ΔΙΕΡΕΥΝΗΣΗ ΜΕΘΟΔΩΝ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΚΙΝΗΤΙΚΩΝ ΠΑΡΑΜΕΤΡΩΝ ΘΕΡΜΙΚΗΣ ΑΠΕΝΕΡΓΟΠΟΙΗΣΗΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΔΙΕΡΕΥΝΗΣΗ ΜΕΘΟΔΩΝ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΚΙΝΗΤΙΚΩΝ ΠΑΡΑΜΕΤΡΩΝ ΘΕΡΜΙΚΗΣ ΑΠΕΝΕΡΓΟΠΟΙΗΣΗΣ"

Transcript

1 ΔΙΕΡΕΥΝΗΣΗ ΜΕΘΟΔΩΝ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΚΙΝΗΤΙΚΩΝ ΠΑΡΑΜΕΤΡΩΝ ΘΕΡΜΙΚΗΣ ΑΠΕΝΕΡΓΟΠΟΙΗΣΗΣ Μαρία Γιαννακούρου ΤΕΙ Αθηνών, Σχολή Τεχνολογίας Τροφίμων και Διατροφής, Τμήμα Τεχνολογίας Τροφίμων Νικόλαος Γ. Στοφόρος Γεωπονικό Πανεπιστήμιο Αθηνών, Τμήμα Επιστήμης Τροφίμων και Διατροφής του Ανθρώπου ΠΕΡΙΛΗΨΗ Προκειμένου να προσδιοριστούν οι κινητικές παράμετροι θερμικής απενεργοποίησης (π.χ. χρόνος υποδεκαπλασιασμού, D T, και τιμή z), χρησιμοποιούνται δεδομένα από πειράματα σε ισοθερμοκρασιακές συνθήκες, και προσδιορίζονται οι κινητικές παράμετροι σε δύο φάσεις: στο πρώτο στάδιο, επιλέγεται ο δείκτηςστόχος της θερμικής επεξεργασίας (εδώ η L-καρνιτίνη), μετράται η μεταβολή του στο χρόνο και προσδιορίζεται ο ρυθμός καταστροφής του σε συγκεκριμένη, σταθερή θερμοκρασία, μέσω του κατάλληλου μαθηματικού μοντέλου (πρωτογενές μοντέλο). Στο επόμενο βήμα, η επίδραση της θερμοκρασίας στους ρυθμούς καταστροφής του επιλεγμένου δείκτη προσδιορίζεται μέσω κατάλληλων με τη χρήση δευτερογενούς μαθηματικού μοντέλου. Όπως αποδείχθηκε και στη συγκεκριμένη εφαρμογή, με τη μεθοδολογία αυτή τα εκτιμώμενα με στατιστική επεξεργασία διαστήματα εμπιστοσύνης των εκτιμήσεων των ρυθμών καταστροφής στην εκάστοτε μελετώμενη θερμοκρασία δεν παίρνονται υπόψη στον υπολογισμό των των δευτερογενών μοντέλων, με συνέπεια τα αντίστοιχα διαστήματα εμπιστοσύνης να εμφανίζονται, ψευδώς, μικρότερα από ότι υποδηλώνουν τα πειραματικά δεδομένα. Σκοπός της παρούσας εργασίας ήταν, να διερευνήθεί μια εναλλακτική προσέγγιση, που ακολουθεί τις βασικές αρχές της μεθοδολογίας των δύο βημάτων, λαμβάνοντας όμως υπόψιν την αβεβαιότητα (ή σφάλμα) των τιμών των κινητικών του πρωτογενούς μοντέλου (εδώ της παραμέτρου D T ). Αυτό πραγματοποιήθηκε με θεώρηση κανονικής κατανομής των τιμών D T για την εκάστοτε θερμοκρασία και με χρήση της τεχνικής Monte Carlo για πολλαπλές περιπτώσεις τυχαίων συνδυασμών τιμών D T, προκειμένου να υπολογιστούν οι τιμές των κινητικών του δευτερογενούς μοντέλου (z και D T ), αλλά και τα πραγματικά διαστήματα εμπιστοσύνης αυτών. Στη συγκεκριμένη μελέτη βρέθηκε ότι, ειδικά στην περίπτωση διερυμένων σφαλμάτων των του πρωτογενούς μοντέλου, η τελευταία αυτή προσέγγιση προσδιορίζει με ακρίβεια την πραγματική διακύμανση του εύρους τιμών των του δευτερογενούς μοντέλου, αποφεύγοντας τα, πλασματικά εκτιμώμενα, μικρά διαστήματα εμπιστοσύνης. ΕΙΣΑΓΩΓΗ H κλασική μεθοδολογία εκτίμησης κινητικών θερμικής απενεργοποίησης βασίζεται σε δεδομένα από πειράματα σε ισοθερμοκρασιακές συνθήκες και στον σταδιακό προσδιορισμό των. Σύμφωνα με την προσέγγιση αυτή, στο πρώτο στάδιο, επιλέγεται ο δείκτης-στόχος της θερμικής επεξεργασίας (συνήθως πρόκειται για έναν θερμοευαίσθητο παράγοντα), μετράται η μεταβολή του συναρτήσει του χρόνου κατεργασίας σε συγκεκριμένη, σταθερή θερμοκρασία και προσδιορίζεται ο ρυθμός καταστροφής του, μέσω κατάλληλου μαθηματικού μοντέλου (πρωτογενές μοντέλο). Σύμφωνα με την κλασική θερμοβακτηριολογική προσέγγιση [1,2] που ακολουθείται για την περιγραφή κινητικών δεδομένων θερμικής απενεργοποίησης, ο ρυθμός απενεργοποίησης αποδίδεται με τον χρόνο υποδεκαπλασιασμού, D Τ, ο οποίος ορίζεται από την Εξ. (1): t log C log Co (1) DT όπου D Τ ο χρόνος θέρμανσης, σε σταθερή θερμοκρασία T, που απαιτείται για την καταστροφή του 90% ενός θερμοευαίσθητου παράγοντα (π.χ., μικροοργανισμών, ενζύμων, βιταμινών ή άλλων ποιοτικών ), C ο η αρχική συγκέντρωση και C η συγκέντρωση μετά από χρόνο θέρμανσης t, του υπό εξέταση παράγοντα (π.χ., αριθμός μικροοργανισμών ανά περιέκτη, αριθμός σπορίων ανά ml, mg/ml, κλπ). Με βάση την Εξ. (1) και απλή γραμμική ανάλυση παλινδρόμησης προσδιορίζονται οι χρόνοι υποδεκαπλασιασμού σε κάθε θερμοκρασία που μελετάται. Σε επόμενο βήμα, η επίδραση της θερμοκρασίας στους ρυθμούς καταστροφής του επιλεγμένου δείκτη προσδιορίζεται με τη χρήση δευτερογενών μαθηματικών μοντέλων. Κατά την παραπάνω προσέγγιση, η επίδραση της θερμοκρασίας στο χρόνο υποδεκαπλασιασμού, περιγράφεται με την τιμή z από την Εξ. (2):

