ΔΙΕΡΕΥΝΗΣΗ ΜΕΘΟΔΩΝ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΚΙΝΗΤΙΚΩΝ ΠΑΡΑΜΕΤΡΩΝ ΘΕΡΜΙΚΗΣ ΑΠΕΝΕΡΓΟΠΟΙΗΣΗΣ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΔΙΕΡΕΥΝΗΣΗ ΜΕΘΟΔΩΝ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΚΙΝΗΤΙΚΩΝ ΠΑΡΑΜΕΤΡΩΝ ΘΕΡΜΙΚΗΣ ΑΠΕΝΕΡΓΟΠΟΙΗΣΗΣ"

Transcript

1 ΔΙΕΡΕΥΝΗΣΗ ΜΕΘΟΔΩΝ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΚΙΝΗΤΙΚΩΝ ΠΑΡΑΜΕΤΡΩΝ ΘΕΡΜΙΚΗΣ ΑΠΕΝΕΡΓΟΠΟΙΗΣΗΣ Μαρία Γιαννακούρου ΤΕΙ Αθηνών, Σχολή Τεχνολογίας Τροφίμων και Διατροφής, Τμήμα Τεχνολογίας Τροφίμων Νικόλαος Γ. Στοφόρος Γεωπονικό Πανεπιστήμιο Αθηνών, Τμήμα Επιστήμης Τροφίμων και Διατροφής του Ανθρώπου ΠΕΡΙΛΗΨΗ Προκειμένου να προσδιοριστούν οι κινητικές παράμετροι θερμικής απενεργοποίησης (π.χ. χρόνος υποδεκαπλασιασμού, D T, και τιμή z), χρησιμοποιούνται δεδομένα από πειράματα σε ισοθερμοκρασιακές συνθήκες, και προσδιορίζονται οι κινητικές παράμετροι σε δύο φάσεις: στο πρώτο στάδιο, επιλέγεται ο δείκτηςστόχος της θερμικής επεξεργασίας (εδώ η L-καρνιτίνη), μετράται η μεταβολή του στο χρόνο και προσδιορίζεται ο ρυθμός καταστροφής του σε συγκεκριμένη, σταθερή θερμοκρασία, μέσω του κατάλληλου μαθηματικού μοντέλου (πρωτογενές μοντέλο). Στο επόμενο βήμα, η επίδραση της θερμοκρασίας στους ρυθμούς καταστροφής του επιλεγμένου δείκτη προσδιορίζεται μέσω κατάλληλων με τη χρήση δευτερογενούς μαθηματικού μοντέλου. Όπως αποδείχθηκε και στη συγκεκριμένη εφαρμογή, με τη μεθοδολογία αυτή τα εκτιμώμενα με στατιστική επεξεργασία διαστήματα εμπιστοσύνης των εκτιμήσεων των ρυθμών καταστροφής στην εκάστοτε μελετώμενη θερμοκρασία δεν παίρνονται υπόψη στον υπολογισμό των των δευτερογενών μοντέλων, με συνέπεια τα αντίστοιχα διαστήματα εμπιστοσύνης να εμφανίζονται, ψευδώς, μικρότερα από ότι υποδηλώνουν τα πειραματικά δεδομένα. Σκοπός της παρούσας εργασίας ήταν, να διερευνήθεί μια εναλλακτική προσέγγιση, που ακολουθεί τις βασικές αρχές της μεθοδολογίας των δύο βημάτων, λαμβάνοντας όμως υπόψιν την αβεβαιότητα (ή σφάλμα) των τιμών των κινητικών του πρωτογενούς μοντέλου (εδώ της παραμέτρου D T ). Αυτό πραγματοποιήθηκε με θεώρηση κανονικής κατανομής των τιμών D T για την εκάστοτε θερμοκρασία και με χρήση της τεχνικής Monte Carlo για πολλαπλές περιπτώσεις τυχαίων συνδυασμών τιμών D T, προκειμένου να υπολογιστούν οι τιμές των κινητικών του δευτερογενούς μοντέλου (z και D T ), αλλά και τα πραγματικά διαστήματα εμπιστοσύνης αυτών. Στη συγκεκριμένη μελέτη βρέθηκε ότι, ειδικά στην περίπτωση διερυμένων σφαλμάτων των του πρωτογενούς μοντέλου, η τελευταία αυτή προσέγγιση προσδιορίζει με ακρίβεια την πραγματική διακύμανση του εύρους τιμών των του δευτερογενούς μοντέλου, αποφεύγοντας τα, πλασματικά εκτιμώμενα, μικρά διαστήματα εμπιστοσύνης. ΕΙΣΑΓΩΓΗ H κλασική μεθοδολογία εκτίμησης κινητικών θερμικής απενεργοποίησης βασίζεται σε δεδομένα από πειράματα σε ισοθερμοκρασιακές συνθήκες και στον σταδιακό προσδιορισμό των. Σύμφωνα με την προσέγγιση αυτή, στο πρώτο στάδιο, επιλέγεται ο δείκτης-στόχος της θερμικής επεξεργασίας (συνήθως πρόκειται για έναν θερμοευαίσθητο παράγοντα), μετράται η μεταβολή του συναρτήσει του χρόνου κατεργασίας σε συγκεκριμένη, σταθερή θερμοκρασία και προσδιορίζεται ο ρυθμός καταστροφής του, μέσω κατάλληλου μαθηματικού μοντέλου (πρωτογενές μοντέλο). Σύμφωνα με την κλασική θερμοβακτηριολογική προσέγγιση [1,2] που ακολουθείται για την περιγραφή κινητικών δεδομένων θερμικής απενεργοποίησης, ο ρυθμός απενεργοποίησης αποδίδεται με τον χρόνο υποδεκαπλασιασμού, D Τ, ο οποίος ορίζεται από την Εξ. (1): t log C log Co (1) DT όπου D Τ ο χρόνος θέρμανσης, σε σταθερή θερμοκρασία T, που απαιτείται για την καταστροφή του 90% ενός θερμοευαίσθητου παράγοντα (π.χ., μικροοργανισμών, ενζύμων, βιταμινών ή άλλων ποιοτικών ), C ο η αρχική συγκέντρωση και C η συγκέντρωση μετά από χρόνο θέρμανσης t, του υπό εξέταση παράγοντα (π.χ., αριθμός μικροοργανισμών ανά περιέκτη, αριθμός σπορίων ανά ml, mg/ml, κλπ). Με βάση την Εξ. (1) και απλή γραμμική ανάλυση παλινδρόμησης προσδιορίζονται οι χρόνοι υποδεκαπλασιασμού σε κάθε θερμοκρασία που μελετάται. Σε επόμενο βήμα, η επίδραση της θερμοκρασίας στους ρυθμούς καταστροφής του επιλεγμένου δείκτη προσδιορίζεται με τη χρήση δευτερογενών μαθηματικών μοντέλων. Κατά την παραπάνω προσέγγιση, η επίδραση της θερμοκρασίας στο χρόνο υποδεκαπλασιασμού, περιγράφεται με την τιμή z από την Εξ. (2):

