NOTES AND SOLUTIONS FOR QUANTUM FIELD THEORY BY MARK SREDNICKI.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "NOTES AND SOLUTIONS FOR QUANTUM FIELD THEORY BY MARK SREDNICKI."

Transcript

1 NOTES AND SOLUTIONS FOR QUANTUM FIELD THEORY BY MARK SREDNICKI. ERNEST YEUNG AND ERNEST YEUNG Solutons for Quantum Feld Theory. Mark Srednck. Cambrdge Unversty Press. 7. ISBN hardback Contents Part I Spn Zero 3. Attempts at relatvstc quantum mechancs 3 Problems 3. Lorentz nvarance 6 Problems 6 3. Canoncal quantzaton of scalar felds 9 Problems 9 4. The spn-statstcs theorem 5 5. The LSZ reducton formula 5 6. Path ntegrals n quantum mechancs 7 7. The path ntegral for the harmonc oscllator 9 8. The path ntegral for free-feld theory 9. The path ntegral for nteractng feld theory 8. Scatterng ampltudes and the Feynman rules 34. Cross sectons and decay rates 4. Dmensonal analyss wth c The Lehmann-Källén form of the exact propagator Loop correctons to the propagator The one-loop correcton n Lehmann-Källén form Loop correctons to the vertex Other PI vertces Hgher-order correctons and renormalzablty Perturbaton theory to all orders 6. Two-partcle elastc scatterng at one loop 6 Problems 6. The quantum acton 6 Problems 6. Contnuous symmetres and conserved currents 6 3. Dscrete symmetres: P, T, C and Z Nonabelan symmetres Unstable partcles and resonnaces Infrared dvergences Other renormalzaton schemes The renormalzaton group Effectve feld theory 7 3. Spontaneous symmetry breakng 7 3. Broken symmetry and loop correctons 7 Date: 4 avrl Mathematcs Subject Classfcaton. Quantum Feld Theory. Key words and phrases. Quantum Feld Theory, QFT. I wrte notes, revew papers, and code and make calculatons for physcs, math, and engneerng to help wth educaton and research. Wth your support, we can keep educaton and research materal avalable onlne, openly accessble, and free for anyone, anytme. If you lke what I m tryng to do for physcs educaton research, please go to my Tlt/Open or Patreon crowdfundng campagn, read the msson statement, share the page, and contrbute fnancally f you can. ernestyalumn.tlt.com

2 3. Spontaneous breakng of contnuous symmetres 7 Part II Spn One Half Representatons of the Lorentz group 7 Problems Left- and rght-handed spnor felds 73 Problems Manpulatng spnor ndces 74 Problems Lagrangans for spnor felds 75 Problems Canoncal quantzaton of spnor felds I Spnor technology Canoncal quantzaton of spnor felds II Party, tme reversal, and charge conjugaton 89 Problems LSZ reducton for spn-one-half partcles 9 4. The free fermon propagator The path ntegral for fermon felds Formal development of fermonc path ntegrals The Feynman rules for Drac felds Spn Sums Gamma matrx technology Spn-averaged cross sectons The Feynman rules for Majorana felds 9 5. Massless partcles and spnor helcty 9 Problems 9 5. Loop correctons n Yukawa theory 9 5. Beta functons n Yukawa theory Functonal determnants 9 Part III - Spn One Maxwell s equatons Electrodynamcs n Coulomb gauge 9 Problems LSZ reducton for photons The path ntegral for photons Spnor electrodynamcs Scatterng n spnor electrodynamcs Spnor helcty for spnor electrodynamcs Scalar electrodynamcs Loop correctons n spnor electrodynamcs The vertex functon n spnor electrodynamcs The magnetc moment of the electron Loop correctons n scalar electrodynamcs Beta functons n quantum electrodynamcs Ward denttes n quantum electrodynamcs I 68. Ward denttes n quantum electrodynamcs II 69. Nonabelan gauge theory Notes on the materal n secton Group representatons 7. The path ntegral for nonabelan gauge theory 3 7. The Feynman rules for nonabelan gauge theory The beta functon n nonabelan gauge theory BRST symmetry Chral gauge theores and anomales Anomales n global symmetres Anomales and the path ntegral for fermons 4

3 78. Background feld gauge Gervas-Neveu gauge 4 8. The Feynman rules for N N matrx felds 4 8. Scatterng n quantum chromodynamcs 4 8. Wlson loops, lattce theory, and confnement Chral symmetry breakng Spontaneous breakng of gauge symmetres Spontaneously broken abelan gauge theory Spontaneously broken nonabelan gauge theory The Standard Model: gauge and Hggs sector The Standard Model: lepton sector The Standard Model: quark sector 6 9. Electroweak nteractons of hadrons 6 9. Neutrno masses 6 9. Soltons and monopoles Instantons and theta vacua Quarks and theta vacua Supersymmetry 6 Problems. Soluton.. Part I Spn Zero. Attempts at relatvstc quantum mechancs Recall {α j, α k } ab δ jk δ ab, {α j, β} ab β ab δ ab.7 Suppose β ψ λ ψ β ψ λ ψ ψ ψ λ or λ ± Use hnt. T rα β T rα βα T rα β T rα β {α, α } ab α ab δ ab so α T rβ Snce T rβ and λ β ± and T rβ λ β, then β must be even-dmensonal for a set of ± s to sum up and cancel each other. Lkewse, α ψ λ ψ α ψ λα ψ λ ψ ψ λ ± T rα α j T rα α j α T rα α j T rα α j so T rα j So then α j even dmensonal as well. Soluton.. Recall the poston bass Schrödnger equaton for n partcles. n t ψ n j m j + Ux j + V x j x k ψ.3 Recall H j j k d 3 xa x m + Ux ax + d 3 xd 3 yv x ya xa yayax.3 ψ, t d 3 x,..., d 3 x n ψx,... x n, ta x... a x n.33 and ψ, t H ψ, t. t 3

4 Also recall the commutaton and antcommutaton rules: [ax, ax ] [a x, a x ] [ax, a x ] δ 3 x x Usng some shorthand notaton, H ψ, t d 3 xa x m + U x a x + Now.3 {ax, ax } {a x, a x } d 3 xd 3 yv x y a xa ya y a x {ax, a x } δ 3 x x.38 d 3 x... d 3 x n ψx,..., x n, ta x,..., a x n a x a x... a x n ±a x a x + δ x x a x... a x n ±a x ±a x a x + δ x x a x 3... a x n + δ x x a x... a x n If ths term s appled to, note a x. a x a x... a x n n n ± j δ x xj a x k For the knetc and self-potental terms of H ψ, t, d 3 xa n n x m + U x d 3 x... d 3 x n ψx,..., x n, t ± j δ x xj a x k Evaluate d 3 x, n partcular, wth δ x xj, n a x j m j + U xj d 3 x,..., d 3 x n ψx,..., x n, t± j j To antcommmute a x j place. n j Now, on a x a x,..., a x n. Now j k j j n k j k j a x k over to ts ordered place n n k j a x k ± j, j antcommutatons must take m j + U xj d 3 xv x y a xa ya y a x a x,..., a x n a y d 3 x,..., d 3 x n ψx,..., x n, ta x,..., a x n n ± j d 3 xv x y a xa ya y δ x xj j n n ± j V xj ya x j a ya y a x k j n k j a x k n δ xk y m k j So then d 3 xd 3 yv x y a xa ya y a x a x,..., a x n d 3 y n j k j k j n l j,k a x l n ± j V xj ya x j a y j n V xj x k ± j +m a x j a x k n l j,k a x l n k j n δ xk y m k j a x k n l j,k a x l To brng a x k back n ts ordered place wth n l j,k a x l, then m antcommutatons must occur we really are repeatng what we dd before, exactly, agan. So there s another factor of m. Lkewse for a x j, to be back n ts ordered place, another factor of j results. n j k j n V x j x k a x,..., a x n 4

5 Now n n j k j counts each unque par twce so n n n j V x j x k a x,..., a x n V x j x k a x,..., a x n j k j d 3 xd 3 yv x ya xa ya y a x n j V x j x k j k j k d 3 x,..., d 3 x n ψx,..., x n, ta x,..., a x n d 3 x,..., d 3 x n ψx,... x n, ta x,..., a x n ψ, t H ψ, t s satsfed. t Problem.3. Show explctly that [N, H], where H s gven by eq..3 and N by eq..35. Soluton.3. H Now Recall d 3 xa x m + Ux ax + d 3 xd 3 yv x ya xa yayax.3 d xa x m x + U x a x + d xd yv x ya xa ya y a x notaton N d 3 xa xax d xa xa x notaton.33 NH d za za z d xa x m x + U x a x + d za za z d xd yv x ya xa ya y a x HN d xa x m x + U x a x d za za z + d xd yv x ya xa ya y a x d za za z [ax, ax ] ± [a x, a x ] ± [ax, a x ] ± δ 3 x x Treat x, y, z as ndependent coordnates. a x a + z ±a za x + δ 3 x z [a x, a z ] ± [a z, a x] ± δ 3 z x a xa z ±a z a x δ 3 z x [ m x + U x, a z] [H x, a z] [H x, a z ] d zd xa xh x a x a za z d zd x a za z a xh x a x + d za zh z a z d za z a z d zd x a za z a xh x a x Notce even f the antcommutator rules apples, a z swtched wth a x and a x, for a factor of overall. Lkewse for a [ z wth a x and ] a x. V x y, a z Note that [V x y, a z ]. V x ya xa ya y a x a za z V x ya xa ya y ±a z a x + δx z a z V x ya xa ya za y + δz ya x a z + V x ya xa ya y a z δx z d z d za zv x ya xa ya z a y a x + V xya xa ya x a y + V x ya xa ya y a x d za zv x ya x±a z a y δz ya y a x + V x ya xa y{a x, a y } 5