2 T T log DT log DT (2) z όπου z είναι η σταθερά θερμικής αντίστασης, αποτελεί μέτρο της εξάρτησης του ρυθμού θερμικής απενεργοποίησης από τη θερμοκρασία, ορίζεται ως η διαφορά θερμοκρασίας που απαιτείται για να δεκαπλασιαστεί ή να υποδεκαπλασιαστεί η τιμή D T. Ως Τ ορίζεται η θερμοκρασία αναφοράς. Εναλλακτικά, είναι εφικτός ο ταυτόχρονος των κινητικών των πρωτογενών και δευτερογενών μαθηματικών μοντέλων σε ένα βήμα, από τα ίδια με παραπάνω πειράματα σε ισοθερμοκρασιακές συνθήκες, δια μέσου της Εξ. (3) και ανάλυσης μη γραμμικής παλινδρόμησης. t log C log Co (3) ( T T ) / z DT Η μεθοδολογία αυτή οδηγεί στον προσδιορισμό κινητικών με μικρότερα διαστήματα εμπιστοσύνης σε σχέση με την κλασική μέθοδο των δυο βημάτων. Ο ταυτόχρονος των κινητικών των πρωτογενών και δευτερογενών μαθηματικών μοντέλων είναι επίσης εφικτός από πειράματα σε δυναμικές θερμοκρασιακές συνθήκες. Με τη μέθοδο αυτή μειώνεται σημαντικά ο αριθμός των απαιτούμενων πειραματικών δεδομένων και της συνεπακόλουθης προσπάθειας. Εντούτοις, η επιλογή κατάλληλων δυναμικών θερμοκρασιακών συνθηκών είναι κρίσιμη για την ακριβή πρόβλεψη των κινητικών με ικανοποιητικά χαμηλά διαστήματα εμπιστοσύνης (υψηλή ακρίβεια-χαμηλή αβεβαιότητα εκτιμήσεων). Οι παραπάνω μεθοδολογίες εφαρμόστηκαν [3] για τον προσδιορισμό των κινητικών θερμικής απενεργοποίησης της L-καρνιτίνης (Πίνακας 1). Πίνακας 1. Εκτιμούμνες τιμές κινητικών θερμικής απενεργοποίησης L-καρνιτίνης. Ισοθερμοκρασιακές συνθήκες (2 σημεία) Δυναμικές θερμοκρασιακές συνθήκες (14 σημεία) * CI: Διάστημα εμπιστοσύνης Σταδιακός Ταυτόχρονος Ταυτόχρονος z ( C) D 120 C (min) Μέση τιμή 95% CI * Μέση τιμή 95% CI Τα μεγαλύτερα διαστήματα εμπιστοσύνης που παρατηρήθηκαν κατά τον ταυτόχρονο προσδιορισμό των κινητικών από πειράματα σε δυναμικές θερμοκρασιακές συνθήκες (σε σχέση με τα πειράματα σε ισοθερμοκρασιακές συνθήκες) αποδίδονται στον περιορισμένο αριθμό πειραματικών δεδομένων (7 σημεία επί 2 επαναλήψεις). Τα μικρότερα διαστήματα εμπιστοσύνης που υπολογίστηκαν κατά τον ταυτόχρονο προσδιορισμό των κινητικών από πειράματα σε ισοθερμοκρασιακές συνθήκες (σε σχέση με τον σταδιακό προσδιορισμό των ) εν πρώτοις, δικαιολογούνται από το γεγονός ότι, κατά τον ταυτόχρονο προσδιορισμό, δεν μεσολαβούν υπολογισμοί ενδιάμεσων. Κατά το σταδιακό προσδιορισμό των, τα σφάλματα, ή ισοδύναμα τα διαστήματα εμπιστοσύνης, των εκτιμήσεων των χρόνων υποδεκαπλασιασμού στην εκάστοτε μελετώμενη θερμοκρασία δεν παίρνονται υπόψη στον υπολογισμό της τιμής z και D T Έτσι τα διαστήματα εμπιστοσύνης των εκτιμήσεων των των δευτερογενών μοντέλων εμφανίζονται, ψευδώς, μικρότερα από ότι υποδηλώνουν τα πειραματικά δεδομένα. Ο σκοπός της παρούσας εργασίας ήταν η διερεύνηση της μεθοδολογίας του σταδιακού προσδιορισμού των κινητικών, έτσι ώστε τα σφάλματα των χρόνων υποδεκαπλασιασμού στην εκάστοτε μελετώμενη θερμοκρασία να ληφθούν υπόψη στον υπολογισμό των των δευτερογενών μοντέλων (τιμές D T και z). ΠΕΙΡΑΜΑΤΙΚΟ ΜΕΡΟΣ Η προτεινόμενη προσέγγιση βασίζεται στην παραδοχή ότι η βασική παράμετρος D T της Εξ. (1), η εκτιμήτρια τιμή της οποίας προσδιορίζεται με γραμμική προσαρμογή των δεδομένων logc vs. t για κάθε μια από τις

3 μελετώμενες θερμοκρασίες, δεν περιγράφεται από μια μοναδική τιμή, αλλά από μια κατανομή τιμών (εδώ επιλέγεται η κανονική κατανομή) που ενσωματώνει και το προσδιοριζόμενο (από τη γραμμική προσαρμογή) σφάλμα, αλλά και τη μεταβλητότητα της παραμέτρου [4,5]. Για την ανάπτυξη της μεθοδολογίας που παρουσιάζεται στην παρούσα εργασία, χρησιμοποιήθηκαν τα δεδομένα θερμικής απενεργοποίησης L-καρνιτίνης από την βιβλιογραφία [3] που αναφέρονται σε πειράματα σε 8 διαφορετικές σταθερές θερμοκρασίες (Σχήμα 1). log(dt) (DT σε min) y = x R 2 = 0.99 Πειραματικές τιμές ±95% Confidence band ±95% Prediction band Γραμμή προσαρμογής Θερμοκρασία ( C) Σχήμα 1. Χρόνοι υποδεκαπλασιασμού D Τ με 95% διαστήματα εμπιστοσύνης (confidemce band) και πρόβλεψης (prediction band) βάσει πειραματικών δεδομένων θερμικής απενεργοποίησης L-καρνιτίνης σε ισοθερμοκρασιακές συνθήκες και ανάλυσης δύο βημάτων (σταδιακός ). Με τη βοήθεια της τεχνικής Monte Carlo [6] γίνεται τυχαία επιλογή τιμών από τις κανονικές κατανομές της παραμέτρου D T για κάθε μια από τις 8 θερμοκρασίες, με συχνότητα που καθορίζεται από την εκάστοτε κατανομή. Στόχος είναι ο των τιμών των D T και z (Εξ. 2), καθώς και των σφαλμάτων τους, με βάση τα πολλαπλά σετ τιμών D T (500 οκτάδες) που έχουν παραχθεί με το προηγούμενο βήμα της τεχνικής Monte Carlo. Για κάθε μια συγκεκριμένη, τυχαία, "οκτάδα" τιμών D T, προκύπτει ένα ζεύγος τιμών (εκτιμητές) για τα D T και z (και οι αντίστοιχες κατανομές των ιδίων, D T και z, ). Για 0 τυχαία από τα τελευταία ζεύγη D T και z, με τη βοήθεια των προσδιοριζομένων κατανομών τους και της τεχνικής Monte Carlo γίνεται τυχαία επιλογή 0 σημείων από κάθε κατανομή και, τελικά καταλήγουμε στη δημιουργία 00 τιμών για κάθε μια από τις παραμέτρους του δευτερογενούς μοντέλου D T και z, απ όπου υπολογίζουμε τις εκτιμήτριες (μέσες τιμές) και τα αντίστοιχα 95% διαστήματα εμπιστοσύνης (CI) των D T και z. Να σημειωθεί ότι κατά τους υπολογισμούς ως θερμοκρασία αναφοράς χρησιμοποιήθηκαν οι 120 ο C. Επιπλέον, χρησιμοποιώντας τους κανόνες της διάδοσης σφαλμάτων, δηλαδή, f ( x) (4) x f ( x) x προκειμένου να προσδιοριστούν τα 95% CI των πραμέτρων D T, D T και z, συμβολιζόμενα με (D T ), (D T ) και (z), αντίστοιχα, από τα τα 95% CI των 1/D T, 1/z, και log(d T ) συμβολιζόμενα με (1/D T ), (1/z), και (log(d T )), που προκύπτουν από τη χρήση των Εξ. (1) και (2), χρησιμοποιήθηκαν οι παρακάτω εξισώσεις: 1 1 (5) DT 2 D DT T

4 1 1 z 2 z z (6) DT ln() DT log( DT ) (7) ΑΠΟΤΕΛΕΣΜΑΤΑ ΚΑΙ ΣΥΖΗΤΗΣΗ Η εφαρμογή της προτεινόμενης μεθοδολογίας στα πειραματικά δεδομένα, δηλαδή στις τιμές D Τ και τα αντίστοιχα 95% CI της βιβλιογραφίας [3], (πρώτες στήλες δεδομένων στον Πίνακα 2) δεν οδήγησε σε διαφοροποίηση των διαστημάτων εμπιστοσύνης των τιμών D T και z σε σχέση με τα αρχικά προσδιορισθέντα διαστήματα, των 7.3 minκαι 2.3 C, αντίστοιχα (πρώτη σειρά αποτελεσμάτων του Πίνακα 1) που υπολογίζονται χωρίς να ληφθεί υπόψη η αβεβαιότητα στον προσδιορισμό των επιμέρους τιμών D T. Αυτό αποδόθηκε στο σχετικά μικρό σφάλμα (95% CI) των επιμέρους τιμών D T σε σχέση με το προσδιοριζόμενο από τη γραμμική προσαρμογή) σφάλμα (Σχήμα 1). Για το λόγο αυτό, η προτεινόμενη μεθοδολογία εξετάστηκε χρησιμοποιώντας ένα μεγαλύτερο, αυθαίρετα, 95% CI στις ίδιες (πειραματικές) μέσες τιμές D T (Πίνακας 2). Η τυχαία επιλογή των 500 και 0 τυχαίων δειγμάτων (οκτάδων D T ) επιβεβαιώθηκε με τον υπολογισμό των μέσων τιμών και των 95% CI των δειγμάτων (Πίνακας 2) και την μη ουσιαστική τους απόκλιση από τις αρχικές τους τιμές (Πίνακας 2). T ( C) Πίνακας 2. Χρόνοι υποδεκαπλασιασμού D Τ (min) θερμικής απενεργοποίησης L-καρνιτίνης. Τεχνητά Από 500 τυχαία Από 0 τυχαία Από πειραματικά αυξημένο δείγματα (με το δείγματα (με το τεχνητά δεδομένα CI τεχνητά αυξημένο CI) αυξημένο CI) Μέση τιμή 95% CI 95% CI Μέση τιμή 95% CI Μέση τιμή 95% CI Μια ποιοτική απεικόνιση, με βάση την προτεινόμενη μεθοδολογία, του 95% διαστήματος εμπιστοσύνης (confidemce band) των D Τ συναρτήσει της θερμοκρασίας γραμών, για 250 (από τις 500) οκτάδες D Τ απεικονίζεται στο Σχήμα 2. Εμφανίζεται το διευρημένο εύρος του 95% CI της προτεινόμενης μεθοδολογίας σε σχέση με το το ±95% CI της γραμμικής προσαρμογής. Στα Σχήματα 3 και 4 απεικονίζονται οι κατανομές των (00) τιμών D 120 C και z που υπολογίστηκαν με βάση τα προτεινόμενα. Με βάση τις κατανομές αυτές, οι μέσες τιμές και τα 95% CI των τιμών D 120 C και z υπολογίστηκαν ως min και C, αντίστοιχα. Παρατηρώντας, επομένως, το Σχήμα 2 και τις κατανομές των τιμών των D 120 C και z του Σχήματος 3, και ειδικότερα τα διευρυμένα, πραγματικά 95% CI μπορεί να εξαχθεί το συμπέρασμα ότι με την προτεινόμενη μεθοδολογική προσέγγιση αίρεται το πρόβλημα "στρεβλού" υπολογισμού του σφάλματος των του δευτερογενούς μοντέλου με την κλασσική μέθοδο των δύο βημάτων. Αυτό επιβεβαιώνεται και από τη σύγκριση των τιμών της πρώτης γραμμής του Πίνακα 1 (πλασματικά μικρές τιμές σφαλμάτων) με τα πραγματικά διαστήματα εμπιστοσύνης των D 120 C και z ( 13.9 min και 4.8 C αντίστοιχα), όπως υπολογίστηκαν με το παρουσιαζόμενο στην εργασία αυτή μεθοδολογικό εργαλείο που λαμβάνει υπόψη την αβεβαιότητα τιμών των (D T ) του πρωτογενούς μοντέλου και την "ενσωματώνει" κατάλληλα στους υπολογισμούς για τις παραμέτρους του δευτερογενούς μοντέλου (D 120 C και z).