2 T T log DT log DT (2) z όπου z είναι η σταθερά θερμικής αντίστασης, αποτελεί μέτρο της εξάρτησης του ρυθμού θερμικής απενεργοποίησης από τη θερμοκρασία, ορίζεται ως η διαφορά θερμοκρασίας που απαιτείται για να δεκαπλασιαστεί ή να υποδεκαπλασιαστεί η τιμή D T. Ως Τ ορίζεται η θερμοκρασία αναφοράς. Εναλλακτικά, είναι εφικτός ο ταυτόχρονος των κινητικών των πρωτογενών και δευτερογενών μαθηματικών μοντέλων σε ένα βήμα, από τα ίδια με παραπάνω πειράματα σε ισοθερμοκρασιακές συνθήκες, δια μέσου της Εξ. (3) και ανάλυσης μη γραμμικής παλινδρόμησης. t log C log Co (3) ( T T ) / z DT Η μεθοδολογία αυτή οδηγεί στον προσδιορισμό κινητικών με μικρότερα διαστήματα εμπιστοσύνης σε σχέση με την κλασική μέθοδο των δυο βημάτων. Ο ταυτόχρονος των κινητικών των πρωτογενών και δευτερογενών μαθηματικών μοντέλων είναι επίσης εφικτός από πειράματα σε δυναμικές θερμοκρασιακές συνθήκες. Με τη μέθοδο αυτή μειώνεται σημαντικά ο αριθμός των απαιτούμενων πειραματικών δεδομένων και της συνεπακόλουθης προσπάθειας. Εντούτοις, η επιλογή κατάλληλων δυναμικών θερμοκρασιακών συνθηκών είναι κρίσιμη για την ακριβή πρόβλεψη των κινητικών με ικανοποιητικά χαμηλά διαστήματα εμπιστοσύνης (υψηλή ακρίβεια-χαμηλή αβεβαιότητα εκτιμήσεων). Οι παραπάνω μεθοδολογίες εφαρμόστηκαν [3] για τον προσδιορισμό των κινητικών θερμικής απενεργοποίησης της L-καρνιτίνης (Πίνακας 1). Πίνακας 1. Εκτιμούμνες τιμές κινητικών θερμικής απενεργοποίησης L-καρνιτίνης. Ισοθερμοκρασιακές συνθήκες (2 σημεία) Δυναμικές θερμοκρασιακές συνθήκες (14 σημεία) * CI: Διάστημα εμπιστοσύνης Σταδιακός Ταυτόχρονος Ταυτόχρονος z ( C) D 120 C (min) Μέση τιμή 95% CI * Μέση τιμή 95% CI Τα μεγαλύτερα διαστήματα εμπιστοσύνης που παρατηρήθηκαν κατά τον ταυτόχρονο προσδιορισμό των κινητικών από πειράματα σε δυναμικές θερμοκρασιακές συνθήκες (σε σχέση με τα πειράματα σε ισοθερμοκρασιακές συνθήκες) αποδίδονται στον περιορισμένο αριθμό πειραματικών δεδομένων (7 σημεία επί 2 επαναλήψεις). Τα μικρότερα διαστήματα εμπιστοσύνης που υπολογίστηκαν κατά τον ταυτόχρονο προσδιορισμό των κινητικών από πειράματα σε ισοθερμοκρασιακές συνθήκες (σε σχέση με τον σταδιακό προσδιορισμό των ) εν πρώτοις, δικαιολογούνται από το γεγονός ότι, κατά τον ταυτόχρονο προσδιορισμό, δεν μεσολαβούν υπολογισμοί ενδιάμεσων. Κατά το σταδιακό προσδιορισμό των, τα σφάλματα, ή ισοδύναμα τα διαστήματα εμπιστοσύνης, των εκτιμήσεων των χρόνων υποδεκαπλασιασμού στην εκάστοτε μελετώμενη θερμοκρασία δεν παίρνονται υπόψη στον υπολογισμό της τιμής z και D T Έτσι τα διαστήματα εμπιστοσύνης των εκτιμήσεων των των δευτερογενών μοντέλων εμφανίζονται, ψευδώς, μικρότερα από ότι υποδηλώνουν τα πειραματικά δεδομένα. Ο σκοπός της παρούσας εργασίας ήταν η διερεύνηση της μεθοδολογίας του σταδιακού προσδιορισμού των κινητικών, έτσι ώστε τα σφάλματα των χρόνων υποδεκαπλασιασμού στην εκάστοτε μελετώμενη θερμοκρασία να ληφθούν υπόψη στον υπολογισμό των των δευτερογενών μοντέλων (τιμές D T και z). ΠΕΙΡΑΜΑΤΙΚΟ ΜΕΡΟΣ Η προτεινόμενη προσέγγιση βασίζεται στην παραδοχή ότι η βασική παράμετρος D T της Εξ. (1), η εκτιμήτρια τιμή της οποίας προσδιορίζεται με γραμμική προσαρμογή των δεδομένων logc vs. t για κάθε μια από τις

3 μελετώμενες θερμοκρασίες, δεν περιγράφεται από μια μοναδική τιμή, αλλά από μια κατανομή τιμών (εδώ επιλέγεται η κανονική κατανομή) που ενσωματώνει και το προσδιοριζόμενο (από τη γραμμική προσαρμογή) σφάλμα, αλλά και τη μεταβλητότητα της παραμέτρου [4,5]. Για την ανάπτυξη της μεθοδολογίας που παρουσιάζεται στην παρούσα εργασία, χρησιμοποιήθηκαν τα δεδομένα θερμικής απενεργοποίησης L-καρνιτίνης από την βιβλιογραφία [3] που αναφέρονται σε πειράματα σε 8 διαφορετικές σταθερές θερμοκρασίες (Σχήμα 1). log(dt) (DT σε min) y = x R 2 = 0.99 Πειραματικές τιμές ±95% Confidence band ±95% Prediction band Γραμμή προσαρμογής Θερμοκρασία ( C) Σχήμα 1. Χρόνοι υποδεκαπλασιασμού D Τ με 95% διαστήματα εμπιστοσύνης (confidemce band) και πρόβλεψης (prediction band) βάσει πειραματικών δεδομένων θερμικής απενεργοποίησης L-καρνιτίνης σε ισοθερμοκρασιακές συνθήκες και ανάλυσης δύο βημάτων (σταδιακός ). Με τη βοήθεια της τεχνικής Monte Carlo [6] γίνεται τυχαία επιλογή τιμών από τις κανονικές κατανομές της παραμέτρου D T για κάθε μια από τις 8 θερμοκρασίες, με συχνότητα που καθορίζεται από την εκάστοτε κατανομή. Στόχος είναι ο των τιμών των D T και z (Εξ. 2), καθώς και των σφαλμάτων τους, με βάση τα πολλαπλά σετ τιμών D T (500 οκτάδες) που έχουν παραχθεί με το προηγούμενο βήμα της τεχνικής Monte Carlo. Για κάθε μια συγκεκριμένη, τυχαία, "οκτάδα" τιμών D T, προκύπτει ένα ζεύγος τιμών (εκτιμητές) για τα D T και z (και οι αντίστοιχες κατανομές των ιδίων, D T και z, ). Για 0 τυχαία από τα τελευταία ζεύγη D T και z, με τη βοήθεια των προσδιοριζομένων κατανομών τους και της τεχνικής Monte Carlo γίνεται τυχαία επιλογή 0 σημείων από κάθε κατανομή και, τελικά καταλήγουμε στη δημιουργία 00 τιμών για κάθε μια από τις παραμέτρους του δευτερογενούς μοντέλου D T και z, απ όπου υπολογίζουμε τις εκτιμήτριες (μέσες τιμές) και τα αντίστοιχα 95% διαστήματα εμπιστοσύνης (CI) των D T και z. Να σημειωθεί ότι κατά τους υπολογισμούς ως θερμοκρασία αναφοράς χρησιμοποιήθηκαν οι 120 ο C. Επιπλέον, χρησιμοποιώντας τους κανόνες της διάδοσης σφαλμάτων, δηλαδή, f ( x) (4) x f ( x) x προκειμένου να προσδιοριστούν τα 95% CI των πραμέτρων D T, D T και z, συμβολιζόμενα με (D T ), (D T ) και (z), αντίστοιχα, από τα τα 95% CI των 1/D T, 1/z, και log(d T ) συμβολιζόμενα με (1/D T ), (1/z), και (log(d T )), που προκύπτουν από τη χρήση των Εξ. (1) και (2), χρησιμοποιήθηκαν οι παρακάτω εξισώσεις: 1 1 (5) DT 2 D DT T