6 d za zv x ya z a xa ya y a x + d za zv x y δz xa ya y a x + d za zv x ya x δz ya y a x + +V x ya xa y{a x, a y } d za za z V x ya xa ya y a x + V x y{a x, a y}a y a x + V x ya xa y{a x, a y } d za za z V xya xa ya y a x + V x ya xa ya x a y a ya xa y a x d za za z V xya xa ya y a x Then ndeed [N, H]. for both commutaton and antcommutator rules. Lorentz nvarance Problems. Problem.. Verfy that eq..8 follows from eq..3. g µν Λ µ ρλ ν σ g ρσ.3 Soluton.. Recall Λ µ ν δ ν µ + δω ν µ.8. Then g µν δ µ ρ + δ µ ρ δ ν σ + δω ν σ g ρσ g µν δ µ ρ δ ν σ + δ ν σδω µ ρ + δ µ ρ δω ν σ + δω µ ρ δω ν σ Neglect nd. order nfntesmals: δω µ ρ δω ν σ g ρσ g ρσ + gµσδω µ ρ + g ρν δω ν σ Recall A k gl A lk ; g k g kl δ l, and g µσ symmetrc. g µσ δω µ ρ g ρν δω ν σ Problem.. Soluton.. g µσ g µl δω lρ g ρν g νm δω mσ δ m ρ δω mσ δω ρσ g σµ g µl δω lρ δ l ρδ lρ δω σρ δω σρ δω ρσ antsymmetrc tensor Verfy that eq..4 follows from UΛ UΛ UΛ UΛ Λ Λ. Λ Λ Λ Λ + δω Λ + Λ δω Λ UΛ Λ Λ + Λ δω Λ ρσ M ρσ + Λ a ρδω ab Λ b σm ρσ Usng UΛ UΛ UΛ UΛ Λ Λ, UΛ U + δω + δω µνm µν UΛ UΛ UΛ UΛ UΛ + UΛ δω µν M µν UΛ UΛ δω µν M µν UΛ δω µν UΛ M µν UΛ δω µν Λ µ ρλ ν σm ρσ Note that δω µν s just an entry n a rank- tensor, a number, and for arbtrary Lorentz transformaton, each a unquelly determned quantty δω µν. 6 of them for antsymmetrc δω µν. UΛ M µν UΛ Λ µ ρλ ν σm ρσ Problem.3. Verfy that eq..6 follows from eq..4. Soluton.3. Recall that UΛ M µν UΛ Λ µ ρλ ν σm ρσ.4. UΛ M µν UΛ δω abm ab M µν + δω cdm cd M µν δω abm ab M µν + δω cdm cd M µν δω abm ab M µν + M µν δω cd M cd M µν + δω cdm µν M cd δω ab M ab M µν We re only concerned wth terms n frst order of δω. Now [M µν, M ρσ ] M µν M ρσ M ρσ M µν So then runnng through all the ndces and pckng out ndces we re nterested n partcularly ρ, σ, δω cd M µν M cd δω ab M ab M µν δω ρσ M µν M ρσ δω ρσ M ρσ M µν + δω σρ M µν M σρ δω σρ M σrho M µν δω ρσ [M µν, M ρσ ] 6

7 where we used δω ρσ δω σρ M ρσ M σρ antsymmetry. Now Λ µ ρλ ν σm ρσ Λ µ aλ ν b M ab + δω µ a + δω ν b M ab + δω µ a M ab + δω ν b M ab M ab + δω lb g νl M ab + δω ma g µm M ab Consderng only the frst order nfntesmal, and note that for M ax, M yb, a, b run from to 3, δω lb g νl M ab + δω ma g µm M ab δω ρσ g νρ M aσ + δω σρ g νσ M aρ + δω ρσ g µρ M σb + δω σρ g µσ M ρb For a µ and b ν, δω ρσ {g µρ M σb g νρ M aσ + g µσ M ρb + g νσ M aρ } [M µν, M ρσ ] {g µρ M bσ g νρ M aσ g µσ M bρ g νσ M aρ } {g µρ M νσ g νρ M µσ g µσ M νρ g νσ M µρ } Note that f a b, we get. If b µ, a ν, then g µρ M µσ g νρ M νσ g µσ M µρ g νσ M νρ M ρσ M ρσ M σρ + M σρ If b ρ, a σ, If vce-versa, modulo a factor g µρ M ρσ g νρ M σσ g µσ M ρρ g νσ M σρ g µρ M ρσ g νσ M ρσ g µρ g νσ M ρσ g µρ M σσ g νρ M ρσ g µσ M σρ g νσ M ρρ g νρ M ρσ g µσ M σρ g µσ g νρ M ρσ Problem.4. Verfy that eq..7 follows from eq..6. Soluton.4. Recall [M µν, M ρσ ] {g µρ M νσ g νρ M µσ g µσ M νρ g νσ M µρ }.6 [J, J j ] ɛ jk J k [J, K j ] ɛ jk K k [K, K j ] ɛ jk J k.7 Recall J ɛ jkm jk. Then ɛ jk J k ɛ kj ɛ klmm lm δ lδ jm δ m δ jl M lm M j M j M j Recall K M. [K, K j ] [M, M j ] g j M g j M g M j + g M j M j ɛ jk K k ɛ jk M k. [J, K j ] [ ɛ klm kl, M j ] ɛ kl [M kl, M j ] ɛ kl ɛ kl M k M k ɛ jk M k ɛ jk K k g k g l for k, l. Problem.5. Verfy that eq..8 follows from eq..5. Soluton.5. Recall UΛ P µ UΛ Λ µ ν P ν.5. Let Λ + δω. Keep frst order nfntesmals. g kj M l g lj M k g k M lj + g l M kj UΛ P µ UΛ δω abm ab P µ δω cdm cd P µ δω abm ab P µ + P µ δω cd M cd a, b, c, d run from to 3. We sought obtanng term δω ρσ 7

8 δω ρσ P µ M ρσ + δω σρ P µ M σρ δω ρσ M ρσ P µ δω σρ M σρ P µ δω ρσ [P µ, M ρσ ] For the rght hand sde of.5, Λ µ ν P ν + δω µ ν P ν P ν + g µk δω kν P ν δω kν g µk P ν ν, k run from to 3. Extract terms nvolvng ρ, σ from the sum. So then g µρ δω ρσ P σ + g µσ δω σρ P ρ δω ρσ g µρ P σ g µσ P ρ [P µ, M µν ] g µσ P ρ g µρ P σ Problem.6. Verfy that eq..9 follows from eq..8. Soluton.6. Usng.8: [P µ, M ρσ ] g µσ P ρ g µρ P σ, [J, H] ɛ [ jk M jk, H ] ɛ jkg k P j g j P k j, k [J, P j ] ɛ jkg jl [ P l, M jk] assume l,, 3 ɛ jkg jl g lk P j g lj P k ɛ jk P k P k ɛ jk P k [K, H] [ M, H ] [ H, M ] g P G P P [K, P j ] [ M ] [, P j gjk M, P k] g jk [P k, M ] g jk g k P g k P δ j H Note, I use the metrc, g µν. Problem.8. a Let Λ + δω n eq..6, and show that where [ϕx, M µν ] L µν ϕx,.9 L µν xµν x νµ,.3 b Show that [[ϕx, M µν ], M ρσ ] L µν L ρσ ϕx. c Prove the Jacob dentty. [[A, B], C] + [[B, C], A] + [[C, A], B]. Hnt: wrte out all the commutators. d Use your results from parts b and c to show that [ϕx, [M µν, M ρσ ]] L µν ρσ L ρσ L µν ϕx..3 e Smplfy the rght-hand sde of eq..3 as much as possble. f Use your results from part e to verfy eq..6, up to the possblty of a term on the rght-hand sde that commutes wth ϕx and ts dervatves. Such a term, called a central charge, n fact does not arse for the Lorentz algebra. Soluton.8. a Gven UΛ ϕxuλ ϕλ x, Λ + δω, UΛ ϕxuλ I δω µνm µν Keep up to st. order terms: ϕx + ϕx δ abm ab ϕx δω µνm µν ϕx + δω µν ϕxm µν + δω µνδω ab M µν ϕxm ab ϕx δω µν[m µν, ϕx] µ, ν run through,... 3 n the summaton. There ll be a term δω νµ M νµ δω µν M µν δω µν M µν to be ncluded. Hence, a factor of. Now, Λ x Λ ρ νx ν Λ ρ νx ν δ ρ ν + δω ρ νx ν 8

9 b c d e ϕλ x ϕx ρ + δω ρ νx ν ϕx ρ + δω ρ νx ν ρ ϕ ϕx + g ρα δω να x ν g ρβ β ϕ ϕx + g ρβ g ρα δω να x ν β ϕ ϕx + δω να x ν α ϕ Let ν, α run through... 3, pckng out terms nvolvng µ, ν δω µν x µ ν + δω νµ x ν µ δω µν x µ ν x ν µ [M µν, ϕx] x µ ν x ν µ ϕ L µν ϕx [[ϕx, M µν ], M ρσ ] [L µν ϕx, M ρσ ] L µν L ρσ ϕx + [L µν, M ρσ ] ϕx L µν L ρσ ϕx Snce M ρσ doesn t depend on x. Recall M µν s a hermtan operator that s a generator of the Lorentz group. [[A, B], C] + [[B, C], A] + [[C, A], B] [A, B] C C[A, B] + [B, C]A A[B, C] + [C, A]B B[C, A] AB BAC CAB BA + BC CBA ABC CB + CA ACB BCA AC ABC BAC CAB + CBA + BCA CBA ABC + ACB + CAB ACB BCA + BAC 3. Canoncal quantzaton of scalar felds Problems. Problem 3.. Derve eq. 3.9 from eqs. 3., 3.4. Soluton 3.. Usng ak d 3 xe kx [ ϕx + ωϕx] d 3 xe kx ϕx 3. Then we want I wll also use [ak, ak ] [a k, a k ] Πx ϕx 3.4 [ak, a k ] π 3 ωδ 3 k k 3.9 [ϕx, t, ϕx, t] [Πx, t, Πx, t] [ϕx, t, Πx, t] δ 3 x x [ak, ak ] d 3 xd 3 x e kx+k x [ ϕx + ωϕx, ϕx + ωϕx ] [ ϕx + ωϕx, ϕx + ωϕx ] [ ϕ x, ϕ x ] + [ωϕ x, ϕ x ] + [ ϕ x, ωϕ x ] + ω [ϕ x, ϕ x ] Now [ϕ x, ϕ x ], and ϕ ϕ/ t ϕ Π, for ths partcular Lagrangan. We also have [ ϕ x, ϕ x ] [ ϕ x, ϕ x ] [ϕ x, ϕ x ] δ 3 x x [ϕ ϕ x, ϕ x ] [ ϕ x, ϕ x ] δ 3 x x δ 3 x x [ak, ak ] [ a k, a k ]? a k d 3 xe kx [ ϕx + ωϕx] recall we had mposed the condton, ϕ ϕ. [ a k, a k ] [a k, a k ] d 3 xd 3 x e kx+k x [ ϕx + ωϕx, ϕx + ωϕx ] d 3 xd 3 x e kx+k x [ ϕ x, ϕ x ] + [ωϕ x, ϕ x ] + [ ϕ x, ωϕ x ] + ω [ϕ x, ϕ x ] 9