5 log(dt) (DT in min) Temperature ( C) Σχήμα 2. Διαγραμματική απεικόνιση του log(d T ) ως προς τη θερμοκρασία. Οι ανοικτοί κύκλοι αναφέρονται στα πειραματικά σημεία με τις μπάρες σφαλμάτων να συμβολίζουν τα ±95% CI για τα τεχνητά αυξημένα σφάλματα. Η συνεχής μαύρη γραμμή αποτελεί την ευθεία γραμμικής προσαρμογής στα πειραματικά δεδομένα και η διακεκομμένη γραμμή το ±95% CI. Η ζώνη των γκρι ευθειών απεικονίζει το εύρος των D Τ συναρτήσει της θερμοκρασίας γραμì ών των 8 κατανομών D T (μια για κάθε θερμοκρασία) ενδεικτικά για 250 σημεία που έχουν προέλθει από προσομοίωση Monte Carlo % συχνότητα % συχνότητα D 120 C (min) z ( C) Σχήμα 3. Κατανομές των (00) τιμών D 120 C και z που υπολογίστηκαν με βάση την προτεινόμενη μεθοδολογία. ΒΙΒΛΙΟΓΡΑΦΙΑ [1]. Bigelow W.D., Bohart G.S., Richardson A.C. and Ball C.O., Natl. Canners Assoc. Res. Lab., Bull. 16-L, Washington, DC (1920). [2]. Ball C.O., Bulletin of the National Research Council No. 37, Vol. 7, Part 1, Natl. Res. Council, Washington, DC (1923). [3]. Προκοπίου, Π., Γούλα, Α.Μ. και Στοφόρος Ν.Γ. Πρακτικά 7 ου ΠΕΣΧΜ (2009). [4]. Lammerdig AM, Fazil A. Int.J Food Microbiol 58:147 (2000). [5]. Taoukis P.S. In: Tijkskens LMM, Hertog MLATM, Nicolai BM, ed. Food Process Modelling. CRC Press (2001), p.402. [6]. Smid J.H., Verloo D., Barker G.C. and Havelaar A.H. Int. J Food Microbiol. 139:S57 (20).

ΘΕΡΜΙΚΗ ΘΑΝΑΤΩΣΗ ΜΙΚΡΟΟΡΓΑΝΙΣΜΩΝ

ΘΕΡΜΙΚΗ ΘΑΝΑΤΩΣΗ ΜΙΚΡΟΟΡΓΑΝΙΣΜΩΝ ΘΕΡΜΙΚΗ ΘΑΝΑΤΩΣΗ ΜΙΚΡΟΟΡΓΑΝΙΣΜΩΝ 1. Εισαγωγή Η θέρμανση είναι μια μορφή επεξεργασίας, ίσως η πιο ευρέως διαδεδομένη, που χρησιμοποιείται για να θανατώσει ή αδρανοποιήσει τους μικροοργανισμούς (βλαστικές

Διαβάστε περισσότερα

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος 75 Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 1.1. Τυχαία γεγονότα ή ενδεχόμενα 17 1.2. Πειράματα τύχης - Δειγματικός χώρος 18 1.3. Πράξεις με ενδεχόμενα 20 1.3.1. Ενδεχόμενα ασυμβίβαστα

Διαβάστε περισσότερα

1ο ΣΤΑΔΙΟ ΓΕΝΕΣΗ ΜΕΤΑΚΙΝΗΣΕΩΝ

1ο ΣΤΑΔΙΟ ΓΕΝΕΣΗ ΜΕΤΑΚΙΝΗΣΕΩΝ ΠΡΟΒΛΗΜΑ 1ο ΣΤΑΔΙΟ ΓΕΝΕΣΗ ΜΕΤΑΚΙΝΗΣΕΩΝ πόσες μετακινήσεις δημιουργούνται σε και για κάθε κυκλοφοριακή ζώνη; ΟΡΙΣΜΟΙ μετακίνηση μετακίνηση με βάση την κατοικία μετακίνηση με βάση άλλη πέρα της κατοικίας

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ 1.1 Πίνακες, κατανομές, ιστογράμματα... 1 1.2 Πυκνότητα πιθανότητας, καμπύλη συχνοτήτων... 5 1.3

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα Ανάλυση Διασποράς Έστω ότι μας δίνονται δείγματα που προέρχονται από άγνωστους πληθυσμούς. Πόσο διαφέρουν οι μέσες τιμές τους; Με άλλα λόγια: πόσο πιθανό είναι να προέρχονται από πληθυσμούς με την ίδια

Διαβάστε περισσότερα

Kruskal-Wallis H... 176

Kruskal-Wallis H... 176 Περιεχόμενα KΕΦΑΛΑΙΟ 1: Περιγραφή, παρουσίαση και σύνοψη δεδομένων................. 15 1.1 Τύποι μεταβλητών..................................................... 16 1.2 Κλίμακες μέτρησης....................................................

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα Εισαγωγή στο

Διαβάστε περισσότερα

ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ. ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ

ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ. ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ ΤΕΙ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ ΓΙΑΝΝΗΣ ΦΑΝΟΥΡΓΙΑΚΗΣ ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΣΥΝΕΡΓΑΤΗΣ ΤΕΙ ΚΡΗΤΗΣ ΔΟΜΗ ΠΑΡΟΥΣΙΑΣΗΣ 1. Εισαγωγή

Διαβάστε περισσότερα

Στατιστική Συμπερασματολογία

Στατιστική Συμπερασματολογία 4. Εκτιμητική Στατιστική Συμπερασματολογία εκτιμήσεις των αγνώστων παραμέτρων μιας γνωστής από άποψη είδους κατανομής έλεγχο των υποθέσεων που γίνονται σε σχέση με τις παραμέτρους μιας κατανομής και σε

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις,

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες

Διαβάστε περισσότερα

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος xi 1 Αντικείμενα των Πιθανοτήτων και της Στατιστικής 1 1.1 Πιθανοτικά Πρότυπα και Αντικείμενο των Πιθανοτήτων, 1 1.2 Αντικείμενο της Στατιστικής, 3 1.3 Ο Ρόλος των Πιθανοτήτων

Διαβάστε περισσότερα

Βιοστατιστική ΒΙΟ-309

Βιοστατιστική ΒΙΟ-309 Βιοστατιστική ΒΙΟ-309 Χειμερινό Εξάμηνο Ακαδ. Έτος 2015-2016 Ντίνα Λύκα lika@biology.uoc.gr 1. Εισαγωγή Εισαγωγικές έννοιες Μεταβλητότητα : ύπαρξη διαφορών μεταξύ ομοειδών μετρήσεων Μεταβλητή: ένα χαρακτηριστικό

Διαβάστε περισσότερα

Έλεγχος και Διακρίβωση εξοπλισμού μικροβιολογικού εργαστηρίου νερού-μέρος 2

Έλεγχος και Διακρίβωση εξοπλισμού μικροβιολογικού εργαστηρίου νερού-μέρος 2 Έλεγχος και Διακρίβωση εξοπλισμού μικροβιολογικού εργαστηρίου νερού-μέρος 2 Διήμερο Πρακτικό Σεμινάριο WATERMICRO WORKSHOP 5&6 Νοεμβρίου 2014 Εργαστήριο Μικροβιολογίας- Εθνική Σχολή Δημόσιας Υγείας Ν.