4 1 1 z 2 z z (6) DT ln() DT log( DT ) (7) ΑΠΟΤΕΛΕΣΜΑΤΑ ΚΑΙ ΣΥΖΗΤΗΣΗ Η εφαρμογή της προτεινόμενης μεθοδολογίας στα πειραματικά δεδομένα, δηλαδή στις τιμές D Τ και τα αντίστοιχα 95% CI της βιβλιογραφίας [3], (πρώτες στήλες δεδομένων στον Πίνακα 2) δεν οδήγησε σε διαφοροποίηση των διαστημάτων εμπιστοσύνης των τιμών D T και z σε σχέση με τα αρχικά προσδιορισθέντα διαστήματα, των 7.3 minκαι 2.3 C, αντίστοιχα (πρώτη σειρά αποτελεσμάτων του Πίνακα 1) που υπολογίζονται χωρίς να ληφθεί υπόψη η αβεβαιότητα στον προσδιορισμό των επιμέρους τιμών D T. Αυτό αποδόθηκε στο σχετικά μικρό σφάλμα (95% CI) των επιμέρους τιμών D T σε σχέση με το προσδιοριζόμενο από τη γραμμική προσαρμογή) σφάλμα (Σχήμα 1). Για το λόγο αυτό, η προτεινόμενη μεθοδολογία εξετάστηκε χρησιμοποιώντας ένα μεγαλύτερο, αυθαίρετα, 95% CI στις ίδιες (πειραματικές) μέσες τιμές D T (Πίνακας 2). Η τυχαία επιλογή των 500 και 0 τυχαίων δειγμάτων (οκτάδων D T ) επιβεβαιώθηκε με τον υπολογισμό των μέσων τιμών και των 95% CI των δειγμάτων (Πίνακας 2) και την μη ουσιαστική τους απόκλιση από τις αρχικές τους τιμές (Πίνακας 2). T ( C) Πίνακας 2. Χρόνοι υποδεκαπλασιασμού D Τ (min) θερμικής απενεργοποίησης L-καρνιτίνης. Τεχνητά Από 500 τυχαία Από 0 τυχαία Από πειραματικά αυξημένο δείγματα (με το δείγματα (με το τεχνητά δεδομένα CI τεχνητά αυξημένο CI) αυξημένο CI) Μέση τιμή 95% CI 95% CI Μέση τιμή 95% CI Μέση τιμή 95% CI Μια ποιοτική απεικόνιση, με βάση την προτεινόμενη μεθοδολογία, του 95% διαστήματος εμπιστοσύνης (confidemce band) των D Τ συναρτήσει της θερμοκρασίας γραμών, για 250 (από τις 500) οκτάδες D Τ απεικονίζεται στο Σχήμα 2. Εμφανίζεται το διευρημένο εύρος του 95% CI της προτεινόμενης μεθοδολογίας σε σχέση με το το ±95% CI της γραμμικής προσαρμογής. Στα Σχήματα 3 και 4 απεικονίζονται οι κατανομές των (00) τιμών D 120 C και z που υπολογίστηκαν με βάση τα προτεινόμενα. Με βάση τις κατανομές αυτές, οι μέσες τιμές και τα 95% CI των τιμών D 120 C και z υπολογίστηκαν ως min και C, αντίστοιχα. Παρατηρώντας, επομένως, το Σχήμα 2 και τις κατανομές των τιμών των D 120 C και z του Σχήματος 3, και ειδικότερα τα διευρυμένα, πραγματικά 95% CI μπορεί να εξαχθεί το συμπέρασμα ότι με την προτεινόμενη μεθοδολογική προσέγγιση αίρεται το πρόβλημα "στρεβλού" υπολογισμού του σφάλματος των του δευτερογενούς μοντέλου με την κλασσική μέθοδο των δύο βημάτων. Αυτό επιβεβαιώνεται και από τη σύγκριση των τιμών της πρώτης γραμμής του Πίνακα 1 (πλασματικά μικρές τιμές σφαλμάτων) με τα πραγματικά διαστήματα εμπιστοσύνης των D 120 C και z ( 13.9 min και 4.8 C αντίστοιχα), όπως υπολογίστηκαν με το παρουσιαζόμενο στην εργασία αυτή μεθοδολογικό εργαλείο που λαμβάνει υπόψη την αβεβαιότητα τιμών των (D T ) του πρωτογενούς μοντέλου και την "ενσωματώνει" κατάλληλα στους υπολογισμούς για τις παραμέτρους του δευτερογενούς μοντέλου (D 120 C και z).

5 log(dt) (DT in min) Temperature ( C) Σχήμα 2. Διαγραμματική απεικόνιση του log(d T ) ως προς τη θερμοκρασία. Οι ανοικτοί κύκλοι αναφέρονται στα πειραματικά σημεία με τις μπάρες σφαλμάτων να συμβολίζουν τα ±95% CI για τα τεχνητά αυξημένα σφάλματα. Η συνεχής μαύρη γραμμή αποτελεί την ευθεία γραμμικής προσαρμογής στα πειραματικά δεδομένα και η διακεκομμένη γραμμή το ±95% CI. Η ζώνη των γκρι ευθειών απεικονίζει το εύρος των D Τ συναρτήσει της θερμοκρασίας γραμì ών των 8 κατανομών D T (μια για κάθε θερμοκρασία) ενδεικτικά για 250 σημεία που έχουν προέλθει από προσομοίωση Monte Carlo % συχνότητα % συχνότητα D 120 C (min) z ( C) Σχήμα 3. Κατανομές των (00) τιμών D 120 C και z που υπολογίστηκαν με βάση την προτεινόμενη μεθοδολογία. ΒΙΒΛΙΟΓΡΑΦΙΑ [1]. Bigelow W.D., Bohart G.S., Richardson A.C. and Ball C.O., Natl. Canners Assoc. Res. Lab., Bull. 16-L, Washington, DC (1920). [2]. Ball C.O., Bulletin of the National Research Council No. 37, Vol. 7, Part 1, Natl. Res. Council, Washington, DC (1923). [3]. Προκοπίου, Π., Γούλα, Α.Μ. και Στοφόρος Ν.Γ. Πρακτικά 7 ου ΠΕΣΧΜ (2009). [4]. Lammerdig AM, Fazil A. Int.J Food Microbiol 58:147 (2000). [5]. Taoukis P.S. In: Tijkskens LMM, Hertog MLATM, Nicolai BM, ed. Food Process Modelling. CRC Press (2001), p.402. [6]. Smid J.H., Verloo D., Barker G.C. and Havelaar A.H. Int. J Food Microbiol. 139:S57 (20).

ΑΝΑΠΤΥΞΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΚΙΝΗΤΙΚΩΝ ΜΕΘΟΔΩΝ ΕΚΤΙΜΗΣΗΣ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΤΩΝ ΤΡΟΦΙΜΩΝ

ΑΝΑΠΤΥΞΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΚΙΝΗΤΙΚΩΝ ΜΕΘΟΔΩΝ ΕΚΤΙΜΗΣΗΣ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΤΩΝ ΤΡΟΦΙΜΩΝ ΠΕΡΙΛΗΨΕΙΣ ΔΙΔΑΚΤΟΡΙΚΗΣ ΔΙΑΤΡΙΒΗΣ της Χαρίκλειας Βαϊκούση, Γεωπόνου με τίτλο: ΑΝΑΠΤΥΞΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΚΙΝΗΤΙΚΩΝ ΜΕΘΟΔΩΝ ΕΚΤΙΜΗΣΗΣ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΤΩΝ ΤΡΟΦΙΜΩΝ ΣΥΝΤΟΜΗ ΠΕΡΙΛΗΨΗ Αντικείμενο της μελέτης αποτέλεσε

Διαβάστε περισσότερα

Γ Ε Ω Π Ο Ν Ι Κ Ο Π Α Ν Ε Π Ι Σ Τ Η Μ Ι Ο Α Θ Η Ν Ω Ν

Γ Ε Ω Π Ο Ν Ι Κ Ο Π Α Ν Ε Π Ι Σ Τ Η Μ Ι Ο Α Θ Η Ν Ω Ν Γ Ε Ω Π Ο Ν Ι Κ Ο Π Α Ν Ε Π Ι Σ Τ Η Μ Ι Ο Α Θ Η Ν Ω Ν ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΤΡΟΦΙΜΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΕΠΙΣΤΗΜΗ & ΤΕΧΝΟΛΟΓΙΑ ΤΡΟΦΙΜΩΝ & ΔΙΑΤΡΟΦΗ ΤΟΥ ΑΝΘΡΩΠΟΥ» ΚΑΤΕΥΘΥΝΣΗ ΕΠΕΞΕΡΓΑΣΙΑΣ

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7 ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 1.1. Εισαγωγή 13 1.2. Μοντέλο ή Υπόδειγμα 13 1.3. Η Ανάλυση Παλινδρόμησης 16 1.4. Το γραμμικό μοντέλο Παλινδρόμησης 17 1.5. Πρακτική χρησιμότητα

Διαβάστε περισσότερα

ΘΕΡΜΙΚΗ ΘΑΝΑΤΩΣΗ ΜΙΚΡΟΟΡΓΑΝΙΣΜΩΝ

ΘΕΡΜΙΚΗ ΘΑΝΑΤΩΣΗ ΜΙΚΡΟΟΡΓΑΝΙΣΜΩΝ ΘΕΡΜΙΚΗ ΘΑΝΑΤΩΣΗ ΜΙΚΡΟΟΡΓΑΝΙΣΜΩΝ 1. Εισαγωγή Η θέρμανση είναι μια μορφή επεξεργασίας, ίσως η πιο ευρέως διαδεδομένη, που χρησιμοποιείται για να θανατώσει ή αδρανοποιήσει τους μικροοργανισμούς (βλαστικές

Διαβάστε περισσότερα

9. Παλινδρόμηση και Συσχέτιση

9. Παλινδρόμηση και Συσχέτιση 9. Παλινδρόμηση και Συσχέτιση Παλινδρόμηση και Συσχέτιση Υπάρχει σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές; Αν ναι, ποια είναι αυτή η σχέση; Πως μπορεί αυτή η σχέση να χρησιμοποιηθεί για να προβλέψουμε

Διαβάστε περισσότερα

Τα κύρια σηµεία της παρούσας διδακτορικής διατριβής είναι: Η πειραµατική µελέτη της µεταβατικής συµπεριφοράς συστηµάτων γείωσης

Τα κύρια σηµεία της παρούσας διδακτορικής διατριβής είναι: Η πειραµατική µελέτη της µεταβατικής συµπεριφοράς συστηµάτων γείωσης Κεφάλαιο 5 ΣΥΜΠΕΡΑΣΜΑΤΑ Το σηµαντικό στην επιστήµη δεν είναι να βρίσκεις καινούρια στοιχεία, αλλά να ανακαλύπτεις νέους τρόπους σκέψης γι' αυτά. Sir William Henry Bragg 5.1 Ανακεφαλαίωση της διατριβής