10 Agan [ϕ x, ϕ x ] [ ϕ x, ϕ x ]. [ϕ x, ϕ x ] δ 3 x x [ ϕ x, ϕ x ] δ 3 x x δ 3 x x [ a k, a k ] [ ak, a k ] d 3 xd 3 x e kx k x ϕx + ωϕx, ϕx + ωϕx Now [ ϕ x + ωϕ x, ϕ x + ωϕ x ] [ ϕ x, ϕ x ] ω[ϕ x, ϕ x ] + ω[ ϕ x, ϕ x ] + ω [ϕ x, ϕ x ] ωδ 3 x x + ω δ 3 x x ωδ 3 x x [ ak, a k ] d 3 xd 3 x e kx k x ωδ 3 x x d 3 xωe k k x π 3 ωδ 3 k k Problem 3.. Use the commutaton relatons, eq. 3.9, to show explctly that a state of the form k... k n a k... a k n s an egenstate of the hamltonan, eq. 3.3, wth egenvalue ω + + ω n. The vacuum s annhlated by ak, ak, and we take Ω E n eq Soluton 3.. Recall that [ak, ak ] H [a k, a k ] [ak, a k ] π 3 ωδ 3 k k 3.9 dkωa kak + E Ω V EΩ dkωa kak Lettng A π 3 ω, δ 3 k k δ k, H k... k n dkωa kaka k... a k n Consder a kaka k... a k n a k a ka... a n a k a a k + A δ 3 ka... a n A δ k a k a... a n + a k a a a k + A δ k a 3... a n By nducton, A δ k a k a... a n + A δ k a k a a 3... a n + a k a a a 3 a k + A δ k3 a 4... a n... A n j j δ kj a k a k + a k a... a na k Note that a k. So note ω ωk k m / and lettng ωk j ω j, n n H k... k n ω j a... a n l k j ω j k... k n Note that A factor, A π 3 ω canceled by our Lorentz nvarant dfferental, dk Problem 3.3. and hence that Use UΛ ϕxuλ ϕλ x to show that UΛ akuλ aλ k, UΛ a kuλ a Λ k 3.34 UΛ k... k n Λk... Λk, 3.35 where k... k n a k... a k n s a state of n partcles wth momenta k,..., k n. d 3 k π 3 ω n the ntegraton.

11 Soluton 3.3. Incomplete, 95 Gven UΛ ϕxuλ ϕλ x, UΛ akuλ UΛ d 3 xe kx [ ϕx + ωϕx]uλ d xe kx UΛ ϕxuλ + ωuλ ϕxuλ d xe kx UΛ ϕxuλ + ωϕλ x Now UΛ ϕxuλ UΛ ϕxuλ ϕλ x So then for the expresson before, d xe kx ϕλ x + ωϕλ x d xe Λ kλ x ϕλ x + ωϕλ x aλ k Problem 3.4. Recall that T a ϕxt a ϕx a, where T a exp P µ a µ s the space-tme translaton operator, and P s dentfed as the hamltonan H. a Let a µ be nfntesmal, and derve an expresson for [P µ, ϕx]. b Show that the tme component of your result s equvalent to the Hesenberg equaton of moton ϕ [H, ϕ]. c For a free feld, use the Hesenberg equaton to derve the Klen-Gordon equaton. d defne a spatal momentum operator P d 3 xπx ϕx Use the canoncal commutaton relatons to show that P obeys the relaton you derved n part a. e Express P n terms of ak and a k. Soluton 3.4. INCOMPLETE 98. a Now T a ϕxt a ϕx a. T a exp P µ a µ. Let a µ be nfntesmal. Then b c d e T a ϕxt a + P µ a µ ϕx P µ a µ ϕx + P µ a µ ϕx ϕxp µ a µ ϕx + µ ϕa µ Problem 3.5. keep up to Oa µ terms [P µ, ϕx] µ ϕ Consder a complex that s, nonhermtan scalar feld ϕ wth lagrangan densty L µ ϕ µ ϕ m ϕ ϕ + Ω a Show that ϕ obeys the Klen-Gordon equaton. b Treat ϕ and ϕ as ndependent felds, and fnd the conjugate momentum for each. Compute the hamltonan densty n terms of these conjugate momenta and the felds themselves but not ther tme dervatves. c Wrte the mode expanson of ϕ as ϕx dk[ake kx + b ke kx ] d Assumng canoncal commutaton rleatons for the felds and ther conjugate momenta, fnd the commutaton relatons obeyed by ak and bk and ther hermtan conjugates. e Express the hamltonan n terms of ak and bk and ther hermtan conjugates. What value must Ω have n order for the ground state to have zero energy? Soluton 3.5. a The acton s S d 4 L d 4 x µ ϕ µ ϕ m ϕ ϕ + Ω δs d 4 x µ δϕ µ ϕ µ ϕ µ δϕ m δϕ ϕ m ϕ δϕ

12 From ntegraton by parts, d 4 x µ δϕ µ ϕ d 4 x µ ϕ µ δϕ Ω Ω ds δϕ µ ϕ ds δϕ µ ϕ d 4 xδϕ µ µ ϕ d 4 xδϕ µ µ ϕ δs d 4 x{ µ µ ϕ m ϕδϕ + µ µ ϕ m ϕ δϕ} We obtan Klen-Gordon: µ µ m ϕ µ µ m ϕ extremze acton If you wanted to make ths explct, note that δϕ + δϕ Rδϕ, or assume treat ϕ, ϕ as ndependent whch we assume n the next part. b µ ϕ µ ϕ ncludes ϕ ϕ term n the sum. In Srednck s notaton, µ ϕ µ ϕ ϕ ϕ + ϕ ϕ. The conjugate momenta are Π ϕ L ϕ ϕ Π ϕ Recall H Π ϕ L, defnton of Hamltonan. ϕ H Π ϕ ϕ + Π ϕ ϕ µ ϕ µ ϕ m ϕ ϕ + Ω +Πϕ Π ϕ + Π ϕ Π ϕ + µ ϕ µ ϕ + m ϕ ϕ Ω Π ϕ Π ϕ + ϕ ϕ + m ϕ ϕ Ω c Wrtng the mode expanson of ϕ as ϕx dk[ake kx + b ke kx ] dka k e kx + b k e kx Then ϕ ϕ ϕ dka k e kx + b k e kx dka k ωe kx + b k ωe kx dka k ωe kx + b k ωe kx d 3 xe k x ϕ x d 3 xe k x ka k e kx + b k e kx ka t k π 3 δk + k + eω+ω dkb k π 3 δk k a k e ωt + bk π ω d 3 xe k x ϕ x d 3 xe k x ka k ωe kx + b k ωe kx kω d 3 x e xk +k a k exk k b k eωt a k bk Lkewse, d 3 xe kx ϕx ak ω + b ke ωt ω d 3 xe kx ϕx ak d 3 xe kx ϕ x a k ω eωt + bk ω + b ke ωt d 3 xe kx ϕ x a k e ωt + bk ak bk d 3 xe kx ωϕx + ϕ d 3 xe kx ωϕ x + ϕ x

13 d Assume [ϕx, t, ϕx, t] [Πx, t, Πx, t] [ϕx, t, Πx, t] δ 3 x x In our case ϕ, ϕ treated as ndependent felds. Recall Π ϕ ϕ, Π ϕ ϕ. Assume further, treatng ϕ, ϕ as ndependent, [ ϕx, t, ϕ x, t ] [ ak, a k ] [ bk, b k ] [Π ϕ x, t, Π ϕ x, t] [ Π ϕ x, t, Π ϕ x, t ] [ Π ϕ x, t, Π ϕ x, t ] [ϕx, t, Π ϕ x, t] δ 3 x x, [ϕ x, t, Π ϕ x, t] δ 3 x x d 3 x d 3 x e kx e k x [ωϕx + ϕ, ω k ϕ x ϕ ] d 3 xd 3 x e kx k x ω k [ Π ϕ, ϕ ] + ω[ϕx, Π ϕ ] d 3 xd 3 x e kx k x ω k δ 3 x x + ωδ 3 x x d 3 xe kx k x ω k π 3 ωδ 3 k k d 3 x d 3 x e kx e k x [ωϕ dag x + ϕ, ω k ϕx ϕx ] d 3 xd 3 x e kx k x ω[ Π ϕ, ϕ] + ω[ϕ x, Π ϕ ] d 3 xd 3 x e kx k x ω δ 3 x x + ωδ 3 x x d 3 xe kx k x ω π 3 ωδ 3 k k [ak, ak ] d 3 xd 3 x e kx e k x [ωϕx + ϕ, ω k ϕx + ϕx ] snce [ϕx, ϕx ] [ ϕx, ϕ x ] [ ϕx, Πϕ x ] [ a k, a k ] d 3 xd 3 x e kx e k x [ωϕ x ϕ, ω k ϕ x ϕ x ] snce [ ϕ x, ϕ x ] [ ϕ x, ϕ x ] [ ϕ x, Π ϕ x ] Lookng at bk comprsed of ϕ x, ϕ x and b k comprsed of ϕx, ϕx. Then, lkewse wth a, a, [bk, bk ] [ b k, b k ] [ak, bk ] d 3 xd 3 x e kx e k x [ωϕx + ϕx, ω k ϕx + ϕx ] snce [ϕx, ϕx ] [Π ϕ x, Π ϕ x ] Lkewse for [ a k, b k ]. It can be shown that [ϕx, ϕx ] [ ϕx, Π ϕ x ] [ ak, b k ] [ ϕx, ϕx ] [ a k, bk ] because, recall ak d 3 xe kx [ωφx + φ] d 3 xe kx φ d 3 xe kx [ωφx + Π φ ] b k d 3 x e k x [ωφx φx ] d 3 x e k x φx d 3 xe k x [ωφ + Π φ ] 3