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ Συντελεστής συσχέτισης (εκτιμητής Person: r, Y ( ( Y Y xy ( ( Y Y x y, όπου r, Y (ισχυρή θετική γραμμική συσχέτιση όταν, ισχυρή αρνητική

Διαβάστε περισσότερα

3. ΣΕΙΡΙΑΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΣΧΕΤΙΣΗΣ

3. ΣΕΙΡΙΑΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΣΧΕΤΙΣΗΣ 3. ΣΕΙΡΙΑΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΣΧΕΤΙΣΗΣ Πρόβλημα: Ένας ραδιοφωνικός σταθμός ενδιαφέρεται να κάνει μια ανάλυση για τους πελάτες του που διαφημίζονται σ αυτόν για να εξετάσει την ποσοστιαία μεταβολή των πωλήσεων

Διαβάστε περισσότερα

Πιστοποίηση των αντηλιακών µεµβρανών 3M Scotchtint της εταιρίας 3Μ

Πιστοποίηση των αντηλιακών µεµβρανών 3M Scotchtint της εταιρίας 3Μ Πιστοποίηση των αντηλιακών µεµβρανών 3M Scotchtint της εταιρίας 3Μ 1 Πιστοποίηση των αντηλιακών µεµβρανών 3M Scotchtint της εταιρίας 3Μ Οι αντηλιακές µεµβράνες 3M Scotchtint της εταιρίας 3Μ µελετήθηκαν

Διαβάστε περισσότερα

Μέρος Β /Στατιστική. Μέρος Β. Στατιστική. Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.

Μέρος Β /Στατιστική. Μέρος Β. Στατιστική. Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua. Μέρος Β /Στατιστική Μέρος Β Στατιστική Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.gr/gpapadopoulos) Από τις Πιθανότητες στη Στατιστική Στα προηγούμενα, στο

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΧΗΜΕΙΑ ΙΙΙ ΤΜΗΜΑ ΧΗΜΕΙΑΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΕΠΙΔΡΑΣΗ ΘΕΡΜΟΚΡΑΣΙΑΣ ΣΤΗ ΣΤΑΘΕΡΑ ΤΑΧΥΤΗΤΑΣ ΑΝΤΙΔΡΑΣΗΣ

ΦΥΣΙΚΗ ΧΗΜΕΙΑ ΙΙΙ ΤΜΗΜΑ ΧΗΜΕΙΑΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΕΠΙΔΡΑΣΗ ΘΕΡΜΟΚΡΑΣΙΑΣ ΣΤΗ ΣΤΑΘΕΡΑ ΤΑΧΥΤΗΤΑΣ ΑΝΤΙΔΡΑΣΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΧΗΜΕΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΟΧΗΜΕΙΑΣ Γραφείο 211 Επίκουρος Καθηγητής: Δ. Τσιπλακίδης Τηλ.: 2310 997766 e mail: dtsiplak@chem.auth.gr url:

Διαβάστε περισσότερα

2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για

2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για 2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για τον καθορισμό του καλύτερου υποσυνόλου από ένα σύνολο

Διαβάστε περισσότερα

ΤΕΛΙΚΗ ΕΚΘΕΣΗ ΤΟΥ ΕΡΓΟΥ: «Μέτρηση Ηλεκτρικών Χαρακτηριστικών Πολυουρεθανικών και Εποδειδικών Ρητινών»

ΤΕΛΙΚΗ ΕΚΘΕΣΗ ΤΟΥ ΕΡΓΟΥ: «Μέτρηση Ηλεκτρικών Χαρακτηριστικών Πολυουρεθανικών και Εποδειδικών Ρητινών» ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΤΩΝ ΥΛΙΚΩΝ ΤΕΛΙΚΗ ΕΚΘΕΣΗ ΤΟΥ ΕΡΓΟΥ: «Μέτρηση Ηλεκτρικών Χαρακτηριστικών Πολυουρεθανικών και Εποδειδικών Ρητινών» Στα πλαίσια της σύμβασης ανάθεσης

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΕΣ ΠΡΟΒΛΕΨΕΙΣ

ΕΠΙΧΕΙΡΗΣΙΑΚΕΣ ΠΡΟΒΛΕΨΕΙΣ ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ Ι - ΠΡΟΒΛΕΨΕΙΣ ΚΑΙ ΣΥΓΧΡΟΝΗ ΔΙΟΙΚΗΣΗ....................................17 1.1 Προβλέψεις - Τεχνικές προβλέψεων και διοίκηση................................17 1.2 Τεχνικές προβλέψεων

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΜΟΣ ΒΕΛΤΙΣΤΗΣ ΣΥΣΚΕΥΑΣΙΑΣ ΓΙΑ ΤΗΝ ΕΠΙΤΕΥΞΗ ΜΕΓΙΣΤΗΣ ΙΑΤΗΡΗΣΙΜΟΤΗΤΑΣ ΞΗΡΩΝ ΤΡΟΦΙΜΩΝ ΣΕ ΥΝΑΜΙΚΕΣ ΣΥΝΘΗΚΕΣ ΣΥΝΤΗΡΗΣΗΣ

ΥΠΟΛΟΓΙΣΜΟΣ ΒΕΛΤΙΣΤΗΣ ΣΥΣΚΕΥΑΣΙΑΣ ΓΙΑ ΤΗΝ ΕΠΙΤΕΥΞΗ ΜΕΓΙΣΤΗΣ ΙΑΤΗΡΗΣΙΜΟΤΗΤΑΣ ΞΗΡΩΝ ΤΡΟΦΙΜΩΝ ΣΕ ΥΝΑΜΙΚΕΣ ΣΥΝΘΗΚΕΣ ΣΥΝΤΗΡΗΣΗΣ ΥΠΟΛΟΓΙΣΜΟΣ ΒΕΛΤΙΣΤΗΣ ΣΥΣΚΕΥΑΣΙΑΣ ΓΙΑ ΤΗΝ ΕΠΙΤΕΥΞΗ ΜΕΓΙΣΤΗΣ ΙΑΤΗΡΗΣΙΜΟΤΗΤΑΣ ΞΗΡΩΝ ΤΡΟΦΙΜΩΝ ΣΕ ΥΝΑΜΙΚΕΣ ΣΥΝΘΗΚΕΣ ΣΥΝΤΗΡΗΣΗΣ Π. Σ. Ταούκης, Γ. Ι. Κατσαρός, Β. Καπόπουλος, Ε. ερµεσονλούογλου Εργ. Χηµείας

Διαβάστε περισσότερα

Μάθημα Αστικής Γεωγραφίας

Μάθημα Αστικής Γεωγραφίας Μάθημα Αστικής Γεωγραφίας Διδακτικό Έτος 2015-2016 Παραδόσεις Διδακτικής Ενότητας: Πληθυσμιακή πρόβλεψη Δούκισσας Λεωνίδας, Στατιστικός, Υποψ. Διδάκτορας, Τμήμα Γεωγραφίας, Χαροκόπειο Πανεπιστήμιο Σελίδα

Διαβάστε περισσότερα

Γαλακτοκομία. Ενότητα 4: Θερμική Επεξεργασία Γάλακτος (1/2), 1.5ΔΩ. Τμήμα: Επιστήμης Τροφίμων και Διατροφής Του Ανθρώπου

Γαλακτοκομία. Ενότητα 4: Θερμική Επεξεργασία Γάλακτος (1/2), 1.5ΔΩ. Τμήμα: Επιστήμης Τροφίμων και Διατροφής Του Ανθρώπου Γαλακτοκομία Ενότητα 4: Θερμική Επεξεργασία Γάλακτος (1/2), 1.5ΔΩ Τμήμα: Επιστήμης Τροφίμων και Διατροφής Του Ανθρώπου Διδάσκοντες: Καμιναρίδης Στέλιος, Καθηγητής Μοάτσου Γκόλφω, Eπ. Καθηγήτρια Μαθησιακοί

Διαβάστε περισσότερα

ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΣΥΝΤΕΛΕΣΤΗ ΜΕΤΑΦΟΡΑΣ ΟΞΥΓΟΝΟΥ ΣΤΟ ΝΕΡΟ

ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΣΥΝΤΕΛΕΣΤΗ ΜΕΤΑΦΟΡΑΣ ΟΞΥΓΟΝΟΥ ΣΤΟ ΝΕΡΟ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΣΥΝΤΕΛΕΣΤΗ ΜΕΤΑΦΟΡΑΣ ΟΞΥΓΟΝΟΥ ΣΤΟ ΝΕΡΟ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΣΥΝΤΕΛΕΣΤΗ ΜΕΤΑΦΟΡΑΣ ΟΞΥΓΟΝΟΥ ΣΕ ΝΕΡΟ ΓΕΝΙΚΑ Με το πείραμα αυτό μπορούμε να προσδιορίσουμε δύο βασικές παραμέτρους που χαρακτηρίζουν ένα

Διαβάστε περισσότερα

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες Ορισμός Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες αβεβαιότητας. Βασικές έννοιες Η μελέτη ενός πληθυσμού

Διαβάστε περισσότερα

Εισαγωγή στην Εκτιμητική

Εισαγωγή στην Εκτιμητική Εισαγωγή στην Εκτιμητική Πληθυσμός Εκτίμηση παραμέτρου πληθυσμού μ, σ 2, σ, p Δείγμα Υπολογισμός στατιστικού Ερώτηματα: Πόσο κοντά στην πραγματική τιμή της παραμέτρου του πληθυσμού βρίσκεται η εκτίμηση

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΜΕΣΟΛΟΓΓΙΟΥ ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ & ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΙΟΙΚΗΣΗ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ

ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΜΕΣΟΛΟΓΓΙΟΥ ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ & ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΙΟΙΚΗΣΗ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ Α εξεταστική περίοδος χειµερινού εξαµήνου 4-5 ιάρκεια εξέτασης ώρες και 45 λεπτά Θέµατα Θέµα (α) Τα υποδείγµατα που χρησιµοποιούνται στην οικονοµική θεωρία ονοµάζονται ντετερµινιστικά ενώ τα οικονοµετρικά

