Every set of firstorder formulas is equivalent to an independent set


 Ἀληκτώ Φωτόπουλος
 1 χρόνια πριν
 Προβολές:
Transcript
1 Every set of firstorder formulas is equivalent to an independent set May 6, 2008 Abstract A set of firstorder formulas, whatever the cardinality of the set of symbols, is equivalent to an independent set. In the following we work with classical (firstorder) logic. The Axiom of Choice is assumed 1. Definition 1. Two sets of formulas are equivalent, if any formula of the one set is a consequence of the other and conversely. (Equiv. they have the same models). A set of formulas T is independent, if for all φ T, T \ {φ} φ. (Equiv. there is a model for (T \ {φ}) { φ}). Theorem 2. (Tarski) Every countable set of formulas is equivalent to an independent set. Proof. Let T = {φ 0, φ 1,...} a countable set of formulas. Without loss of generality there are no valid formulas in T. Define inductively ψ 0 = φ 0 and ψ n+1 = least φ m such that ψ 0,..., ψ n φ m. It is not hard to see that T is equivalent to the set {ψ n n ω}. If this set is finite, then T is equivalent to its conjunction. So, assume it is infinite and define ψ 0 = ψ 0 and ψ n+1 = m n ψ m ψ n+1. Since ψ 0,..., ψ n ψ n+1, there is a model M that satisfies ψ 0,..., ψ n and ψ n+1. Then M ψ n+1, while M = ψ m for m < n + 1. For m > n + 1, since M doesn t satisfy the antecedent of ψ m, it trivially satisfies ψ m. Therefore M = ψ m ψ n+1, m n+1 1 This article follows closely the arguments of Reznikoff in [1] (in French), but without being a wordbyword translation. 1
2 witnessing the fact that {ψ n n ω} is an independent set. Moreover, it is an easy induction to see that the sets {ψ n n ω} and {ψ n n ω} are equivalent, which finishes the proof. Lemma 3. Let C, D be two disjoint sets such that: D C and For all φ C, (C D) \ {φ} φ. Then C D is equivalent to an independent set. Proof. Let f be an injection from D to C. Then {ψ f(ψ) ψ D} (C \ f(d)) is an independent set equivalent to C D. Now, let T be a set of formulas and without loss of generality, there are no valid formulas in T (valid formulas are equivalent to the empty set). For a formula φ T, denote by S(φ) the set of symbols that appear in φ and let S = S(φ). φ T Without loss of generality S is infinite. Otherwise T would be at most countable and equivalent to an independent set by Theorem 2. If S is infinite, then S and T have the same cardinality and let S = T = κ ω. We partition T into sets T α, α < κ as follows: For α = 0, fix a formula φ 0 T and let T 0 = {ψ T S(ψ) S(φ 0)}. For 0 < α < κ, assume that we have defined φ β and T β, for all β < α. By a cardinality argument, S \ S(φ β ). Therefore, there exists a formula φ α that contains a symbols that doesn t appear in any of the φ β, β < α. Define N α = S(φ α) \ S(φ β ), the set of new symbols that appear in φ α. Then N α and define T α = {ψ T S(ψ) S(φ β ) and S(ψ) N α }, β α i.e. T α is the set of formulas in which appears one of the new symbols in N α. Then T = α<κ Tα and the different Tα s are disjoint. Definition 4. If ψ T α and S(ψ) N β, for β α, denote this by β ψ. In particular, for ψ T α, α ψ. If β φ α, with β < α, denote this by β φ α. 2
3 Observe here that the first definition is for any ψ T, while the second one is only for the φ α s. Also, for any ψ T, there are only finitely many β s with β ψ. Now let ψ α = β φ α φ β φ α, if there exists such a β. Otherwise, let ψ α = φ α. Denote by C the set of all the ψ α s. On the other hand, for φ φ α, all α < κ, let φ = β φ φ β φ. As we noted, there is always such a β. Denote D α = {φ = β φ φ β φ φ T α and x φ α} and let D = α Dα. (D may be empty. We can not exclude this possibility). Lemma 5. Suppose that T satisfies the following condition: ( ) If ψ, φ 1,..., φ n T and S(ψ) n S(φ i), then {φ 1,..., φ n} ψ. Then C and D as defined above, satisfy the conditions of Lemma 3 and T is equivalent to an independent set. Proof. First of all it is clear that C = κ D. It also follows easily by induction on α < κ that the set T β is equivalent to the set ({ψα} Dα). This implies that T is equivalent to C D and it suffices to verify that for ψ α C, ψ α is not a consequence of the other elements of C D: Let ψ α = β φ α φ β φ α. Then the elements of C D different than ψ α are of the form ψ γ = β φ γ φ β φ γ, with γ α, or of the form φ = β φ φ β φ, with φ ψ α, for all α < κ. Consider the implication = m n ψ α. α i α ψ αi Assume that all ψ α1,..., ψ αm are different than ψ α and that α φ αi, for i = 1,..., p, while α φ αi, for i = p + 1,..., m. Similarly, assume that φ 1,..., φ q are such that α φ j, j = 1,..., q, while for φ q+1,..., φ n, α φ j, j = q + 1,..., n. Then p q S(φ α) S(φ αi ) and S(φ α) S(φ j). j=1 φ j j=1 3
