Fizika 2. Optika. Geometrijska optika

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Fizika 2. Optika. Geometrijska optika"

Transcript

1 Fizika Optika Geometrijska optika

2 Geometrijska optika -empirijska, aproksimativa (vrijedi uz određee uvjete) -svjetlost se proučava kao pravocrta pojava koja se širi brziom c 0 =30 8 ms - u vakuumu -svojstva svjetlosti objašjea su zakoima geometrijske optike

3 Zakoi geometrijske optike. Zako pravocrtog šireja svjetlosti: U homogeom prozirom sredstvu svjetlost se širi pravocrto. zastor A B geometrijska sjea Ogib; svijetle i tame pruge Geometr. optika fizikala optika Zako pravocrtog šireja svjetlosti vrijedi za velike prepreke; kod malih prepreka javlja se ogib radi očitovaja vale prirode svjetlosti (slika, zrake se šire u svim smjerovima). U blizii velikih masa (pr. Suce) zraka svjetlosti skreće-opća teorija relativosti

4 . Zako ezavisosti šireja sopova zraka svjetlosti: Ako jeda sop zraka svjetlosti prolazi kroz drugi sop, jeda a drugog e utječu (ako izvori isu kohereti). I I Sopovi e utječu jeda a drugoga Iterferecija; svijetle i tame pruge (kohereti izvori)

5 3. Zako refleksije (odbijaja): kut upada jedak je kutu refleksije θ = θ Ulaza zraka, reflektiraa zraka i ormala se alaze u istoj ravii 5

6 3. Zako refleksije = Zrcala (specular) refleksija Difuza refleksija

7 Zrcala refleksija Zrcala refleksija je refleksija od glatke površie Reflektirae zrake su paralele jeda s drugom 7

8 Difuza refleksija Difuza refleksija je refleksija od hrapave površie Reflektiraa zrake širi se u različitim smjerovima Površia se poaša kao glatka površia sve dok su varijacije površie puo maje od vale duljie svjetlosti 8

9 zrcala refleksija difuza refleksija 9

10 STAKLO Jedosmjero zrcalo Jedosmjero zrcalo je samo čisto staklo prozora. Koferecijska soba (svjetlo) Svjetla soba Tama soba Reflektirao svjetlo iz svijetle sobe sakriva trasmitirao svjetlo iz zatamjee sobe za promatraje Soba za promatraje (tamo)

11 Fermat-ov pricip; svjetlost se širi putem ajkraćeg vremea refleksija:

12 4. Zako refrakcije (loma) Kada zraka svjetlosti putuje kroz traspareta medij (optičko sredstvo) i dolazi a graicu s drugim trasparetim medijem, dio eergije se reflektira, a dio ulazi u drugi medij Zraka koji ulazi u drugi medij mijeja smjer kretaja; kažemo da se lomi a graici između dva optička sredstva Ulaza zraka, reflektiraa zraka, lomljea zraka i ormala leže u istoj ravii. Sop svjetlosti iz zraka ulazi u (a) vodu ( =,33) ili (b) dijamat ( =,4) pod kutom od 60 u odosu a ormalu

13 Lom svjetlosti Put svjetlosti iz jedog u drugo optičko sredstvo je reverzibila Na primjer, zraka koja putuje od A do B lomi se prema okomici ( lom iz rjeđeg u gušće sredstvo) Ako je zraka kreula iz B, pratiti će putaju BA do točke A pa se lomi od okomice (lom iz gušćeg u rjeđe sredstvo) Ulaza zraka zrak staklo ormala Reflektiraa zraka Lomljea zraka 3

14 Zraka je upada zraka Zraka je reflektiraa zraka Zraka je lomljea zraka (zrak/staklo) Zraka je itero reflektiraa u staklu Zraka je lomljea zraka (staklo/zrak) 4

15 4. Zako refrakcije (loma): Lomljea zraka je u ravii upade zrake, a omjer siusa kuta upada i loma je kostata broj koji je ideks loma. (Sell-Descartes-ov zako) si u si l rel si u = si l Lom svjetlosti iz optički rjeđeg u optički gušće sredstvo u Sredstvo < c c Lom svjetlosti iz optički gušćeg u optički rjeđe sredstvo c l l Sredstvo C u c c 5

