# Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Save this PDF as:

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3."

## Transcript

1 Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (, 1,0). Find a unit vector in the direction of A. Solution: A = ˆx( 1)+ŷ( 1 ( 1))+ẑ(0 ( 3)) = ˆx+ẑ3, A = 1+9 = 3.16, â = A A = ˆx+ẑ = ˆx0.3+ẑ0.95.

2 Problem 3. Given vectors A = ˆx ŷ3+ẑ, B = ˆx ŷ+ẑ3, and C = ˆx4+ŷ ẑ, show that C is perpendicular to both A and B. Solution: A C = (ˆx ŷ3+ẑ) (ˆx4+ŷ ẑ) = 8 6 = 0, B C = (ˆx ŷ+ẑ3) (ˆx4+ŷ ẑ) = 8 6 = 0.

3 Problem 3.5 Given vectors A = ˆx+ŷ ẑ3, B = ˆx ŷ4, and C = ŷ ẑ4, find (a) A and â, (b) the component of B along C, (c) θ AC, (d) A C, (e) A (B C), (f) A (B C), (g) ˆx B, and (h) (A ŷ) ẑ. Solution: (a) From Eq. (3.4), and, from Eq. (3.5), A = 1 + +( 3) = 14, â A = ˆx+ŷ ẑ3 14. (b) The component of B along C (see Section 3-1.4) is given by (c) From Eq. (3.18), Bcosθ BC = B C C = 8 0 = 1.8. θ AC = cos 1 A C AC = cos = cos = (d) From Eq. (3.7), A C = ˆx(( 4) ( 3))+ŷ(( 3)0 1( 4))+ẑ(1() (0)) = ˆx+ŷ4+ẑ. (e) From Eq. (3.7) and Eq. (3.1), A (B C) = A (ˆx16+ŷ8+ẑ4) = 1(16)+(8)+( 3)4 = 0. Eq. (3.30) could also have been used in the solution. Also, Eq. (3.9) could be used in conjunction with the result of part (d). (f) By repeated application of Eq. (3.7), A (B C) = A (ˆx16+ŷ8+ẑ4) = ˆx3 ŷ5 ẑ4. Eq. (3.33) could also have been used. (g) From Eq. (3.7), ˆx B = ẑ4.

4 (h) From Eq. (3.7) and Eq. (3.1), (A ŷ) ẑ = (ˆx3+ẑ) ẑ = 1. Eq. (3.9) and Eq. (3.5) could also have been used in the solution.

5 Problem 3.11 Find a unit vector parallel to either direction of the line described by x+z = 4. Solution: First, we find any two points on the given line. Since the line equation is not a function of y, the given line is in a plane parallel to the x z plane. For convenience, we choose the x z plane with y = 0. For x = 0, z = 4. Hence, point P is at (0,0,4). For z = 0, x =. Hence, point Q is at (,0,0). Vector A from P to Q is: A = ˆx( 0)+ŷ(0 0)+ẑ(0 4) = ˆx ẑ4, â = A ˆx ẑ4 =. A 0

6 Problem 3.16 Given B = ˆx(z 3y) +ŷ(x 3z) ẑ(x+y), find a unit vector parallel to B at point P = (1,0, 1). Solution: At P = (1,0, 1), B = ˆx( 1)+ŷ(+3) ẑ(1) = ˆx+ŷ5 ẑ, ˆb = B B = ˆx+ŷ5 ẑ = ˆx+ŷ5 ẑ

8 In the spherical coordinate system, P 4 = ( ( ) + +( ),tan 1 ( ( ) + / ),tan 1 (/ )) = ( 3,.187 rad,3π/4 rad) (3.46,15.3,135.0 ). Note that in both the cylindrical and spherical coordinates, φ is in Quadrant II.

9 Problem 3.5 Use the appropriate expression for the differential surface area ds to determine the area of each of the following surfaces: (a) r = 3; 0 φ π/3; z, (b) r 5; π/ φ π; z = 0, (c) r 5; φ = π/4; z, (d) R = ; 0 θ π/3; 0 φ π, (e) 0 R 5; θ = π/3; 0 φ π. Also sketch the outlines of each of the surfaces. Solution: Φ = π/3 3 y 5 5 x (a) (b) (c) (d) (e) Figure P3.5: Surfaces described by Problem 3.5. (a) Using Eq. (3.43a), π/3 ( ) A = (r) r=3 dφ dz = (3φz) π/3 φ=0 = 4π. z= φ=0 z= (b) Using Eq. (3.43c), 5 π ( ( A = (r) z=0 dφ dr = 1 r φ ) ) 5 π r= = 1π r= φ=π/ φ=π/ 4.

10 (c) Using Eq. (3.43b), (d) Using Eq. (3.50b), A = 5 ( ) A = (1) φ=π/4 dr dz = (rz) 5 z= = 1. z= r= r= π/3 π θ=0 φ=0 (e) Using Eq. (3.50c), ( R sinθ ) R= dφ dθ = ( ) ( 4φ cosθ) π/3 π θ=0 = π. φ=0 5 π ( ( A = (Rsinθ) θ=π/3 dφ dr = 1 R φ sin π ) ) π 5 R=0 φ=0 3 φ=0 R=0 = 5 3π.