14 [ ak, b k ] d 3 x Π φ φ Π φ φ d 3 x e kx e k x [ωφ x Π φ x, ωφ x + Π φ x ] d 3 xd 3 x e kx e k x ω[φx, Π φ x ] ω[π φ x, φx ] must assume treatng φ, φ ndependent: then [φx, Π φ x ] [φ x, Π φ x] e H Π ϕ Π ϕ + ϕ ϕ + m ϕ ϕ Ω dk ω a k e k x + ω b k e k x dk ωake kx + ωb ke kx + + dk{ ka k e kx + kb k e kx } dk {k a k e k x k b k e k x }+ +m dk dk a k e k x + b k e k x a k e kx + b k e kx Ω where x, kx ωt + k j x k, xj e kx k j e kx. H dk dk{ω ωa k a k e k kx ω ωb k a k e k +kx ω ωa k b +kx k + ω ωb e k k b kx k }+ ek + dk dk {k k a k a ke k k x k k b k a k e k+k x k k a k b k e k+k x + k k b k b k e k k x }+ +m dk dk {a k a k e k kx + b k a k e k +kx + a k b +kx k + b e k k b kx k } ek Consder dong dk d 3 x d 3 k ω π d 3 x. 3 d 3 xe k kx e ω ωt π 3 δ 3 k k π 3 δ 3 k k. Note how ω k k + m, for the last step. Then also d 3 xe k +kx e ω +ωt π 3 δ 3 k + k e ωt π 3 δ 3 k + k Remember, δ 3 k + k makes k k. Lkewse, d 3 xe k kx e ω ω t π 3 δ 3 k k π 3 δ 3 k k d 3 xe k +kx e ω +ωt π 3 δ 3 k + k e ωt π 3 δ 3 k + k Note that m ω k H d 3 xh dk{ ω a k a k ω b ka k e ωt ω a k b k eωt + ω b kb k }+ + +m dk{ k ω a k a k + k b k a k e ωt + k a k b k e ωt + k b k b k ω ω ω }+ dk{ a k a k ω + b ka k ω e ωt + a k b k ω eωt + b kb k ω } + Ω V ω + k + m ω + k + ω k ω H dkω{a k a k + b k b k } + Ω V Now b k b k b k b k + π 3 ωδ 3 k k b k b k + π 3 ω. 4

15 H dkω{a k a k + b k b k} + ɛ Ω V where ɛ V dkπ 3 ω For H, then ɛ V Ω V or d 3 kω k Ω V. d 3 k π 3 ω π3 ω d 3 kω k V π 3 δ 3 nterpreted as volume of space V. ɛ π 3 d 3 kω k π 3 d 3 kω Twce the zero-pont energy was found, due to knds of partcles assocated wth the ϕ, ϕ felds. 4. The spn-statstcs theorem Problem 4.. Verfy eq. 4.. Verfy ts lmt as m. Soluton 4.. Recall that we defned a nonhermtan feld ϕ x, ts Hermtan conjugate ϕ x, dke k x ak 4.3 dke k x a k 4.4 Tme-evolved wth H : ϕ + x, t e Ht ϕ + x, e Ht dke kx ak ϕ x, t e Ht ϕ x, e Ht dke kx a k 4.5 [ϕ + x, ϕ x ] dk dk e kx k x [ak, a k ] dk dk e kx k x π 3 ωδ 3 k k by fundamental canoncal commutaton or antcommutaton relatons dke kx x INCOMPLETE 98 Look up how to do modfed Bessel functons for functons wth symmetry about k. 5. The LSZ reducton formula Problem 5.. Work out the LSZ reducton formula for the complex scalar feld that was ntroduced n problem 3.5. Note that we must specfy the type a or b of each ncomng and outgong partcle. Soluton 5.. Recall, a k d 3 xe kx [ωφ x φ ] d 3 xe kx φ b k d 3 xe kx [ωφx φx] d 3 xe kx φx ak d 3 xe kx [ωφx + φx] d 3 xe kx φ Note there are dfferent types of partcles. Defne f k exp [ k k /4σ ] a b d 3 kf ka k d 3 kf kb k 5

16 Guess, for nteractng theory, lm t a ta t or lm t b tb t or lm t a tb t or n general lm t a t... a mtb m+ t... b nt note [a, b ] d 3 kf k d 3 k f k [a k, b k ] Recall a + a dt a t d 3 kf k d 4 x e kx ωφ x + φ x d 3 kf k d 4 xe kx + ω φ x d 3 kf k d 4 xe kx + k + m φ x d 3 kf k d 4 xe kx x + m φ x So, takng the lmt for fk, a + a d 4 xe kx + m φ x For the Hermtan conjugate, a + a dt a t d 3 kf k d 4 x e kx [ωφx φx] d 3 kf k d 4 xe kx ω φ + d 3 kf k d 4 xe kx k + m + φx d 4 xe kx + m φx Lkewse, b + b d 4 xe kx + m φx b + b d 4 xe kx + m φ x Now f lm a ta t or t + f lm b tb t t + f lm a tb t t + f lm a t... a m tb t... b n t t + Note that the only nontrval commutaton relatons are [ak, a k ] [bk, b k ] π 3 ωδ 3 k k. a s, b s commute, essentally. 6

17 f T a +... a m + b m b n + a... a m b m+... b n n +n d 4 x e k x + m a... d 4 x m e k m x m m + m a d 4 x m+ e k m+ x m+ m+ + m b... d 4 x n e k n x n n + m b d 4 x e kx + m a... d 4 x m e kmxm m + m a d 4 x m+ e km+xm+ m+ + m b... d 4 x n e knxn n + m b T φx... φx m φ x m+... φ x n φ x... φ x m φx m+... φx n e.g. A par of a and b partcles come n; a par of a and b partcles come out. f 4 d 4 x e k x + m a d 4 x e k x + m b d 4 x e kx + m a d 4 x e kx + m b T φx φ x φ x φx Problem Path ntegrals n quantum mechancs a Fnd an explct formula for Dq n eq Your formula should be of the form Dq CΠ N j dq j, where C s a constant that you should compute. b For the case of a free partcle, V Q, evaluate the path ntegral of eq. 6.9 explctly. Hnt: ntegrate over q, then q, etc., and look for a pattern. Express your fnal answer n terms of q, t, q, t, and m. Restore by dmensonal analyss. c Compute q, t q, t q e Ht t q by nsertng a complete set of momentum egenstates, and performng the ntegral over the momentum. Compare wth your result n part b. Soluton 6.. a Recall, for δt, use Weyl orderng. q, t q, t N k dq k N j dp j π epjqj+ qj e Hpj,q j δt where q j q j + q j+ q q q N+ q Defne q j qj+ qj δt Now Hp j, q j only quadratc n p j, Hp j, q j p j m + V q j. Consder usng +Bx dxe Ax π A exp / π exp π δt m dpj π epjqj+ qj e δt B A q j+ q j 4δt m 7 p j m m πδt / mqj+ q j δt exp δt

18 q, t q, t N k m N+ So Dq lm N πδt b For V, where µ m δt. N k m πδt m dq k πδt N+ m N+ dq k exp πδt [ N+ N dq k exp k N dq k ; δt k T N+. N m qj+ q j exp δt δtv q δt j j N m { q j V q j }δt j t t dtl qt, qt m N+ N N q, t q, t m qj+ q j dq k exp δt πδt δt k j N+ N µ N dq k exp µq j+ q j π k j Now ths wll be useful: dye αx y +βz y ] / [ ] π αβ exp x z α + β α + β snce exp αx y + βz y exp αx xy + y + βz yz + y exp αx + βz exp α + βy [ ] dy π 4xα + βz α + β exp exp αx + βz 4α + β [ π x α + β exp α + β z + xαβz + α + x + βαx + αβz + β z ] α + β [ π βαx α + β exp xαβz + αβz ] [ ] π αβ α + β α + β exp x z α + β where my formula, +Bx π dxe Ax A exp B 4A was used. Consder the followng: dq exp µq q + µq q / π [ µ exp µ q q ] dq exp µq 3 q / π µ exp µ q q π Suppose n j dq n j exp j µq n+ q j µ / / [ π π µ ] / µ 3µ exp 3µ/ q 3 q / [ µ exp 3 3 q 3 q ] n n π dq j exp µq j+ q j dq n e µqn+ qn µ j j π n [ ] π π µ/n µ n µ n+ exp n+ q n+ q µ n n 8 n π µ n exp [ µ n q n q ]. n+ n exp [ µ n q n q ] n [ ] µ n + exp n + q n+ q

19 Then by nducton, µ N+ N N µ N+ π dq k exp µq j+ q j π π µ k j [ ] π µ exp π N + N + q N+ q q, t q, t m T N [ N + exp µ N + q N+ q [ ] m m exp q N+ q πδt N + δtπ N + [ ] m exp T q N+ q where µ m δt, δt T N+. [ ] T t t ; q N+ q, q q. q, t q, t m t t π exp m t t q q By dmensonal analyss, [ q, t q, t m m t t π exp q q ] t t ] c q, t q, t q e Ht t q q dp p p e Ht t dpdp epq p e Ht t p q e p where q p e pq π π π dpdp e epq p q π p e Ht t p dpdp π dp p p q e pq e p q p t t e m δp p wth H p m for the free partcle Hamltonan. dpe pq e pq e p t t /m dpe pq q e p t t /m π π π mq π m t t exp q m m t t t t π exp q q t t 7. The path ntegral for the harmonc oscllator Problem 7.. Startng wth eq. 7., do the contour ntegral to verfy eq Soluton 7.. Recall de e Et t π E + ω 7. ɛ Now ω ɛ E ω ɛ E ω ɛ + E On the semcrcle C, E Re θ. Et t Rcos θ + sn θ t Rcθ t + Rsθδt. We see for t >, we sought the lower half semcrcle, t <, we sought the upper half semcrcle. For R, C, due to e Rsθ t factor n ntegrand. e ω ɛ t 7. for t > ω ɛ e ω ɛ t for t < ω ɛ ω e ω t t Problem 7.. Startng wth eq. 7.4, verfy eq Soluton INCOMPLETE 9 ɛ { e ω t ω for t > e ω t ω for t <

20 Recall Gt t ω exp ω t t 7.4 If t t, { ω ttgt t e ωt t f t > t ω eωt t f t < t ω G Problem 7.3. a Use the Hesenberg equaton of moton, A [H, A], to fnd explct expressons for Q and P. Solve these to get the Hesenberg-pcture operators Qt and P t n terms of the Schrödnger-pcture operators Q and P. b Wrte the Schrödnger-pcture operators Q and P n terms of the creaton and annhlaton operators a and a, where H ωa a +. Then, usng your result from part a, wrte the Hesenberg-pcture operators Qt and P t n terms of a and a. c Usng your result from part b, and a a, verfy eqs. 7.6 and 7.7. Soluton 7.3. a Recall HP, Q m P + mω Q the Hamltonan for the harmonc osclator. Recall [Q, P ] canoncal commutaton relaton. Lkewse, So then Q [H, Q] { m [P, Q] + mω [Q, Q]} m P P P m P [P, Q] + [P, Q]P m P [H, P ] { mω Q[Q, P ] + [Q, P ]Q} mω Q mω Q Q ω Q So the form of Qt.P t must be P ω P Qt a q e ωt + b q e ωt P t a p e ωt + b p e ωt Note that Q ωa q e ωt b q e ωt I assume the followng ntal condtons for the Hesenberg representaton of Q, P : Q a q + b q Q Q ωa q b q P m or a q b q P mω snce, for the last statement, Q ought to obey the Hesenberg equaton of moton. Then, t s easy to solve for a q, b q : [ ] [ ] [ ] aq Q P/mω So b q Smlarly for P t, Qt [ ] [ ] [ ] ap P b p mω Q P t Q + [ ] [ ] Q P/mω P e ωt + Q mω [ P e ωt mω [ ] [ ] P mωq P mωq e ωt + P + mωq e ωt Q + P Q P mω mω ] P mωq P + mωq [ aq b q ] [ ap b p ]