4 Also, by the definition of φ α, S(φ α) β φ α S(φ β ). By ( ), there is a model M in which φ α is false, while all of the φ α1,..., φ αp, φ 1,..., φ q and {φ β β φ α} are true. Then ψ α is false in M, while ψ α1,..., ψ αp, φ 1,..., φ q are true. In addition, for i = p + 1,..., m, φ α is among the φ γ s in the conjunction of ψ αi = γ φ αi φ γ φ αi and the same is true for the conjunction of φ j = γ φ j φ γ φ j, for j = q + 1,..., n. Since φ α is false in M, then ψ αp+1,..., ψ αm, φ q+1,..., φ n are trivially true. This proves that there is a model M that satisfies all the ψ α1,..., ψ αm, φ 1,..., φ n, but which does not satisfy ψ α. In other words, ψ α can not be a consequence of other elements of C D. What remains is to prove that T can be taken to satisfy ( ). We use Craig s Interpolation Theorem which me mention without proof. Theorem 6. (Craig) If ψ = φ, then there is a formula τ such that ψ = τ and τ = φ, and the nonlogical symbols of τ appears in both ψ and φ. τ is called the interpolant between ψ and φ. Lemma 7. Every set of nonvalid formulas T is equivalent to a set of formulas that satisfies ( ). Proof. Let and E 1 = {φ T = φ and S(φ) = 1} E n = {φ T = φ, m<n E m φ and S(φ) = n}. It is immediate that T = ne n is equivalent to T. Let ψ, φ 1,..., φ n T such that S(ψ) n S(φi). If we assume that {φ 1,..., φ n} = ψ, then by Craig s Interpolation Theorem, there is a τ such that {φ 1,..., φ n} = τ and τ = ψ, and S(τ) S(ψ) ( n S(φ i)). By the assumption on ψ, it must be S(τ) S(ψ) and ψ T would be a consequence of τ with T = τ and S(τ) < S(ψ), contradicting the definition of T. Therefore, T satisfies ( ). Putting all the previous lemmas together we conclude Theorem 8. (Reznikoff) Every set of formulas is equivalent to an independent set. 4
5 References [1] M. I. Reznikoff, Tout ensemble de formules de la logique classique est equivalent á un ensemble independant, C.R. Acad. Sc. Paris, 260, (1965). 5
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
Διαβάστε περισσότεραST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Διαβάστε περισσότερα2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Διαβάστε περισσότεραORDINAL ARITHMETIC JULIAN J. SCHLÖDER
ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.
Διαβάστε περισσότεραEE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Διαβάστε περισσότεραLecture 2. Soundness and completeness of propositional logic
Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness
Διαβάστε περισσότεραC.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normalorder
Διαβάστε περισσότεραFractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
Διαβάστε περισσότεραNowherezero flows Let be a digraph, Abelian group. A Γcirculation in is a mapping : such that, where, and : tail in X, head in
Nowherezero flows Let be a digraph, Abelian group. A Γcirculation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowherezero Γflow is a Γcirculation such that
Διαβάστε περισσότεραA Note on Intuitionistic Fuzzy. Equivalence Relation
International Mathematical Forum, 5, 2010, no. 67, 33013307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar788011, Assam, India dkbasnet@rediffmail.com
Διαβάστε περισσότεραExample Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular SturmLiouville. ii Singular SturmLiouville mixed boundary conditions. iii Not SturmLiouville ODE is not in SturmLiouville form. iv Regular SturmLiouville note
Διαβάστε περισσότεραFinite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
Διαβάστε περισσότεραUniform Convergence of Fourier Series Michael Taylor
Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula
Διαβάστε περισσότεραSequent Calculi for the Modal µcalculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008
Sequent Calculi for the Modal µcalculus over S5 Luca Alberucci, University of Berne Logic Colloquium Berne, July 4th 2008 Introduction Koz: Axiomatisation for the modal µcalculus over K Axioms: All classical
Διαβάστε περισσότεραReminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Διαβάστε περισσότεραHomomorphism in Intuitionistic Fuzzy Automata
International Journal of Fuzzy Mathematics Systems. ISSN 22489940 Volume 3, Number 1 (2013), pp. 3945 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic
Διαβάστε περισσότεραω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω
0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +
Διαβάστε περισσότεραPhys460.nb Solution for the tdependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Διαβάστε περισσότεραBounding Nonsplitting Enumeration Degrees
Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2permitting for the enumeration degrees. Till now,
Διαβάστε περισσότερα5. Choice under Uncertainty
5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von NeumannMorgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation
Διαβάστε περισσότεραDIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS
GANIT J. Bangladesh Math. oc. IN 606694) 0) 7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University
Διαβάστε περισσότεραStatistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of onesided
Διαβάστε περισσότεραFourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
Διαβάστε περισσότερα4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Διαβάστε περισσότεραMath 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.
Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:
Διαβάστε περισσότεραMINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS
MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed
Διαβάστε περισσότεραSOME PROPERTIES OF FUZZY REAL NUMBERS
Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 2127 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical
Διαβάστε περισσότεραOn density of old sets in Prikry type extensions.
On density of old sets in Prikry type extensions. Moti Gitik December 31, 2015 Abstract Every set of ordinals of cardinality κ in a Prikry extension with a measure over κ contains an old set of arbitrary
Διαβάστε περισσότερα2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)
Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 20050308 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok
Διαβάστε περισσότεραLecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
Διαβάστε περισσότεραMatrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a nontrivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Διαβάστε περισσότεραConcrete Mathematics Exercises from 30 September 2016
Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)
Διαβάστε περισσότερα1. Introduction and Preliminaries.
Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We
Διαβάστε περισσότεραThe Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Διαβάστε περισσότεραInverse trigonometric functions & General Solution of Trigonometric Equations.   
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Διαβάστε περισσότεραderivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 0303 :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Διαβάστε περισσότεραCongruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239246 HIKARI Ltd, www.mhikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
Διαβάστε περισσότερα6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, 1, 1, 1) p 0 = p 0 p = p i = p i p μ p μ = p 0 p 0 + p i p i = E c 2  p 2 = (m c) 2 H = c p 2
Διαβάστε περισσότεραA Conception of Inductive Logic: Example
A Conception of Inductive Logic: Example Patrick Maher Department of Philosophy, University of Illinois at UrbanaChampaign This paper presents a simple example of inductive logic done according to the
Διαβάστε περισσότεραOther Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests SideNote: So far we have seen a few approaches for creating tests such as NeymanPearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Διαβάστε περισσότεραThe challenges of nonstable predicates
The challenges of nonstable predicates Consider a nonstable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of nonstable predicates
Διαβάστε περισσότεραTridiagonal matrices. Gérard MEURANT. October, 2008
Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,
Διαβάστε περισσότεραEcon 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
Διαβάστε περισσότερα3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(αβ) cos α cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β sin α cos(αβ cos α cos β sin α NOTE: cos(αβ cos α cos β cos(αβ cos α cos β Proof of cos(αβ cos α cos β sin α Let s use a unit circle
Διαβάστε περισσότεραChapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n firstorder differential equations
Διαβάστε περισσότεραApproximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 20121231 In this paper we shall provide a method to approximate distances between two points on earth
Διαβάστε περισσότεραCommutative Monoids in Intuitionistic Fuzzy Sets
Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu 641021 Assistant Professor of Mathematics,
Διαβάστε περισσότεραMath221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
Διαβάστε περισσότεραHomework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Διαβάστε περισσότεραChapter 3: Ordinal Numbers
Chapter 3: Ordinal Numbers There are two kinds of number.. Ordinal numbers (0th), st, 2nd, 3rd, 4th, 5th,..., ω, ω +,... ω2, ω2+,... ω 2... answers to the question What position is... in a sequence? What
Διαβάστε περισσότεραSection 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Διαβάστε περισσότεραHomework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Διαβάστε περισσότεραHOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Διαβάστε περισσότεραKnasterReichbach Theorem for 2 κ
KnasterReichbach Theorem for 2 κ Micha l Korch February 9, 2018 In the recent years the theory of the generalized Cantor and Baire spaces was extensively developed (see, e.g. [1], [2], [6], [4] and many
Διαβάστε περισσότεραCardinals. Y = n Y n. Define h: X Y by f(x) if x X n X n+1 and n is even h(x) = g
Cardinals 1. Introduction to Cardinals We work in the base theory ZF. The definitions and many (but not all) of the basic theorems do not require AC; we will indicate explicitly when we are using choice.
Διαβάστε περισσότεραCHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Διαβάστε περισσότερα12. RadonNikodym Theorem
Tutorial 12: RadonNikodym Theorem 1 12. RadonNikodym Theorem In the following, (Ω, F) is an arbitrary measurable space. Definition 96 Let μ and ν be two (possibly complex) measures on (Ω, F). We say
Διαβάστε περισσότεραLecture 13  Root Space Decomposition II
Lecture 13  Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).
Διαβάστε περισσότεραStrukturalna poprawność argumentu.
Strukturalna poprawność argumentu. Marcin Selinger Uniwersytet Wrocławski Katedra Logiki i Metodologii Nauk marcisel@uni.wroc.pl Table of contents: 1. Definition of argument and further notions. 2. Operations
Διαβάστε περισσότεραLecture 15  Root System Axiomatics
Lecture 15  Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the
Διαβάστε περισσότεραGenerating Set of the Complete Semigroups of Binary Relations
Applied Mathematics 06 7 9807 Published Online January 06 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/036/am067009 Generating Set of the Complete Semigroups of Binary Relations Yasha iasamidze
Διαβάστε περισσότεραOn a fourdimensional hyperbolic manifold with finite volume
BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a fourdimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In
Διαβάστε περισσότεραSolutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
Διαβάστε περισσότεραPractice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
Διαβάστε περισσότεραSolution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
Διαβάστε περισσότεραTHE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano
235 Kragujevac J. Math. 30 (2007) 235 242. THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS Daniel A. Romano Department of Mathematics and Informatics, Banja Luka University, Mladena Stojanovića
Διαβάστε περισσότεραF A S C I C U L I M A T H E M A T I C I
F A S C I C U L I M A T H E M A T I C I Nr 46 2011 C. Carpintero, N. Rajesh and E. Rosas ON A CLASS OF (γ, γ )PREOPEN SETS IN A TOPOLOGICAL SPACE Abstract. In this paper we have introduced the concept
Διαβάστε περισσότεραCompleteness Theorem for System AS1
11 The Completeness Theorem for System AS1 1. Introduction...2 2. Previous Definitions...2 3. Deductive Consistency...2 4. Maximal Consistent Sets...5 5. Lindenbaum s Lemma...6 6. Every Maximal Consistent
Διαβάστε περισσότεραCoefficient Inequalities for a New Subclass of Kuniformly Convex Functions
International Journal of Computational Science and Mathematics. ISSN 097489 Volume, Number (00), pp. 6775 International Research Publication House http://www.irphouse.com Coefficient Inequalities for
Διαβάστε περισσότεραNew bounds for spherical twodistance sets and equiangular lines
New bounds for spherical twodistance sets and equiangular lines Michigan State University Oct 831, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a
Διαβάστε περισσότεραforms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with
Week 03: C lassification of S econd Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We
Διαβάστε περισσότεραSecond Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Διαβάστε περισσότεραANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
Διαβάστε περισσότεραSCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00 Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
Διαβάστε περισσότεραMeanVariance Analysis
MeanVariance Analysis Jan Schneider McCombs School of Business University of Texas at Austin Jan Schneider MeanVariance Analysis Beta Representation of the Risk Premium risk premium E t [Rt t+τ ] R1
Διαβάστε περισσότερα( y) Partial Differential Equations
Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate
Διαβάστε περισσότεραPartial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
Διαβάστε περισσότεραAreas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Διαβάστε περισσότεραIterated trilinear fourier integrals with arbitrary symbols
Cornell University ICM 04, Satellite Conference in Harmonic Analysis, Chosun University, Gwangju, Korea August 6, 04 Motivation the CoifmanMeyer theorem with classical paraproduct(979) B(f, f )(x) :=
Διαβάστε περισσότεραΜηχανική Μάθηση Hypothesis Testing
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider
Διαβάστε περισσότεραProofs on expressing nested GR(1) properties in GR(1)
Proofs on expressing nested GR(1 properties in GR(1 Ioannis Filippidis ifilippi@caltech.edu Control and Dynamical Systems California Institute of Technology December 22, 2017 Abstract This is a proof that