11 Problem 3.6 Find the volumes described by (a) r 5; π/ φ π; 0 z, (b) 0 R 5; 0 θ π/3; 0 φ π. Also sketch the outline of each volume. Solution: z z 5 5 y y x (a) x (b) Figure P3.6: Volumes described by Problem 3.6. (a) From Eq. (3.44), π 5 ( ((1 v = r dr dφ dz = r φz ) ) ) 5 π = 1π r= z=0 φ=π/ r= φ=π/ z=0. (b) From Eq. (3.50e), π v = φ=0 π/3 5 θ=0 R=0 R sinθ dr dθ dφ ( ( ) ) = cosθ R3 5 3 φ R=0 π/3 θ=0 π φ=0 = 15π 3.

12 Problem 3.30 Given vectors A = ˆr(cosφ + 3z) ˆφ(r+ 4sinφ)+ẑ(r z), B = ˆrsinφ + ẑcosφ, find (a) θ AB at (,π/,0), (b) a unit vector perpendicular to both A and B at (,π/3,1). Solution: It doesn t matter whether the vectors are evaluated before vector products are calculated, or if the vector products are directly calculated and the general results are evaluated at the specific point in question. (a) At (,π/,0), A = ˆφ8+ẑ and B = ˆr. From Eq. (3.18), θ AB = cos 1 ( A B AB ) = cos 1 ( 0 AB ) = 90. (b) At (,π/3,1), A = ˆr 7 ˆφ4(1+ 1 3) and B = ˆr 1 3+ẑ 1. Since A B is perpendicular to both A and B, a unit vector perpendicular to both A and B is given by ± A B A B = ± ˆr( 4(1+ 1 3))( 1 ) ˆφ( 7 )( 1 ) ẑ(4(1+ 1 3))( 1 3) ((1+ 1 3)) +( 7 4 ) +(3+ 3) (ˆr ˆφ0.8+ẑ0.843).

13 Problem 3.3 Determine the distance between the following pairs of points: (a) P 1 = (1,1,) and P = (0,,3), (b) P 3 = (,π/3,1) and P 4 = (4,π/,3), (c) P 5 = (3,π,π/) and P 6 = (4,π/,π). Solution: (a) From Eq. (3.66), d = (b) From Eq. (3.67), d = (c) From Eq. (3.68), d = + 4 ()(4)cos (3)(4) (0 1) +( 1) +(3 ) = 3. ( π π ) +(3 1) = (cos π cosπ + sinπ sin π ( cos π π )) = 5.

14 Problem 3.34 Transform the following vectors into cylindrical coordinates and then evaluate them at the indicated points: (a) A = ˆx(x+y) at P 1 = (1,,3), (b) B = ˆx(y x)+ŷ(x y) at P = (1,0,), (c) C = ˆxy /(x + y ) ŷx /(x + y )+ẑ4 at P 3 = (1, 1,), (d) D = ˆRsinθ + ˆθcosθ + ˆφcos φ at P 4 (,π/,π/4), (e) E = ˆRcosφ + ˆθsinφ + ˆφsin θ at P 5 = (3,π/,π). Solution: From Table 3-: (a) (b) A = (ˆrcosφ ˆφsinφ)(r cosφ + r sinφ) = ˆrr cosφ(cosφ + sinφ) ˆφr sinφ(cosφ + sinφ), P 1 = ( 1 +,tan 1 (/1),3) = ( 5,63.4,3), A(P 1 ) = (ˆr0.447 ˆφ0.894) 5( ) = ˆr1.34 ˆφ.68. B = (ˆrcosφ ˆφsinφ)(r sinφ r cosφ)+(ˆφcosφ + ˆrsinφ)(r cosφ r sinφ) = ˆrr(sinφ cosφ 1)+ ˆφr(cos φ sin φ) = ˆrr(sinφ 1)+ ˆφr cosφ, P = ( 1 + 0,tan 1 (0/1),) = (1,0,), B(P ) = ˆr+ ˆφ. (c) (d) C = (ˆrcosφ ˆφsinφ) r sin φ (ˆφcosφ + ˆrsinφ) r cos φ + ẑ4 r = ˆrsinφ cosφ(sinφ cosφ) ˆφ(sin 3 φ + cos 3 φ)+ẑ4, P 3 = ( 1 +( 1),tan 1 ( 1/1),) = (, 45,), C(P 3 ) = ˆr0.707+ẑ4. D = (ˆrsinθ + ẑcosθ)sinθ +(ˆrcosθ ẑsinθ)cosθ + ˆφcos φ = ˆr+ ˆφcos φ, P 4 = (sin(π/),π/4,cos(π/)) = (,45,0), D(P 4 ) = ˆr+ ˆφ 1. r

15 (e) E = (ˆrsinθ + ẑcosθ)cosφ +(ˆrcosθ ẑsinθ)sinφ + ˆφsin θ, P 5 = (3, π ),π, ( E(P 5 ) = ˆrsin π + ẑcos π ) ( cosπ + ˆrcos π ẑsin π ) sinπ + ˆφsin π = ˆr+ ˆφ.