21 b Recall mω a x + p mω a mω x p mω a + a + a a e ωt + mω mω ae ωt mω Qt a e ωt + mω P t mω a a mω a e ωt + ae ωt c mω a + a e ωt + Q a + a mω mω P a a a + a + a a e ωt mω mω a e ωt + ae ωt mω mω a a + mω a + a e ωt T Qt Qt a e ωt + ae ωt a e ωt + ae ωt mω e ωt t mω Gt t snce Gt t ω exp ω t t 7.4, and Gt t ω exp ω t t ω exp ωt t T Qt Qt Qt 3 Qt 4 Qt Qt a e ωt3 + ae ωt3 e ωt4 mω Qt Qt e ωt3+t4 + e ωt3 t4 Qt mω mω 3/ a e ωt + ae ωt e ωt3+t4 + e ωt3 t4 Qt mω 3/ eωt3+t4 t + e ωt3 t4 t mω eωt3+t4 t t + e ωt3 t4 t+t 8. The path ntegral for free-feld theory Problem 8.. Startng wth eq. 8., verfy eq. 8.. Soluton 8.. Recall µ t, µ e kx k, ke kx µ t, µ e kx k, ke kx xe kx µ µ e kx k k e kx k e kx for k k k. x + m x x d 4 k k + m e kx x π 4 k + m ɛ snce d 4 k π e kx x s one Drac delta functon, representaton. 4 Problem 8.. Startng wth eq. 8., verfy eq Soluton 8.. Now k k k x x d 4 k π 4 e kx x k + m ɛ d 4 k e kx x π 4 ɛ k +m 8. ɛ δ 4 x x k + m ɛ k + m ɛ k k + m ɛ k k + m ɛ + k kx x k t t + k x x k τ + k x x

22 So from e kx x, consder e kτ. On semcrcle C, let k Re θ, exp Re θ τ exp Rcos θ + sn θτ exp Rcθ exp R sn θτ If τ >, then for lm R, C must be n the lower half plane. If τ <, then for lm R, C must be n the upper half plane. By resdue thm., dk π e k τ k + m ɛ e k +m ɛτ k +m ɛ e k +m ɛτ k +m ɛ Now ω k m wth ω ωk by specal relatvty. f τ > f τ < k ɛ e +m t t k + m d x x 3 k e k x x e ω t t π 3 dke k x x ω t t ω θt t dke kx x + θt t dke kx x where for the nd. term of the very last expresson, consder τ <. Then d 3 k π 3 ω e k x x +ωt t. By symmetry about x x, k k leaves d 3 k unchanged, + overall factor. Problem 8.3. Startng wth eq. 8.3, verfy eq. 8.. Note that the tme dervatve n the Klen-Gordon wave operator can act on ether the feld whch obeys the Klen-Gordon equaton or the tme-orderng step functons. Soluton 8.3. Recall x x θt t dke kx x + θt t dke kx x 8.3 Now Recall x x k x tt and kx x k x x ω k t t Srednck t δt t dke kx x + θt t dk ωe kx x + + δt t dke kx x + θt t dke kx x tt δ t t Dke kx x + δt t dk ωe kx x + θt t dk ω e kx x + + δ t t dke kx x δt t dkωe kx x + θt t dke kx x Note that dθt t dt dθt t dt δt t δt t, and by my notaton, δ t t d dt δt t n all cases for ths partcular problem. Observe a ω term. x yelds the terms k + ω m. So m wll cancel these terms. tt has other terms. Note that dk ωδt t d3 k π 3 ω. ωδt t dke kx x ωδt t δ t t d 3 k π 3 ω ekx x δt t d 3 k π 3 ω ekx x δt t dke kx x δt t d 3 k ek x x ωt t π 3 d 3 k π 3 e kx x δt t d 3 k ek x x ωt t π 3 ω d 3 k e k x x +ωt t π 3

23 x + m δt t + δ t t d 3 k + δt t dke kx x δ t t π 3 ekx x d 3 k π 3 e kx x + dke kx x If t t, or x x, then due to δt t, δt t. If x x, then due to δt t, δt t. Surely δ t t δ t t for t t snce slope s zero for δ for t t. Now d 4 xfxδx x fx d 4 xfx? Lkewse dtfxδt t d e ωt t dtfx dt δt t ω d 3 k π 3 e k x x δ 3 x x so d 3 k π 3 ekx x d 4 xfxδt t dfx dt d 3 k π 3 fx, t e k x x fx, t δ 3 x x d 3 x fx d 3 k π 3 e kx x fx e ωt t δt t { dfx dt ω tt ω + fx, t + d 3 xδ 3 x x dfx ω dt d e ωt t dtfx dt δt t ω d 3 k π 3 e k x x δ 3 x x so dfx dt fx xx δt t{ dfx e ωt t dt ω tt ω fx, t d 3 xδ 3 x x + dfx dt xx d 3 xfx x + m x x fx + fx + fx ω fx fx + fx e ωt t } + fxω e ωt t } ω fx d 4 xfxδx x So snce x + m x x obeys the propertes of a Drac delta functon δ 4 x x, t s equal to the Drac delta functon. Problem 8.4. Use eqs. 3.9, 3.9, and 5.3 and ts hermtan conjugate to verfy the last lne of eq Soluton 8.4. Recall that ϕx dk[ake kx + a ke kx ] 3.9 Recall Z J exp [ak, ak ] [a k, a k ] [ak, a k ] π 3 ωδ 3 k k 3.9 [ ] d 4 [ k Jk J k π 4 k + m exp ɛ 3 ak 5.3 ] d 4 xd 3 x Jx x x Jx 8.

24 Then recall, T ϕx ϕx δ δjx x x [ x x + d 4 k e kx x π 4 k + m ɛ δ δjx Z J J [ δ δjx [ ] d 3 x x x Jx 8. ] d 4 x x x Jx ] δ δjx Now what we want s to show the same result but wth the mode expanson of the feld. Z J J Z J J J x x Consder { T ϕx δ δjx Z J. J T ϕx dk[ake kx + a ke kx ] snce ak ; a k. Then we should get the correct result for the quadratc term: T ϕx ϕx dk dkak e k x + a k e k x ake kx + a ke kx dk dk e k x + kx ak ak + e k x kx a k a k + +e k x kx a k a k + e k x +kx a k a k Snce a k a k a k a k + π3 ωδ 3 k k. dke kx x By Tme orderng, we requre dke kx x f x x > dke kx x f x x > So T ϕx ϕx θx x dke kx x + θx x dke kx x x x So we get back the same result from the mode expanson. Problem 8.5. The retarded and advanced Green s functons for the Klen-Gordon wave operator satsfy ret x y for x y and adv x y for x y. Fnd the pole prescrptons on the rght-hand sde of eq. 8. that yeld these Green s functons. Soluton 8.5. Recall x x d 4 k e kx x π 4 k + m 8. ɛ The ratonale for addng ɛ was to avod the poles. Then n dong the contour ntegraton n complex k, we can take the ntegraton across the real axs. Now k k k Srednck s conventon k + m ɛ k + m ɛ k ωk ɛ k ωk ɛ + k w k w + k w n 4th quadrant for ɛ ωk. w n nd. quadrant. Consder e kτ ; τ x y. kx y k x y k x y 4

25 If τ >, for k Re θ R cos θ + R sn θ, e R cos θτ e R sn θτ. Then close the ntegraton n lower half-plane.e. sn θ <. dk e k τ e wτ Γ w k w + k π π w w e wτ dk e k τ w k + C R e CR k τ w dk k R sn θτ e R w Rdθ for sn θ < e k τ C R ω k ɛx y dk πe w k ω k ɛ k ɛ πe +m x y for x > y k + m If τ <, then close the ntegraton n upper half plane. Then resdue k w enclosed. So fnally, ret x y for x y, e k τ e wτ w π πe k +m x y k w k + m ret x y θy x πe k +m x y k + m for ntegraton closng the upper half plane adv x y for x y, adv x y θx y πe k +m x y for ntegraton closng the lower half plane k + m Consder not appendng ɛ. Then there are poles at w k + m, w. There are a number of ssues to consder: We must consder semcrcle contour ntegrals about the poles of nfntesmally small radus. What branch are we ntegratng on, especally on those semcrcle ntegrals around each of the poles? If τ >, for C δ, C δ semcrcle ntegrals around each of the poles enclosng the poles from the upper half, δ w w δ + + π{ e wτ w + ewτ w } for k w + δe θ. for k w + δe θ. Γ C R + dθ Cδ δeθ e w+δe θ τ δe θ w δe θ + C δ dθδe Cδ θ e w+δe θ τ π δe θ w + δe θ π{ e wτ w π cos wτ w w+δ w+δ dθ ewτ e δeθ τ w δe θ δ θe wτ w δ ewτ π π ewτ w w πe wτ w + ewτ } π{ e wτ w w + ewτ w } As you can see, there are ssues wth whch branch to choose that semcrcles C δ, C δ le on. If τ >, for C δ, C δ semcrcle ntegrals around each of the poles not enclosng the poles from the lower half, e ωτ π ω ω e ωτ π ω + πe ωτ eωτ ω 5 π sn ωτ ω