16 Zako loma (Sell-Descartes-ov zako) Willebrord Sel va Roye si si v je brzia svjetlosti u prvom sredstvu, a v je brzia svjetlosti u drugom v v Fizikali smisao ideksa loma 6

17 U vremeu Δt, zraka kreće od A do B, a zraka kreće od A'do C Lom svjetlosti Sredstvo, brzia svjetlosti v v c Iz trokuta AA'C i ACB, mogu se aći svi omjeri koji opisuju zako loma Sredstvo, brzia svjetlosti v si si A'C AC AB AC v t AC v t AC si v si v si si 7

18 Ideks loma Brzia svjetlosti u bilo kojem materijalu je maja od brzie u vakuumu Ideks loma, (apsoluti ideks loma), medija defiira se kao aps brzia svjetlosti u vakuumu brzia svjetlostiu mediju c c aps uvijek!!! Relativi ideks loma rel c c c c c c rel ili rel 8

19 Ideks loma za vakuum (i za zrak), = za ostala sredstva apsoluti ideks loma ili ideks loma > Fizikalo začeje ideksa loma: omjer brzia svjetlosti u dva optička sredstva (relativi ideks loma); tj. bezdimezioali broj koji pokazuje koliko puta je brzia svjetlosti u ekom optičkom sredstvu maja od brzie u vakuumu (apsoluti ideks loma) 9

20 Svjetlost u mediju Svjetlost ulazi sa lijeve strae Svjetlost može iteragirati s elektroom Pri tome elektro može apsorbirati svjetlost, oscilirati i poovo emitirati elmag zračeje Apsorpcija i zračeje uzrokuju da se prosječa brzia svjetlosti koja se kreće kroz optički gušće sredstvo smajuje 0

21 Frekvecija između medija Kad svjetlost prelazi iz jedog medija u drugi, jezia frekvecija se e mijeja brzia vala i vala duljia se mijejaju vale frote se e gomilaju, iti su stvoree iti su uištee a graici, frekvecija mora ostati ista

22 Ideks loma Frekvecija ostaje ista kako val putuje iz jedog medija u drugi v = ƒλ ƒ = ƒ ali v v pa je i λ λ Omjer ideksa loma dva medija može se izraziti kao omjer v v c c

23 Još o ideksu loma Prethoda relacija može biti pojedostavljea za usporedbu vale duljie i ideksa loma: λ = λ U zraku, =, pa se ideks loma materijala može se defiirati u pomoću valih duljia u vakuumu u sredstvu 3

24 4

25 Neki ideksi loma 5

26 Totala refleksija Totala refleksija se može dogoditi kada svjetlo pokušava prijeći iz sredie s većim ideksom loma u srediu s ižim ideksom loma Zrake e,f,g prikazuje totalu refleksiju 6

27 Pri prolasku svjetlosti iz optički gušćeg u optički rjeđe sredstvo za posebi upadi kut (graiči kut) kut loma će biti 90 graiči kut loma Za kut upada veći od graičog kuta, zraka se u potpuosti reflektira gr si gr za 7

28 Lom svjetlosti iz optički gušćeg u optički rjeđe sredstvo: - zrake, ; lom, kut loma, l u, kuta upada - zrake, ; graiči lom, l = 90 0, u=u graiči =u gr zrake, ; TOTALNA REFLEKSIJA, kut u u gr C l l=90 0 c c 3 u u gr u u gr r 3 8

29 Totala refleksija Kada se svjetlost lomi iz optički gušćeg u optički rjeđe sredstvo,može se pojaviti totala refleksija. Oa astaje u slučaju kada je kut upada veći od graičog kuta; slika u prethodom slide-u. Zako loma u slučaju graičog loma glasi: si u za gr 0 si 90 _ sr sredstva sredstva zrak si u pa je zadji oblik jedadžbe ujedo i jedadžba graičog kuta, koji određuje pojavu totale refleksije. gr si u gr sr sr sr 9