16 Problem 3.35 Transform the following vectors into spherical coordinates and then evaluate them at the indicated points: (a) A = ˆxy + ŷxz+ẑ4 at P 1 = (1, 1,), (b) B = ŷ(x + y + z ) ẑ(x + y ) at P = ( 1,0,), (c) C = ˆrcosφ ˆφsinφ + ẑcosφ sinφ at P 3 = (,π/4,), and (d) D = ˆxy /(x + y ) ŷx /(x + y )+ẑ4 at P 4 = (1, 1,). Solution: From Table 3-: (a) (b) A = ( ˆRsinθ cosφ + ˆθcosθ cosφ ˆφsinφ)(Rsinθ sinφ) +( ˆRsinθ sinφ + ˆθcosθ sinφ + ˆφcosφ)(Rsinθ cosφ)(rcosθ) +( ˆRcosθ ˆθsinθ)4 = ˆR(R sin θ sinφ cosφ(sinθ sinφ + cosθ)+4cosθ) + ˆθ(R sinθ cosθ sinφ cosφ(sinθ sinφ + cosθ) 4sinθ) + ˆφR sinθ(cosθ cos φ sinθ sin 3 φ), ( ) ) P 1 = (1 +( 1) +,tan 1 1 +( 1) /,tan 1 ( 1/1) = ( 6,35.3, 45 ), A(P 1 ) ˆR.856 ˆθ.888+ ˆφ.13. B = ( ˆRsinθ sinφ + ˆθcosθ sinφ + ˆφcosφ)R ( ˆRcosθ ˆθsinθ)R sin θ = ˆRR sinθ(sinφ sinθ cosθ)+ ˆθR (cosθ sinφ + sin 3 θ)+ ˆφR cosφ, ( ) ) P = (( 1) + 0 +,tan 1 ( 1) + 0 /,tan 1 (0/( 1)) = ( 5,6.6,180 ), B(P ) ˆR ˆθ0.449 ˆφ5. (c) C = ( ˆRsinθ + ˆθcosθ)cosφ ˆφsinφ +( ˆRcosθ ˆθsinθ)cosφ sinφ = ˆRcosφ(sinθ + cosθ sinφ)+ ˆθcosφ(cosθ sinθ sinφ) ˆφsinφ, ( ) P 3 = +,tan 1 (/),π/4 = (,45,45 ), C(P 3 ) ˆR ˆθ0.146 ˆφ0.707.

17 (d) D = ( ˆRsinθ cosφ + ˆθcosθ cosφ ˆφsinφ) R sin θ sin φ R sin θ sin φ + R sin θ cos φ ( ˆRsinθ sinφ + ˆθcosθ sinφ + ˆφcosφ) R sin θ cos φ R sin θ sin φ + R sin θ cos φ +( ˆRcosθ ˆθsinθ)4 = ˆR(sinθ cosφ sin φ sinθ sinφ cos φ + 4cosθ) + ˆθ(cosθ cosφ sin φ cosθ sinφ cos φ 4sinθ) ˆφ(cos 3 φ + sin 3 φ), [ 1+1+4,tan P 4 (1, 1,) = P 1 4 ( ] 1+1/),tan 1 ( 1/1) = P 4 ( 6,35.6, 45 ), D(P 4 ) = ˆR(sin35.6 cos45 sin 45 sin35.6 sin( 45 )cos cos35.6 ) + ˆθ(cos35.6 cos45 sin 45 cos35.6 sin( 45 )cos 45 4sin35.6 ) ˆφ(cos sin 3 45 ) = ˆR3.67 ˆθ1.73 ˆφ0.707.

### Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B

Problem 3.6 Given B = ˆxz 3y) +ŷx 3z) ẑx+y), find a unit vector parallel to B at point P =,0, ). Solution: At P =,0, ), B = ˆx )+ŷ+3) ẑ) = ˆx+ŷ5 ẑ, ˆb = B B = ˆx+ŷ5 ẑ = ˆx+ŷ5 ẑ. +5+ 7 Problem 3.4 Convert

Διαβάστε περισσότερα

### Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Space Physics (I) [AP-344] Lectue by Ling-Hsiao Lyu Oct. 2 Lectue. Dipole Magnetic Field and Equations of Magnetic Field Lines.. Dipole Magnetic Field Since = we can define = A (.) whee A is called the

Διαβάστε περισσότερα

### 28.3. Orthogonal Curvilinear Coordinates. Introduction. Prerequisites. Learning Outcomes

Orthogonal Curvilinear Coordinates 28.3 Introduction The derivatives div, grad and curl from Section 29.2 can be carried out using coordinate systems other than the rectangular cartesian coordinates. This

Διαβάστε περισσότερα

### Section 8.2 Graphs of Polar Equations

Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation

Διαβάστε περισσότερα

### Areas and Lengths in Polar Coordinates

Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

### Second Order Partial Differential Equations

Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

### CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

### MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then

Διαβάστε περισσότερα

### Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

### If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

### If we restrict the domain of y = sin x to [ π 2, π 2

Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

### 2 Composition. Invertible Mappings

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

### Homework 3 Solutions

Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

### Solution to Review Problems for Midterm III

Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5

Διαβάστε περισσότερα

### Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

### ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

### EE512: Error Control Coding

EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

### Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

### ( ) 2 and compare to M.

Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

### SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

### Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

### TMA4115 Matematikk 3

TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

### Trigonometric Formula Sheet

Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

### Exercises to Statistics of Material Fatigue No. 5

Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can

Διαβάστε περισσότερα

### Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw

Macromechanics of a Laminate Tetboo: Mechanics of Composite Materials Author: Autar Kaw Figure 4.1 Fiber Direction θ z CHAPTER OJECTIVES Understand the code for laminate stacing sequence Develop relationships