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων Ι

Στατιστική Επιχειρήσεων Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Στατιστική Επιχειρήσεων Ι Ενότητα 5: Παλινδρόμηση Συσχέτιση θεωρητική προσέγγιση Μιλτιάδης Χαλικιάς, Επίκουρος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα

Σφάλματα Είδη σφαλμάτων

Σφάλματα Είδη σφαλμάτων Σφάλματα Σφάλματα Κάθε μέτρηση ενός φυσικού μεγέθους χαρακτηρίζεται από μία αβεβαιότητα που ονομάζουμε σφάλμα, το οποίο αναγράφεται με τη μορφή Τιμή ± αβεβαιότητα π.χ έστω ότι σε ένα πείραμα μετράμε την

Διαβάστε περισσότερα

Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων

Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών

Διαβάστε περισσότερα

Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis)

Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis) Μέρος V. Ανάλυση Παλινδρόμηση (Regresso Aalss) Βασικές έννοιες Απλή Γραμμική Παλινδρόμηση Πολλαπλή Παλινδρόμηση Εφαρμοσμένη Στατιστική Μέρος 5 ο - Κ. Μπλέκας () Βασικές έννοιες Έστω τ.μ. Χ,Υ όπου υπάρχει

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ Καθ Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 5 Έστω για την σύγκριση δειγμάτων συλλέγουμε παρατηρήσεις Υ =,,, από

Διαβάστε περισσότερα

1ο ΣΤΑΔΙΟ ΓΕΝΕΣΗ ΜΕΤΑΚΙΝΗΣΕΩΝ

1ο ΣΤΑΔΙΟ ΓΕΝΕΣΗ ΜΕΤΑΚΙΝΗΣΕΩΝ ΠΡΟΒΛΗΜΑ 1ο ΣΤΑΔΙΟ ΓΕΝΕΣΗ ΜΕΤΑΚΙΝΗΣΕΩΝ πόσες μετακινήσεις δημιουργούνται σε και για κάθε κυκλοφοριακή ζώνη; ΟΡΙΣΜΟΙ μετακίνηση μετακίνηση με βάση την κατοικία μετακίνηση με βάση άλλη πέρα της κατοικίας

Διαβάστε περισσότερα

3η Ενότητα Προβλέψεις

3η Ενότητα Προβλέψεις ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων 3η Ενότητα Προβλέψεις (Μέρος 4 ο ) http://www.fsu.gr

Διαβάστε περισσότερα

1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ

1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΑΕΙ ΠΕΙΡΑΙΑ ΤΤ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ Σκοπός της άσκησης 1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Σκοπός αυτής της άσκησης είναι η εξοικείωση των σπουδαστών με τα σφάλματα που

Διαβάστε περισσότερα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα Ανάλυση Διασποράς Έστω ότι μας δίνονται δείγματα που προέρχονται από άγνωστους πληθυσμούς. Πόσο διαφέρουν οι μέσες τιμές τους; Με άλλα λόγια: πόσο πιθανό είναι να προέρχονται από πληθυσμούς με την ίδια

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

Ονοματεπώνυμο: Α.Μ. Μέθοδοι Διδασκαλίας Φυσικής

Ονοματεπώνυμο: Α.Μ. Μέθοδοι Διδασκαλίας Φυσικής Ονοματεπώνυμο: Α.Μ. Αθήνα, 28 IAN 2016 Υποθέστε ότι πρόκειται να διδάξετε σε μαθητές Λυκείου τα φαινόμενα: της θέρμανσης και της φωτοβολίας μεταλλικού αγωγού που διαρρέεται από ηλεκτρικό ρεύμα. Περιγράψτε

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ 1.1 Πίνακες, κατανομές, ιστογράμματα... 1 1.2 Πυκνότητα πιθανότητας, καμπύλη συχνοτήτων... 5 1.3

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα Εισαγωγή στο

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική: Συντελεστής συσχέτισης. Παλινδρόμηση απλή γραμμική, πολλαπλή γραμμική

Εφαρμοσμένη Στατιστική: Συντελεστής συσχέτισης. Παλινδρόμηση απλή γραμμική, πολλαπλή γραμμική ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕΡΟΣ B Δημήτρης Κουγιουμτζής e-mal: dkugu@auth.gr Ιστοσελίδα αυτού του τμήματος του μαθήματος: http://uer.auth.gr/~dkugu/teach/cvltraport/dex.html Εφαρμοσμένη Στατιστική:

Διαβάστε περισσότερα

ΤΕΛΙΚΗ ΕΚΘΕΣΗ ΤΟΥ ΕΡΓΟΥ: «Μέτρηση Ηλεκτρικών Χαρακτηριστικών Πολυουρεθανικών και Εποδειδικών Ρητινών»

ΤΕΛΙΚΗ ΕΚΘΕΣΗ ΤΟΥ ΕΡΓΟΥ: «Μέτρηση Ηλεκτρικών Χαρακτηριστικών Πολυουρεθανικών και Εποδειδικών Ρητινών» ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΤΩΝ ΥΛΙΚΩΝ ΤΕΛΙΚΗ ΕΚΘΕΣΗ ΤΟΥ ΕΡΓΟΥ: «Μέτρηση Ηλεκτρικών Χαρακτηριστικών Πολυουρεθανικών και Εποδειδικών Ρητινών» Στα πλαίσια της σύμβασης ανάθεσης

Διαβάστε περισσότερα

Βραχυπρόθεσμη τοπική μετεωρολογική πρόγνωση με αναζήτηση ανάλογων καταστάσεων

Βραχυπρόθεσμη τοπική μετεωρολογική πρόγνωση με αναζήτηση ανάλογων καταστάσεων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Βραχυπρόθεσμη τοπική μετεωρολογική πρόγνωση με αναζήτηση ανάλογων καταστάσεων Γεώργιος Θεοδωρόπουλος Επιβλέπων

Διαβάστε περισσότερα

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος 75 Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 1.1. Τυχαία γεγονότα ή ενδεχόμενα 17 1.2. Πειράματα τύχης - Δειγματικός χώρος 18 1.3. Πράξεις με ενδεχόμενα 20 1.3.1. Ενδεχόμενα ασυμβίβαστα

Διαβάστε περισσότερα

6. Στατιστικές μέθοδοι εκπαίδευσης

6. Στατιστικές μέθοδοι εκπαίδευσης 6. Στατιστικές μέθοδοι εκπαίδευσης Μία διαφορετική μέθοδος εκπαίδευσης των νευρωνικών δικτύων χρησιμοποιεί ιδέες από την Στατιστική Φυσική για να φέρει τελικά το ίδιο αποτέλεσμα όπως οι άλλες μέθοδοι,

Διαβάστε περισσότερα

Kruskal-Wallis H... 176

Kruskal-Wallis H... 176 Περιεχόμενα KΕΦΑΛΑΙΟ 1: Περιγραφή, παρουσίαση και σύνοψη δεδομένων................. 15 1.1 Τύποι μεταβλητών..................................................... 16 1.2 Κλίμακες μέτρησης....................................................

Διαβάστε περισσότερα

Πιστοποίηση των αντηλιακών µεµβρανών 3M Scotchtint της εταιρίας 3Μ

Πιστοποίηση των αντηλιακών µεµβρανών 3M Scotchtint της εταιρίας 3Μ Πιστοποίηση των αντηλιακών µεµβρανών 3M Scotchtint της εταιρίας 3Μ 1 Πιστοποίηση των αντηλιακών µεµβρανών 3M Scotchtint της εταιρίας 3Μ Οι αντηλιακές µεµβράνες 3M Scotchtint της εταιρίας 3Μ µελετήθηκαν

Διαβάστε περισσότερα

Γαλακτοκομία. Ενότητα 4: Θερμική Επεξεργασία Γάλακτος (1/2), 1.5ΔΩ. Τμήμα: Επιστήμης Τροφίμων και Διατροφής Του Ανθρώπου

Γαλακτοκομία. Ενότητα 4: Θερμική Επεξεργασία Γάλακτος (1/2), 1.5ΔΩ. Τμήμα: Επιστήμης Τροφίμων και Διατροφής Του Ανθρώπου Γαλακτοκομία Ενότητα 4: Θερμική Επεξεργασία Γάλακτος (1/2), 1.5ΔΩ Τμήμα: Επιστήμης Τροφίμων και Διατροφής Του Ανθρώπου Διδάσκοντες: Καμιναρίδης Στέλιος, Καθηγητής Μοάτσου Γκόλφω, Eπ. Καθηγήτρια Μαθησιακοί

Διαβάστε περισσότερα

ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ. ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ

ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ. ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ ΤΕΙ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ ΓΙΑΝΝΗΣ ΦΑΝΟΥΡΓΙΑΚΗΣ ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΣΥΝΕΡΓΑΤΗΣ ΤΕΙ ΚΡΗΤΗΣ ΔΟΜΗ ΠΑΡΟΥΣΙΑΣΗΣ 1. Εισαγωγή

