U(R) = G Mm r + G Mm R GMm R 2 h = mgh m F δ F µδ F = F δ + F µδ W 2 = = 2 2 F d r = K 2 K 2 F δ d r + F µδ d r
16 2 F δ d r = U U 2 W µδ, 2 = 2 F µδ d r E = K 2 + U 2 (K + U ) = W µδ, 2 ϕ v 0 µ B = mg N = mg ϕ f = µ N E = W τρ. K = 2 mv2 0, U = mgh K 2 = 2 mv2, U 2 = 0 f N h B s
17 E = (K + U) = 2 m(v2 v0) 2 mgh s W τρ. = f d r = fs = µmg ϕ s s ϕ = l = h ϕ E = W τρ. v 2 v 2 0 = 2gh( µ ϕ) µ ϕ < v 2 = v gh( µ ϕ) µ ϕ = v = v 0 µ ϕ > h c = v 2 0 2g(µ ϕ ) ( hhc ) v 2 = v 2 0 h < h c h > h c (x) x
18 x W 2 = 2 F x dx F x U(x) = F x dx F x = du dx U(x) h = mgh U = 0 U = 0 U < 0 U = 0 U > 0 E > U K = E U /r 2 /r
19 (r) = a r 6 + r 0 < r < r 0 U r b r 2 (r 0 ) = 0 r 0 = 6 2a b (r 0 ) = a2 4b a = b = E > 0 r min 0 < E < U E = U E < 0 r min, r max E = U r 0 U(r 0 ) = U min E > 0 E < 0
20 r r s K = 2 mṡ2 F = (F t, F n ) F t F t U = F t ds E = K + U F ( r) = f( r) ê r f( r) r f( r)
21 f( r) = f(r) F ( r) = A r 2 êr A = Gm m 2 kq q 2 F = U U U = ê r r + ê U θ r θ + ê U ϕ r θ ϕ ê r U θ = U ϕ = 0 U r U = U(r) F = du(r) ê r = F dr (r) F = f(r)ê r
22 M ρ( r) M i M = i M i M i r i M i m R F i = G mm i R r i ( R r i ) = G mm i 3 r i R ( r 3 i R) F = i G mm i r i R ( r 3 i R) i M i dm = ρd r i r F = Gm r R r R 3 ρ( r)d g = F /m g = G r R r R 3 ρ( r)d dm du = G mdm r R U( R) = Gm ρ( r) r R d (r)
23 U( R) F ( R) = R U( R) = Gm ρ( r) R r R d (r) ( r = Gm ρ( r) ) R r R d (r) 3 R R r m u( R) = U( R)/m u( R) = G ρ( r) r R d (r) u( R) S F S Φ F = F ds S U( R) = c S S U
24 s R = R(s) du ds = 0 du ds = U ê t ê t U ê t = 0 U S U ê t F ( R) = U( R) F F S M ρ( r) Φ = F ds F = GMm r r 3 S Φ = GMm S r r 3 d S r Ω = r 3 d S = 4π S
25 Φ = 4πGMm F ds = S F d F d = 4πGMm M M = ρ( r)d F = m g( r) m ( g + 4πGρ( r)) d = 0 g = 4πGρ( r) g( r) = u( r) 2 u( r) = 4πGρ( r), r 0 2 u( r) = 0, r / 0
26 x = (3 t 2 )at, y = 3at 2, z = (3 + t 2 )at t = [0, t 0 ] k = τ = 3a ( + t 2 ) 2 F = 2xyî + x 2 ĵ m y = x 2 (0, 0) (, ) y = x F = kx k x (x, y) = (0, 0) v 0 y = y(x)
27 m F = f(r)ê r F 2 = k v L 0 L = L 0 e kt/m v = ± m 2 m m + m 2 g r, r r r r r 3 r r r r r r r, r r r r r 3, 2 r r r ρ( r) P oisson 2 u( r) = 4π G ρ( r) ρ( r) = A e r r Laplace P oisson g( r) = F /m ρ( r) r g( r) = 4π G ρ( r)
28 r r r g( r) = G r r 3 ρ( r ) d r M r r r ( r ) r r g( r) = G r r r 3 ρ( r ) d { } 2 r r ρ( r ) d = 4πρ( r) r 2 r r r = 4πδ3 ( r r ) δ 3 ( r r )ρ( r ) d = ρ( r) r r r = r ; R xy z R M σ
29 m r { G mm U(r) = r G mm R r > R r < R m ρ(r) r m U(r) = G mm r, r > R U(r) = G mm(r) r Gm4π R r ρ(r )r dr, r < R M(r) r F (r) = G mm(r) r 2 m R ; N m i U = Mgz cm M z cm v 0 = 0
30 z a σ 0 ( ) U(z) = 2πG N σ 0 z 2 + a 2 z R z F π = G Mm (xî + yĵ 2 zˆk) R3 a) ρ( r) b) x 2 + y 2 + (z ) 2 < 2 z m 0 Ioannina Athens r R
31 m, m 2 v, v 2 v, v 2 m v + m 2 v 2 = m v + m 2 v 2
32 U(r) = G m m 2 r r r 2 F ( r r 2 ) 0 K 2 = K 2 m v m 2v2 2 = 2 m v m 2v 2 2 Q K 2 = K + Q 2 m v m 2v2 2 = 2 m v m 2v Q m m 2 2 r R r 2 2
33 Q > 0 Q = 0 Q < 0 v, v 2 v, v 2 m v + m 2 v 2 = m v + m 2 v 2 2 m v m 2v2 2 = 2 m v m 2v Q Q = 0 m (v v ) = m 2 (v 2 v 2 ) m (v 2 v 2 ) = m2 (v 22 v 2 2 ) v v 0 v 2 v 2 0 v + v = v 2 + v 2
34 v 2 = v + v v 2 v = (m m 2 )v + 2m 2 v 2 m + m 2 v 2 = (m 2 m )v 2 + 2m v m + m 2 v = m v + m 2 v 2 (m m 2 (v v 2 )) + 2 m m 2 (m + m 2 )Q m + m 2 m 2 (m + m 2 ) v 2 = m v + m 2 v 2 (m m 2 (v v 2 )) 2 m m 2 (m + m 2 )Q m + m 2 m (m + m 2 ) v = v 2 (m m 2 (v v 2 )) 2 m m 2 (m + m 2 )Q = 0 Q = m m 2 (v v 2 ) 2 m + m 2 M = m + m 2 v = m v + m 2 v 2 m + m 2 M m R > r h m = m 2 v = v 0, v 2 = 0 m v = m( v + v 2) 2 mv2 0 = 2 mv mv 2 2
35 v 0 v 0 = ( v + v 2) ( v + v 2) v 2 0 = v 2 + v v v 2 v v 2 = 0 R = m r + m 2 r 2 = m r + m 2 r 2 m + m 2 M = m v + m 2 v 2 M v v 2 v c = v m 2 = ( v v 2 ) m + m 2 v 2c = v 2 = m m + m 2 ( v v 2 ) r r 2
36 p c = m v c = m m 2 m + m 2 ( v v 2 ) p 2c = m 2 v 2c = m m 2 m + m 2 ( v v 2 ) µ = m m 2 m + m 2 p c = µ ( v v 2 ) p 2c = µ ( v v 2 ) p = p c + p 2c = 0 p = m v + m 2 v 2 = (m + m 2 ) = constant v 2c, v c v 2c, v c