Διαβάστε περισσότεραSOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
Διαβάστε περισσότεραSCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018
Journal of rogressive Research in Mathematics(JRM) ISSN: 2395028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals
Διαβάστε περισσότεραCRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS ShiahSen Wang The graphs are prepared by ChienLun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
Διαβάστε περισσότεραAreas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Διαβάστε περισσότεραTHE GENERAL INDUCTIVE ARGUMENT FOR MEASURE ANALYSES WITH ADDITIVE ORDINAL ALGEBRAS
THE GENERAL INDUCTIVE ARGUMENT FOR MEASURE ANALYSES WITH ADDITIVE ORDINAL ALGEBRAS STEFAN BOLD, BENEDIKT LÖWE In [BoLö ] we gave a survey of measure analyses under AD, discussed the general theory of order
Διαβάστε περισσότεραJesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
Διαβάστε περισσότεραRight Rear Door. Let's now finish the door hinge saga with the right rear door
Right Rear Door Let's now finish the door hinge saga with the right rear door You may have been already guessed my steps, so there is not much to describe in detail. Old upper one file:///c /Documents
Διαβάστε περισσότεραde Rham Theorem May 10, 2016
de Rham Theorem May 10, 2016 Stokes formula and the integration morphism: Let M = σ Σ σ be a smooth triangulated manifold. Fact: Stokes formula σ ω = σ dω holds, e.g. for simplices. It can be used to define
Διαβάστε περισσότεραLTL to Buchi. Overview. Buchi Model Checking LTL Translating LTL into Buchi. Ralf Huuck. Buchi Automata. Example
Overview LTL to Buchi Buchi Model Checking LTL Translating LTL into Buchi Ralf Huuck Buchi Automata Example Automaton which accepts infinite traces δ A Buchi automaton is 5tuple Σ, Q, Q 0,δ, F Σ is a
Διαβάστε περισσότεραMain source: "Discretetime systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1
Main source: "Discretetime systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915  Edmund Taylor Whittaker (18731956) devised a
Διαβάστε περισσότεραΕγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα
[ 1 ] Πανεπιστήµιο Κύπρου Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα Νίκος Στυλιανόπουλος, Πανεπιστήµιο Κύπρου Λευκωσία, εκέµβριος 2009 [ 2 ] Πανεπιστήµιο Κύπρου Πόσο σηµαντική είναι η απόδειξη
Διαβάστε περισσότερα= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.
PHY 396 T: SUSY Solutions for problem set #1. Problem 2(a): First of all, [D α, D 2 D α D α ] = {D α, D α }D α D α {D α, D α } = {D α, D α }D α + D α {D α, D α } (S.1) = {{D α, D α }, D α }. Second, {D
Διαβάστε περισσότεραChap. 6 Pushdown Automata
Chap. 6 Pushdown Automata 6.1 Definition of Pushdown Automata Example 6.1 L = {wcw R w (0+1) * } P c 0P0 1P1 1. Start at state q 0, push input symbol onto stack, and stay in q 0. 2. If input symbol is
Διαβάστε περισσότεραA TwoSided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering
Electronic Companion A TwoSie Laplace Inversion Algorithm with Computable Error Bouns an Its Applications in Financial Engineering Ning Cai, S. G. Kou, Zongjian Liu HKUST an Columbia University Appenix
Διαβάστε περισσότεραThe Probabilistic Method  Probabilistic Techniques. Lecture 7: The Janson Inequality
The Probabilistic Method  Probabilistic Techniques Lecture 7: The Janson Inequality Sotiris Nikoletseas Associate Professor Computer Engineering and Informatics Department 20142015 Sotiris Nikoletseas,
Διαβάστε περισσότεραΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή
Διαβάστε περισσότεραPartial Trace and Partial Transpose
Partial Trace and Partial Transpose by José Luis GómezMuñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx This document is based on suggestions by Anirban Das Introduction This
Διαβάστε περισσότερα3.2 Simple Roots and Weyl Group
44 CHAPTER 3. ROOT SYSTEMS 3.2 Simple Roots and Weyl Group In this section, we fix a root system Φ of rank l in a euclidean space E, with Weyl group W. 3.2.1 Bases and Weyl chambers Def. A subset of Φ
Διαβάστε περισσότεραSolutions to Selected Homework Problems 1.26 Claim: α : S S which is 11 but not onto β : S S which is onto but not 11. y z = z y y, z S.
Solutions to Selected Homework Problems 1.26 Claim: α : S S which is 11 but not onto β : S S which is onto but not 11. Proof. ( ) Since α is 11, β : S S such that β α = id S. Since β α = id S is onto,
Διαβάστε περισσότερα