30 Totala refleksija

31 Primjea totale refleksije: optička vlaka 3

32 Optička vlaka, totala refleksija Traspareta jezgra je okružea oblogom Obloga ima iži od jezgre To omogućava da se svjetlo u jezgri totalo reflektira a graici Kombiacija je obložea zaštitom oblogom 3

33 Primjea totale refleksije: prizme u = 45 0 u gr = 4, = 90 0 =

34 Optičke fatamorgae u atmosferi doja fatamorgaa (iferior mirage) - cesta, pustija gorja fatamorgaa (superior mirage) - more (otok u moru), avio z dt dz T z T 0 dt dz 0 Temperatura opada u smjeru osi z; u tom smjeru se povećava ideks loma zraka (lom iz optički gušćeg u optički rjeđe sredstvo, lom od okomice) Temperatura raste u smjeru osi z; u tom smjeru se smajuje ideks loma zraka (lom iz optički rjeđeg u optički gušće sredstvo, lom prema okomici) 34

35 35

36 Pojava fatamorgae a autocesti dolazi zbog toga što se ideks loma postupo mijeja zbog ugrijaog zraka. Promatra č Direkta zraka Zraka A usmjerea blago prema dolje 36

37 37

38 Što uzrokuje fatamorgau ebo oko.09 Ideks loma Vrući asfalt uzrokuje gradijet (promjeu) ideksa loma čija se vrijedost povećav kao što se povećava udaljeost od ceste 38

39 39

40 40

41 4

42 4

43 43 43 Fermat-ov pricip: stvari put što ga svjetlost prijeđe između dviju točaka je takav da je za taj put potrebo ajmaje vrijeme. Ovaj pricip aziva se pricipom ajmajeg vremea. Primjer: lom svjetlosti S O P h b a x u i l t i t t t i i t i t i t i v v x a b v x a x h v x dx dt v x a b v x h v v t si si 0 ) ( ) ( ) ( OP SO

44 Fermatov pricip: Zako refleksije Fermatov pricip: svjetlosa zraka putuje od točke A do točke B u mediju duž puta za koji je potrebo ajkraće vrijeme propagacije. Zako refleksije: AB DOP x y y x y y 3 3 (x 3, y 3 ) DOP AB - duljia optičkog puta fiksiramo koordiate - x, y, x, y 3 3 θ r θ i y (0, y ) ddop y y y y 3 AB 0 dy x y y x3 y3 y 0 y y y y 3 x y y x y y 3 3 (x, y ) x 0 si si i si si i r r

45 Fermatov pricip: Zako loma DOP x x y x x y AB i t 3 3 (x, y ) A fiksiramo koordiate - x, y, x, y 3 3 y x i (x, 0) t i t (x 3, y 3 ) i d OPL x x x x i t 3 AB 0 dx x x y x3 x y3 0 t x x x3 x x x y x x y si si i i t t si si i i t t DOP- duljia optičkog puta 45

46 lom svjetlosti a plaparaleloj ploči - paraleli pomak, d u u l d l pokažimo možemo pokazati da je d jedak: d D si( u cos l l) D si u si u si u 46

47 47 l l u u A B C d D C l l u D d l l u d l u ABC l ABC cos ) si( cos D AB & ) ABsi( ) si( AB d cos AB D u l u u Izvod jedadžbe:

48 paraleli pomak, d (cm) Za zadau ploču izračuati su paraleli pomaci iz jedadžbe: d D si u si u si u 4 3 PP ploca, ideks loma, =,5 debljia ploce, D = 4 cm 0 jedadzba: d = f(u) kalkulator Origi u(st) d (cm) , ,775 50,536 70, , , kut upada, u ( 0 ) 48

49 49 Određivaje ideksa loma pomoću prizme mi mi si si si si mi si si mi

50 mi si si Kut devijacije prizme kuta = 60 0 i ideksa loma =,5; možemo opaziti da je kut miimuma devijacije jedak 50 mi 37 0 za kut upada 48 0.