Διαβάστε περισσότερα

### Parallel transport and geodesics

Parallel transport and geodesics February 4, 3 Parallel transport Before defining a general notion of curvature for an arbitrary space, we need to know how to compare vectors at different positions on

Διαβάστε περισσότερα

### Problem Set 3: Solutions

CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

### Συστήματα Διαχείρισης Βάσεων Δεδομένων

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Συστήματα Διαχείρισης Βάσεων Δεδομένων Φροντιστήριο 9: Transactions - part 1 Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Tutorial on Undo, Redo and Undo/Redo

Διαβάστε περισσότερα

### Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή

Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδηµαϊκό έτος 2011-12 Εαρινό Εξάµηνο Ενδιάµεση Εξέταση 1 Παρασκευή 17 Φεβρουαρίου

Διαβάστε περισσότερα

### 1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x 3] x / y 4] none of these 1. If log x 2 y 2 = a, then x 2 + y 2 Solution : Take y /x = k y = k x dy/dx = k dy/dx = y / x Answer : 2] y / x

Διαβάστε περισσότερα

### ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

### ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα

### e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2

Cylindical and Spheical Coodinate Repesentation of gad, div, cul and 2 Thus fa, we have descibed an abitay vecto in F as a linea combination of i, j and k, which ae unit vectos in the diection of inceasin,

Διαβάστε περισσότερα

### UNIT-1 SQUARE ROOT EXERCISE 1.1.1

UNIT-1 SQUARE ROOT EXERCISE 1.1.1 1. Find the square root of the following numbers by the factorization method (i) 82944 2 10 x 3 4 = (2 5 ) 2 x (3 2 ) 2 2 82944 2 41472 2 20736 2 10368 2 5184 2 2592 2

Διαβάστε περισσότερα

### 4.6 Autoregressive Moving Average Model ARMA(1,1)

84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

### ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

### EE101: Resonance in RLC circuits

EE11: Resonance in RLC circuits M. B. Patil mbatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel Deartment of Electrical Engineering Indian Institute of Technology Bombay I V R V L V C I = I m = R + jωl + 1/jωC

Διαβάστε περισσότερα

### ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

### ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. Χειµερινό Εξάµηνο ΔΙΑΛΕΞΗ 3: Αλγοριθµική Ελαχιστοποίηση (Quine-McCluskey, tabular method)

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 3: Αλγοριθµική Ελαχιστοποίηση (Quine-McCluskey, tabular method) ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ Επίκουρος Καθηγητής, ΗΜΜΥ (ttheocharides@ucy.ac.cy)

Διαβάστε περισσότερα

### Derivations of Useful Trigonometric Identities

Derivations of Useful Trigonometric Identities Pythagorean Identity This is a basic and very useful relationship which comes directly from the definition of the trigonometric ratios of sine and cosine

Διαβάστε περισσότερα

### ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ :ΤΥΠΟΙ ΑΕΡΟΣΥΜΠΙΕΣΤΩΝ ΚΑΙ ΤΡΟΠΟΙ ΛΕΙΤΟΥΡΓΙΑΣ ΣΠΟΥ ΑΣΤΡΙΑ: ΕΥΘΥΜΙΑ ΟΥ ΣΩΣΑΝΝΑ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ : ΓΟΥΛΟΠΟΥΛΟΣ ΑΘΑΝΑΣΙΟΣ 1 ΑΚΑ

Διαβάστε περισσότερα

### ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ. www.cms.org.cy

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ

Διαβάστε περισσότερα

### Lecture 6 Mohr s Circle for Plane Stress

P4 Stress and Strain Dr. A.B. Zavatsk HT08 Lecture 6 Mohr s Circle for Plane Stress Transformation equations for plane stress. Procedure for constructing Mohr s circle. Stresses on an inclined element.

Διαβάστε περισσότερα

### Capacitors - Capacitance, Charge and Potential Difference

Capacitors - Capacitance, Charge and Potential Difference Capacitors store electric charge. This ability to store electric charge is known as capacitance. A simple capacitor consists of 2 parallel metal

Διαβάστε περισσότερα

### Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

### Derivation of Optical-Bloch Equations

Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be

Διαβάστε περισσότερα

### 1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1

Chapter 7: Exercises 1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1 35+n:30 n a 35+n:20 n 0 0.068727 11.395336 10 0.097101 7.351745 25

Διαβάστε περισσότερα

### MATH 150 Pre-Calculus

MATH 150 Pre-Calculus Fall, 014, WEEK 11 JoungDong Kim Week 11: 8A, 8B, 8C, 8D Chapter 8. Trigonometry Chapter 8A. Angles and Circles The size of an angle may be measured in revolutions (rev), in degree