26 If τ <, for C δ, C δ semcrcle ntegrals around each of the poles enclosng the poles from below the poles, semcrcle n the upper half, + πeωτ ω π ω {e ωτ + πe ωτ ω + π{ e ωτ ω + e ωτ + eωτ ω } } π ω e ωτ 3 + e ωτ If τ <, for C δ, C δ semcrcle ntegrals around each of the poles not enclosng the poles from above the poles, semcrcle n the upper half, Soluton 8.6. { π eωτ ω + πe ωτ ω π sn ωτ ω } π{ eωτ ω e ωτ ω } Supposng Z J exp W J, recall, after some algebrac manpulatons, Z J exp d 4 xd 4 x Jx x x Jx W J d 4 xd 4 x Jx x x Jx Suppose Jx, a classcal source, s a real functon. Now kx x dke dkcos kx x + sn kx x. Lkewse, x x θt t IW J RW J + θt t θt t + θt t dk sn kx x + θt t dk cos kx x + θt t dk sn kx x + dk sn kx x + dk cos kx x dk cos kx x d 4 xd 4 x Jx dk cos kx x Jx d 4 xd 4 x Jx θt t + θt t dk sn kx x Jx Problem 8.7. Repeat the analyss of ths secton for the complex scalar feld that was ntroduced n problem 3.5, and further studed n problem 5.. Wrte your source term n the form J ϕ + Jϕ, and fnd an explct formula, analogous to eq. 8., for Z J, J. Wrte down the approprate generalzaton of eq. 8.4, and use t to compute T ϕx ϕx, T ϕ x ϕx, and T ϕ x ϕ x. Then verfy your results by usng the method of problem 8.4. Fnally, gve the approprate generalzaton of eq Soluton 8.7. L µ φ µ φ m φ φ + Ω + J φ + Jφ S d 4 d 4 k [ xl π 4 φ kk + m φk + Ω φ k φk + J kφk + Jkφ ] k where Jx so that For the other terms, d 4 k π 4 e kx Jk, Jxφ x φx φ x d 4 k π 8 ekx Jkd 4 k e k x φ k d 4 x d 4 k π 4 ekx φk d 4 k π 4 e kx φ k e kx e k x kt e k x+k t 6 d 4 k π 4 Jk φ k φk d 4 xe kx φx φ k d 4 xe kx φ x

27 π 8 µ φ d 4 k d µ φ π 4 µ e kx φ 4 k k π 4 µe k x φk d 4 kd 4 k ω, k ω, k φ k φk e k k x d 4 kd 4 k ωω + k k φ k φk e k k π 4 Drop tlde notaton now. Make ths substtute for the ntegraton varable: So χ χ + χ J + J χ k + m + π 8 d 4 k ω + k φ k φk π 4 χk φk Jk k + m χ φ χ J + k + m k + m χ + J J k + m J k + m J k + m + J + Ω χ + χ + +J χ J + k + m k + m + Ω χ χ + χ J + J χ k + m + k + m + Ω χ χ + Ω χ J + J χ + d 4 kk φ k φk J k + m J k + m χ + J J k + m Ω k + m J J + JJ k + m J k + m + + J χ + Jχ + J J + JJ k + m Now Dφ x dφx φ smply shfted by a constant: Dφ Dχ. Suppose the ntegraton over χ smply yelds Z J,J, and neglect terms contanng Ω let Ω [ Z J, J exp ] d 4 k Jk J [ +k π 4 k + m exp ɛ ] d 4 xd 4 x Jx x x J x where x x d 4 k e kx x π 4 k +m ɛ. Now T φ x... φx m... δ Jx... δ J x mz J, J δ J,J δjx... δ δj x m Z J, J Lkewse, T φx φx [ δ δj x d 4 xjx x x ] d 4 xjx x x Z J, J J,J d 4 x Jx x x Z J, J J,J J,J T φ x φ x T φ x φx δ δjx [ ] d 4 xjx x x Z J, J J,J x x Now φx dk[ake kx + b ke kx ]. Immedately, T φx φx T φ x φ x snce ak b k b k ak b k bk bk a k a k a k 7

28 T φ x φx dk dk a k e kx + bk e kx ak e kx + b k e kx dk dk e kx kx bk b k Recall that k x k x k x k x k t k t and [bk, b k ] π 3 ωδ 3 k k so that bk b k π 3 ωδ 3 k k dk e k x k x k t k t dke k x x k t k t Now x x d 3 k e k x x dk π 3 π d 3 k π 3 e k x x e k t t k + m k } dke k x x e ω t t ω { e k +m t t where ω k m. Note, from the form of the Lagrangan, m a m b mass of partcle of type a, s same as mass of partcle of type b. 9. The path ntegral for nteractng feld theory Soluton 9.. a L L + L L µ φ µ φ m φ Recall for the path ntegral, ZJ e d 4 xl L 4 Z λλφ 4 + L ct 4! Z λλφ 4 + L ct δ δjx Z J e d 4 x 4 Z λλ δ Jx 4 P [ P! For V, vertex, d 4 x 4 [ 4 Z λλ δ Jx P! ] P d 4 yd 4 zjy y zjz ] P d 4 yd 4 zjy y zjz Consder only dagrams wth sources for all legs. Then P 4. We count the number of terms that result n a partcular dagram. Rearrange δ 4 Jx by 4! ways. Rearrange V! vertces. V,!. Rearrange sources at end of each propagator, for each δ Jx.!,! 4. Rearrange the propagator themselves. P! 4!. We can rearrange the 4 propagators n 4! ways, all these arrangements duplcated by exchangng the dervatves at the vertces. S 4! symmetry factor. S! 4!. However, for some gven set of coordnates, y, y, y 3, y 4, 4! ways to choose whch propagator s exactly y, y, y 3, or y 4. 4! 4!. 4!! 4 4! 4! 4 4! 4! 4! 8

29 Dong ths problem more carefully, start from the gven Lagrangan. L µ ϕ µ ϕ m ϕ L 4 Z λλϕ 4 + L ct L ct Z ϕ µ ϕ µ ϕ Z m m ϕ A µ ϕ µ ϕ Bm ϕ Assumng Z λ + Oλ, Z e d 4 xl δ Jx Z Z λλ 4! d 4 x d 4 x Z λλ 4! d 4 yj y y x 4 4 δ J x 4! wth 4! 4 countng factor matchng δ Jx s to propagators. For ϕϕ ϕϕ scatterng, use δ J x δ J x δ J x3 δ J x4, T ϕx ϕx ϕx 3 ϕx 4 Z λλ 4! 4! f 4 d 4 x e kx + m d 4 yd 4 zj y y z J z 4 d 4 x x x x x x3 x x4 x 4 4 Z λλ d 4 x x x x x x3 x x4 x d 4 x e kx + m d 4 x 3 e k3x3 3 + m d 4 x 4 e k4x4 4 + m T ϕ ϕ ϕ 3 ϕ 4 Z λ λπ 4 δ 4 k + k k 3 k 4 For A, B counterterms, consder P propagators. d 4 x δ J x A x + Bm δ J x Z d 4 xδ Jx A x + Bm d 4 yj y y x d 4 zd 4 wj z z w J w d 4 x d 4 zj z z x A x + Bm d 4 yj y y x ZJ d 4 xδ Jx A x + Bm δ Jx! d 4 yd 4 zj y y z J z Remember, only consder connected dagrams. Also, note that x y x x d 4 k e ky x π 4 k +m ɛ T ϕx ϕx f d 4 x x x A x + Bm x x d 4 xe kx + m d 4 xe kx d 4 x e kx + m d 4 k k e ky x π 4 k +m ɛ, so order s mportant. for ths partcular case, ths partcular order d 4 x e kx A x + Bm δ 4 x x +... To deal wth x, use ntegraton by parts: d 4 xe kx xδ 4 x x k d 4 xe kx δ 4 x x ke kx Then the rght-hand sde of Eq. 9 s d 4 x x x A x + Bm x x π4 δ 4 k k Ak + Bm π 4 δ 4 k k Ak + Bm π 4 δ 4 k k Because of δ 4 k k, then the results are the same f labels,, swtched. Thus, a countng factor. 9

30 f Ak + Bm π 4 δ 4 k k +... k X Ak + Bm The assocated vertex factor s Z λ λ We also need to sprnkle counterterm vertces for each propagator wth a factor of Ak + Bm. b c A clever way to see ths Arthur Lpsten, Nov. 7, 8, that tadpoles are canceled, s to note that the symmetry ϕ ϕ. Then ϕ. Or, note that E P 4V. For ϕx, E, but P 4V 4V + P whch s not possble, for V, P Z +. So no counterterm lnear n ϕ s needed. Problem 9.3. Consder a complex scalar feld see problems 3.5, 5., and 8.7 wth L L + L, where L µ ϕ µ ϕ m ϕ ϕ, L 4 Z λλϕ ϕ + L ct L ct Z ϕ µ ϕ µ ϕ Z m m ϕ ϕ Ths theory has two knds of sources, J and J, and so we need a way to tell whch s whch when we draw the dagrams. Rather than labelng the source blobs wth a J or J, we wll ndcate whch s whch by puttng an arrow on the attached propagator that ponts towards the source f t s a J, and away from the source f t s a J. a What knd of vertex appears n the dagrams for ths theory, and what s the assocated vertex factor? Hnt: your answer should nvolve those arrows! b Ignorng the counterterms, draw all the connected dagrams wth E 4 and V, and fnd ther symmetry factors. Hnt: the arrows are mportant! Soluton 9.3. a Recall Consder Note that Z J, J J,J DφDφ e d 4 x[l +Jφ +J φ] exp [ d 4 xd 4 x Jx x x J x ] [ exp φ xφxφ xφx ] [ d 4 xl exp δ δjx δ δj x ] d 4 x 4 Z λλ φ φ δ δjx δ δj x notaton δ Jx δ J x δ Jx δ J x Consder, as an exercse, that s not drectly related to the problem at hand, δ J x Z [ d 4 x J x x δ Jx x]z x xz + [ d 4 x x x J x ]Z δ J x [ d 4 x J x x x] Z + x xz + [ d 4 x x x J x ][ d 4 x J x x x]z δ Jx,J,J In a sense, I say I can set to as an overall multplcatve factor, dagrams that s closed as a loop. 3