51 INDEKS LOMA OVISAN O VALNOJ DULJINI: maja vala duljiaveći ideks loma. Na prizmi to opažamo kao disperziju polikromatske svjetlosti; to zači da se maja vala duljia (boja, šara) lomi pod većim kutom što uzrokuje razdvajaje boja: spektar 5

52 Disperzija 9 Za dai materijal, ideks loma ovisi o valoj duljii svjetlosti koja prolazi kroz materijal Ova ovisost (ideksa loma) o λ zove se disperzija Sellov zako ukazuje da se svjetlo različitih valih duljia lomi pod različitim kutovima kada pada a materijal koji lomi svjetlost 5

53 Prizma-disperzija svjetlosti lj - cr širia spektra cr lj 53

54 Kako se tvori duga Duga se stvora disperzijom u sitim kapljicama vode. Svaka pojedia kap kiše koja pada a zemlju šalje sve dugie boje prema promatraču. Vrh duge je crve, a do je ljubičasto. 54

55 55

Fizika 2. Optika. Geometrijska optika 2009/10

Fizika 2. Optika. Geometrijska optika 2009/10 Fizika Optika Geometrijska optika 009/10 1 Geometrijska optika -empirijska, aproksimativna (vrijedi uz određene uvjete) -svjetlost se proučava kao pravocrtna pojava koja se širi brzinom c 0 =310 8 ms -1

Διαβάστε περισσότερα

Polarizacija. Procesi nastajanja polarizirane svjetlosti: a) refleksija b) raspršenje c) dvolom d) dikroizam

Polarizacija. Procesi nastajanja polarizirane svjetlosti: a) refleksija b) raspršenje c) dvolom d) dikroizam Polarzacja Proces asajaja polarzrae svjelos: a refleksja b raspršeje c dvolom d dkrozam Freselove jedadžbe Svjelos prelaz z opčkog sredsva deksa loma 1 u sredsvo deksa loma, dolaz do: refleksje (prema

Διαβάστε περισσότερα

Što je svjetlost? Svjetlost je elektromagnetski val

Što je svjetlost? Svjetlost je elektromagnetski val Optika Što je svjetlost? Svjetlost je elektromagnetski val Transvezalan Boja ovisi o valnoj duljini idljiva svjetlost (od 400 nm do 700 nm) Ljubičasta ( 400 nm) ima kradu valnu duljinu od crvene (700 nm)

Διαβάστε περισσότερα

( ) ( ) ( + ) ( ) ( ) 2 2 ( ) [ > ] ( ) 2

( ) ( ) ( + ) ( ) ( ) 2 2 ( ) [ > ] ( ) 2 Zadatak 8 (Dio, gimazija) Predmet i slika trebaju biti udaljei 00 cm. Gdje treba postaviti leću žariše daljie 6 cm da bi se dobila reala slika? Rješeje 8 d = 00 cm = m, f = 6 cm = 0.6 m, a =? Leće su prozira

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

Fizika 2. Optika. Geometrijska optika 2009/10

Fizika 2. Optika. Geometrijska optika 2009/10 Fizika 2 Optika Geometrijska optika 2009/10 1 2 Optika..definicija Optika, u širem smislu, je dio fizike koji proučava elektromagnetske valove; njihova svojstva i pojave. Elektromagnetski valovi ili (elektromagnetsko

Διαβάστε περισσότερα

II. ANALITIČKA GEOMETRIJA PROSTORA

II. ANALITIČKA GEOMETRIJA PROSTORA II. NLITIČK GEMETRIJ RSTR I. I (Točka. Ravia.) d. sc. Mia Rodić Lipaović 9./. Točka u postou ( ; i, j, k ) Kateijev pavokuti koodiati sustav k i j T T (,, ) oložaj točke u postou je jedoačo odeñe jeim

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

Fizika 2. Optika. Geometrijska optika Zakon loma na sfernoj granici Preslikavanje lomom

Fizika 2. Optika. Geometrijska optika Zakon loma na sfernoj granici Preslikavanje lomom Fizika Optika Geometrijska optika Zako loma a seroj graici Preslikavaje lomom Zako loma a seroj graici promotrimo dva prozira sredstva koja imaju idekse loma i Graica između ta dva sredstva je sera površia