Διαβάστε περισσότερα

### PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com June 2005 1. A car of mass 1200 kg moves along a straight horizontal road. The resistance to motion of the car from non-gravitational forces is of constant magnitude 600 N. The

Διαβάστε περισσότερα

### Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης VISCOUSLY DAMPED 1-DOF SYSTEM Μονοβάθμια Συστήματα με Ιξώδη Απόσβεση Equation of Motion (Εξίσωση Κίνησης): Complete

Διαβάστε περισσότερα

### Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Bessel functions The Bessel function J ν (z of the first kind of order ν is defined by J ν (z ( (z/ν ν Γ(ν + F ν + ; z 4 ( k k ( Γ(ν + k + k! For ν this is a solution of the Bessel differential equation

Διαβάστε περισσότερα

### ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ ΥΓΕΙΑΣ "

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΛΑΜΑΤΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΜΟΝΑΔΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ

Διαβάστε περισσότερα

### department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

She selects the option. Jenny starts with the al listing. This has employees listed within She drills down through the employee. The inferred ER sttricture relates this to the redcords in the databasee

Διαβάστε περισσότερα

### wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

3.0 Marine Hydrodynamics, Fall 004 Lecture 0 Copyriht c 004 MIT - Department of Ocean Enineerin, All rihts reserved. 3.0 - Marine Hydrodynamics Lecture 0 Free-surface waves: wave enery linear superposition,

Διαβάστε περισσότερα

### Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2)

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2) Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών NP-Completeness (2) x 1 x 1 x 2 x 2 x 3 x 3 x 4 x 4 12 22 32 11 13 21

Διαβάστε περισσότερα

### Γραφικά Υπολογιστών: Θέαση στις 3D

1 ΤΕΙ Θεσσαλονίκης Τμήμα Πληροφορικής Γραφικά Υπολογιστών: Θέαση στις 3D Πασχάλης Ράπτης http://aetos.it.teithe.gr/~praptis praptis@it.teithe.gr 2 Περιεχόμενα Σήμερα θα δούμε τα παρακάτω θέματα: Μετασχηματισμοί

Διαβάστε περισσότερα

### MECHANICAL PROPERTIES OF MATERIALS

MECHANICAL PROPERTIES OF MATERIALS! Simple Tension Test! The Stress-Strain Diagram! Stress-Strain Behavior of Ductile and Brittle Materials! Hooke s Law! Strain Energy! Poisson s Ratio! The Shear Stress-Strain

Διαβάστε περισσότερα

### ΕΘΝΙΚΗ ΣΧΟΛΗ ΔΗΜΟΣΙΑΣ ΔΙΟΙΚΗΣΗΣ ΙΓ' ΕΚΠΑΙΔΕΥΤΙΚΗ ΣΕΙΡΑ

ΕΘΝΙΚΗ ΣΧΟΛΗ ΔΗΜΟΣΙΑΣ ΔΙΟΙΚΗΣΗΣ ΙΓ' ΕΚΠΑΙΔΕΥΤΙΚΗ ΣΕΙΡΑ ΤΜΗΜΑ ΤΟΠΙΚΗΣ ΑΥΤΟΔΙΟΙΚΗΣΗΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΑΝΑΠΤΥΞΗΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ: ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ: ΠΡΟΣΕΓΓΙΣΗ ΜΕΣΩ ΔΕΙΚΤΩΝ Επιβλέπων: Αθ.Δελαπάσχος

Διαβάστε περισσότερα

### Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is

Volume of a Cuboid The formula for the volume of a cuboid is Volume = length x breadth x height V = l x b x h Example Work out the volume of this cuboid 10 cm 15 cm V = l x b x h V = 15 x 6 x 10 V = 900cm³

Διαβάστε περισσότερα

### ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΜΑΘΗΜΑ : ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ I (Βασικό 3 ου Εξαμήνου) Διδάσκων : Δ.Σκαρλάτος ΜΑΘΗΜΑΤΙΚΟ ΤΥΠΟΛΟΓΙΟ. Α. Τριγωνομετρικές Ταυτότητες

ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΜΑΘΗΜΑ : ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ I (Βασικό 3 ου Εξαμήνου) Διδάσκων : Δ.Σκαρλάτος ΜΑΘΗΜΑΤΙΚΟ ΤΥΠΟΛΟΓΙΟ Α. Τριγωνομετρικές Ταυτότητες Β. Αναπτύγματα σε σειρές Για

Διαβάστε περισσότερα

### «Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων. Η μεταξύ τους σχέση και εξέλιξη.»

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΓΕΩΓΡΑΦΙΑΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΟΥ ΣΧΕΔΙΑΣΜΟΥ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ: «Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων.

Διαβάστε περισσότερα

### ΔΙΠΛΩΜΑΣΙΚΗ ΕΡΓΑΙΑ. του φοιτητή του Σμήματοσ Ηλεκτρολόγων Μηχανικών και. Σεχνολογίασ Τπολογιςτών τησ Πολυτεχνικήσ χολήσ του. Πανεπιςτημίου Πατρών

ΠΑΝΕΠΙΣΗΜΙΟ ΠΑΣΡΩΝ ΣΜΗΜΑ ΗΛΕΚΣΡΟΛΟΓΩΝ ΜΗΦΑΝΙΚΩΝ ΚΑΙ ΣΕΦΝΟΛΟΓΙΑ ΤΠΟΛΟΓΙΣΩΝ ΣΟΜΕΑ: ΗΛΕΚΣΡΟΝΙΚΗ ΚΑΙ ΤΠΟΛΟΓΙΣΩΝ ΕΡΓΑΣΗΡΙΟ ΗΛΕΚΣΡΟΝΙΚΩΝ ΤΠΟΛΟΓΙΣΩΝ ΔΙΠΛΩΜΑΣΙΚΗ ΕΡΓΑΙΑ του φοιτητή του Σμήματοσ Ηλεκτρολόγων Μηχανικών

Διαβάστε περισσότερα

### The Spiral of Theodorus, Numerical Analysis, and Special Functions

Theo p. / The Spiral of Theodorus, Numerical Analysis, and Special Functions Walter Gautschi wxg@cs.purdue.edu Purdue University Theo p. 2/ Theodorus of ca. 46 399 B.C. Theo p. 3/ spiral of Theodorus 6

Διαβάστε περισσότερα

### The Normal and Lognormal Distributions

The Normal and Lognormal Distributions John Norstad j-norstad@northwestern.edu http://www.norstad.org February, 999 Updated: November 3, Abstract The basic properties of the normal and lognormal distributions,

Διαβάστε περισσότερα

### Ηλεκτρονικοί Υπολογιστές IV

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές IV Η δυναμική ενός μοντέλου Keynsian Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

### Right Rear Door. Let's now finish the door hinge saga with the right rear door

Right Rear Door Let's now finish the door hinge saga with the right rear door You may have been already guessed my steps, so there is not much to describe in detail. Old upper one file:///c /Documents

Διαβάστε περισσότερα

### 14 ح ر وجع ومطابق لألصل اليدوى وي طبع على مسئولية اللجنة الفنية. a b x a x b c. a b c

ر وجع ومطابق لألصل اليدوى وي طبع على مسئولية اللجنة الفنية ا االسم التوقيع التاريخ االسم التوقيع التاريخ 4 ح ث.ع.ج / أول ARAB REPUBLIC OF EGYPT Ministry of Education General Secondary Education Certificate

Διαβάστε περισσότερα

### ΕΡΙΤΟΡΕΣ ΚΑΙ ΑΝΘΩΡΟΙ ΚΛΕΙΔΙΑ ΑΝΑΘΕΣΘ ΑΓΩΝΑ ΓΑΦΕΙΟ ΑΓΩΝΩΝ ΟΓΑΝΩΤΙΚΘ ΕΡΙΤΟΡΘ. ζεκηλαρηο 1 ΡΑΓΚΟΣΜΙΑ ΟΜΟΣΡΟΝΔΙΑ (ISAF) ΕΛΛΘΝΙΚΘ ΟΜΟΣΡΟΝΔΙΑ (Ε.Ι.Ο.

ΑΝΑΘΕΣΘ ΑΓΩΝΑ ΕΡΙΤΟΡΕΣ ΚΑΙ ΑΝΘΩΡΟΙ ΚΛΕΙΔΙΑ ΡΑΓΚΟΣΜΙΑ ΟΜΟΣΡΟΝΔΙΑ (ISAF) ΕΛΛΘΝΙΚΘ ΟΜΟΣΡΟΝΔΙΑ (Ε.Ι.Ο.) ΚΛΑΣΘ 6/6/2009 1 ΟΡΓΑΝΩΣΙΚΗ ΕΠΙΣΡΟΠΗ ΓΡΑΦΕΙΟ ΑΓΩΝΩΝ ΕΠΙΣΡΟΠΗ ΑΓΩΝΩΝ ΕΠΙΣΡΟΠΗ ΕΝΣΑΕΩΝ ΕΠΙΣΡΟΠΗ ΚΑΣΑΜΕΣΡΗΕΩΝ

Διαβάστε περισσότερα

### Advanced Subsidiary Unit 1: Understanding and Written Response

Write your name here Surname Other names Edexcel GE entre Number andidate Number Greek dvanced Subsidiary Unit 1: Understanding and Written Response Thursday 16 May 2013 Morning Time: 2 hours 45 minutes

Διαβάστε περισσότερα

### Συντακτικές λειτουργίες

2 Συντακτικές λειτουργίες (Syntactic functions) A. Πτώσεις και συντακτικές λειτουργίες (Cases and syntactic functions) The subject can be identified by asking ποιος (who) or τι (what) the sentence is about.

Διαβάστε περισσότερα

### Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους

Διαβάστε περισσότερα

### 2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

### ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ342: Βάσεις Δεδομένων. Χειμερινό Εξάμηνο Φροντιστήριο 10 ΛΥΣΕΙΣ. Επερωτήσεις SQL

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ342: Βάσεις Δεδομένων Χειμερινό Εξάμηνο 2013 Φροντιστήριο 10 ΛΥΣΕΙΣ Επερωτήσεις SQL Άσκηση 1 Για το ακόλουθο σχήμα Suppliers(sid, sname, address) Parts(pid, pname,

Διαβάστε περισσότερα

### ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/2006

ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/26 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι το 1 εκτός αν ορίζεται διαφορετικά στη διατύπωση

Διαβάστε περισσότερα

### ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ. του Γεράσιμου Τουλιάτου ΑΜ: 697

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΣΤΑ ΠΛΑΙΣΙΑ ΤΟΥ ΜΕΤΑΠΤΥΧΙΑΚΟΥ ΔΙΠΛΩΜΑΤΟΣ ΕΙΔΙΚΕΥΣΗΣ ΕΠΙΣΤΗΜΗ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ του Γεράσιμου Τουλιάτου

Διαβάστε περισσότερα

### 1000 VDC 1250 VDC 125 VAC 250 VAC J K 125 VAC, 250 VAC

Metallized Polyester Film Capacitor Type: ECQE(F) Non-inductive construction using metallized Polyester film with flame retardant epoxy resin coating Features Self-healing property Excellent electrical

Διαβάστε περισσότερα

### DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

Technical Information T-410A ENG DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 410A Refrigerant (R-410A) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered

Διαβάστε περισσότερα

### MATRICES

MARICES 1. Matrix: he arrangement of numbers or letters in the horizontal and vertical lines so that each horizontal line contains same number of elements and each vertical row contains the same numbers

Διαβάστε περισσότερα

### 1. Πόσοι αριθμοί μικρότεροι του διαιρούνται με όλους τους μονοψήφιους αριθμούς;

ΚΥΠΡΙΚΗ ΜΘΗΜΤΙΚΗ ΤΙΡΙ ΠΡΧΙΚΟΣ ΙΩΝΙΣΜΟΣ 7//2009 ΩΡ 0:00-2:00 ΟΗΙΣ. Να λύσετε όλα τα θέματα. Κάθε θέμα βαθμολογείται με 0 μονάδες. 2. Να γράφετε με μπλε ή μαύρο μελάνι (επιτρέπεται η χρήση μολυβιού για τα

Διαβάστε περισσότερα

### UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:

UDZ Swirl diffuser Swirl diffuser UDZ, which is intended for installation in a ventilation duct, can be used in premises with a large volume, for example factory premises, storage areas, superstores, halls,

Διαβάστε περισσότερα

### SOLVING CUBICS AND QUARTICS BY RADICALS

SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with

Διαβάστε περισσότερα

### ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 8η: Producer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 8η: Producer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Firm Behavior GOAL: Firms choose the maximum possible output (technological

Διαβάστε περισσότερα

### Section 1: Listening and responding. Presenter: Niki Farfara MGTAV VCE Seminar 7 August 2016

Section 1: Listening and responding Presenter: Niki Farfara MGTAV VCE Seminar 7 August 2016 Section 1: Listening and responding Section 1: Listening and Responding/ Aκουστική εξέταση Στο πρώτο μέρος της

Διαβάστε περισσότερα

### ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΘΕΜΑ»

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΠΡΟΣΧΟΛΙΚΗΣ ΑΓΩΓΗΣ ΚΑΙ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ Π.Μ.Σ. «ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΕΚΠΑΙΔΕΥΣΗ» ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΘΕΜΑ» «Εφαρμογή

Διαβάστε περισσότερα

### DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University

Διαβάστε περισσότερα

### ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Εργαστήριο Β Χημικής Μηχανικής Τ.Θ. 472 54124 Θεσσαλονίκη PROCESS DYNAMICS & CONTROL 2014 Final Review Series of Solved Problems Problem 1:

Διαβάστε περισσότερα

### Quick Installation Guide

A Installation 1 F H B E C D G 2 www.trust.com/17528/faq Quick Installation Guide C C D Freewave Wireless Audio Set 17528/ 17529 D Installation Configuration Windows XP 4 5 8 Windows 7/ Vista 6 7 9 10

Διαβάστε περισσότερα

### Cross sectional area, square inches or square millimeters

Symbols A E Cross sectional area, square inches or square millimeters of Elasticity, 29,000 kips per square inch or 200 000 Newtons per square millimeter (N/mm 2 ) I Moment of inertia (X & Y axis), inches

Διαβάστε περισσότερα

### ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 9η: Basics of Game Theory Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 9η: Basics of Game Theory Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Course Outline Part II: Mathematical Tools Firms - Basics of Industrial

Διαβάστε περισσότερα

### þÿ¼ ½ ±Â : ÁÌ» Â Ä ÅÂ ÃÄ ²µ þÿä Å ÃÇ»¹º Í Á³ Å

Neapolis University HEPHAESTUS Repository School of Economic Sciences and Business http://hephaestus.nup.ac.cy Master Degree Thesis 2015 þÿ ½»ÅÃ ÄÉ½ µ½½ ¹Î½ Ä Â þÿ±¾¹»ì³ Ã Â º±¹ Ä Â þÿ±à Äµ»µÃ¼±Ä¹ºÌÄ Ä±Â

Διαβάστε περισσότερα

### Μειέηε, θαηαζθεπή θαη πξνζνκνίσζε ηεο ιεηηνπξγίαο κηθξήο αλεκνγελλήηξηαο αμνληθήο ξνήο ΓΗΠΛΩΜΑΣΗΚΖ ΔΡΓΑΗΑ

Μειέηε, θαηαζθεπή θαη πξνζνκνίσζε ηεο ιεηηνπξγίαο κηθξήο αλεκνγελλήηξηαο αμνληθήο ξνήο ΓΗΠΛΩΜΑΣΗΚΖ ΔΡΓΑΗΑ Κνηζακπφπνπινο Υ. Παλαγηψηεο Δπηβιέπσλ: Νηθφιανο Υαηδεαξγπξίνπ Καζεγεηήο Δ.Μ.Π Αζήλα, Μάξηηνο 2010

Διαβάστε περισσότερα

### Παραμύθια τησ Χαλιμϊσ, τομ. A Σελύδα 1

Παραμύθια τησ Χαλιμϊσ, τομ. A Σελύδα 1 Παραμύθια τησ Χαλιμϊσ, τομ. A Σελύδα 2 Dervish Abu Bekr, «Παραμύθια τησ Χαλιμϊσ, τομ. Α» Ιούνιοσ 2013 Φωτo εξωφύλλου: Βαςιλεύα Αςπαςύα Μαςούρα Επιμϋλεια ϋκδοςησ:

Διαβάστε περισσότερα

### Matrices Review. Here is an example of matrices multiplication for a 3x3 matrix

Matrices Review Matri Multiplication : When the number of columns of the first matri is the same as the number of rows in the second matri then matri multiplication can be performed. Here is an eample

Διαβάστε περισσότερα

### ARISTOTLE UNIVERSITY OF THESSALONIKI FACULTY OF FORESTRY AND NATURAL ENVIRONMENT Institute of Mountainous Water Management and Control

ARISTOTLE UNIVERSITY OF THESSALONIKI FACULTY OF FORESTRY AND NATURAL ENVIRONMENT Institute of Mountainous Water Management and Control Torrent Basin, Mountainous Watershed Management Dr. Panagiotis Stefanidis

Διαβάστε περισσότερα

### Η ΜΑΛΑΞΗ ΚΑΙ ΤΑ ΕΙ Η ΤΗΣ ΣΤΟ ΙΝΣΤΙΤΟΥΤΟ ΑΙΣΘΗΤΙΚΗΣ

ΤΕΙ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΕΠΑΓΓΕΛΜΑΤΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΤΜΗΜΑ ΑΙΣΘΗΤΙΚΗΣ ΚΑΙ ΚΟΣΜΕΤΟΛΟΓΙΑΣ Η ΜΑΛΑΞΗ ΚΑΙ ΤΑ ΕΙ Η ΤΗΣ ΣΤΟ ΙΝΣΤΙΤΟΥΤΟ ΑΙΣΘΗΤΙΚΗΣ Σταµάτη Κωνσταντίνα Φεβρουάριος 2012 ΕΠΙΒΛΕΠΟΥΣΑ ΚΑΘΗΓΗΤΡΙΑ

Διαβάστε περισσότερα

### Surface Mount Aluminum Electrolytic Capacitors

FEATURES CYLINDRICAL V-CHIP CONSTRUCTION LOW COST, GENERAL PURPOSE, 2000 HOURS AT 85 O C NEW EXPANDED CV RANGE (up to 6800µF) ANTI-SOLVENT (2 MINUTES) DESIGNED FOR AUTOMATIC MOUNTING AND REFLOW SOLDERING

Διαβάστε περισσότερα

### Μορφοποίηση υπό όρους : Μορφή > Μορφοποίηση υπό όρους/γραμμές δεδομένων/μορφοποίηση μόο των κελιών που περιέχουν/

Μορφοποίηση υπό όρους : Μορφή > Μορφοποίηση υπό όρους/γραμμές δεδομένων/μορφοποίηση μόο των κελιών που περιέχουν/ Συνάρτηση round() Περιγραφή Η συνάρτηση ROUND στρογγυλοποιεί έναν αριθμό στον δεδομένο

Διαβάστε περισσότερα

### VBA ΣΤΟ WORD. 1. Συχνά, όταν ήθελα να δώσω ένα φυλλάδιο εργασίας με ασκήσεις στους μαθητές έκανα το εξής: Version 25-7-2015 ΗΜΙΤΕΛΗΣ!!!!

VBA ΣΤΟ WORD Version 25-7-2015 ΗΜΙΤΕΛΗΣ!!!! Μου παρουσιάστηκαν δύο θέματα. 1. Συχνά, όταν ήθελα να δώσω ένα φυλλάδιο εργασίας με ασκήσεις στους μαθητές έκανα το εξής: Εγραφα σε ένα αρχείο του Word τις

Διαβάστε περισσότερα

### ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΠΟΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΠΟΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Πτυχιακή εργασία Η ΕΦΑΡΜΟΓΗ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ HACCP ΣΕ ΜΙΚΡΕΣ ΒΙΟΤΕΧΝΙΕΣ ΓΑΛΑΚΤΟΣ ΣΤΗΝ ΕΠΑΡΧΙΑ ΛΕΜΕΣΟΥ

Διαβάστε περισσότερα