37 v ic, v ic v 2c = m m 2 v c v 2c = m m 2 v c 2 m vc m 2v2c 2 = 2 m v c m 2v 2c 2 ( ) ( ) m + m2 vc 2 = m + m2 v 2 c m 2 m 2 v c = v c, v 2c = v 2c ` 2c c 2c ` c c 2 2c 2
38 v c = m 2 m v 2c, v c = m 2 m v 2c v 2c = 0 m = v m + m 2 m 2 v c = v m + m 2 v 2c = v c v c Θ v = + v c θ v 2, v 2c θ = v c Θ + v c Θ = v c = v c = m 2 m + m 2 v, = Θ /v c + Θ m m + m 2 v m 2c c
39 /v c = m /m 2 Θ θ = m m 2 + Θ m m 2 < m m 2 + Θ θ (, ) θ m m 2 m m 2 > + Θ θ θ = θ max v v c θ max = v c v, 2 = v 2 + v 2 c ` ` c c θ m m 2 < ` ` c max c θ max m m 2 >
A 1 A 2 A 3 B 1 B 2 B 3
16 0 17 0 17 0 18 0 18 0 19 0 20 A A = A 1 î + A 2 ĵ + A 3ˆk A (x, y, z) r = xî + yĵ + zˆk A B A B B A = A 1 B 1 + A 2 B 2 + A 3 B 3 = A B θ θ A B = ˆn A B θ A B î ĵ ˆk = A 1 A 2 A 3 B 1 B 2 B 3 W = F
m i N 1 F i = j i F ij + F x
N m i i = 1,..., N m i Fi x N 1 F ij, j = 1, 2,... i 1, i + 1,..., N m i F i = j i F ij + F x i mi Fi j Fj i mj O P i = F i = j i F ij + F x i, i = 1,..., N P = i F i = N F ij + i j i N i F x i, i = 1,...,
m 1, m 2 F 12, F 21 F12 = F 21
m 1, m 2 F 12, F 21 F12 = F 21 r 1, r 2 r = r 1 r 2 = r 1 r 2 ê r = rê r F 12 = f(r)ê r F 21 = f(r)ê r f(r) f(r) < 0 f(r) > 0 m 1 r1 = f(r)ê r m 2 r2 = f(r)ê r r = r 1 r 2 r 1 = 1 m 1 f(r)ê r r 2 = 1 m
F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2
F (x) = kx x k F = F (x) U(0) U(x) = x F = kx 0 F (x )dx U(x) = U(0) + 1 2 kx2 x U(0) = 0 U(x) = 1 2 kx2 U(x) x 0 = 0 x 1 U(x) U(0) + U (0) x + 1 2 U (0) x 2 U (0) = 0 U(x) U(0) + 1 2 U (0) x 2 U(0) =
εάν F x, x οµόρροπα εάν F x, x αντίρροπα B = T W T = W B
4 Εργο και Ενέργεια 4.1 Εργο σε µία διάσταση Το έργο µιας σταθερής δύναµης F x, η οποία ασκείται σε ένα σώµα που κινείται σε µία διάσταση x, ορίζεται ως W = F x x Εργο ύναµης = ύναµη Μετατόπιση Εχουµε
!"#$ % &# &%#'()(! $ * +
,!"#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + 6 7 57 : - - / :!", # $ % & :'!(), 5 ( -, * + :! ",, # $ %, ) #, '(#,!# $$,',#-, 4 "- /,#-," -$ '# &",,#- "-&)'#45)')6 5! 6 5 4 "- /,#-7 ",',8##! -#9,!"))
Αρµονικοί ταλαντωτές
Αρµονικοί ταλαντωτές ΦΥΣ 131 - Διαλ. 31 Εκκρεµή - Απλό εκκρεµές θ l T mg r F Αυτή η εξίσωση είναι δύσκολο να λυθεί. Δεν µοιάζει µε τη γνωστή εξίσωση Για µικρές γωνίες θ µπορούµε όµως να γράψουµε Εποµένως
( ) ) V(x, y, z) Παραδείγματα. dt + "z ˆk + z d ˆk. v 2 =!x 2 +!y 2 +!z 2. F =! "p. T = 1 2 m (!x2 +!y 2 +!z 2
ΦΥΣ 211 - Διαλ.04 1 Παραδείγματα Κίνηση ενός και μόνο σωματιδίου, χρησιμοποιώντας Καρτεσιανές συντεταγμένες και συντηρητικές δυνάμεις. Οι εξισώσεις Lagrange θα πρέπει να επιστρέφουν τα ίδια αποτελέσματα
Έργο Κινητική Ενέργεια. ΦΥΣ 131 - Διαλ.16 1
Έργο Κινητική Ενέργεια ΦΥΣ 131 - Διαλ.16 1 Είδη δυνάµεων q Δύο είδη δυνάμεων: Ø Συντηρητικές ή διατηρητικές δυνάμεις και μή συντηρητικές ü Μια δύναμη είναι συντηρητική όταν το έργο που παράγει ασκούμενη
ds ds ds = τ b k t (3)
Γενικά Μαθηματικά ΙΙΙ Πρώτο σετ ασκήσεων, Λύσεις Άσκηση 1 Γνωρίζουμε ότι το εφαπτόμενο διάνυσμα ( t), ορίζεται ως: t = r = d r ds (1) και επιπλέον το διάνυσμα της καμπυλότητας ( k), ορίζεται ως: d t k
4. Zapiši Eulerjeve dinamične enačbe za prosto osnosimetrično vrtavko. ω 2
Mehanikateoretičnavprašanjainodgovori 1/12 Newtonovamehanika 1. Določiravninogibanjatočkevpoljucentralnesile. Ravninagibanjagreskozicentersileinimanormalovsmerivrtilne količine 2. Zapišiperiodogibanjapremočrtnegagibanjapodvplivompotenciala
Ευσταθής - Ασταθής ισορροπία
ΦΥΣ 131 - Διαλ.27 1 Ευσταθής - Ασταθής ισορροπία Έστω ένα σώμα σε ισορροπία. Του δίνουμε μια μικρή ώθηση Αν το σώμα κινηθεί προς τη θέση ισορροπίας τότε η ισορροπία είναι ευσταθής. Αν το σώμα απομακρυνθεί
"BHFC8I7H=CB HC &CH=CB 5B8 &CA9BHIA
ω θ ω = Δθ Δt, θ ω v v = rω ω = v r, r ω α α = Δω Δt, Δω Δt (rad/s)/s rad/s 2 ω α ω α rad/s 2 87.3 rad/s 2 α = Δω Δt Δω Δt α = Δω Δt = 250 rpm 5.00 s. Δω rad/s 2 Δω α Δω = 250 min rev 2π rad rev 60 1 min
Παρασκευή 1 Νοεμβρίου 2013 Ασκηση 1. Λύση. Παρατήρηση. Ασκηση 2. Λύση.