Διαβάστε περισσότερα

Κεφάλαιο 5 Κριτήρια απόρριψης απόμακρων τιμών

Κεφάλαιο 5 Κριτήρια απόρριψης απόμακρων τιμών Κεφάλαιο 5 Κριτήρια απόρριψης απόμακρων τιμών Σύνοψη Στο κεφάλαιο αυτό παρουσιάζονται δύο κριτήρια απόρριψης απομακρυσμένων από τη μέση τιμή πειραματικών μετρήσεων ενός φυσικού μεγέθους και συγκεκριμένα

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 20 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 20 2.1.1 Αβεβαιότητα

Διαβάστε περισσότερα

Συνοπτικά περιεχόμενα

Συνοπτικά περιεχόμενα b Συνοπτικά περιεχόμενα 1 Τι είναι η στατιστική;... 25 2 Περιγραφικές τεχνικές... 37 3 Επιστήμη και τέχνη των διαγραμματικών παρουσιάσεων... 119 4 Αριθμητικές μέθοδοι της περιγραφικής στατιστικής... 141

Διαβάστε περισσότερα

Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 5: Εκτίμηση αβεβαιότητας στην ενόργανη ανάλυση

Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 5: Εκτίμηση αβεβαιότητας στην ενόργανη ανάλυση Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 5: Εκτίμηση αβεβαιότητας στην ενόργανη ανάλυση Θωμαΐδης Νικόλαος Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας ΕΙΣΗΓΗΣΗ ΕΙΣΑΓΩΓΗ ΑΠΑΙΤΗΣΕΙΣ ΤΟΥ ISO/IEC 1705 ΟΡΙΣΜΟΙ

Διαβάστε περισσότερα

Έλεγχος και Διακρίβωση εξοπλισμού μικροβιολογικού εργαστηρίου νερού-μέρος 2

Έλεγχος και Διακρίβωση εξοπλισμού μικροβιολογικού εργαστηρίου νερού-μέρος 2 Έλεγχος και Διακρίβωση εξοπλισμού μικροβιολογικού εργαστηρίου νερού-μέρος 2 Διήμερο Πρακτικό Σεμινάριο WATERMICRO WORKSHOP 5&6 Νοεμβρίου 2014 Εργαστήριο Μικροβιολογίας- Εθνική Σχολή Δημόσιας Υγείας Ν.

Διαβάστε περισσότερα

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος xi 1 Αντικείμενα των Πιθανοτήτων και της Στατιστικής 1 1.1 Πιθανοτικά Πρότυπα και Αντικείμενο των Πιθανοτήτων, 1 1.2 Αντικείμενο της Στατιστικής, 3 1.3 Ο Ρόλος των Πιθανοτήτων

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 21 2.1.1 Αβεβαιότητα και Τυχαίο Πείραμα

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΜΟΣ ΒΕΛΤΙΣΤΗΣ ΣΥΣΚΕΥΑΣΙΑΣ ΓΙΑ ΤΗΝ ΕΠΙΤΕΥΞΗ ΜΕΓΙΣΤΗΣ ΙΑΤΗΡΗΣΙΜΟΤΗΤΑΣ ΞΗΡΩΝ ΤΡΟΦΙΜΩΝ ΣΕ ΥΝΑΜΙΚΕΣ ΣΥΝΘΗΚΕΣ ΣΥΝΤΗΡΗΣΗΣ

ΥΠΟΛΟΓΙΣΜΟΣ ΒΕΛΤΙΣΤΗΣ ΣΥΣΚΕΥΑΣΙΑΣ ΓΙΑ ΤΗΝ ΕΠΙΤΕΥΞΗ ΜΕΓΙΣΤΗΣ ΙΑΤΗΡΗΣΙΜΟΤΗΤΑΣ ΞΗΡΩΝ ΤΡΟΦΙΜΩΝ ΣΕ ΥΝΑΜΙΚΕΣ ΣΥΝΘΗΚΕΣ ΣΥΝΤΗΡΗΣΗΣ ΥΠΟΛΟΓΙΣΜΟΣ ΒΕΛΤΙΣΤΗΣ ΣΥΣΚΕΥΑΣΙΑΣ ΓΙΑ ΤΗΝ ΕΠΙΤΕΥΞΗ ΜΕΓΙΣΤΗΣ ΙΑΤΗΡΗΣΙΜΟΤΗΤΑΣ ΞΗΡΩΝ ΤΡΟΦΙΜΩΝ ΣΕ ΥΝΑΜΙΚΕΣ ΣΥΝΘΗΚΕΣ ΣΥΝΤΗΡΗΣΗΣ Π. Σ. Ταούκης, Γ. Ι. Κατσαρός, Β. Καπόπουλος, Ε. ερµεσονλούογλου Εργ. Χηµείας

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις,

Διαβάστε περισσότερα

Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα.

Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα. Εισαγωγή Μετρήσεις-Σφάλματα Πολλές φορές θα έχει τύχει να ακούσουμε τη λέξη πείραμα, είτε στο μάθημα είτε σε κάποια είδηση που αφορά τη Φυσική, τη Χημεία ή τη Βιολογία. Είναι όμως γενικώς παραδεκτό ότι

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Ενότητα: Αναγνώριση Διεργασίας - Προσαρμοστικός Έλεγχος (Process Identification) Αλαφοδήμος Κωνσταντίνος

Διαβάστε περισσότερα

Ενδεικτικές ασκήσεις ΔΙΠ 50

Ενδεικτικές ασκήσεις ΔΙΠ 50 Ενδεικτικές ασκήσεις ΔΙΠ 50 Άσκηση 1 (άσκηση 1 1 ης εργασίας 2009-10) Σε ένα ράφι μιας βιβλιοθήκης τοποθετούνται με τυχαία σειρά 11 διαφορετικά βιβλία τεσσάρων θεματικών ενοτήτων. Πιο συγκεκριμένα, υπάρχουν

Διαβάστε περισσότερα

Εκτίμηση αβεβαιότητας από άμεσες μετρήσεις

Εκτίμηση αβεβαιότητας από άμεσες μετρήσεις Εκτίμηση αβεβαιότητας από άμεσες μετρήσεις Εκτίμηση τυπικής αβεβαιότητας τύπου B Η εκτίμηση βασίζεται στις διαθέσιμες πληροφορίες και την εμπειρία, χρησιμοποιώντας συνήθως: τα χαρακτηριστικά του κατασκευαστή

Διαβάστε περισσότερα

ΤΕΧΝΙΚΕΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ

ΤΕΧΝΙΚΕΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ Ε. ΞΕΚΑΛΑΚΗ Καθηγήτριας του Τμήματος Στατιστικής του Οικονομικού Πανεπιστημίου Αθηνών ΤΕΧΝΙΚΕΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ B ΕΚΔΟΣΗ ΑΘΗΝΑ 2004 ΠΡΟΛΟΓΟΣ Η συλλογή και επεξεργασία δεδομένων από πεπερασμένους πληθυσμούς

Διαβάστε περισσότερα

Πίνακας 4.4 Διαστήματα Εμπιστοσύνης. Τιμές που Επίπεδο εμπιστοσύνης. Διάστημα εμπιστοσύνης

Πίνακας 4.4 Διαστήματα Εμπιστοσύνης. Τιμές που Επίπεδο εμπιστοσύνης. Διάστημα εμπιστοσύνης Σφάλματα Μετρήσεων 4.45 Πίνακας 4.4 Διαστήματα Εμπιστοσύνης. Τιμές που Επίπεδο εμπιστοσύνης Διάστημα εμπιστοσύνης βρίσκονται εκτός του Διαστήματος Εμπιστοσύνης 0.500 X 0.674σ 1 στις 0.800 X 1.8σ 1 στις

Διαβάστε περισσότερα

τρόπος για να εμπεδωθεί η θεωρία. Για την επίλυση των παραδειγμάτων χρησιμοποιούνται στατιστικά πακέτα, ώστε να είναι δυνατή η ανάλυση μεγάλου όγκου

τρόπος για να εμπεδωθεί η θεωρία. Για την επίλυση των παραδειγμάτων χρησιμοποιούνται στατιστικά πακέτα, ώστε να είναι δυνατή η ανάλυση μεγάλου όγκου ΠΡΟΛΟΓΟΣ Η γραμμική παλινδρόμηση χρησιμοποιείται για την μελέτη των σχέσεων μεταξύ μετρήσιμων μεταβλητών. Γενικότερα, η γραμμική στατιστική συμπερασματολογία αποτελεί ένα ευρύ πεδίο της στατιστικής ανάλυσης

Διαβάστε περισσότερα

Βιοστατιστική ΒΙΟ-309

Βιοστατιστική ΒΙΟ-309 Βιοστατιστική ΒΙΟ-309 Χειμερινό Εξάμηνο Ακαδ. Έτος 2015-2016 Ντίνα Λύκα lika@biology.uoc.gr 1. Εισαγωγή Εισαγωγικές έννοιες Μεταβλητότητα : ύπαρξη διαφορών μεταξύ ομοειδών μετρήσεων Μεταβλητή: ένα χαρακτηριστικό

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΦΥΣΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Ι & ΙΙ Εργαστηριακή Άσκηση 4: ΞΗΡΑΝΣΗ (σε ρεύμα αέρα)

ΜΗΧΑΝΙΚΗ ΦΥΣΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Ι & ΙΙ Εργαστηριακή Άσκηση 4: ΞΗΡΑΝΣΗ (σε ρεύμα αέρα) Ε Θ Ν Ι Κ Ο Μ Ε Τ Σ Ο Β Ι Ο Π Ο Λ Υ Τ Ε Χ Ν Ε Ι Ο ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΙΙ: Σχεδιασμού, Ανάλυσης & Ανάπτυξης Διεργασιών και Συστημάτων ΕΡΓΑΣΤΗΡΙΟ ΣΧΕΔΙΑΣΜΟΥ & ΑΝΑΛΥΣΗΣ ΔΙΕΡΓΑΣΙΩΝ Διευθυντής: Ι.