Διαβάστε περισσότερα

Ενδεικτικές ασκήσεις ΔΙΠ 50

Ενδεικτικές ασκήσεις ΔΙΠ 50 Ενδεικτικές ασκήσεις ΔΙΠ 50 Άσκηση 1 (άσκηση 1 1 ης εργασίας 2009-10) Σε ένα ράφι μιας βιβλιοθήκης τοποθετούνται με τυχαία σειρά 11 διαφορετικά βιβλία τεσσάρων θεματικών ενοτήτων. Πιο συγκεκριμένα, υπάρχουν

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

Η ΑΝΑΓΚΗ ΓΙΑ ΠΟΣΟΤΙΚΟΠΟΙΗΣΗ ΣΤΗΝ ΕΝΟΡΓΑΝΗ ΑΝΑΛΥΣΗ

Η ΑΝΑΓΚΗ ΓΙΑ ΠΟΣΟΤΙΚΟΠΟΙΗΣΗ ΣΤΗΝ ΕΝΟΡΓΑΝΗ ΑΝΑΛΥΣΗ Η ΑΝΑΓΚΗ ΓΙΑ ΠΟΣΟΤΙΚΟΠΟΙΗΣΗ ΣΤΗΝ ΕΝΟΡΓΑΝΗ ΑΝΑΛΥΣΗ Οι Ενόργανες Μέθοδοι Ανάλυσης είναι σχετικές μέθοδοι και σχεδόν στο σύνολο τους παρέχουν την αριθμητική τιμή μιας φυσικής ή φυσικοχημικής ιδιότητας, η

Διαβάστε περισσότερα

2.4 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΜΙΑ ΠΙΘΑΝΟΤΗΤΑ

2.4 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΜΙΑ ΠΙΘΑΝΟΤΗΤΑ .4 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΜΙΑ ΠΙΘΑΝΟΤΗΤΑ Η μέθοδος για τον προσδιορισμό ενός διαστήματος εμπιστοσύνης για την άγνωστη πιθανότητα =P(A) ενός ενδεχομένου A συνδέεται στενά με τον διωνυμικό έλεγχο. Ένα

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Carbon footprint ΕΓΧΕΙΡΙΔΙΟ ΠΑΡΑΚΟΛΟΥΘΗΣΗΣ ΚΑΙ ΕΛΕΓΧΟΥ ΤΟΥ ΑΝΘΡΑΚΙΚΟΥ ΑΠΟΤΥΠΩΜΑΤΟΣ ΤΟΥ ΕΡΓΟΥ TERRA NOVA

Carbon footprint ΕΓΧΕΙΡΙΔΙΟ ΠΑΡΑΚΟΛΟΥΘΗΣΗΣ ΚΑΙ ΕΛΕΓΧΟΥ ΤΟΥ ΑΝΘΡΑΚΙΚΟΥ ΑΠΟΤΥΠΩΜΑΤΟΣ ΤΟΥ ΕΡΓΟΥ TERRA NOVA Carbon footprint ΕΓΧΕΙΡΙΔΙΟ ΠΑΡΑΚΟΛΟΥΘΗΣΗΣ ΚΑΙ ΕΛΕΓΧΟΥ ΤΟΥ ΑΝΘΡΑΚΙΚΟΥ ΑΠΟΤΥΠΩΜΑΤΟΣ ΤΟΥ ΕΡΓΟΥ TERRA NOVA Ανδρέας Σωτηρόπουλος, Περιβαλλοντολόγος, MSc. Ωκεανογραφίας Ρούλα Χανδρινού, Περιβαλλοντολόγος, MSc.

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ ΠΡΩΤΟ

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ ΠΡΩΤΟ ΠΕΡΙΕΧΟΜΕΝΑ Εισαγωγή 1. Γενικά... 25 2. Έννοια και Είδη Μεταβλητών... 26 3. Κλίμακες Μέτρησης Μεταβλητών... 29 3.1 Ονομαστική κλίμακα... 30 3.2. Τακτική κλίμακα... 31 3.3 Κλίμακα ισοδιαστημάτων... 34 3.4

Διαβάστε περισσότερα

Διαχείριση Υδατικών Πόρων

Διαχείριση Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Διαχείριση Υδατικών Πόρων Γ.. Τσακίρης Μάθημα 3 ο Λεκάνη απορροής Υπάρχουσα κατάσταση Σενάριο 1: Μέσες υδρολογικές συνθήκες Σενάριο : Δυσμενείς υδρολογικές συνθήκες Μελλοντική

Διαβάστε περισσότερα

Το Κεντρικό Οριακό Θεώρημα

Το Κεντρικό Οριακό Θεώρημα Το Κεντρικό Οριακό Θεώρημα Όπως θα δούμε αργότερα στη Στατιστική Συμπερασματολογία, λέγοντας ότι «από έναν πληθυσμό παίρνουμε ένα τυχαίο δείγμα μεγέθους» εννοούμε ανεξάρτητες τυχαίες μεταβλητές,,..., που

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2 013 [Κεφάλαιο ] ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο Μάθημα Εαρινού Εξάμηνου 01-013 M.E. OE0300 Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής Ανάπτυξης [Οικονομετρία 01-013] Μαρί-Νοέλ

Διαβάστε περισσότερα

Φαινόμενα ανταλλαγής θερμότητας: Προσδιορισμός της σχέσης των μονάδων θερμότητας Joule και Cal

Φαινόμενα ανταλλαγής θερμότητας: Προσδιορισμός της σχέσης των μονάδων θερμότητας Joule και Cal Θ2 Φαινόμενα ανταλλαγής θερμότητας: Προσδιορισμός της σχέσης των μονάδων θερμότητας Joule και Cal 1. Σκοπός Η εργαστηριακή αυτή άσκηση αποσκοπεί, με αφορμή τον προσδιορισμό του παράγοντα μετατροπής της

Διαβάστε περισσότερα

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Η χρησιμοποίηση των τεχνικών της παλινδρόμησης για την επίλυση πρακτικών προβλημάτων έχει διευκολύνει εξαιρετικά από την χρήση διαφόρων στατιστικών

Διαβάστε περισσότερα

2. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ

2. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ 1. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ 1. Σφάλματα Κάθε μέτρηση ενός φυσικού μεγέθους χαρακτηρίζεται από μία αβεβαιότητα που ονομάζουμε σφάλμα, το οποίο αναγράφεται με τη μορφή Τιμή ± αβεβαιότητα π.χ έστω ότι σε ένα πείραμα

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ Ι ΦΥΛΛΑΔΙΟ

ΟΙΚΟΝΟΜΕΤΡΙΑ Ι ΦΥΛΛΑΔΙΟ ΟΙΚΟΝΟΜΕΤΡΙΑ Ι ΦΥΛΛΑΔΙΟ Παράρτημα Πανεπιστημίου: Δεληγιώργη 6 Α (έναντι Πανεπιστημίου Πειραιώς) Τηλ.: 4..97,,, Fax : 4..634 URL : www.vtal.gr emal: f@vtal.gr Παράρτημα Πανεπιστημίου: Δεληγιώργη 6 Α (έναντι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7 ΠΑΣΤΕΡΙΩΣΗ ΚΑΙ ΑΠΟΣΤΕΙΡΩΣΗ

ΚΕΦΑΛΑΙΟ 7 ΠΑΣΤΕΡΙΩΣΗ ΚΑΙ ΑΠΟΣΤΕΙΡΩΣΗ ΚΕΦΑΛΑΙΟ 7 ΠΑΣΤΕΡΙΩΣΗ ΚΑΙ ΑΠΟΣΤΕΙΡΩΣΗ Εισαγωγή Η παστερίωση και η αποστείρωση (αναφερόµενες και ως θερµικές διεργασίες) των τροφίµων έχουν ως στόχο την καταστροφή µικροοργανισµών ή και την αδρανοποίηση

Διαβάστε περισσότερα

Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC

Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC Περιεχόμενα Μαθήματος Εισαγωγή στο Πρόβλημα. Monte Carlo Εκτιμητές. Προσομοίωση. Αλυσίδες Markov. Αλγόριθμοι MCMC (Metropolis Hastings & Gibbs Sampling).

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ MM505 ΗΛΕΚΤΡΙΚΕΣ ΜΗΧΑΝΕΣ ΒΙΟΜΗΧΑΝΙΚΟΙ ΑΥΤΟΜΑΤΙΣΜΟΙ Εργαστήριο ο - Θεωρητικό Μέρος Βασικές ηλεκτρικές μετρήσεις σε συνεχές και εναλλασσόμενο

Διαβάστε περισσότερα

Πίσω στα βασικά: Βασικές αρχές στατιστικής για κοινωνιολογικές έρευνες

Πίσω στα βασικά: Βασικές αρχές στατιστικής για κοινωνιολογικές έρευνες Σχετικές πληροφορίες: http://dlib.ionio.gr/~spver/seminars/statistics/ Πίσω στα βασικά: Βασικές αρχές στατιστικής για κοινωνιολογικές έρευνες Σπύρος Βερονίκης Τμήμα Αρχειονομίας - Βιβλιοθηκονομίας Θεματικές

Διαβάστε περισσότερα

Νέα µέθοδος προσδιορισµού κατανοµής µεγέθους πόρων για νανοπορώδη υλικά

Νέα µέθοδος προσδιορισµού κατανοµής µεγέθους πόρων για νανοπορώδη υλικά ΑΚΜΩΝ Νέα µέθοδος προσδιορισµού κατανοµής µεγέθους πόρων για νανοπορώδη υλικά Νέα µέθοδος προσδιορισµού κατανοµής µεγέθους πόρων για νανοπορώδη υλικά Τα πορώδη υλικά αποτελούν µια πολύ σηµαντική κατηγορία

Διαβάστε περισσότερα

3. ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Stratified Random Sampling)

3. ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Stratified Random Sampling) 3 ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Stratfed Radom Samplg) Είναι προφανές από τα τυπικά σφάλματα των εκτιμητριών των προηγούμενων παραγράφων, ότι ένας τρόπος να αυξηθεί η ακρίβεια τους είναι να αυξηθεί

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ

ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ ιαφάνειες για το µάθηµα Information Management ΑθανάσιοςΝ. Σταµούλης 1 ΠΗΓΗ Κονδύλης Ε. (1999) Στατιστικές τεχνικές διοίκησης επιχειρήσεων, Interbooks 2 1 Γραµµική παλινδρόµηση Είναι

Διαβάστε περισσότερα

Μοντέλα Παλινδρόμησης. Άγγελος Μάρκος, Λέκτορας ΠΤ Ε, ΠΘ

Μοντέλα Παλινδρόμησης. Άγγελος Μάρκος, Λέκτορας ΠΤ Ε, ΠΘ Μοντέλα Παλινδρόμησης Άγγελος Μάρκος, Λέκτορας ΠΤ Ε, ΠΘ Εισαγωγή (1) Σε αρκετές περιπτώσεις επίλυσης προβλημάτων ενδιαφέρει η ταυτόχρονη μελέτη δύο ή περισσότερων μεταβλητών, για να προσδιορίσουμε με ποιο

Διαβάστε περισσότερα

Οι κλασσικότερες από αυτές τις προσεγγίσεις βασίζονται σε πολιτικές αναπαραγγελίας, στις οποίες προσδιορίζονται τα εξής δύο μεγέθη:

Οι κλασσικότερες από αυτές τις προσεγγίσεις βασίζονται σε πολιτικές αναπαραγγελίας, στις οποίες προσδιορίζονται τα εξής δύο μεγέθη: 4. ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΘΕΜΑΤΩΝ ΥΠΟ ΑΒΕΒΑΙΑ ΖΗΤΗΣΗ Στις περισσότερες περιπτώσεις η ζήτηση είναι αβέβαια. Οι περιπτώσεις αυτές διαφέρουν ως προς το μέγεθος της αβεβαιότητας. Δηλαδή εάν η αβεβαιότητα είναι περιορισμένη

Διαβάστε περισσότερα

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ ΜΕΡΟΣ ΙΙ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ 36 ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ Πολλές από τις αποφάσεις

Διαβάστε περισσότερα

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ ΚΕΦΑΛΑΙΟ 5 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ Α. Περίπτωση Ενός Πληθυσμού Έστω ότι μελετάμε μια ακολουθία ανεξαρτήτων δοκιμών κάθε μία από τις οποίες οδηγεί είτε σε επιτυχία είτε σε αποτυχία με σταθερή

Διαβάστε περισσότερα

ΔΡΑΣΗ ΕΘΝΙΚΗΣ ΕΜΒΕΛΕΙΑΣ. «ΣΥΝΕΡΓΑΣΙΑ 2009» ΠΡΑΞΗ Ι:«Συνεργατικά έργα μικρής και μεσαίας κλίμακας»

ΔΡΑΣΗ ΕΘΝΙΚΗΣ ΕΜΒΕΛΕΙΑΣ. «ΣΥΝΕΡΓΑΣΙΑ 2009» ΠΡΑΞΗ Ι:«Συνεργατικά έργα μικρής και μεσαίας κλίμακας» ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΙΔΙΚΗ ΥΠΗΡΕΣΙΑ ΣΥΝΤΟΝΙΣΜΟΥ ΚΑΙ ΕΦΑΡΜΟΓΗΣ ΔΡΑΣΕΩΝ ΣΤΟΥΣ ΤΟΜΕΙΣ ΤΗΣ ΕΡΕΥΝΑΣ ΤΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΤΗΣ ΚΑΙΝΟΤΟΜΙΑΣ (ΕΥΣΕΔ-ΕΤΑΚ)

Διαβάστε περισσότερα

Υπολογισµοί του Χρόνου Ξήρανσης

Υπολογισµοί του Χρόνου Ξήρανσης Η πραγµατική επιφάνεια ξήρανσης είναι διασπαρµένη και ασυνεχής και ο µηχανισµός από τον οποίο ελέγχεται ο ρυθµός ξήρανσης συνίσταται στην διάχυση της θερµότητας και της µάζας µέσα από το πορώδες στερεό.

Διαβάστε περισσότερα

ΣΠΟΥΔΑΣΤΗΡΙΟ ΚΟΙΝΩΝΙΟΛΟΓΙΑΣ ΠΑΣΠΕ ΕΘΝΙΚΟ ΚΕΝΤΡΟ ΚΟΙΝΩΝΙΚΩΝ ΕΡΕΥΝΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΕΘΟΔΟΛΟΓΙΑ ΚΑΙ ΤΙΣ ΤΕΧΝΙΚΕΣ

ΣΠΟΥΔΑΣΤΗΡΙΟ ΚΟΙΝΩΝΙΟΛΟΓΙΑΣ ΠΑΣΠΕ ΕΘΝΙΚΟ ΚΕΝΤΡΟ ΚΟΙΝΩΝΙΚΩΝ ΕΡΕΥΝΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΕΘΟΔΟΛΟΓΙΑ ΚΑΙ ΤΙΣ ΤΕΧΝΙΚΕΣ ΣΠΟΥΔΑΣΤΗΡΙΟ ΚΟΙΝΩΝΙΟΛΟΓΙΑΣ ΠΑΣΠΕ ΕΘΝΙΚΟ ΚΕΝΤΡΟ ΚΟΙΝΩΝΙΚΩΝ ΕΡΕΥΝΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΕΘΟΔΟΛΟΓΙΑ ΚΑΙ ΤΙΣ ΤΕΧΝΙΚΕΣ ΤΩΝ ΚΟΙΝΩΝΙΚΩΝ ΕΡΕΥΝΩΝ Επιλογή κειμένων των καθηγητών: Μ. GRAWITZ Καθηγήτρια Κοινωνιολογίας

Διαβάστε περισσότερα

11 η ΕΥΡΩΠΑΙΚΗ ΟΛΥΜΠΙΑ Α ΕΠΙΣΤΗΜΩΝ EUSO 2013

11 η ΕΥΡΩΠΑΙΚΗ ΟΛΥΜΠΙΑ Α ΕΠΙΣΤΗΜΩΝ EUSO 2013 11 η ΕΥΡΩΠΑΙΚΗ ΟΛΥΜΠΙΑ Α ΕΠΙΣΤΗΜΩΝ EUSO 2013 ΤΟΠΙΚΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΠΕΙΡΑΜΑΤΙΚΗ ΟΚΙΜΑΣΙΑ ΣΤΗ ΦΥΣΙΚΗ Σάββατο 8 ΕΚΕΜΒΡΙΟΥ 2012 ΕΚΦΕ ΑΧΑΪΑΣ (ΑΙΓΙΟΥ) (Διάρκεια εξέτασης 60 min) Μαθητές: Σχολική Μονάδα

Διαβάστε περισσότερα

ΜΕΤΡΗΣΗ ΕΙ ΙΚΗΣ ΘΕΡΜΟΤΗΤΑΣ ΥΓΡΟΥ

ΜΕΤΡΗΣΗ ΕΙ ΙΚΗΣ ΘΕΡΜΟΤΗΤΑΣ ΥΓΡΟΥ ΑΣΚΗΣΗ 9 ΜΕΤΡΗΣΗ ΕΙ ΙΚΗΣ ΘΕΡΜΟΤΗΤΑΣ ΥΓΡΟΥ Πείραµα του J. Joule που αποδεικνύει τη διατήρηση της ενέργειας URL: http://www. hcc.hawaii.edu 95 9.1 ΑΝΤΙΚΕΙΜΕΝΟ Η µελέτη του φαινοµένου Joule και ο προσδιορισµός

Διαβάστε περισσότερα

ΑΖΩΤΟΥΧΟΣ ΛΙΠΑΝΣΗ ΚΑΙ ΟΡΘΗ ΓΕΩΡΓΙΚΗ ΠΡΑΚΤΙΚΗ. Δρ. Γιάννης Ασημακόπουλος Πρώην Καθηγητής Γεωπονικού Παν/μίου Αθηνών

ΑΖΩΤΟΥΧΟΣ ΛΙΠΑΝΣΗ ΚΑΙ ΟΡΘΗ ΓΕΩΡΓΙΚΗ ΠΡΑΚΤΙΚΗ. Δρ. Γιάννης Ασημακόπουλος Πρώην Καθηγητής Γεωπονικού Παν/μίου Αθηνών ΑΖΩΤΟΥΧΟΣ ΛΙΠΑΝΣΗ ΚΑΙ ΟΡΘΗ ΓΕΩΡΓΙΚΗ ΠΡΑΚΤΙΚΗ Δρ. Γιάννης Ασημακόπουλος Πρώην Καθηγητής Γεωπονικού Παν/μίου Αθηνών ΟΡΙΣΜΟΣ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΛΙΠΑΣΜΑΤΟΣ. Με την κλασσική έννοια, ως λίπασμα ορίζεται κάθε ουσία

Διαβάστε περισσότερα

Υπολογισμός της επιτάχυνσης της βαρύτητας με φωτογράφιση πτώσης φωτοδιόδου LED

Υπολογισμός της επιτάχυνσης της βαρύτητας με φωτογράφιση πτώσης φωτοδιόδου LED Στη στήλη παρουσιάζονται ιδέες, πρακτικές και σχέδια μαθήματος που έχουν εφαρμοστεί στην τάξη και προτείνουν μια πρωτότυπη, διαφορετική, καινοτόμα διδακτική προσέγγιση που προκαλεί το ενδιαφέρον στα παιδιά.

Διαβάστε περισσότερα

Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση

Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση Copyright 2009 Cengage Learning 16.1 Ανάλυση Παλινδρόμησης Σκοπός του προβλήματος είναι η ανάλυση της σχέσης μεταξύ συνεχών μεταβλητών. Η ανάλυση παλινδρόμησης

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΗ ΣΤΑΤΙΣΤΙΚΗ ΙΙ ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ, ΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΗ ΣΤΑΤΙΣΤΙΚΗ ΙΙ ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ, ΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΗ ΣΤΑΤΙΣΤΙΚΗ ΙΙ ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ, ΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΣΙΜΟΣ ΜΕΙΝΤΑΝΗΣ, Αναπληρωτής Καθηγητής Τμήμα Οικονομικών Επιστημών, ΕΚΠΑ ΓΙΑΝΝΗΣ Κ. ΜΠΑΣΙΑΚΟΣ, Επίκουρος Καθηγητής Τμήμα Οικονομικών

Διαβάστε περισσότερα

ΑΞΙΟΠΙΣΤΙΑ ΚΑΙ ΣΥΝΤΗΡΗΣΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής. Pr T T0

ΑΞΙΟΠΙΣΤΙΑ ΚΑΙ ΣΥΝΤΗΡΗΣΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής. Pr T T0 ΑΞΙΟΠΙΣΤΙΑ ΚΑΙ ΣΥΝΤΗΡΗΣΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής Δεσμευμένη αξιοπιστία Η δεσμευμένη αξιοπιστία R t είναι η πιθανότητα το σύστημα να λειτουργήσει για χρονικό

Διαβάστε περισσότερα

Διαδικασία Ελέγχου Μηδενικών Υποθέσεων

Διαδικασία Ελέγχου Μηδενικών Υποθέσεων Διαδικασία Ελέγχου Μηδενικών Υποθέσεων Πέτρος Ρούσσος, Τμήμα Ψυχολογίας, ΕΚΠΑ Η λογική της διαδικασίας Ο σάκος περιέχει έναν μεγάλο αλλά άγνωστο αριθμό (αρκετές χιλιάδες) λευκών και μαύρων βόλων: 1 Το

Διαβάστε περισσότερα

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για τους Μέσους - Εξαρτημένα Δείγματα (Paired samples t-test) Το κριτήριο Paired samples t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε

Διαβάστε περισσότερα

4 Πιθανότητες και Στοιχεία Στατιστικής για Μηχανικούς

4 Πιθανότητες και Στοιχεία Στατιστικής για Μηχανικούς Πρόλογος Ο μηχανικός πρέπει να συνεχίσει να βελτιώνει την ποιότητα της δουλειάς του εάν επιθυμεί να είναι ανταγωνιστικός στην αγορά της χώρας του και γενικότερα της Ευρώπης. Μία σημαντική αναλογία σε αυτήν

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ 2. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ

ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ 2. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΕΝΟΤΗΤΕΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ (One-Way Analyss of Varance) Η ανάλυση

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ Πρόβλημα απουσιών στ)

ΑΣΚΗΣΕΙΣ Πρόβλημα απουσιών στ) ΑΣΚΗΣΕΙΣ. Ο διευθυντής προσωπικού μιας μεγάλης εταιρείας πιστεύει ότι ίσως υφίσταται κάποια σχέση μεταξύ των ημερών απουσίας και της ηλικίας των εργαζομένων. Με βάση την υπόθεση αυτή ενδιαφέρεται να κατασκευάσει

Διαβάστε περισσότερα

κλασσική περιγραφή Κλασσική στατιστική

κλασσική περιγραφή Κλασσική στατιστική Η κανονική κατανομή στη κλασσική περιγραφή Κλασσική στατιστική φυσική Βίγκα Ελένη (ttp://users.aut.gr/vinga) Στατιστική Φυσική Διαφάνεια o o Μια πολύ απλή περίπτωση για να ξεκινήσουμε είναι: Na θεωρήσουμε

Διαβάστε περισσότερα

Εισαγωγή στη θεωρία ακραίων τιμών

Εισαγωγή στη θεωρία ακραίων τιμών Εισαγωγή στη θεωρία ακραίων τιμών Αντικείμενο της θεωρίας ακραίων τιμών αποτελεί: Η ανάπτυξη και μελέτη στοχαστικών μοντέλων με σκοπό την επίλυση προβλημάτων που σχετίζονται με την εμφάνιση «πολύ μεγάλων»

Διαβάστε περισσότερα

Περιεχόμενα. 1. Ειδικές συναρτήσεις. 2. Μιγαδικές Συναρτήσεις. 3. Η Έννοια του Τελεστή. Κεφάλαιο - Ενότητα

Περιεχόμενα. 1. Ειδικές συναρτήσεις. 2. Μιγαδικές Συναρτήσεις. 3. Η Έννοια του Τελεστή. Κεφάλαιο - Ενότητα Περιεχόμενα Κεφάλαιο - Ενότητα σελ 1. Ειδικές συναρτήσεις 1.0 Εισαγωγή 1.1 Εξίσωση του Laplace Συστήματα συντεταγμένων 1.2 Συνάρτηση δ του Dirac 1.3 Συνάρτηση του Heaviside 1.4 Οι συναρτήσεις Β, Γ και

Διαβάστε περισσότερα

Μονοτονία - Ακρότατα - 1 1 Αντίστροφη Συνάρτηση

Μονοτονία - Ακρότατα - 1 1 Αντίστροφη Συνάρτηση 4 Μονοτονία - Ακρότατα - Αντίστροφη Συνάρτηση Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Μονοτονία συνάρτησης Μια συνάρτηση f λέγεται: Γνησίως αύξουσα σ' ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε,

Διαβάστε περισσότερα

cv = κατάλληλη κριτική (κρίσιμη) τιμή από τους πίνακες της Ζ ή t κατανομής

cv = κατάλληλη κριτική (κρίσιμη) τιμή από τους πίνακες της Ζ ή t κατανομής ΕΚΤΙΜΗΣΗ ΔΙΑΣΤΗΜΑΤΟΣ Δ.Ε. της παραμέτρου θ: ˆ θ cv σ < θ < ˆ θ + cv σ ˆ θ ˆ θ θ = η παράμετρος που θέλουμε να εκτιμήσουμε, ˆ θ = η εκτίμηση της θ που προκύπτει από το τ.δ. cv = κατάλληλη κριτική (κρίσιμη)

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 16. Απλή Γραμμική Παλινδρόμηση και Συσχέτιση

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 16. Απλή Γραμμική Παλινδρόμηση και Συσχέτιση ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ

ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ 1o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ: ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδες Μαθήματος: users.auth.gr/gvasil

Διαβάστε περισσότερα

Η αβεβαιότητα στη μέτρηση.

Η αβεβαιότητα στη μέτρηση. Η αβεβαιότητα στη μέτρηση. 1. Εισαγωγή. Κάθε μέτρηση, όσο προσεκτικά και αν έχει γίνει, περικλείει κάποια αβεβαιότητα. Η ανάλυση των σφαλμάτων είναι η μελέτη και ο υπολογισμός αυτής της αβεβαιότητας στη

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ Διευθυντής: Διονύσιος-Ελευθ. Π. Μάργαρης, Αναπλ. Καθηγητής ΕΡΓΑΣΤΗΡΙΑΚΗ

Διαβάστε περισσότερα

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής.