(, ) =,, = : = = ( ) = = = ( ) = = = ( ) ( ) = = ( ) = = = = (, ) =, = = =,,...,, N, (... ) ( + ) =,, ( + ) (... ) =,. ( ) = ( ) = (, ) = = { } = { } = ( ) = \ = { = } = { = }. \ = \ \ \ \ \ = = = = R
( ) = ke r/a όπου k και α θετικές σταθερές
Παράδειγµα 1 ΦΥΣ 11 - Διαλ.15 1 Θεωρήστε την κίνηση ενός σώματος,μάζας m σε ελκτικό δυναμικό: V r ke r/a όπου k και α θετικές σταθερές (α) Σχεδιάστε το για μικρές και μεγάλες τιμές της στροφορμής,, και
γ 1 6 M = 0.05 F M = 0.05 F M = 0.2 F M = 0.2 F M = 0.05 F M = 0.05 F M = 0.05 F M = 0.2 F M = 0.05 F 2 2 λ τ M = 6000 M = 10000 M = 15000 M = 6000 M = 10000 M = 15000 1 6 τ = 36 1 6 τ = 102 1 6 M = 5000
2013/2012. m' Z (C) : V= (E): (C) :3,24 m/s. (A) : T= (1-z).g. (D) :4,54 m/s
( ) 03/0 - o l P z o M l =.P S. ( ) m' Z l=m m=kg m =,5Kg g=0/kg : : : : Q. (A) : V= (B) : V= () : V= (D) : V= (): : V :Q. (A) :4m/s (B) :0,4 m/s () :5m/s (D) :0,5m/s (): : M T : Q.3 (A) : T=(-z).g (B)
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ Γ
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β) ΠΑΡΑΣΚΕΥΗ 9 ΜΑΙΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α1. Σωστό το α Α. Σωστό το β Α3.
ΦΥΣ η Πρόοδος: 18-Νοεµβρίου-2017
ΦΥΣ. 111 2 η Πρόοδος: 18-Νοεµβρίου-2017 Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας). Ονοµατεπώνυµο Αριθµός Ταυτότητας Απενεργοποιήστε τα κινητά σας. Η εξέταση αποτελείται
ΦΥΣ η Πρόοδος: 18-Νοεµβρίου-2017
ΦΥΣ. 111 2 η Πρόοδος: 18-Νοεµβρίου-2017 Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας). Ονοµατεπώνυµο Αριθµός Ταυτότητας Απενεργοποιήστε τα κινητά σας. Η εξέταση αποτελείται
ds 2 = 1 y 2 (dx2 + dy 2 ), y 0, < x < + (1) dx/(1 x 2 ) = 1 ln((1 + x)/(1 x)) για 1 < x < 1. l AB = dx/1 = 2 (2) (5) w 1/2 = ±κx + C (7)
ΒΑΡΥΤΗΤΑ ΚΑΙ ΚΟΣΜΟΛΟΓΙΑ Θ. Τομαράς 1. ΤΟ ΥΠΕΡΒΟΛΙΚΟ ΕΠΙΠΕΔΟ. Το υπερβολικό επίπεδο ορίζεται με τη μετρική ds = 1 y dx + dy ), y 0, < x < + 1) α) Να υπολογίσετε το μήκος της γραμμής της παράλληλης στον
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ- ΤΜΗΜΑ ΦΥΣΙΚΗΣ- ΤΟΜΕΑΣ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ ΜΑΘΗΜΑ: ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ Ι(ΤΜΗΜΑ ΑΡΤΙΩΝ) ΔΙΔΑΣΚΩΝ: Αν. Καθηγητής Ι.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ- ΤΜΗΜΑ ΦΥΣΙΚΗΣ- ΤΟΜΕΑΣ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ ΜΑΘΗΜΑ: ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ ΙΤΜΗΜΑ ΑΡΤΙΩΝ) ΔΙΔΑΣΚΩΝ: Αν. Καθηγητής Ι. ΡΙΖΟΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΦΕΒΡΟΥΑΡΙΟΥ 9 ΘΕΜΑ.4 μονάδες)
< F ( σ(h(t))), σ (h(t)) > h (t)dt.
ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ, ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ IV, /6/9 Θέμα 1. Εστω : a 1, β 1 ] R μια C 1 καμπύλη. Μια C 1 καμπύλη ρ : a, β] R λέγεται αναπαραμετρικοποίηση της αν υπάρχει h : a, β] a 1, β 1 ], 1 1 επί και
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2018 ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2018 ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΜΑ Α Α1. γ Α2. δ Α3. α Α4. δ Α5. α) Λάθος β) Σωστό γ) Λάθος δ) Σωστό ε) Λάθος ΘΕΜΑ Β Β1. α) Σωστή απάντηση είναι η ( i. ) β)
Κεφάλαιο 9. Περιστροφική κίνηση. Ροπή Αδράνειας-Ροπή-Στροφορμή
Κεφάλαιο 9 Περιστροφική κίνηση Ροπή Αδράνειας-Ροπή-Στροφορμή 1rad = 360o 2π Γωνιακή ταχύτητα (μέτρο). ω μεση = θ 1 θ 2 = θ t 2 t 1 t θ ω = lim t 0 t = dθ dt Μονάδες: περιστροφές/λεπτό (rev/min)=(rpm)=
ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 29/5/2015
ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9//0 ΘΕΜΑ Α :α :β :α :δ : i) Λ ii) Σ iii) Σ iv) Λ v) Σ ΘΕΜΑ Β Β. Σωστή πρόταση είναι η ιιι) Αιτιολόηση: L/ Μg mg
Έργο Ενέργεια Παραδείγµατα
ΦΥΣ 131 - Διαλ.17 1 Έργο Ενέργεια Παραδείγµατα Mn Επανάληψη Έργο δύναμης W = Έργο συνισταμένης δυνάμεων W = E "#$ Βαρυτική δυναμική ενέργεια U g " 1 2 F d r Ελαστική δυναμική ενέργεια U " = 1 2 kx 2 ΦΥΣ
ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 2015
ΘΕΜΑ Α Α. α Α.2 β Α.3 α Α.4 δ Α.5 α Λ β Σ γ Σ δ Λ ε Σ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 205 ΘΕΜΑ Β Β. Σωστή η απάντηση ( iii ) Αιτιολόγηση: Από το θεμελιώδη νόμο
Αρµονικοί ταλαντωτές
Αρµονικοί ταλαντωτές ΦΥΣ 111 - Διαλ. 38 Εκκρεµή - Απλό εκκρεµές θ T mg r F τ = r F = mgsinθ τ = I M d θ α, Ι = M dt = Mgsinθ d θ dt = g sinθ θ = g sinθ Διαφορική εξίσωση Αυτή η εξίσωση είναι δύσκολο να
Molekulare Ebene (biochemische Messungen) Zelluläre Ebene (Elektrophysiologie, Imaging-Verfahren) Netzwerk Ebene (Multielektrodensysteme) Areale (MRT, EEG...) Gene Neuronen Synaptische Kopplung kleine
Κεφάλαιο 7. Στροφορμη Δυναμικη Στερεου Σωματος {Στροφική και Μεταφορική Κίνηση Στερεού Σώματος, Αρχή Διατήρησης Στροφορμής}
Κεφάλαιο 7 ΣΤΕΡΕΟ ΣΩΜΑ Ροπη Αδρανειας {Υπολογισμός Ροπής Αδράνειας με τη Μέθοδο της Ολοκλήρωσης} Στροφορμη Δυναμικη Στερεου Σωματος {Στροφική και Μεταφορική Κίνηση Στερεού Σώματος, Αρχή Διατήρησης Στροφορμής}
➆t r r 3 r st 40 Ω r t st 20 V t s. 3 t st U = U = U t s s t I = I + I
tr 3 P s tr r t t 0,5A s r t r r t s r r r r t st 220 V 3r 3 t r 3r r t r r t r r s e = I t = 0,5A 86400 s e = 43200As t r r r A = U e A = 220V 43200 As A = 9504000J r 1 kwh = 3,6MJ s 3,6MJ t 3r A = (9504000
Αυτόματος Έλεγχος. Ενότητα 4 η : Πρότυπα μεταβλητών κατάστασης. Παναγιώτης Σεφερλής. Εργαστήριο Δυναμικής Μηχανών Τμήμα Μηχανολόγων Μηχανικών
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 4 η : Πρότυπα μεταβλητών κατάστασης Παναγιώτης Σεφερλής Εργαστήριο Δυναμικής Μηχανών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Κεφάλαιο 6. Συντηρητικες Δυναμεις {Ανεξαρτησία του Εργου από τη Διαδρομή, Εννοια του Δυναμικού, Δυναμικό και Πεδίο Συντηρητικών Δυνάμεων}
Κεφάλαιο 6 ΕΡΓΟ ΚΑΙ ΕΝΕΡΓΕΙΑ Εννοια του Εργου { Εργο και Κινητική Ενέργεια, Εργο Μεταβλητής Δύναμης, Ισχύς} Συντηρητικες Δυναμεις {Ανεξαρτησία του Εργου από τη Διαδρομή, Εννοια του Δυναμικού, Δυναμικό
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ. Εξέταση στη Μηχανική Ι Περίοδο Σεπτεµ ρίου 25Σεπτεµ ρίου2007
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τµήµα Φυσική Εξέταση στη Μηχανική Ι Περίοδο Σεπτεµ ρίου 25Σεπτεµ ρίου27 Τµήµα Π. Ιωάννου& Θ. Αποστολάτου Απαντήστεσεόσαπερισσότεραερωτήµαταµπορείτε.Ησαφήνεια,ακρί εια,λακωνικότητακαι
Α Ρ Ι Θ Μ Ο Σ : 6.913
Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ
Hamiltonian Δυναμική - Παράδειγμα
Hamiltonian Δυναμική - Παράδειγμα ΦΥΣ 211 - Διαλ.12 1 Μάζα m κινείται στο εσωτερικό επιφάνειας κατακόρυφου κώνου ρ=cz. Το σώμα κινείται μέσα σε ομοιόμορφο βαρυτικό πεδίο με g προς τα κάτω. Χρησιμοποιήστε
ΕΡΓΟ -ΕΝΕΡΓΕΙΑ. Το στοιχειώδες έργο dw δύναμης F που ασκείται σε ένα σώμα κατά τη στοιχειώδη μετατόπισή του d s είναι η ποσότητα:
ΕΡΓΟ -ΕΝΕΡΓΕΙΑ Το στοιχειώδες έργο dw δύναμης F που ασκείται σε ένα σώμα κατά τη στοιχειώδη μετατόπισή του d s είναι η ποσότητα: d F d s Παρατηρήσεις Το έργο εκφράζει την ποσότητα της ενέργειας που παράγεται
ΦΥΣ. 131 Τελική Εξέταση: 13-Δεκεμβρίου-2006