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium iv Στατιστική Συμπερασματολογία Ι Σημειακές Εκτιμήσεις Διαστήματα Εμπιστοσύνης Στατιστική Συμπερασματολογία (Statistical Inference) Το πεδίο της Στατιστικής Συμπερασματολογία,

Διαβάστε περισσότερα

Μάθημα Αστικής Γεωγραφίας

Μάθημα Αστικής Γεωγραφίας Μάθημα Αστικής Γεωγραφίας Διδακτικό Έτος 2015-2016 Παραδόσεις Διδακτικής Ενότητας: Πληθυσμιακή πρόβλεψη Δούκισσας Λεωνίδας, Στατιστικός, Υποψ. Διδάκτορας, Τμήμα Γεωγραφίας, Χαροκόπειο Πανεπιστήμιο Σελίδα

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ Συντελεστής συσχέτισης (εκτιμητής Person: r, Y ( ( Y Y xy ( ( Y Y x y, όπου r, Y (ισχυρή θετική γραμμική συσχέτιση όταν, ισχυρή αρνητική

Διαβάστε περισσότερα

Μέρος Β /Στατιστική. Μέρος Β. Στατιστική. Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.

Μέρος Β /Στατιστική. Μέρος Β. Στατιστική. Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua. Μέρος Β /Στατιστική Μέρος Β Στατιστική Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.gr/gpapadopoulos) Από τις Πιθανότητες στη Στατιστική Στα προηγούμενα, στο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7 ΠΑΣΤΕΡΙΩΣΗ ΚΑΙ ΑΠΟΣΤΕΙΡΩΣΗ

ΚΕΦΑΛΑΙΟ 7 ΠΑΣΤΕΡΙΩΣΗ ΚΑΙ ΑΠΟΣΤΕΙΡΩΣΗ ΚΕΦΑΛΑΙΟ 7 ΠΑΣΤΕΡΙΩΣΗ ΚΑΙ ΑΠΟΣΤΕΙΡΩΣΗ Εισαγωγή Η παστερίωση και η αποστείρωση (αναφερόµενες και ως θερµικές διεργασίες) των τροφίµων έχουν ως στόχο την καταστροφή µικροοργανισµών ή και την αδρανοποίηση

Διαβάστε περισσότερα

Στατιστική Συμπερασματολογία

Στατιστική Συμπερασματολογία 4. Εκτιμητική Στατιστική Συμπερασματολογία εκτιμήσεις των αγνώστων παραμέτρων μιας γνωστής από άποψη είδους κατανομής έλεγχο των υποθέσεων που γίνονται σε σχέση με τις παραμέτρους μιας κατανομής και σε

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ για τη λήψη αποφάσεων

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ για τη λήψη αποφάσεων ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ για τη λήψη αποφάσεων ΠΡΑΓΜΑΤΙΚΟ ΚΟΣΤΟΣ ΣΥΛΛΟΓΗ ΠΛΗΡΟΦΟΡΙΩΝ ΕΚΤΙΜΗΣΗ ΠΑΡΑΜΕΤΡΩΝ ΕΠΙΛΟΓΗ ΚΑΤΑΝΟΜΗΣ Υπολογισμός πιθανοτήτων και πρόβλεψη τιμών από τις τιμές των παραμέτρων και

Διαβάστε περισσότερα

Επανάληψη ελέγχων υποθέσεων

Επανάληψη ελέγχων υποθέσεων Επανάληψη ελέγχων υποθέσεων Ποιό το πρόβλημα; Περιγραφή ενός πληθυσμού Σύγκριση δύο πληθυσμών Είδος δεδομένων; Είδος δεδομένων Ποσοτικά Ποιοτικά Ποσοτικά Ποιοτικά Ποιά παράμετρος; Z tet & δ.ε. του p Ποιά

Διαβάστε περισσότερα

ΓΕΝΙΚO ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ

ΓΕΝΙΚO ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΓΕΝΙΚO ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Θεωρία ελαχίστων τετραγώνων (β ) Μη-γραμμικός αντιστάτης Μαρία Κατσικίνη E-mal: katsk@auth.gr Web: users.auth.gr/katsk Προσδιορισμός της νομοτέλειας Πείραμα για τη μελέτη ενός

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΕΣ ΠΡΟΒΛΕΨΕΙΣ

ΕΠΙΧΕΙΡΗΣΙΑΚΕΣ ΠΡΟΒΛΕΨΕΙΣ ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ Ι - ΠΡΟΒΛΕΨΕΙΣ ΚΑΙ ΣΥΓΧΡΟΝΗ ΔΙΟΙΚΗΣΗ....................................17 1.1 Προβλέψεις - Τεχνικές προβλέψεων και διοίκηση................................17 1.2 Τεχνικές προβλέψεων

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 21 2.1.1 Αβεβαιότητα και Τυχαίο Πείραμα

Διαβάστε περισσότερα

Για το δείγμα από την παραγωγή της εταιρείας τροφίμων δίνεται επίσης ότι, = 1.3 και για το δείγμα από το συνεταιρισμό ότι, x

Για το δείγμα από την παραγωγή της εταιρείας τροφίμων δίνεται επίσης ότι, = 1.3 και για το δείγμα από το συνεταιρισμό ότι, x Εργαστήριο Μαθηματικών & Στατιστικής η Πρόοδος στο Μάθημα Στατιστική // (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) ο Θέμα [] Επιλέξαμε φακελάκια (της μισής ουγκιάς) που περιέχουν σταφίδες από την παραγωγή μιας εταιρείας

Διαβάστε περισσότερα

Χημική Τεχνολογία. Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων. Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε.

Χημική Τεχνολογία. Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων. Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Χημική Τεχνολογία Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. Άδειες Χρήσης

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 05 Πολλαπλές συγκρίσεις Στην ανάλυση διακύμανσης ελέγχουμε την ισότητα

Διαβάστε περισσότερα

3. ΣΕΙΡΙΑΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΣΧΕΤΙΣΗΣ

3. ΣΕΙΡΙΑΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΣΧΕΤΙΣΗΣ 3. ΣΕΙΡΙΑΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΣΧΕΤΙΣΗΣ Πρόβλημα: Ένας ραδιοφωνικός σταθμός ενδιαφέρεται να κάνει μια ανάλυση για τους πελάτες του που διαφημίζονται σ αυτόν για να εξετάσει την ποσοστιαία μεταβολή των πωλήσεων

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2 013 [Κεφάλαιο ] ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο Μάθημα Εαρινού Εξάμηνου 01-013 M.E. OE0300 Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής Ανάπτυξης [Οικονομετρία 01-013] Μαρί-Νοέλ

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΕΙΤΟΝΑ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ &ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤ/ΝΣΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ:

ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΕΙΤΟΝΑ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ &ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤ/ΝΣΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΕΙΤΟΝΑ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ &ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤ/ΝΣΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΗΧΗΤΙΚΑ ΣΤΑΣΙΜΑ ΚΥΜΑΤΑ ΣΕ ΚΛΕΙΣΤΟ ΣΤΗ ΜΙΑ ΑΚΡΗ ΣΩΛΗΝΑ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΑΧΥΤΗΤΑΣ ΤΟΥ

Διαβάστε περισσότερα

2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για

2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για 2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για τον καθορισμό του καλύτερου υποσυνόλου από ένα σύνολο

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΕΥΑΙΣΘΗΣΙΑΣ Εισαγωγή

ΑΝΑΛΥΣΗ ΕΥΑΙΣΘΗΣΙΑΣ Εισαγωγή 1 ΑΝΑΛΥΣΗ ΕΥΑΙΣΘΗΣΙΑΣ Εισαγωγή Η ανάλυση ευαισθησίας μιάς οικονομικής πρότασης είναι η μελέτη της επιρροής των μεταβολών των τιμών των παραμέτρων της πρότασης στη διαμόρφωση της τελικής απόφασης. Η ανάλυση