31 Recall dong the double Taylor seres expanson: [ exp 4 Z λλ d 4 x [ V! 4 Z λλ d 4 δ δ x δjx δj x Z J, J V δ δjx ] δ δj Z J x ] V P [ P! ] P d 4 yd 4 zjy y zj z Consder vertex. 4 Z λλ d 4 δ δ x δjx δj x [ Consder P! d 4 yd 4 zjy y zj z ] P. For P, applyng the vertex gves zero. For P, 4 Z λλ 8 Z λλ s obtaned. Result: closed double loop, fgure eght. For P 3, 3! [ d 4 y d 4 z J y y z J z ][ d 4 y d 4 z J y y z J z ][ d 4 y 3 d 4 z 3 J y3 y3 z 3 J z 3 ] Consder only connected dagrams. δ J x δjx δ J x d 4 y J y y x d 4 z x z J z d 4 δ Jx y 3 J y3 y3 x d 4 z J z d 4 y 3 J y3 x z y3 x Result: closed loop and propagator legs. For P 4, 4 Z λλ d 4 x d 4 z x z J x d 4 y J y y x d 4 z 3 x z3 J z 3 so we get the vertex, wth 4 propagators attached n the followng manner: d 4 y 4 J y4 y4 x J J J k k 3 k k 4 J Note that E P 4V by nducton. Note frst the 4! factor, cancelng 4! from the 4 propagators, due to matchng functonal dervatves to propagators. Then another factor when usng the LSZ formula see Problem. on the remanng propagators amputatng the external legs. The assocated vertex factor s Z λ λ. b See dagram. Soluton 9.4. a Gven exp W g, J π + dx exp [ x + 6 gx3 + Jx ] The trck s to do the followng Arthur Lpsten, Nov. 7, 8. snce Scratchwork: e x exp W g, J exp π 6 g δ J 3 dxe x +Jx dxe x +Jx dx dye x y dxe x J e J / πe J / 3 rdrdϕe r π e r π π

32 Note also, e x π y x J dy dx exp W g, J exp 6 gδ J 3 e J / P V V! 6 gδ J 3 J P! P Recall Srednck, Sec. 9. Follow the development n Sec. 9. It begns wth ϕ 3 theory. Z J exp d 4 yd 4 zjy y zjz [ ] 3 Z g g Z J d 4 δ x V! 6 δjx V [ P d 4 yd 4 zjy y zjz] 9. P! V Most general dagram contrbutng to ZJ conssts of product of several connected dagrams. Let C I partcular connected dagram. Then general dagram s D S D I C I n I. n I Z counts number of C I s n D, S D s addtonal symmetry factor for D part of symmetry factor not already accounted for by symmetry factors ncluded n each of the connected dagrams. Snce propagator and vertex rearrangements wthn each C I accounted for we only need to consder exchanged of propagators and vertces among dfferent connected dagrams. These can leave the entre dagram D unchanged only f surely the followng must be true: exchange made among dfferent but dentcal connected dagrams. exchanges nvolve all of the propagators and vertces n a gven connected dagram exchanged wthn a C I already accounted for n I! S D I n I! P Z J D C I n I S D n I! C I n I {n I } {n I } I {n I } I I So I clam that Z J exp I C I. Then f we dentfy y z, d 4 yd 4 zjyjz J Z g g g dx δ 3 J δ 3 J n I n I! C I n I I exp C I exp C I Then the result of Z e I C I apples here to, snce the combnatorcs are stll the same,.e., we stll exchange dervatves δ J 3 at vertex g, we stll can exchange sources, J. Thus n our case, J Z J exp W g, J exp 6 gδ J 3 [ g exp V! 6 δ J 3] V J P e I C I P! V P so W g, J I C I. A connected dagram s merely a term n the double Taylor expanson C I S I g V I J E I 3

33 So then W g, J g V I J E I S I I For each set of terms of some specfed V vertces, E external sources, there s the same g V J E factor for each of these terms. Sum over all connected dagrams wth such specfed V, E. g V K J E K g V J E S K S K K K As n Problem 9.a, V! ways to arrange V δ J 3 s, 3! ways to arrange 3 δ J s, ways to arrange J s, P! ways to arrange P J s. So the above result, sayng that a connected dagram s smply a term of the form S I g V I J E I s justfed. So we could mpose the requrement of no tadpoles to rearrange our sum so that where W g, J C V,E g V J E V E C V,E K S K and K s the sum over all connected dagrams wth V vertces and E external sources. b c Now recall Addng a counterterm Y, Note J ew g,j+y are equvalent condtons. Interpret e W as ZJ expw g, J π exp W g, J + Y + π [ dx exp x + ] 6 gx3 + Jx 9.7 [ dx exp x + ] 6 gx3 + Jx + Y x e W g,j+y J J W g, J + Y J J W g, J + Y J ZJ e W g,j e 6 gδ J 3 e J / [ g V! 6 δ J 3] J P e I C I P! P V Recall the development n Sec. 9. Analogously, note ZJ + g 6 δ3 J + J + J Og + J + J gj + OJ 3 Thus a counterterm s necessary. Assumng Y Og, Z J + g J + Y 6 δ3 J + + So Y g, assumng Y Og. The no tadpole condton of δ δ J Z J g or δ J W J g J + Y 4 J + Y J + Y gj + Y 4 4 δ J Z J g + Y δ J exp W g, J + Y J + dx x exp π δj W g, J + Y J s equvalent to δ δj ew g,j+y J or [ x + 6 gx3 + Jx + Y x] J analogous to ϕx. Interpretng connected Feynman dagrams as terms of the form C I S I g V I J E I. 33

34 For a W g, J +Y C V E V,E g V J E δ 9.3 s.t. δj W g, J + Y J, then no connected Feynman dagrams wth tadpoles are ncluded n the sum of connected Feynman dagrams W g, J + Y. d W g, J + Y g V I J E I g V J E C V,E g V J E S I S K I V E K V E where the sum K s over all connected dagrams wth no tadpoles of V vertces, E external sources.. Scatterng ampltudes and the Feynman rules Problem.. Wrte down the Feynman rules for the complex scalar feld of problem 9.3. Remember that there are two knds of partcles now whch we can thnk of as postvely and negatvely charged, and that your rules must have a way of dtngushng them. Hnt: the most drect approach requres two knds of arrows: momentum arrows as dscussed n ths secton and what we mght call charge arrows as dscussed n problem 9.3. Try to fnd a more elegant approach that requres only one knd of arrow. Soluton.. Wth an expresson for ZJ exp W J, we can take functonal dervatves to compute vacuum expectaton values of tme-ordered products of felds. Recall from Problem 9.3, [ Z J, J J,J DϕDϕ e ] d 4 x[l +Jϕ +J ϕ] exp d 4 xd 4 x Jx x x J x Keep n mnd the counterterms [ exp ] [ d 4 xl exp ] d 4 x 4 Z λλ ϕ ϕ L ct Z ϕ µ ϕ µ ϕ Z m m ϕ ϕ A µ ϕ µ ϕ Bm ϕ ϕ Recall dong the double Taylor seres expanson: [ ] exp 4 Z λλ d 4 x δ J x δ J Z x J ZJ, J So the path ntegral, wth nteracton, for our complex scalar feld theory s [ ] V Z J, J V! 4 Z λλ d 4 x δ J x δ [ ] P J d 4 yd 4 zjy y zj z x P! P V Recall, from Problem 8.7, snce, for example T ϕ x ϕx δ J x [ T ϕx ϕx T ϕ x ϕ x T ϕx ϕx [ ] δ J d 4 xjxδx x x Z J, J J,J d 4 xjx x x d 4 x Jx x x Z J, J J,J ] d 4 xjxδx x e 4 Z λλ d 4 x To study nteracton n ths theory, consder the followng. T ϕx 3 ϕ x 4 ϕ x ϕx δ J x 3 δ J x4 δ J x δ J x V! 4 Z λλ V δ Jx δ J x δ J x 3 δ J x4 δ J x δ J ZJ, J x V d 4 z δ J z δ J z Remember to restrct ourselves to fully connected dagrams. 34 P Z J, J x x + Oλ P! J,J d 4 xd 4 x J x x x J x P

35 Consder, for Oλ, λ order, δ J x 3 δ J x4 δ J x δ J x 4 Z λλ d 4 z δ J z δ J d 4 xd 4 x J x x x J x 4 z 4! Matchng up δ Jz δ J z wth sources, there are 4! ways, f ncludng only connected dagrams. Matchng up δ Jy δ Jy δ J x δ J x, there are 4 ways. Note that the factors 4 4! match up to exactly cancel the factors n the denomnators. δ J x 3 δ J x4 δ J x δ J Z x λ λ d 4 z Z λ λ d 4 xj x x z d 4 yj y y z d 4 z x4 z z x3 x z z x d 4 x z x J x d 4 y z y J y T ϕx 3 ϕ x 4 ϕ x ϕx Z λ λ d 4 z x4 z z x3 x z z x + Oλ Recall Problem 5.. LSZ formula for complex scalar feld. f n +n d 4 x e k x + m a... d 4 x m e kmx m m + m a d 4 x m+ e k m+ x m+ m+ + m b... d 4 x n e k n x n n + m b d 4 x e kx + m a... d 4 x m e +kmxm m + m a d 4 x m+ e km+xm+ m+ + m b... d 4 x n e knxn n + m b T ϕx... ϕx m ϕ x m+... ϕ x n ϕ x... ϕ x m ϕx m+... ϕx n In ths case, for the vacuum expectaton, J, J, so ths condton forces a -type partcles, arsng from ϕ to be each pared up wth b -type partcles, arsng from ϕ. Then, note that for the LSZ formula, there s the condton m + n m n m + m Also, note that we are attemptng a more elegant approach because the most drect approach requres two knds of arrows: momentum arrows and what we mght call charge arrows, that dstngush the sources J, J, or, n turn, dstngush between ϕ and ϕ. Then I clam that because of the tme orderng operator of the vacuum expectaton, then a partcles could be dstngushed from b partcles. For ncomng partcles, a partcles correspond to ϕ feld and b partcles correspond to ϕ feld. For outgong partcles, a partcles correspond to ϕ feld and b partcles correspond to ϕ feld. The term T ϕx... ϕ x m+... ϕ x... ϕx m+... make t very clear whch partcles are ncomng and whch are outgong, compelled by the tme orderng operator T. If n ths case, y, y come after x, x, then for ths case, plug the above, very last result nto the LSZ formula, f 4 d 4 x 3 e k3x3 3 + m a d 4 x 4 e k4x4 4 + m b d 4 x e kx + m a d 4 x e kx + m b Z λ λ d 4 z x4 z z x3 x z z x Usng + m x y δ 4 x y.e. Klen-Gordon wave operator acts on propagator,.e. propagator s a Green s functon, then for nstance, 4 + m b x4 z δ 4 d x 4 z 4 x 4e k 4 x 4 e k4z f Z λ λ d 4 z exp [ k 3 k 4 + k + k z] Z λ λπ 4 δ 4 k + k k 3 k 4 35

8.323 Relativistic Quantum Field Theory I

8.323 Relativistic Quantum Field Theory I MIT OpenCourseWare http://ocwmtedu 8323 Relatvstc Quantum Feld Theory I Sprng 2008 For nformaton about ctng these materals or our Terms of Use, vst: http://ocwmtedu/terms 1 The Lagrangan: 8323 Lecture