Σειρά Θέση ΦΥΣ. 3 Τελική Εξέταση: 3-Δεκεμβρίου-6 Πριν αρχίσετε συμπληρώστε τα στοιχεία σας (ονοματεπώνυμο και αριθμό ταυτότητας). Ονοματεπώνυμο Αριθμός ταυτότητας Σας δίνονται ισότιμα προβλήματα ( βαθμοί
ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Φυσική Γ Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: ΘΕΟΛΟΓΟΣ ΤΣΙΑΡΔΑΚΛΗΣ
ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Θετικής - Τεχνολογικής Κατεύθυνσης Φυσική Γ Λυκείου Επιμέλεια: ΘΕΟΛΟΓΟΣ ΤΣΙΑΡΔΑΚΛΗΣ e-mail: info@iliaskos.gr www.iliaskos.gr - f= f= f t+ 0 ) max
cos t dt = 0. t cos t 2 dt = 1 8 f(x, y, z) = (2xyz, x 2 z, x 2 y) (2xyz) = (x2 z) (x 2 z) = (x2 y) 1 u du =
ΛΥΣΕΙΣ. Οι ασκήσεις από το βιβλίο των Marsden - Tromba. 1. 7.1.()(b) σ (t) (cos t sin t 1) οπότε σ (t) και σ f(x y z) ds π (c) σ (t) i + tj οπότε σ (t) 1 + 4t και σ f(x y z) ds 1 t cos 1 + 4t dt 1 8 cos
Περιεχόμενα. A(x 1, x 2 )
Περιεχόμενα A(x 1, x 2 7 Ολοκληρώματα της Μαγνητοϋδροδυναμικής και Μαγνητοϋδροδυναμικά Κύματα Σχήμα 7.1: Οι τριδιάστατες ελικοειδείς μαγνητικές γραμμές στις οποίες εφάπτεται το διάνυσμα του μαγνητικού
Μηχανική - Ρευστομηχανική
Μηχανική - Ρευστομηχανική Ενότητα 5: Έργο και Ενέργεια Διδάσκων: Πομόνη Αικατερίνη, Αναπλ. Καθηγήτρια Επιμέλεια: Γεωργακόπουλος Τηλέμαχος, Υπ. Διδάκτωρ Φυσικής 015 Θετικών Επιστημών Φυσικής Άδειες Χρήσης
Š Š Œ Š Œ ƒˆ. Œ. ϵ,.. ÊÏ,.. µ ±Ê
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2003.. 34.. 7 Š 524.8+[530.12:531.51] Š Š Œ Š Œ ƒˆ. Œ. ϵ,.. ÊÏ,.. µ ±Ê Ñ Ò É ÉÊÉ Ö ÒÌ ² µ, Ê ˆ 138 Š Šˆ Š Š ˆ ˆ Š Œ ƒˆˆ 140 Š Œ ƒˆÿ œ 141 Š Ÿ Š Œ ƒˆÿ 143 ˆ Ÿ Š Œ ƒˆÿ ˆ Œ 144 ˆŸ Ä ˆ Œ
ΦΥΕ14-5 η Εργασία Παράδοση
ΦΥΕ4-5 η Εργασία Παράδοση.5.9 Πρόβληµα. Συµπαγής οµογενής κύλινδρος µάζας τυλιγµένος µε λεπτό νήµα αφήνεται να κυλίσει από την κορυφή κεκλιµένου επιπέδου µήκους l και γωνίας φ (ϐλέπε σχήµα). Το ένα άκρο
Alterazioni del sistema cardiovascolare nel volo spaziale
POLITECNICO DI TORINO Corso di Laurea in Ingegneria Aerospaziale Alterazioni del sistema cardiovascolare nel volo spaziale Relatore Ing. Stefania Scarsoglio Studente Marco Enea Anno accademico 2015 2016
Ενδεικτική λύση 3 ου θέματος
Ενδεικτική λύση ου θέματος ΘΕΜΑ ο Η διάταξη του παρακάτω σχήματος αποτελείται από μία κεκλιμένη επιφάνεια (περιοχή Α), μία οριζόντια επιφάνεια (περιοχή Β) και ένα τεταρτοκύκλιο (περιοχή Γ). Ομογενής και
Κεφάλαιο 6β. Περιστροφή στερεού σώματος γύρω από σταθερό άξονα
Κεφάλαιο 6β Περιστροφή στερεού σώματος γύρω από σταθερό άξονα Ροπή Ροπή ( ) είναι η τάση που έχει μια δύναμη να περιστρέψει ένα σώμα γύρω από κάποιον άξονα. d είναι η κάθετη απόσταση του άξονα περιστροφής
Εισαγωγή στις Φυσικές Επιστήµες- Κλασική Μηχανική Ιούλιος 2004
Εισαγωγή στις Φυσικές Επιστήµες- Κλασική Μηχανική Ιούλιος 004 Θέµα 1 Α) Ένα ελικόπτερο προσπαθεί να προσγειωθεί σε µία φρεγάτα που κινείται µε 17 m/s προς τον θετικό ηµιάξονα y. Την ίδια στιγµή φυσάει
Ax = b. 7x = 21. x = 21 7 = 3.
3 s st 3 r 3 t r 3 3 t s st t 3t s 3 3 r 3 3 st t t r 3 s t t r r r t st t rr 3t r t 3 3 rt3 3 t 3 3 r st 3 t 3 tr 3 r t3 t 3 s st t Ax = b. s t 3 t 3 3 r r t n r A tr 3 rr t 3 t n ts b 3 t t r r t x 3
μ μ dω I ν S da cos θ da λ λ Γ α/β MJ Capítulo 1 % βpic ɛ Eridani V ega β P ic F ormalhaut 10 9 15% 70 Virgem 47 Ursa Maior Debris Disk Debris Disk μ 90% L ac = GM M ac R L ac R M M ac L J T
Ειδικά κεφάλαια δικτύων αποχέτευσης
Ειδικά κεφάλαια δικτύων αποχέτευσης (συναρµογές, προβλήµατα µεγάλων και µικρών ταχυτήτων) ηµήτρης Κουτσογιάννης Τοµέας Υδατικών Πόρων, Υδραυλικών & Θαλάσσιων Έργων Εθνικό Μετσόβιο Πολυτεχνείο Προβλήµατα
ΣΥΝΟΨΗ 2 ου Μαθήματος
Ενημέρωση Η διδασκαλία του μαθήματος, πολλά από τα σχήματα και όλες οι ασκήσεις προέρχονται από το βιβλίο: «Πανεπιστημιακή Φυσική» του Hugh Young των Εκδόσεων Παπαζήση, οι οποίες μας επέτρεψαν τη χρήση
f a o gy s m a l nalg d co h n to h e y o m ia lalg e br coh the oogy lagebr
- - - * k ˆ v ˆ k ˆ ˆ E x ˆ ˆ [ v ˆ ˆ ˆ ˆ ˆ E x ˆ ˆ ˆ ˆ v ˆ Ex U U ˆ ˆ ˆ ˆ ˆ ˆ v ˆ M v ˆ v M v ˆ ˆ I U ˆ I 9 70 k k ˆ ˆ - I I 9ˆ 70 ˆ [ ˆ - v - - v k k k ˆ - ˆ k ˆ k [ ˆ ˆ D M ˆ k k 0 D M k [ 0 M v M ˆ
ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΚΡΟΥΣΕΙΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΕΜΠΤΗ 10 ΣΕΠΤΕΜΒΡΙΟΥ 2015
ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΚΡΟΥΣΕΙΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΕΜΠΤΗ 0 ΣΕΠΤΕΜΒΡΙΟΥ 05 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α γ Α β Α δ Α4 β Α5. α Λάθος β Σωστό γ Λάθος δ Σωστό ε Λάθος ΘΕΜΑ Β Β. Σωστό το β Αό
Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α
Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ
Εισαγωγή στις Φυσικές Επιστήμες ( ) Ονοματεπώνυμο Τμήμα
Εισαγωγή στις Φυσικές Επιστήμες (9-7-5) Ονοματεπώνυμο Τμήμα Θέμα ο Ερώτημα Ένα σώμα μάζας kg τοποθετείται σε ένα κεκλιμένο επίπεδο και συνδέεται μέσω του νήματος αβαρούς τροχαλίας με ένα ελατήριο αμελητέας
ƒˆˆ-ˆœ œ Ÿ ˆ ˆ Š ˆˆ ƒ ˆ ˆˆ
Ó³ Ÿ. 2018.. 15, º 6218).. 467Ä475 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ. ˆŸ ƒˆˆ-ˆœ œ Ÿ ˆ ˆ Š ˆˆ ƒ ˆ ˆˆ.. Ê 1 Œμ ±μ ± μ Ê É Ò Ê É É ³. Œ.. μ³μ μ μ, Œμ ± μ± μ, ÎÉμ ³μ Ë ± Í Ö ³³ É Î ±μ, μ ² μ μ ƒ ²Ó ÉÊ μ² μ ²μÉ μ É É μ Ô -
Apì ton diakritì kôbo ston q ro tou Gauss
Apì ton diaritì Ôbo ston q ro tou Gauss 1 Isoperimetri anisìthta sto diaritì Ôbo Θεωρούμε την οικογένεια J των συναρτήσεων J : [0 1] [0 ) που ικανοποιούν τα εξής: J0) = J1) = 0. Για κάθε a b [0 1] a +
v := dr dt r = r 1 + r 2
1. Πρόλογος Στις ακόλουθες σελίδες δίνονται σύντομες σημειώσεις γιά το μάθημα Μαθηματική Μοντελοποίηση Ι του τμήματος Εφαρμοσμένων Μαθηματικών του Πανεπιστημίου Κρήτης. Οι σημειώσεις είναι ιδιαίτερα σύντομες
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n1 x dx = 1 2 b2 1 2 a2 a b b x 2 dx = 1 a 3 b3 1 3 a3 b x n dx = 1 a n +1 bn +1 1 n +1 an +1 d dx d dx f (x) = 0 f (ax) = a f (ax) lim d dx f (ax) = lim 0 =
είναι το φυσικό µήκος του ελατηρίου, να βρείτε τις συναρτήσεις F = f ( l)
ΕΡΓΑΣΙΑ 4 η (Παράδοση: 8/04/005 ) Άσκηση Πάνω σε λείο οριζόντιο δάπεδο βρίσκεται ακίνητη η µάζα m = 4Kg στην οποία είναι δεµένη η µια άκρη του ελατηρίου σταθεράς k = 300N/m. Η µάζα m = Kg κινείται µε ταχύτητα
ΣΥΝΟΨΗ 3 ου Μαθήματος
Ενημέρωση Η διδασκαλία του μαθήματος, πολλά από τα σχήματα και όλες οι ασκήσεις προέρχονται από το βιβλίο: «Πανεπιστημιακή Φυσική» του Hugh Young των Εκδόσεων Παπαζήση, οι οποίες μας επέτρεψαν τη χρήση
1. Δυναμική Ενέργεια και Διατηρητικές Δυνάμεις
. Δυναμική Ενέργεια και Διατηρητικές Δυνάμεις Εξετάζοντας την αιώρα παρατηρούμε ότι στα ανώτατα σημεία η ενέργεια μοιάζει να έχει αποθηκευτεί υπό κάποια άλλη μορφή, που συνδέεται με το ύψος της πάνω από
Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα
x + = 0 N = {,, 3....}, Z Q, b, b N c, d c, d N + b = c, b = d. N = =. < > P n P (n) P () n = P (n) P (n + ) n n + P (n) n P (n) n P n P (n) P (m) P (n) n m P (n + ) P (n) n m P n P (n) P () P (), P (),...,
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική I 2 Σεπτεμβρίου 2010
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική I Σεπτεμβρίου 00 Απαντήστε και στα 0 ερωτήματα με σαφήνεια και απλότητα. Οι ολοκληρωμένες απαντήσεις εκτιμώνται ιδιαιτέρως. Καλή σας επιτυχία.. Ένας
u = 0 u = ϕ t + Π) = 0 t + Π = C(t) C(t) C(t) = K K C(t) ϕ = ϕ 1 + C(t) dt Kt 2 ϕ = 0
u = (u, v, w) ω ω = u = 0 ϕ u u = ϕ u = 0 ϕ 2 ϕ = 0 u t = u ω 1 ρ Π + ν 2 u Π = p + (1/2)ρ u 2 + ρgz ω = 0 ( ϕ t + Π) = 0 ϕ t + Π = C(t) C(t) C(t) = K K C(t) ϕ = ϕ 1 + C(t) dt Kt C(t) ϕ ϕ 1 ϕ = ϕ 1 p ρ
Ερωτήσεις επανάληψης στο στερεό - απαντήσεις
Υλικό Φυσικς Χημείας Μηχανικ στερεού Ερωτσεις επανάληψης στο στερεό - απαντσεις ) τη ράδο ασκούνται οι δυνάμεις : y A Η από το νμα, η από τον τοίχο, και το άρος της W όπως φαίνεται στο σχμα. Θα είναι x
ΜΑΘΗΜΑΤΙΚΑ ΙΙ ιδάσκων : Ε. Στεφανόπουλος 12 ιουνιου 2017
Πανεπιστηµιο Πατρων Πολυτεχνικη Σχολη Τµηµα Μηχανικων Η/Υ & Πληροφορικης ΜΑΘΗΜΑΤΙΚΑ ΙΙ ιδάσκων : Ε. Στεφανόπουλος 12 ιουνιου 217 Θ1. Θεωρούµε την συνάρτηση f(x, y, z) = 1 + x 2 + 2y 2 z. (αʹ) Να ϐρεθεί
ΤΥΠΟΛΟΓΙΟ. q e = C Φορτίο Ηλεκτρονίου 1.1. Ηλεκτρικό Πεδίο 2.1. Ηλεκτρικό Πεδίο Σημειακού Φορτίου Q Ηλεκτρικό Πεδίο Σημειακού
ΤΥΠΟΛΟΓΙΟ q e = 1.6 10 19 C Φορτίο Ηλεκτρονίου 1.1 F = k Q 1 Q 2 r 2 = 9 10 9 Q 1 Q 2 r 2 Νόμος Coulomb 1.2 E = F q E = k Q r 2 E = k Q r 2 e r E = 2kλ ρ E = 2kλ ρ e ρ ε 0 = 1/4πk = 8.85 10 12 S. I. Ε
Aριστοβάθμιο Ενδεικτικε ς απαντή σεις στή φυσική Προσανατολισμου Πανελλή νιες
Ενδεικτικε ς απαντή σεις στή φυσική Προσανατολισμου Πανελλή νιες 12-06-2017 Β1) Σωστή απάντηση η (ii). ΘΕΜΑ Α Α1) δ Α2) γ Α3) α Α) δ Α5) α) Λ β) Σ γ) Σ δ) Σ ε) Λ ΘΕΜΑ Β ΘI: F = 0 m g = K Δl o = Δl o =
Ορμή - Κρούσεις, ΦΥΣ Διαλ.19 1
Ορμή - Κρούσεις, ΦΥΣ 131 - Διαλ.19 1 ΦΥΣ 131 - Διαλ.19 2 Κρούσεις σε 2 διαστάσεις q Για ελαστικές κρούσεις! p 1 + p! 2 = p! 1! + p! 2! όπου p = (p x,p y ) Δηλαδή είναι 2 εξισώσεις, µια για κάθε διεύθυνση
Φυσική Ι 1ο εξάμηνο. Γεώργιος Γκαϊντατζής Επίκουρος Καθηγητής. Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης.