Διαβάστε περισσότερα

Στατιστική Ι. Ανάλυση Παλινδρόμησης

Στατιστική Ι. Ανάλυση Παλινδρόμησης Στατιστική Ι Ανάλυση Παλινδρόμησης Ανάλυση παλινδρόμησης Η πρόβλεψη πωλήσεων, εσόδων, κόστους, παραγωγής, κτλ. είναι η βάση του επιχειρηματικού σχεδιασμού. Η ανάλυση παλινδρόμησης και συσχέτισης είναι

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 015 Ανάλυση Διακύμανσης Η Ανάλυση Διακύμανσης είναι μία τεχνική που

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ MM505 ΗΛΕΚΤΡΙΚΕΣ ΜΗΧΑΝΕΣ ΒΙΟΜΗΧΑΝΙΚΟΙ ΑΥΤΟΜΑΤΙΣΜΟΙ Εργαστήριο ο - Θεωρητικό Μέρος Βασικές ηλεκτρικές μετρήσεις σε συνεχές και εναλλασσόμενο

Διαβάστε περισσότερα

ΠΕΡΙΛΗΨΗ ΔΙΔΑΚΤΟΡΙΚΗΣ ΔΙΑΤΡΙΒΗΣ

ΠΕΡΙΛΗΨΗ ΔΙΔΑΚΤΟΡΙΚΗΣ ΔΙΑΤΡΙΒΗΣ ΠΕΡΙΛΗΨΗ ΔΙΔΑΚΤΟΡΙΚΗΣ ΔΙΑΤΡΙΒΗΣ «Προσομοίωση συστημάτων αβαθούς γεωθερμίας με τη χρήση γεωθερμικών αντλιών Θερμότητας συμβατικής και νέας τεχνολογίας» ΝΙΚΟΛΑΟΣ ΠΑΠΑΟΕΟΔΩΡΟΥ Η παρούσα διδακτορική διατριβή

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΧΗΜΕΙΑ ΙΙΙ ΤΜΗΜΑ ΧΗΜΕΙΑΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΕΠΙΔΡΑΣΗ ΘΕΡΜΟΚΡΑΣΙΑΣ ΣΤΗ ΣΤΑΘΕΡΑ ΤΑΧΥΤΗΤΑΣ ΑΝΤΙΔΡΑΣΗΣ

ΦΥΣΙΚΗ ΧΗΜΕΙΑ ΙΙΙ ΤΜΗΜΑ ΧΗΜΕΙΑΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΕΠΙΔΡΑΣΗ ΘΕΡΜΟΚΡΑΣΙΑΣ ΣΤΗ ΣΤΑΘΕΡΑ ΤΑΧΥΤΗΤΑΣ ΑΝΤΙΔΡΑΣΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΧΗΜΕΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΟΧΗΜΕΙΑΣ Γραφείο 211 Επίκουρος Καθηγητής: Δ. Τσιπλακίδης Τηλ.: 2310 997766 e mail: dtsiplak@chem.auth.gr url:

Διαβάστε περισσότερα

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα : Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται οι βασικές

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

Carbon footprint ΕΓΧΕΙΡΙΔΙΟ ΠΑΡΑΚΟΛΟΥΘΗΣΗΣ ΚΑΙ ΕΛΕΓΧΟΥ ΤΟΥ ΑΝΘΡΑΚΙΚΟΥ ΑΠΟΤΥΠΩΜΑΤΟΣ ΤΟΥ ΕΡΓΟΥ TERRA NOVA

Carbon footprint ΕΓΧΕΙΡΙΔΙΟ ΠΑΡΑΚΟΛΟΥΘΗΣΗΣ ΚΑΙ ΕΛΕΓΧΟΥ ΤΟΥ ΑΝΘΡΑΚΙΚΟΥ ΑΠΟΤΥΠΩΜΑΤΟΣ ΤΟΥ ΕΡΓΟΥ TERRA NOVA Carbon footprint ΕΓΧΕΙΡΙΔΙΟ ΠΑΡΑΚΟΛΟΥΘΗΣΗΣ ΚΑΙ ΕΛΕΓΧΟΥ ΤΟΥ ΑΝΘΡΑΚΙΚΟΥ ΑΠΟΤΥΠΩΜΑΤΟΣ ΤΟΥ ΕΡΓΟΥ TERRA NOVA Ανδρέας Σωτηρόπουλος, Περιβαλλοντολόγος, MSc. Ωκεανογραφίας Ρούλα Χανδρινού, Περιβαλλοντολόγος, MSc.

Διαβάστε περισσότερα

Τ, Κ Η 2 Ο(g) CΟ(g) CO 2 (g) Λύση Για τη συγκεκριμένη αντίδραση στους 1300 Κ έχουμε:

Τ, Κ Η 2 Ο(g) CΟ(g) CO 2 (g) Λύση Για τη συγκεκριμένη αντίδραση στους 1300 Κ έχουμε: ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ - ΑΣΚΗΣΕΙΣ 5-6 (Α. Χημική Θερμοδυναμική) η Άσκηση Η αντίδραση CO(g) + H O(g) CO (g) + H (g) γίνεται σε θερμοκρασία 3 Κ. Να υπολογιστεί το κλάσμα των ατμών του

Διαβάστε περισσότερα

ΣΥΓΚΡΙΣΗ ΜΕΤΑΞΥ ΑΝΑΛΥΤΙΚΩΝ ΚΑΙ ΑΡΙΘΜΗΤΙΚΩΝ ΜΕΘΟΔΩΝ ΥΠΟΛΟΓΙΣΜΟΥ ΤΗΣ ΑΒΕΒΑΙΟΤΗΤΑΣ ΜΕΤΡΗΣΗΣ

ΣΥΓΚΡΙΣΗ ΜΕΤΑΞΥ ΑΝΑΛΥΤΙΚΩΝ ΚΑΙ ΑΡΙΘΜΗΤΙΚΩΝ ΜΕΘΟΔΩΝ ΥΠΟΛΟΓΙΣΜΟΥ ΤΗΣ ΑΒΕΒΑΙΟΤΗΤΑΣ ΜΕΤΡΗΣΗΣ ΣΥΓΚΡΙΣΗ ΜΕΤΑΞΥ ΑΝΑΛΥΤΙΚΩΝ ΚΑΙ ΑΡΙΘΜΗΤΙΚΩΝ ΜΕΘΟΔΩΝ ΥΠΟΛΟΓΙΣΜΟΥ ΤΗΣ ΑΒΕΒΑΙΟΤΗΤΑΣ ΜΕΤΡΗΣΗΣ Χρήστος Μπαντής Ελληνικό Ινστιτούτο Μετρολογίας Βιομηχανική Περιοχή Θεσσαλονίκης, Οικ. Τετρ. 45 57022 Σίνδος, Θεσσαλονίκη

Διαβάστε περισσότερα

Η ΕΠΙ ΡΑΣΗ ΤΗΣ ΠΥΡΚΑΓΙΑΣ ΣΤΗΝ ΑΝΤΟΧΗ ΤΟΥ ΣΚΥΡΟ ΕΜΑΤΟΣ ΚΑΙ ΣΤΙΣ ΕΝ ΕΙΞΕΙΣ

Η ΕΠΙ ΡΑΣΗ ΤΗΣ ΠΥΡΚΑΓΙΑΣ ΣΤΗΝ ΑΝΤΟΧΗ ΤΟΥ ΣΚΥΡΟ ΕΜΑΤΟΣ ΚΑΙ ΣΤΙΣ ΕΝ ΕΙΞΕΙΣ Η ΕΠΙ ΡΑΣΗ ΤΗΣ ΠΥΡΚΑΓΙΑΣ ΣΤΗΝ ΑΝΤΟΧΗ ΤΟΥ ΣΚΥΡΟ ΕΜΑΤΟΣ ΚΑΙ ΣΤΙΣ ΕΝ ΕΙΞΕΙΣ ΤΩΝ ΕΜΜΕΣΩΝ ΜΕΘΟ ΩΝ. 1. Εισαγωγή. Παράλληλα µε την βαθµονόµηση των Εµµέσων Μεθόδων σε συνήθεις θερµοκρασίες περιβάλλοντος, µελετήθηκε

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 2015 Πληθυσμός: Εισαγωγή Ονομάζεται το σύνολο των χαρακτηριστικών που

Διαβάστε περισσότερα

ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΣΥΝΤΕΛΕΣΤΗ ΜΕΤΑΦΟΡΑΣ ΟΞΥΓΟΝΟΥ ΣΤΟ ΝΕΡΟ

ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΣΥΝΤΕΛΕΣΤΗ ΜΕΤΑΦΟΡΑΣ ΟΞΥΓΟΝΟΥ ΣΤΟ ΝΕΡΟ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΣΥΝΤΕΛΕΣΤΗ ΜΕΤΑΦΟΡΑΣ ΟΞΥΓΟΝΟΥ ΣΤΟ ΝΕΡΟ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΣΥΝΤΕΛΕΣΤΗ ΜΕΤΑΦΟΡΑΣ ΟΞΥΓΟΝΟΥ ΣΕ ΝΕΡΟ ΓΕΝΙΚΑ Με το πείραμα αυτό μπορούμε να προσδιορίσουμε δύο βασικές παραμέτρους που χαρακτηρίζουν ένα

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΩΡΙΑ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΤΗ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (1)

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΩΡΙΑ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΤΗ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (1) ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΩΡΙΑ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΤΗ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (1) 1 Προέλευση και ιστορία της Επιχειρησιακής Έρευνας Αλλαγές στις επιχειρήσεις Τέλος του 19ου αιώνα: βιομηχανική

Διαβάστε περισσότερα

Εξαμηνιαία Εργασία Β. Κανονική Κατανομή - Επαγωγική Στατιστική

Εξαμηνιαία Εργασία Β. Κανονική Κατανομή - Επαγωγική Στατιστική 1 ΕΞΑΜΗΝΙΑΙΑ Β ΤΟ ΦΩΤΟΒΟΛΤΑΙΚΟ ΠΑΡΚΟ ΑΣΠΑΙΤΕ Τμήμα Εκπαιδευτικών Ηλεκτρολογίας Εργαστήριο Συλλογής και Επεξεργασίας Δεδομένων Διδάσκοντες: Σπύρος Αδάμ, Λουκάς Μιχάλης, Παναγιώτης Καράμπελας Εξαμηνιαία

Διαβάστε περισσότερα

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Η χρησιμοποίηση των τεχνικών της παλινδρόμησης για την επίλυση πρακτικών προβλημάτων έχει διευκολύνει εξαιρετικά από την χρήση διαφόρων στατιστικών

Διαβάστε περισσότερα

Διαδικασία Ελέγχου Μηδενικών Υποθέσεων

Διαδικασία Ελέγχου Μηδενικών Υποθέσεων Διαδικασία Ελέγχου Μηδενικών Υποθέσεων Πέτρος Ρούσσος, Τμήμα Ψυχολογίας, ΕΚΠΑ Η λογική της διαδικασίας Ο σάκος περιέχει έναν μεγάλο αλλά άγνωστο αριθμό (αρκετές χιλιάδες) λευκών και μαύρων βόλων: 1 Το

Διαβάστε περισσότερα

2. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ

2. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ 1. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ 1. Σφάλματα Κάθε μέτρηση ενός φυσικού μεγέθους χαρακτηρίζεται από μία αβεβαιότητα που ονομάζουμε σφάλμα, το οποίο αναγράφεται με τη μορφή Τιμή ± αβεβαιότητα π.χ έστω ότι σε ένα πείραμα

Διαβάστε περισσότερα

Χ. Εμμανουηλίδης, 1

Χ. Εμμανουηλίδης, 1 Εφαρμοσμένη Στατιστική Έρευνα Απλό Γραμμικό Υπόδειγμα AΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟ ΕΙΓΜΑ Δρ. Χρήστος Εμμανουηλίδης Αν. Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εφαρμοσμένη Στατιστική, Τμήμα Ο.Ε. ΑΠΘ Χ. Εμμανουηλίδης,

Διαβάστε περισσότερα

Πρόλογος... xv. Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1

Πρόλογος... xv. Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1 Πρόλογος... xv Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1 1.1.Ιστορική Αναδρομή... 1 1.2.Βασικές Έννοιες... 5 1.3.Πλαίσιο ειγματοληψίας (Sampling Frame)... 9 1.4.Κατηγορίες Ιατρικών Μελετών.... 11 1.4.1.Πειραµατικές

Διαβάστε περισσότερα

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ ΜΕΡΟΣ ΙΙ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ 36 ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ Πολλές από τις αποφάσεις

Διαβάστε περισσότερα

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες Ορισμός Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες αβεβαιότητας. Βασικές έννοιες Η μελέτη ενός πληθυσμού

Διαβάστε περισσότερα

Y Y ... y nx1. nx1

Y Y ... y nx1. nx1 6 ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΜΕ ΤΗ ΧΡΗΣΗ ΠΙΚΑΚΩΝ Η χρησιμοποίηση και ο συμβολισμός πινάκων απλοποιεί σημαντικά τα αποτελέσματα της γραμμικής παλινδρόμησης, ιδίως στην περίπτωση της πολλαπλής παλινδρόμησης Γενικά,

Διαβάστε περισσότερα

1. Πειραματικά Σφάλματα

1. Πειραματικά Σφάλματα . Πειραματικά Σφάλματα Σκοπός της εκτέλεσης ενός πειράματος στη Φυσική είναι ο προσδιορισμός ποσοτικός ή/και ποιοτικός- κάποιων φυσικών μεγεθών που περιγράφουν ένα συγκεκριμένο φαινόμενο. Ο ποιοτικός προσδιορισμός

Διαβάστε περισσότερα

Υπολογισµοί του Χρόνου Ξήρανσης

Υπολογισµοί του Χρόνου Ξήρανσης Η πραγµατική επιφάνεια ξήρανσης είναι διασπαρµένη και ασυνεχής και ο µηχανισµός από τον οποίο ελέγχεται ο ρυθµός ξήρανσης συνίσταται στην διάχυση της θερµότητας και της µάζας µέσα από το πορώδες στερεό.

Διαβάστε περισσότερα

ΑΝΙΧΝΕΥΣΗ ΡΩΓΜΩΝ ΣΕ ΜΕΤΑΛΛΙΚΑ ΥΛΙΚΑ ΜΕ ΘΕΡΜΟΓΡΑΦΙΑ ΔΙΝΟΡΡΕΥΜΑΤΩΝ

ΑΝΙΧΝΕΥΣΗ ΡΩΓΜΩΝ ΣΕ ΜΕΤΑΛΛΙΚΑ ΥΛΙΚΑ ΜΕ ΘΕΡΜΟΓΡΑΦΙΑ ΔΙΝΟΡΡΕΥΜΑΤΩΝ ΑΝΙΧΝΕΥΣΗ ΡΩΓΜΩΝ ΣΕ ΜΕΤΑΛΛΙΚΑ ΥΛΙΚΑ ΜΕ ΘΕΡΜΟΓΡΑΦΙΑ ΔΙΝΟΡΡΕΥΜΑΤΩΝ Ν. Τσόπελας, Ι. Σαρρής, Ν.Ι. Σιακαβέλλας Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών, Πανεπιστήμιο Πατρών, 26500 Πάτρα Περίληψη Η ανίχνευση

Διαβάστε περισσότερα

Μάθημα: Στατιστική ανάλυση δεδομένων με χρήση Η/Υ (του 8 ου Εξαμήνου Σπουδών του Τμήματος Βιοτεχνολογίας) Διδάσκων: Γιώργος Κ.

Μάθημα: Στατιστική ανάλυση δεδομένων με χρήση Η/Υ (του 8 ου Εξαμήνου Σπουδών του Τμήματος Βιοτεχνολογίας) Διδάσκων: Γιώργος Κ. Μάθημα: Στατιστική ανάλυση δεδομένων με χρήση Η/Υ (του 8 ου Εξαμήνου Σπουδών του Τμήματος Βιοτεχνολογίας) Διδάσκων: Γιώργος Κ. Παπαδόπουλος 3. Ανάλυση Διακύμανσης Σύντομη ανασκόπηση βασικών εννοιών, προτάσεων

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

(1) v = k[a] a [B] b [C] c, (2) - RT

(1) v = k[a] a [B] b [C] c, (2) - RT Χηµική Κινητική Αντικείµενο της Χηµικής Κινητικής είναι η µελέτη της ταχύτητας µιας αντιδράσεως, ο καθορισµός των παραγόντων που την επηρεάζουν και η εύρεση ποσοτικής έκφρασης για τον κάθε παράγοντα, δηλ.

Διαβάστε περισσότερα

Διαχείριση Έργων. Ενότητα 7: Εκτέλεση, παρακολούθηση και έλεγχος έργου

Διαχείριση Έργων. Ενότητα 7: Εκτέλεση, παρακολούθηση και έλεγχος έργου Διαχείριση Έργων Ενότητα 7: Εκτέλεση, παρακολούθηση και έλεγχος έργου Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 2: Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 2: Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 2: Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Υπολογισμός της επιτάχυνσης της βαρύτητας με φωτογράφιση πτώσης φωτοδιόδου LED

Υπολογισμός της επιτάχυνσης της βαρύτητας με φωτογράφιση πτώσης φωτοδιόδου LED Στη στήλη παρουσιάζονται ιδέες, πρακτικές και σχέδια μαθήματος που έχουν εφαρμοστεί στην τάξη και προτείνουν μια πρωτότυπη, διαφορετική, καινοτόμα διδακτική προσέγγιση που προκαλεί το ενδιαφέρον στα παιδιά.

Διαβάστε περισσότερα