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής. 2.6 ΟΡΙΑ ΑΝΟΧΗΣ Το διάστηµα εµπιστοσύνης παρέχει µία εκτίµηση µιας άγνωστης παραµέτρου µε την µορφή διαστήµατος και ένα συγκεκριµένο βαθµό εµπιστοσύνης ότι το διάστηµα αυτό, µε τον τρόπο που κατασκευάσθηκε,

Διαβάστε περισσότερα

Τίτλος Άσκησης : ΜΕΤΡΗΣΗ ΑΝΤΙΣΤΑΣΕΩΝ ΜΕ ΤΗ ΓΕΦΥΡΑ WHEATSTONE

Τίτλος Άσκησης : ΜΕΤΡΗΣΗ ΑΝΤΙΣΤΑΣΕΩΝ ΜΕ ΤΗ ΓΕΦΥΡΑ WHEATSTONE ΤΕΙ ΧΑΛΚΙΔΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΜΕΤΡΗΣΕΩΝ Α/Α ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ : ΑΣΚΗΣΗ 3 η Τίτλος Άσκησης : ΜΕΤΡΗΣΗ ΑΝΤΙΣΤΑΣΕΩΝ ΜΕ ΤΗ ΓΕΦΥΡΑ WHEATSTONE Σκοπός Η κατανόηση της λειτουργίας και

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2012 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος A Λυκείου

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2012 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος A Λυκείου A Λυκείου Θεωρητικό Μέρος Θέμα 1 ο 10 Μαρτίου 2012 Στις ερωτήσεις A, B, Γ, Δ i), Δ ii) μια μόνο απάντηση είναι σωστή. Γράψτε στο τετράδιό σας το κεφαλαίο γράμμα της ερώτησης και το μικρό γράμμα της σωστής

Διαβάστε περισσότερα

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ ΠΡΩΤΟ ΘΕΩΡΙΑΣ-ΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ ΕΡΓΑΣΤΗΡΙΟ PASW 18 Δρ. Κουνετάς Η Κωνσταντίνος Ακαδημαϊκό Έτος 2011 2012 ΕΠΙΧ

Διαβάστε περισσότερα

SOURCE DF SUM OF SQUARES MEAN SQUARE F VALUE PR F MODEL (a) 2.882 E04 (e) (g) (h) ERROR (b) (d) (f) TOTAL (c) 4.063 E04 R SQUARE (i) PARAMETER

SOURCE DF SUM OF SQUARES MEAN SQUARE F VALUE PR F MODEL (a) 2.882 E04 (e) (g) (h) ERROR (b) (d) (f) TOTAL (c) 4.063 E04 R SQUARE (i) PARAMETER ΑΣΚΗΣΕΙΣ. Θεωρήστε το παράδειγμα που αναφέρεται στη συσχέτιση του βαθμού ικανοποίησης των εργαζομένων σε ένα εργαστήριο σε σχέση με τις οκτώ μεταβλητές που ορίστηκαν εκεί. (Χ =ηλικία, Χ =φύλο, Χ =εβδομαδιαίος

Διαβάστε περισσότερα

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τοµέας Μαθηµατικών, Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών Επιστηµών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόµενα Εισαγωγή στη

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Γραφικές παραστάσεις, κλίση καµπύλης Μέθοδος των ελαχίστων τετραγώνων

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Γραφικές παραστάσεις, κλίση καµπύλης Μέθοδος των ελαχίστων τετραγώνων ΘΕ ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Γραφικές παραστάσεις, κλίση καµπύλης Μέθοδος των ελαχίστων τετραγώνων 1. Σκοπός Πρόκειται για θεωρητική άσκηση που σκοπό έχει την περιληπτική αναφορά σε θεµατολογίες που αφορούν την

Διαβάστε περισσότερα

H ΑΝΑΛΥΣΗ ΣΥΣΧΕΤΙΣΗΣ (PEARSON s r)

H ΑΝΑΛΥΣΗ ΣΥΣΧΕΤΙΣΗΣ (PEARSON s r) 5 H ΑΝΑΛΥΣΗ ΣΥΣΧΕΤΙΣΗΣ (PEARSON s r) Περίληψη Σκοπός του κεφαλαίου είναι η εφαρμογή της ανάλυσης συσχέτισης (Pearson r) μέσω του PASW. H ανάλυση συσχέτισης Pearson r χρησιμοποιείται για να εξεταστεί η

Διαβάστε περισσότερα

Περιγραφική στατιστική

Περιγραφική στατιστική Περιγραφική στατιστική Ιστογράμματα Mέτρα θέσης και διασποράς Κατανομές δεδομένων Γεωργία Σαλαντή Επικ. Καθηγήτρια Εργαστήριο Υγιεινής και Επιδημιολογίας Στατιστική 1. Εκτιμήσεις Μεγέθη και διαστήματα

Διαβάστε περισσότερα

Εργαστηριακή ή Άσκηση η 3

Εργαστηριακή ή Άσκηση η 3 Μιχάλης Καλογεράκης 9 ο Εξάμηνο ΣΕΜΦΕ ΑΜ:09101187 Υπεύθυνος Άσκησης: Μ. Κόκκορης Συνεργάτης: Κώστας Καραϊσκος Ημερομηνία Διεξαγωγής: 9/11/005 Εργαστήριο Πυρηνικής Φυσικής και Στοιχειωδών ν Σωματιδίων Εργαστηριακή

Διαβάστε περισσότερα

Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων

Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων Εργαστήριο 3 Νόμος του Ohm, Κυκλώματα σε Σειρά και Παράλληλα Λευκωσία, 2010 Εργαστήριο 3 Νόμος

Διαβάστε περισσότερα

CH COOC H H O CH COOH C H OH

CH COOC H H O CH COOH C H OH ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΧΗΜΕΙΑΣ ΤΟΜΕΑΣ ΦΥΣΙΚΟΧΗΜΕΙΑΣ ΠΕΙΡΑΜΑ 2 ΧΗΜΙΚΗΣ ΚΙΝΗΤΙΚΗΣ (ΧΚ2) ΜΑΘΗΜΑ: ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΟΧΗΜΕΙΑΣ ΙΙ ΑΚΑΔ. ΕΤΟΣ: 2013-14 ΤΜΗΜAΤΑ TΡΙΤΗΣ ΚΑΙ ΤΕΤΑΡΤΗΣ Τίτλος Πειράματος: ΚΙΝΗΤΙΚΗ

Διαβάστε περισσότερα

ΑΚΑΔΗΜΙΑ ΤΩΝ ΠΟΛΙΤΩΝ

ΑΚΑΔΗΜΙΑ ΤΩΝ ΠΟΛΙΤΩΝ ΑΚΑΔΗΜΙΑ ΤΩΝ ΠΟΛΙΤΩΝ Αστική Μη Κερδοσκοπική Εταιρεία- ISO 9001 Σαπφούς 3, 81100 Μυτιλήνη (1ος Όροφος) 2251054739 (09:00-14:30) academy@aigaion.org civilacademy.ucoz.org «ΠΡΟΓΡΑΜΜΑ ΜΕΘΟΔΟΛΟΓΙΑΣ ΕΡΕΥΝΑΣ

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ Ι ΥΛΗ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΚΑΙ Ο ΗΓΙΕΣ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ. Σάββας Παπαδόπουλος metrika@otenet.gr http://www.riskmetrica.wordpress.

ΣΤΑΤΙΣΤΙΚΗ Ι ΥΛΗ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΚΑΙ Ο ΗΓΙΕΣ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ. Σάββας Παπαδόπουλος metrika@otenet.gr http://www.riskmetrica.wordpress. ΣΤΑΤΙΣΤΙΚΗ Ι Η Ύλη του µαθήµατος είναι στις διαφάνειες (slides) τα οποία καλύφθηκαν στην τάξη και βρίσκονται στην ιστοσελίδα: ανεξάρτητα µε το πιο βιβλίο που χρησιµοποιείται. Μερικά από τα θέµατα καλύπτονται

Διαβάστε περισσότερα

ΑΠΑΙΤΗΣΕΙΣ ΣΧΕΤΙΚΕΣ ΜΕ ΝΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΙΧΝΗΘΕΤΕΣ

ΑΠΑΙΤΗΣΕΙΣ ΣΧΕΤΙΚΕΣ ΜΕ ΝΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΙΧΝΗΘΕΤΕΣ ΑΠΑΙΤΗΣΕΙΣ ΣΧΕΤΙΚΕΣ ΜΕ ΝΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΙΧΝΗΘΕΤΕΣ Οι απαντήσεις σε όλα τα πεδία οφείλουν να λαμβάνουν υπόψη και να είναι σύμφωνες με τις Ευρωπαϊκές Οδηγίες και τους Ευρωπαϊκούς Κανονισμούς. Για κάθε πεδίο

Διαβάστε περισσότερα

Παλμογράφος. ω Ν. Άσκηση 15:

Παλμογράφος. ω Ν. Άσκηση 15: Άσκηση 15: Παλμογράφος Σκοπός: Σε αυτή την άσκηση θα μάθουμε τις βασικές λειτουργίες του παλμογράφου και το πώς χρησιμοποιείται αυτός για τη μέτρηση συνεχούς και εναλλασσόμενης τάσης, συχνότητας και διαφοράς

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος 15 Ευχαριστίες 19. Κεφάλαιο 1 Ιστορική Αναδρομή & Ορισμός της Ψυχομετρίας

Περιεχόμενα. Πρόλογος 15 Ευχαριστίες 19. Κεφάλαιο 1 Ιστορική Αναδρομή & Ορισμός της Ψυχομετρίας Περιεχόμενα Πρόλογος 15 Ευχαριστίες 19 Κεφάλαιο 1 Ιστορική Αναδρομή & Ορισμός της Ψυχομετρίας 1.1. Η Εμφάνιση της Ψυχομετρίας 21 1.1.1. Κατά τη Νεολιθική Περίοδο 21 1.1.2. Κατά την Αιγυπτιακή και Σουμερική

Διαβάστε περισσότερα

Προσδιορισµός συντελεστή γραµµικής διαστολής

Προσδιορισµός συντελεστή γραµµικής διαστολής Θ1 Προσδιορισµός συντελεστή γραµµικής διαστολής 1. Σκοπός Στην άσκηση αυτή θα µελετηθεί το φαινόµενο της γραµµικής διαστολής και θα προσδιοριστεί ο συντελεστής γραµµικής διαστολής ορείχαλκου ή χαλκού..

Διαβάστε περισσότερα