Φυσική Ι 1ο εξάμηνο Γεώργιος Γκαϊντατζής Επίκουρος Καθηγητής Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης 9 ο μάθημα Κεφάλαιο 1 Κινηματική του Στερεού Σώματος Κίνηση στερεού σώματος
Déformation et quantification par groupoïde des variétés toriques
Défomation et uantification pa goupoïde de vaiété toiue Fédéic Cadet To cite thi veion: Fédéic Cadet. Défomation et uantification pa goupoïde de vaiété toiue. Mathématiue [math]. Univeité d Oléan, 200.
Καθ. Βλάσης Κουµούσης
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΘΕΩΡΙΑ ΚΕΛΥΦΩΝ Καθ. Βλάσης Κουµούσης Κελύφη Εκ Περιστροφής Μεµβρανική Θεωρία Παραµόρφωση w K.K K.K υ 3 Κάτοψη Παράλληλος θ 0 θ θ 0
1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint
1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,
Gapso t e q u t e n t a g ebra P open parenthesis N closing parenthesis fin i s a.. pheno mno nd iscovere \ centerline
G q v v G q v H 4 q 4 q v v ˆ ˆ H 4 ] 4 ˆ ] W q K j q G q K v v W v v H 4 z ] q 4 K ˆ 8 q ˆ j ˆ O C W K j ˆ [ K v ˆ [ [; 8 ] q ˆ K O C v ˆ ˆ z q [ R ; ˆ 8 ] R [ q v O C ˆ ˆ v - - ˆ - ˆ - v - q - - v -
ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2001. + mu 1 2m. + u2. = u 1 + u 2. = mu 1. u 2, u 2. = u2 u 1 + V2 = V1
ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 00 ΘΕΜΑ : (α) Ταχύτητα ΚΜ: u KM = mu + mu m = u + u Εποµένως u = u u + u = u u, u = u u + u = u u (β) Διατήρηση ορµής στο ΚΜ: mu + mu = mv + mv u + u = V + V = 0 V = V
Ποια η ταχύτητά του τη στιγµή που έχει περάσει πλήρως από την τρύπα? Λύση µε διατήρηση της ενέργειας. + K f. ! 0 + 0 = mg " L & $ !
Παράδειγµα Ενέργειες Το ακόλουθο πρόβληµα µπορεί να λυθεί είτε µε χρήση των νόµων του Newton ( F=mα ) ή Διατήρηση ενέργειας. Ένα µικρό τµήµα σχοινιού κρέµεται προς τα κάτω µέσα από µια τρύπα σε λείο τραπέζι.
Ενότητα 9: Ασκήσεις. Άδειες Χρήσης
Μηχανική των Ρευστών Ενότητα 9: Ασκήσεις Βασίλειος Λουκόπουλος, Επίκουρος Καθηγητής Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ
ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ Διδάσκων: Θεόδωρος Ν. Τομαράς 1. Μετασχηματισμοί συντεταγμένων και συμμετρίες. 1α. Στροφές στο επίπεδο. Θεωρείστε δύο καρτεσιανά συστήματα συντεταγμένων στο επίπεδο, στραμμένα
Μηχανική - Ρευστομηχανική
Μηχανική - Ρευστομηχανική Ενότητα 10: Βαρύτητα Διδάσκων: Πομόνη Αικατερίνη, Αναπλ. Καθηγήτρια Επιμέλεια: Γεωργακόπουλος Τηλέμαχος, Υπ. Διδάκτωρ Φυσικής 015 Θετικών Επιστημών Φυσικής Άδειες Χρήσης Το παρόν
Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Φυσική Προσανατολισμού, Θετικών Σπουδών. Ημερομηνία: 13 Ιουνίου 2018
Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων Εξεταζόμενο Μάθημα: Φυσική Προσανατολισμού, Θετικών Σπουδών Ημερομηνία: 13 Ιουνίου 2018 Απαντήσεις Θεμάτων ΘΕΜΑ Α Α1. γ Α2. δ Α3. α Α4. δ Α5. α) Λάθος β)
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3/2/2016 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3/2/2016 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ 2 ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας m 0.25 Kg κινείται στο επίπεδο xy, με τις εξισώσεις κίνησης
ΕΡΓΑΣΙΑ 4 η. Παράδοση 16-3-2009. Οι ασκήσεις είναι βαθμολογικά ισοδύναμες
ΕΡΓΑΣΙΑ 4 η Παράδοση -3-009 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες Άσκηση Δύο σώματα m και m κινούνται χωρίς τριβές στην τροχιά που φαίνεται στο σχήμα με ταχύτητες V και V αντίστοιχα, V f V. Ελατήριο
ΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ευστάθιος Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟN ΑΘΗΝΩΝ,, ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ. ΚΥΛΙΣΗ, ΡΟΠΗ και ΣΤΡΟΦΟΡΜΗ
ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ Γωνιακή Μετατόπιση & Ταχύτητα Περιστροφική Κινητική Ενέργεια & Ροπή Αδράνειας Υπολογισμός Ροπής Αδράνειας Στερεών Σωμάτων Θεώρημα Παραλλήλων Αξόνων (Steine) ΚΥΛΙΣΗ, ΡΟΠΗ και
Ροπή δύναµης Μεθοδολογία ασκήσεων
ΦΥΣ 131 - Διαλ.3 1 Ροπή δύναµης Μεθοδολογία ασκήσεων q Κάντε ένα σκίτσο του προβλήµατος και διαλέξτε το σώµα ή σώµατα που θα αναλύσετε. q Για κάθε σώµα σχεδιάστε τις δυνάµεις που ασκούνται (διάγραµµα ελευθέρου
Ó³ Ÿ , º 1(199).. 66Ä79 .. Ê 1. Œμ ±μ ± μ Ê É Ò Ê É É ³. Œ.. μ³μ μ μ, Œμ ±
Ó³ Ÿ. 216.. 13, º 1(199).. 66Ä79 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ. ˆŸ Œ Ÿ ƒˆÿ ˆ Œ ƒ ˆ ˆ.. Ê 1 Œμ ±μ ± μ Ê É Ò Ê É É ³. Œ.. μ³μ μ μ, Œμ ± μé ³± Ì ²ÖÉ É ±μ É μ É Í ³μÉ Î μ ²μ± ²Ó μ³ μ- Éμ± Ö ² ±É ± ³ ÏÉ Ì ±μ²ó± Ì ³ ±, Ò
.. ntsets ofa.. d ffeom.. orp ism.. na s.. m ooth.. man iod period I n open square. n t s e t s ofa \quad d ffeom \quad orp ism \quad na s \quad m o
G G - - -- - W - - - R S - q k RS ˆ W q q k M G W R S L [ RS - q k M S 4 R q k S [ RS [ M L ˆ L [M O S 4] L ˆ ˆ L ˆ [ M ˆ S 4 ] ˆ - O - ˆ q k ˆ RS q k q k M - j [ RS ] [ M - j - L ˆ ˆ ˆ O ˆ [ RS ] [ M
6. ΙΑΦΟΡΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΡΟΗΣ
6.1 ΚΙΝΗΜΑΤΙΚΗ ΡΟΪΚΟΥ ΣΤΟΙΧΕΙΟΥ 6. ΙΑΦΟΡΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΡΟΗΣ -Λεπτοµέρειες της ροής Απειροστός όγκος ελέγχου - ιαφορική Ανάλυση Περιγραφή πεδίων ταχύτητας και επιτάχυνσης Euleian, Lagangian U U(x,y,,t)
Assessment of otoacoustic emission probe fit at the workfloor
Assessment of otoacoustic emission probe fit at the workfloor t s st tt r st s s r r t rs t2 t P t rs str t t r 1 t s ér r tr st tr r2 t r r t s t t t r t s r ss r rr t 2 s r r 1 s r r t s s s r t s t
1ος Θερμοδυναμικός Νόμος
ος Θερμοδυναμικός Νόμος Έργο-Έργο ογκομεταβολής Αδιαβατικό Έργο Εσωτερική ενέργεια, U Πρώτος Θερμοδυναμικός Νόμος Θερμότητα Ολική Ενέργεια Ενθαλπία Θερμοχωρητικότητα Διεργασίες Ιδανικών Αερίων ΕΡΓΟ Κεφάλαιο3,
ΕΞΕΤΑΣΕΙΣ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Διδάσκοντες: Βαρσάμης Χρήστος, Φωτόπουλος Παναγιώτης
ΕΞΕΤΑΣΕΙΣ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 218-219 ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Διδάσκοντες: Βαρσάμης Χρήστος, Φωτόπουλος Παναγιώτης ΘΕΜΑ 1 Διάρκεια εξέτασης 2 ώρες Υλικό σημείο κινείται ευθύγραμμα πάνω στον άξονα x με ταχύτητα,
5 η Εργασία Παράδοση 20/5/2007 Οι ασκήσεις είναι ισοδύναµες
5 η Εργασία Παράδοση /5/7 Οι ασκήσεις είναι ισοδύναµες Για ένα συµµετρικό σώµα (για παράδειγµα, ϑεωρείστε ένα κυλινδρικό σώµα) που κυλά προς τα κάτω, χωρίς να ολισθαίνει, πάνω σε κεκλιµένο επίπεδο, να
ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΚΡΟΥΣΕΙΣ ΤΑΛΑΝΤΩΣΕΙΣ ΤΡΙΤΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ 2016
ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΚΡΟΥΣΕΙΣ ΤΑΛΑΝΤΩΣΕΙΣ ΤΡΙΤΗ ΣΕΠΤΕΜΒΡΙΟΥ 0 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α β Α β Α β Α γ Α5. α Λάθος β Σωστό γ Σωστό δ Λάθος ε Λάθος ΘΕΜΑ Β Β. Σωστό το γ Αν υ είναι
Ενημέρωση. Η διδασκαλία του μαθήματος, όλες οι ασκήσεις προέρχονται από το βιβλίο: «Πανεπιστημιακή
Ενημέρωση Η διδασκαλία του μαθήματος, πολλά από τα σχήματα και όλες οι ασκήσεις προέρχονται από το βιβλίο: «Πανεπιστημιακή Φυσική» του Hugh Young των Εκδόσεων Παπαζήση, οι οποίες μας επέτρεψαν τη χρήση
= s 2m 1 + s 1 m 2 s 1 s 2
ΑΝΤΙΜΕΤΑΘΕΤΙΚΗ ΑΛΓΕΒΡΑ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ, 203 ΣΗΜΕΙΩΣΕΙΣ ΧΑΡΑ ΧΑΡΑΛΑΜΠΟΥΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ, ΑΠΘ Οι σηµειώσεις αυτές είναι ϐασισµένες στις διαλέξεις του µαθήµατος. Καταγράϕηκαν αρχικά ηλεκτρονικά από τη κ.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι 17 Φεβρουαρίου 2015
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι 17 Φεβρουαρίου 2015 Τμήμα Θ. Αποστολάτου & Π. Ιωάννου Απαντήστε και στα 4 προβλήματα με σαφήνεια και απλότητα. Οι ολοκληρωμένες απαντήσεις στα ερωτήματα εκτιμώνται
ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ (ΠΕΡΙΣΤΡΟΦΙΚΗ ΑΔΡΑΝΕΙΑ )
ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ (ΠΕΡΙΣΤΡΟΦΙΚΗ ΑΔΡΑΝΕΙΑ ) Η περιστροφική αδράνεια ενός σώματος είναι το μέτρο της αντίστασης του στη μεταβολής της περιστροφικής του κατάστασης, αντίστοιχο της μάζας στην περίπτωση της μεταφορικής
P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ
P P Ó P r r t r r r s 1 r r ó t t ó rr r rr r rí st s t s Pr s t P r s rr r t r s s s é 3 ñ í sé 3 ñ 3 é1 r P P Ó P str r r r t é t r r r s 1 t r P r s rr 1 1 s t r r ó s r s st rr t s r t s rr s r q s