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

c - brzina svjetlosti u vakuumu, v - brzina svjetlosti u sredstvu. Apsolutni indeks loma nema mjernu jedinicu i n 1.

c - brzina svjetlosti u vakuumu, v - brzina svjetlosti u sredstvu. Apsolutni indeks loma nema mjernu jedinicu i n 1. Geometrijska optika_intro Zakoni geometrijske optike, zrcala, totalna refleksija, disperzija svjetlosti, leće, oko i načini korekcije vida Zakoni geometrijske optike 1. zakon pravocrtnog širenja svjetlosti

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

Fizika 2. Optika: Geometrijska Fizikalna 2007/08

Fizika 2. Optika: Geometrijska Fizikalna 2007/08 Fizika 2 Optika: Geometrijska Fizikalna 2007/08 1 Svjetlost je... Svjetlost je ono što čini objekte oko nas vidljivima Svjetlost je jedini izvor boje Svjetlost je energija Svjetlost je i val i čestica

Διαβάστε περισσότερα

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

Priprema za državnu maturu

Priprema za državnu maturu Priprema za državnu maturu G E O M E T R I J S K A O P T I K A 1. Valna duljina elektromagnetskoga vala približno je jednaka promjeru jabuke. Kojemu dijelu elektromagnetskoga spektra pripada taj val? A.

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Fizika 2. Fizikalna optika 2008/09

Fizika 2. Fizikalna optika 2008/09 Fizika 2 Fizikalna optika 2008/09 Što je svjetlost; što je priroda svjetlosti? U geometrijskoj optici: Svjetlost je pravocrtna pojava određene brzine u nekom sredstvu (optičkom sredstvu). U fizikalnoj

Διαβάστε περισσότερα

Optika Što je svjetlost?! Vrlo težak odgovor! Valna teorija

Optika Što je svjetlost?! Vrlo težak odgovor! Valna teorija Optika Optika - Dio fizike. Znanost koja proučava svjetlosne pojave. Izvori svjetlosti: Sunce, zvijezde, užareni predmeti, plamen, električni izboj u plinovima i dr. Oko = detektor svjetlosti. Pomoću oka

Διαβάστε περισσότερα

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA. KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

Geometrijska optika. Fizika 2 Predavanje 9. Dr. sc. Damir Lelas

Geometrijska optika. Fizika 2 Predavanje 9. Dr. sc. Damir Lelas Fakultet elektrotehnike, strojarstva i brodogradnje Razlikovni studiji (90/90/930/940/950) Fizika Predavanje 9 Geometrijska optika Dr. sc. Damir Lelas (Damir.Lelas@fesb.hr, damir.lelas@cern.ch ) Danas

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

1. Duljinska (normalna) deformacija ε. 2. Kutna (posmina) deformacija γ. 3. Obujamska deformacija Θ

1. Duljinska (normalna) deformacija ε. 2. Kutna (posmina) deformacija γ. 3. Obujamska deformacija Θ Deformaije . Duljinska (normalna) deformaija. Kutna (posmina) deformaija γ 3. Obujamska deformaija Θ 3 Tenor deformaija tenor drugog reda ij γ γ γ γ γ γ 3 9 podataka+mjerna jedinia 4 Simetrinost tenora

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

Zdaci iz trigonometrije trokuta Izračunaj ostale elemente trokuta pomoću zadanih:

Zdaci iz trigonometrije trokuta Izračunaj ostale elemente trokuta pomoću zadanih: Zdaci iz trigonometrije trokuta... 1. Izračunaj ostale elemente trokuta pomoću zadanih: a) a = 1 cm, α = 66, β = 5 ; b) a = 7.3 cm, β =86, γ = 51 ; c) b = 13. cm, α =1 48`, β =13 4`; d) b = 44.5 cm, α

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

( x) ( ) dy df dg. =, ( x) e = e, ( ) ' x. Zadatak 001 (Marinela, gimnazija) Nađite derivaciju funkcije f(x) = a + b x. ( ) ( )

( x) ( ) dy df dg. =, ( x) e = e, ( ) ' x. Zadatak 001 (Marinela, gimnazija) Nađite derivaciju funkcije f(x) = a + b x. ( ) ( ) Zadatak (Mariela, gimazija) Nađite derivaciju fukcije f() a + b c + d Rješeje Neka su f(), g(), h() fukcije ezavise varijable, a f (), g (), h () derivacije tih fukcija po Osova pravila deriviraja Derivacija

Διαβάστε περισσότερα

Dvanaesti praktikum iz Analize 1

Dvanaesti praktikum iz Analize 1 Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

F2_kolokvij_K2_zadaci izbor_rješenja lipanj, 2008

F2_kolokvij_K2_zadaci izbor_rješenja lipanj, 2008 F_kolokvij_K_zadai izbor_rješenja lipanj, 008 Fermatov prinip:. Fermatov prinip o širenju svjetlosnih zraka; izvedite zakon refleksije pomoću prinipa minimalnog vremena širenja svjetlosti između dviju

Διαβάστε περισσότερα

3n an = 4n3/2 +2n+ n 5n 3/2 +5n+2 n a 2 n = n 2. ( 2) n Dodatak. = 0, lim n! 2n 6n + 1

3n an = 4n3/2 +2n+ n 5n 3/2 +5n+2 n a 2 n = n 2. ( 2) n Dodatak. = 0, lim n! 2n 6n + 1 Nizovi 5 a = 5 +3+ + 6 a = 3 00 + 00 3 +5 7 a = +)+) ) 3 3 8 a = 3 +3+ + +3 9 a = 3 5 0 a = 43/ ++ 5 3/ +5+ a = + + a = + ) 3 a = + + + 4 a = 3 3 + 3 ) 5 a = +++ 6 a = + ++ 3 a = +)!++)! +3)! a = ) +3

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

Geometrijska optika Lom svjetlosti na ravnim sistemima

Geometrijska optika Lom svjetlosti na ravnim sistemima Zadaci - Geometrijska optika - Fizikalna optika - 2007/08 Geometrijska optika Lom svjetlosti na ravnim sistemima ravni dioptar planparalelna ploča prizma Koja svojstva svjetlosti poznajete? Što je svjetlost

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

Općenito, iznos normalne deformacije u smjeru normale n dan je izrazom:

Općenito, iznos normalne deformacije u smjeru normale n dan je izrazom: Otporost mterijl. Zdtk ZDTK: U točki čeliče kostrukije postvlje su tri osjetil z mjereje deformij prem slii. ri opterećeju kostrukije izmjeree su reltive ormle (dužiske deformije: b ( - b 3 - -6 - ( b

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

PITANJA IZ FOTOMETRIJE I GEOMETRIJSKE OPTIKE

PITANJA IZ FOTOMETRIJE I GEOMETRIJSKE OPTIKE PITANJA IZ FOTOMETRIJE I GEOMETRIJSKE OPTIKE 1. Opišite svjetlosne izvore. Po čemu se oni razlikuju? 2. Opiši osjetljivost oka na različite valne duljine. 3. Definiraj (i pojasni) pojmove: točkasti svjetlosni

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

PRIMJER 3. MATLAB filtdemo

PRIMJER 3. MATLAB filtdemo PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8

Διαβάστε περισσότερα

Zadatak 081 (Nina, gimnazija) Monokromatska svjetlost valne duljine 1.16 µm pada okomito na dvije planparalelne ploče koje čine = 0.

Zadatak 081 (Nina, gimnazija) Monokromatska svjetlost valne duljine 1.16 µm pada okomito na dvije planparalelne ploče koje čine = 0. Zaatak 08 (Nia, gimazija) Mookromatska svjetlost vale uljie.6 µm paa okomito a vije plaparalele ploče koje čie kli. Ualjeost viju susjeih tamih pruga je 0 mm. Koliki je kut meñu pločama? Rješeje 08 =.6

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

odvodi u okoliš? Rješenje 1. zadatka Zadano: q m =0,5 kg/s p 1 =1 bar =10 5 Pa zrak w 1 = 15 m/s z = z 2 -z 1 =100 m p 2 =7 bar = Pa

odvodi u okoliš? Rješenje 1. zadatka Zadano: q m =0,5 kg/s p 1 =1 bar =10 5 Pa zrak w 1 = 15 m/s z = z 2 -z 1 =100 m p 2 =7 bar = Pa .vježba iz Terodiaike rješeja zadataka 1. Zadatak Kopresor usisava 0,5 kg/s zraka tlaka 1 bar i 0 o C, tlači ga i istiskuje u eizolirai tlači cjevovod. Na ulazo presjeku usise cijevi brzia je 15 /s. Izlazi

Διαβάστε περισσότερα

VJEŽBE IZ FIZIKE 2 OPTIKA I FOTOMETRIJA

VJEŽBE IZ FIZIKE 2 OPTIKA I FOTOMETRIJA VJEŽBE IZ FIZIKE 2 OPTIKA I FOTOMETRIJA Katedra fizike Grafičkog fakulteta Sveučilišta u Zagrebu Zagreb, 2006/07. 1 UVOD Optika je u širem smislu znanost o zračenju. Nekada je optika izučavala samo one

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

Svjetlost. Priroda svjetlosti Zakoni geometrijske optike Fermatov princip Refleksija svjetlosti. Ravno zrcalo Sferno zrcalo.

Svjetlost. Priroda svjetlosti Zakoni geometrijske optike Fermatov princip Refleksija svjetlosti. Ravno zrcalo Sferno zrcalo. Poglavlje Svjetlost.....3..4..4...4...5..5...5...5.3..6..6...6...6.3..7..8. Priroda svjetlosti Zakoni geometrijske optike Fermatov princip Refleksija svjetlosti Ravno zrcalo Sferno zrcalo Lom svjetlosti

Διαβάστε περισσότερα

Numerička matematika 2. kolokvij (1. srpnja 2009.)

Numerička matematika 2. kolokvij (1. srpnja 2009.) Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni

Διαβάστε περισσότερα

5. Karakteristične funkcije

5. Karakteristične funkcije 5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta. auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Deformacije. Tenzor deformacija tenzor drugog reda. Simetrinost tenzora deformacija. 1. Duljinska deformacija ε. 1. Duljinska (normalna) deformacija ε

Deformacije. Tenzor deformacija tenzor drugog reda. Simetrinost tenzora deformacija. 1. Duljinska deformacija ε. 1. Duljinska (normalna) deformacija ε Deformae. Duljinska (normalna) deformaa. Kutna (posmina) deformaa. Obujamska deformaa Θ Tenor deformaa tenor drugog reda 9 podatakamjerna jedinia Simetrinost tenora deformaa 6 podataka 4. Duljinska deformaa

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

Interferencija svjetlosti

Interferencija svjetlosti Interferencija svjetlosti a) Interferencija valova (mehaničkih i svjetlosnih) je svojstvo algebarskog zbrajanja (pojačavanja i poništavanja) dva ili više vala. Na slici je prikazan val na vodi iz jednog

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

PRAVAC. riješeni zadaci 1 od 8 1. Nađite parametarski i kanonski oblik jednadžbe pravca koji prolazi točkama. i kroz A :

PRAVAC. riješeni zadaci 1 od 8 1. Nađite parametarski i kanonski oblik jednadžbe pravca koji prolazi točkama. i kroz A : PRAVAC iješeni adaci od 8 Nađie aameaski i kanonski oblik jednadžbe aca koji olai očkama a) A ( ) B ( ) b) A ( ) B ( ) c) A ( ) B ( ) a) n a AB { } i ko A : j b) n a AB { 00 } ili { 00 } i ko A : j 0 0

Διαβάστε περισσότερα

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno. JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)

Διαβάστε περισσότερα

Elektrotehnički fakultet univerziteta u Beogradu 26. jun Katedra za Računarsku tehniku i informatiku

Elektrotehnički fakultet univerziteta u Beogradu 26. jun Katedra za Računarsku tehniku i informatiku Elektrotehički fakultet uiverziteta u Beogradu 6. ju 008. Katedra za Račuarku tehiku i iformatiku Performae račuarkih itema Rešeja zadataka..videti predavaja.. Kretaje Verovatoća Opi 4 4 Kretaje u itom

Διαβάστε περισσότερα

Fizika 2 Fizikalna optika

Fizika 2 Fizikalna optika Fizika 2 Fizikalna optika Elektromagnetski valovi Polarizacija Što je svjetlost; što je priroda svjetlosti? OTKUDA DOLAZI? U geometrijskoj optici: Svjetlost je pravocrtna pojava određene brzine u nekom

Διαβάστε περισσότερα

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu.

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu. ALKENI Acikliči ezasićei ugljovodoici koji imaju jedu dvostruku vezu. 2 4 2 2 2 (etile) viil grupa 3 6 2 3 2 2 prope (propile) alil grupa 4 8 2 2 3 3 3 2 3 3 1-bute 2-bute 2-metilprope 5 10 2 2 2 2 3 2

Διαβάστε περισσότερα

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

Nizovi. Definicija. Niz je funkcija. a: R. Oznake: (a n ) ili a n } Zadatak 2.1 Napišite prvih nekoliko članova nizova zadanih općim članom:

Nizovi. Definicija. Niz je funkcija. a: R. Oznake: (a n ) ili a n } Zadatak 2.1 Napišite prvih nekoliko članova nizova zadanih općim članom: Nizovi Defiicija Niz je fukcija Ozake: (a ) ili a } a: R Zadatak Napišite prvih ekoliko člaova izova zadaih općim člaom: a = a = ( ) (c) a = Zadatak Odredite opće člaove izova: 3 5 7 9 ; 3 7 5 3 ; (c)

Διαβάστε περισσότερα

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2 (kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

5. Brzina svjetlosti

5. Brzina svjetlosti 5. Brzina svjetlosti 1. Ključni pojmovi Frekvencija i brzina svjetlosti, zakon loma, indeks loma, goniometar, prizma, permitivnost i permeabilnost vakuuma 2. Teorijski uvod Brzina svjetlosti: Iz Maxwellovih

Διαβάστε περισσότερα

MODELIRANJE OTVORENOG VODOTOKA (OPEN-CHANNEL FLOW)

MODELIRANJE OTVORENOG VODOTOKA (OPEN-CHANNEL FLOW) MODELIRANJE OTVORENOG VODOTOKA (OPEN-CHANNEL FLOW) Promatrajmo strujaje fluida u otvoreom vodotoku. Popreči presjeci kaala mogu biti različiti pr. pravokuti, trapezi i sl., dok se kod prirodih vodotoka

Διαβάστε περισσότερα

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI 21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka

Διαβάστε περισσότερα

F2_ zadaća_ L 2 (-) b 2

F2_ zadaća_ L 2 (-) b 2 F2_ zadaća_5 24.04.09. Sistemi leća: L 2 (-) Realna slika (S 1 ) postaje imaginarni predmet (P 2 ) L 1 (+) P 1 F 1 S 1 P 2 S 2 F 2 F a 1 b 1 d -a 2 slika je: realna uvećana obrnuta p uk = p 1 p 2 b 2 1.

Διαβάστε περισσότερα

OPTIČKA SVOJSTVA PAPIRA

OPTIČKA SVOJSTVA PAPIRA OPTIČKA SVOJSTVA PAPIRA Papir svjetlosne zrake može apsorbirati, propustiti ili reflektirati. Kada svjetlost pada na papir jedan dio svjetlosnih zraka se odbije pod istim kutem pod kojim je i upao (zrcalna

Διαβάστε περισσότερα

MATEMATIKA I 1.kolokvij zadaci za vježbu I dio

MATEMATIKA I 1.kolokvij zadaci za vježbu I dio MATEMATIKA I kolokvij zadaci za vježbu I dio Odredie c 0 i kosinuse kueva koje s koordinanim osima čini vekor c = a b ako je a = i + j, b = i + k Odredie koliki je volumen paralelepipeda, čiji se bridovi

Διαβάστε περισσότερα

MATEMATIKA 1 8. domaća zadaća: RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.

MATEMATIKA 1 8. domaća zadaća: RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA. Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.

Διαβάστε περισσότερα