Διαβάστε περισσότερα

α & β spatial orbitals in

α & β spatial orbitals in The atrx Hartree-Fock equatons The most common method of solvng the Hartree-Fock equatons f the spatal btals s to expand them n terms of known functons, { χ µ } µ= consder the spn-unrestrcted case. We

Διαβάστε περισσότερα

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων. Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme

Διαβάστε περισσότερα

2 Lagrangian and Green functions in d dimensions

2 Lagrangian and Green functions in d dimensions Renormalzaton of φ scalar feld theory December 6 Pdf fle generated on February 7, 8. TODO Examne ε n the two-pont functon cf Sterman. Lagrangan and Green functons n d dmensons In these notes, we ll use

Διαβάστε περισσότερα

1 Complete Set of Grassmann States

1 Complete Set of Grassmann States Physcs 610 Homework 8 Solutons 1 Complete Set of Grassmann States For Θ, Θ, Θ, Θ each ndependent n-member sets of Grassmann varables, and usng the summaton conventon ΘΘ Θ Θ Θ Θ, prove the dentty e ΘΘ dθ

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();

Διαβάστε περισσότερα

8.324 Relativistic Quantum Field Theory II

8.324 Relativistic Quantum Field Theory II Lecture 8.3 Relatvstc Quantum Feld Theory II Fall 00 8.3 Relatvstc Quantum Feld Theory II MIT OpenCourseWare Lecture Notes Hon Lu, Fall 00 Lecture 5.: RENORMALIZATION GROUP FLOW Consder the bare acton

Διαβάστε περισσότερα

Solutions for Mathematical Physics 1 (Dated: April 19, 2015)

Solutions for Mathematical Physics 1 (Dated: April 19, 2015) Solutons for Mathematcal Physcs 1 Dated: Aprl 19, 215 3.2.3 Usng the vectors P ê x cos θ + ê y sn θ, Q ê x cos ϕ ê y sn ϕ, R ê x cos ϕ ê y sn ϕ, 1 prove the famlar trgonometrc denttes snθ + ϕ sn θ cos

Διαβάστε περισσότερα

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF One and two partcle densty matrces for sngle determnant HF wavefunctons One partcle densty matrx Gven the Hartree-Fock wavefuncton ψ (,,3,!, = Âϕ (ϕ (ϕ (3!ϕ ( 3 The electronc energy s ψ H ψ = ϕ ( f ( ϕ

Διαβάστε περισσότερα

Quantum ElectroDynamics II

Quantum ElectroDynamics II Quantum ElectroDynamcs II Dr.arda Tahr Physcs department CIIT, Islamabad Photon Coned by Glbert Lews n 1926. In Greek Language Phos meanng lght The Photons A What do you know about Photon? Photon Dscrete

Διαβάστε περισσότερα

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion Symplectcty of the Störmer-Verlet algorthm for couplng between the shallow water equatons and horzontal vehcle moton by H. Alem Ardakan & T. J. Brdges Department of Mathematcs, Unversty of Surrey, Guldford

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches Neutralno contrbutons to Dark Matter, LHC and future Lnear Collder searches G.J. Gounars Unversty of Thessalonk, Collaboraton wth J. Layssac, P.I. Porfyrads, F.M. Renard and wth Th. Dakonds for the γz

Διαβάστε περισσότερα

Journal of Theoretics Vol.4-5

Journal of Theoretics Vol.4-5 Journal of Theoretcs Vol.4- A Unfed Feld Theory Peter Hckman peter.hckman@ntlworld.com Abstract: In ths paper, the extenson of Remann geometry to nclude an asymmetrc metrc tensor s presented. A new co-varant

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

THE SECOND WEIGHTED MOMENT OF ζ. S. Bettin & J.B. Conrey

THE SECOND WEIGHTED MOMENT OF ζ. S. Bettin & J.B. Conrey THE SECOND WEIGHTED MOMENT OF ζ by S. Bettn & J.B. Conrey Abstract. We gve an explct formula for the second weghted moment of ζs) on the crtcal lne talored for fast computatons wth any desred accuracy.

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Phasor Diagram of an RC Circuit V R

Phasor Diagram of an RC Circuit V R ESE Lecture 3 Phasor Dagram of an rcut VtV m snt V t V o t urrent s a reference n seres crcut KVL: V m V + V V ϕ I m V V m ESE Lecture 3 Phasor Dagram of an L rcut VtV m snt V t V t L V o t KVL: V m V

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

What is SUSY? Supersymmetry is a boson-fermion symmetry that is aimed to unify all forces in Nature including gravity within a singe framework

What is SUSY? Supersymmetry is a boson-fermion symmetry that is aimed to unify all forces in Nature including gravity within a singe framework What s SUSY? Supersymmetry s a boson-fermon symmetry that s amed to unfy all forces n Nature ncludng gravty wthn a snge framework Q boson >= fermon > Q fermon >= boson > j = = { Q, Q } = δ ( σ ) [,] bb

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities Int. J. Contemp. Math. Scences, Vol. 7, 01, no. 9, 1415-140 Generalzed Fbonacc-Le Polynomal and ts Determnantal Identtes V. K. Gupta 1, Yashwant K. Panwar and Ompraash Shwal 3 1 Department of Mathematcs,

Διαβάστε περισσότερα

A Class of Orthohomological Triangles

A Class of Orthohomological Triangles A Class of Orthohomologcal Trangles Prof. Claudu Coandă Natonal College Carol I Craova Romana. Prof. Florentn Smarandache Unversty of New Mexco Gallup USA Prof. Ion Pătraşcu Natonal College Fraţ Buzeşt

Διαβάστε περισσότερα

On the Galois Group of Linear Difference-Differential Equations

On the Galois Group of Linear Difference-Differential Equations On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts

Διαβάστε περισσότερα

Some generalization of Cauchy s and Wilson s functional equations on abelian groups

Some generalization of Cauchy s and Wilson s functional equations on abelian groups Aequat. Math. 89 (2015), 591 603 c The Author(s) 2013. Ths artcle s publshed wth open access at Sprngerlnk.com 0001-9054/15/030591-13 publshed onlne December 6, 2013 DOI 10.1007/s00010-013-0244-4 Aequatones

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Variational Wavefunction for the Helium Atom

Variational Wavefunction for the Helium Atom Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Constant Elasticity of Substitution in Applied General Equilibrium

Constant Elasticity of Substitution in Applied General Equilibrium Constant Elastct of Substtuton n Appled General Equlbru The choce of nput levels that nze the cost of producton for an set of nput prces and a fed level of producton can be epressed as n sty.. f Ltng for

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8. 8.1 The Nature of Heteroskedastcty 8. Usng the Least Squares Estmator 8.3 The Generalzed Least Squares Estmator 8.4 Detectng Heteroskedastcty E( y) = β+β 1 x e = y E( y ) = y β β x 1 y = β+β x + e 1 Fgure

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

LECTURE 4 : ARMA PROCESSES

LECTURE 4 : ARMA PROCESSES LECTURE 4 : ARMA PROCESSES Movng-Average Processes The MA(q) process, s defned by (53) y(t) =µ ε(t)+µ 1 ε(t 1) + +µ q ε(t q) =µ(l)ε(t), where µ(l) =µ +µ 1 L+ +µ q L q and where ε(t) s whte nose An MA model

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα, ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα Βασίλειος Σύρης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Εαρινό εξάμηνο 2008 Economcs Contents The contet The basc model user utlty, rces and

Διαβάστε περισσότερα

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6 SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Revew of Mean Trat Value n Inbred Populatons We showed n the last lecture that for a populaton

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Code Breaker. TEACHER s NOTES

Code Breaker. TEACHER s NOTES TEACHER s NOTES Time: 50 minutes Learning Outcomes: To relate the genetic code to the assembly of proteins To summarize factors that lead to different types of mutations To distinguish among positive,

Διαβάστε περισσότερα

Phys624 Quantization of Scalar Fields II Homework 3. Homework 3 Solutions. 3.1: U(1) symmetry for complex scalar

Phys624 Quantization of Scalar Fields II Homework 3. Homework 3 Solutions. 3.1: U(1) symmetry for complex scalar Homework 3 Solutions 3.1: U(1) symmetry for complex scalar 1 3.: Two complex scalars The Lagrangian for two complex scalar fields is given by, L µ φ 1 µ φ 1 m φ 1φ 1 + µ φ µ φ m φ φ (1) This can be written

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ. PHY 396 T: SUSY Solutions for problem set #1. Problem 2(a): First of all, [D α, D 2 D α D α ] = {D α, D α }D α D α {D α, D α } = {D α, D α }D α + D α {D α, D α } (S.1) = {{D α, D α }, D α }. Second, {D

Διαβάστε περισσότερα

Solution Set #2

Solution Set #2 . For the followng two harmon waves: (a) Show on a phasor dagram: 05-55-007 Soluton Set # phasor s the omplex vetor evaluated at t 0: f [t] os[ω 0 t] h f [t] 7os ω 0 t π f [t] exp[ 0] + 0 h f [t] 7exp

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Finite difference method for 2-D heat equation

Finite difference method for 2-D heat equation Finite difference method for 2-D heat equation Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

The role of the Seiberg Witten field redefinition in renormalization of noncommutative chiral electrodynamics

The role of the Seiberg Witten field redefinition in renormalization of noncommutative chiral electrodynamics Eur. Phys. J. C 03 73:54 DOI 0.40/epc/s005-03-54-3 Regular Artcle - Theoretcal Physcs The role of the Seberg Wtten feld redefnton n renormalzaton of noncommutatve chral electrodynamcs Maa Burć a DuškoLatas

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Forced Pendulum Numerical approach

Forced Pendulum Numerical approach Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Supporting information for: Functional Mixed Effects Model for Small Area Estimation

Supporting information for: Functional Mixed Effects Model for Small Area Estimation Supportng nformaton for: Functonal Mxed Effects Model for Small Area Estmaton Tapabrata Mat 1, Samran Snha 2 and Png-Shou Zhong 1 1 Department of Statstcs & Probablty, Mchgan State Unversty, East Lansng,

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

[1] P Q. Fig. 3.1

[1] P Q. Fig. 3.1 1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

Derivation for Input of Factor Graph Representation

Derivation for Input of Factor Graph Representation Dervaton for Input of actor Graph Representaton Sum-Product Prmal Based on the orgnal LP formulaton b x θ x + b θ,x, s.t., b, b,, N, x \ b x = b we defne V as the node set allocated to the th core. { V

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα