# Lecture 2. Soundness and completeness of propositional logic

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

## Transcript

1 Lecture 2 Soundness and completeness of propositional logic February 9,

2 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness proof. 2

3 Propositional formulas Grammar: φ ::= p ( φ) (φ φ) (φ φ) (φ φ) Precedence rules: >, > Example: (p ((q ( r)) q)) p (q r q) 3

4 Natural deduction Rules for reasoning about formulas. Introduction rules: Connective in the conclusion. Example: φ. ψ -i φ ψ Elimination rules: Connective in a premise. Example: φ φ ψ ψ -e 4

5 Basic rules Introduction φ ψ -i φ ψ φ ψ φ Elimination φ ψ -e 1 ψ -e 2 φ φ ψ -i 1 ψ φ ψ -i 2 φ ψ φ. χ ψ. χ -e χ φ. ψ -i φ φ ψ ψ -e φ ψ φ. -i φ φ -e φ no rule φ -e φ φ -e 5

6 Sequents φ 1,..., φ n ψ Formula ψ can be proved from formulas φ 1,..., φ n. Use introduction rules to construct the goal formula. Use elimination rules to extract information from the premises. Example: p q, r s p r q s Introduction Elimination φ φ ψ -i 1 ψ φ ψ -i 2 φ ψ φ. χ ψ. χ -e χ φ. ψ -i φ φ ψ ψ -e φ ψ 6

7 Proof 1. p r assumption 2. p assumption 3. p q premise 4. q -e : 2, 3 5. q s -i 1 : 4 6. r assumption 7. r s premise 8. s -e : 6, 7 9. q s -i 2 : q s -e : p r q s -i : 1 10 Observe: -i 1 used in first subproof. -i 2 used in second subproof. Rules and proof steps must match exactly. What can be proved, given this constraint? 7

8 Reasoning vs. reality Reasoning: argument based on observations and derivational rules. Reality: reality. How does reasoning relate to reality? Soundness: reasoning derives only true statements. Completeness: reasoning derives all true statements. 8

9 Soundness, completeness, and auto mechanics Reality: the fan belt is broken. Mechanics diagnosis: 9

10 Soundness, completeness, and propositional logic For natural deduction, Soundness: a formula that is provable is true. Completeness: every true formula is provable. What is a true formula? 10

11 Semantics A formula is either true T or false F. The meaning depends on the meaning of the subterms. Examples: [[φ]] = T implies [[ φ]] = F [[p]] = T and [[q]] = F implies [[p q]] = T 11

12 Truth tables The value of a formula for all possible inputs. Basic connectives: T F φ φ F T T F φ ψ φ ψ T T T T F F F T F F F F φ ψ φ ψ T T T T F T F T T F F F φ ψ φ ψ T T T T F F F T T F F T Other tables define other functions. 12

13 Meaning of a formula Begin with the meanings of atoms. Compute the value bottom-up. Example: (p q) (p r) p q r p q p r (p q) (p r) T T T T T F T F T T F F F T T F T F F F T F F F Tautology: Always true. Contradiction: always false. 13

14 Semantic entailment φ 1,... φ n = ψ ψ true when φ 1,... φ n are true. 1. Compute truth tables of the φ 1,... φ n. 2. Collect lines where φ 1,... φ n are all true. 3. Evaluate ψ in these cases. 14

15 Example p (q r), r, p = q p q r q r p (q r) r p T T T T T F T T T F F F T T T F T T T F T T F F T T T T F T T T T F F F T F F T T F F F T T T F F F F F T T T F All true when [[p]] = T, [[q]] = [[r]] = F. p q r q T F F T Thus, p (q r), r, p = q 15

16 Soundness and completeness Relate provability to semantic entailment. Soundness: φ 1,..., φ n ψ implies that φ 1,..., φ n = ψ. Completeness: φ 1,..., φ n = ψ implies that φ 1,..., φ n ψ. 16

17 Soundness Theorem: Let φ 1,..., φ n and ψ be propositional logic formulas. Then, if φ 1,..., φ n ψ, then φ 1,..., φ n = ψ. Proof idea: each proof step is justified by truth tables. 17

18 Proof: inductive definition φ : premise is a proof of Φ φ, where φ Φ. Let: α i prove Φ φ i β j prove Φ, ψ j χ j For any rule: φ 1... φ m ψ ψ 1. χ 1... ψ n. χ n Then proves Φ ψ. α 1,..., α m, β 1,..., β m, ψ Soundness proof: by induction on the structure of the proof of φ 1,..., φ n ψ. 18

19 Base case Proof: φ : premise Proves: Φ φ, where φ Φ Show: Φ = φ Evaluate φ for truth table lines where Φ are all T. Since φ Φ, clearly φ is T. 19

20 Induction case Proof: α 1,..., α m, β 1,..., β n, ψ Proves: Φ ψ Show: Φ = ψ There is a rule: φ 1... φ m ψ ψ 1. χ 1... ψ n. χ n Induction hypothesis: α i proves Φ φ i implies Φ = φ i. β j proves Φ, ψ j χ j implies Φ, ψ 1 χ j. Proceed by cases on the possible rules. 20

21 Rule: -i φ ψ φ ψ -i Proof contains: Φ φ, Φ ψ By induction: Φ = φ, Φ = ψ Evaluate φ ψ when [[φ]] = [[ψ]] = T: φ ψ φ ψ T T T Thus, Φ = φ ψ. 21

22 Rule: -e φ φ -e Proof contains Φ φ, Φ φ By induction: Φ = φ, Φ = φ Truth table for φ Φ never all T. φ φ F T T F Thus, trivially: Φ = NB: Truth table for : F 22

23 Rule: -e φ -e Proof contains: Φ. By induction: Φ =. Truth table for : Φ never all T. F Thus, trivially: Φ = φ 23

24 Rule -i φ. ψ -i φ ψ Proof contains: Φ, φ ψ. By induction: Φ, φ = ψ. Show: when Φ all true, so is φ ψ. φ ψ φ ψ T T T T F F φ ψ φ ψ F T T F F T Potential problem when [[φ]] = T and [[ψ]] = F. But, by induction, if Φ all true and [[φ]] = T, then [[ψ]] = T. Thus, Φ = φ ψ. 24

25 Completeness Theorem: Let φ 1,..., φ n and ψ be propositional logic formulas. Then, if φ 1,..., φ n = ψ, then φ 1,..., φ n ψ. Proof idea: construct a proof from a truth table. 25

26 Completeness proof structure 1. Eliminate premises: φ 1, φ 2,..., φ n = ψ implies = φ 1 (φ 2... (φ n ψ)). 2. Show provability: = φ 1 (φ 2... (φ n ψ)) implies φ 1 (φ 2... (φ n ψ)). 3. Reintroduce premises: φ 1 (φ 2... (φ n ψ)) implies φ 1, φ 2,..., φ n ψ. 26

27 Eliminating premises Theorem: If φ 1, φ 2,..., φ n = ψ, then = φ 1 (φ 2... (φ n ψ)). Proof: By induction on n. Base case: n = 0. Clearly = ψ implies = ψ. Induction case: We showed Ψ, φ = ψ implies Ψ = φ ψ. Thus, φ 1, φ 2,..., φ n = ψ implies φ 1,... φ n 1 = φ n ψ. By induction, = φ 1 (φ 2... (φ n ψ)) 27

28 Showing provability Theorem: Let φ be a formula such that p 1, p 2,..., p n are its only propositional atoms. Let l be any line in φ s truth table. For any atom or formula α, let γ l (α) be α if the truth table entry in line l for α is T, and α if the truth table entry for α is F. Then, γ l (p 1 ), γ l (p 2 ),..., γ l (p n ) γ l (φ) is provable. 28

29 Example (p r) (q s) A truth table line: p q r s p r q s (p r) (q s) T F T T T F F Constructed sequent: p, q, r, s ((p r) (q s)) Another truth table line: p q r s p r q s (p r) (q s) F T F T F T T Constructed sequent: p, q, r, s (p r) (q s) 29

30 Proof Induction on the structure of φ. Base case: φ p. Truth table: p T F p T F γ l (p) γ l (p) p p, or p p: Proof of p p: Proof of p p: Thus, γ l (p) γ l (p). 1. p premise 2. p 1 1. p premise 2. p 1 30

31 Negation φ ψ Possible truth table lines: ψ ψ F T T F If [[ψ]] = F and [[ ψ]] = T: Show γ l (p 1 ), γ l (p 2 ),..., γ l (p n ) ψ By induction, since [[ψ]] = F: γ l (p 1 ), γ l (p 2 ),..., γ l (p n ) ψ 31

32 Negation, continued If [[ψ]] = T and [[ ψ]] = F: Show γ l (p 1 ), γ l (p 2 ),..., γ l (p n ) ψ By induction, since [[ψ]] = T: γ l (p 1 ), γ l (p 2 ),..., γ l (p n ) ψ To prove γ l (p 1 ), γ l (p 2 ),..., γ l (p n ) ψ: First prove γ l (p 1 ), γ l (p 2 ),..., γ l (p n ) ψ. Use -i. 32

33 Implication φ φ 1 φ 2 Proof strategy: Consider possible truth values of φ 1 φ 2. Use induction to find proofs of γ l (φ 1 ) and γ l (φ 2 ). Construct a proof of γ l (φ 1 φ 2 ). φ 1 φ 2 φ 1 φ 2 T T T T F F F T T F F T Four lines, so four cases. 33

34 Use of the induction hypothesis Consider φ 1, φ 2 : Propositional atoms of φ 1 : a 1,..., a x. Propositional atoms of φ 2 : b 1,..., b y. Atoms of φ 1 φ 2 = {a 1,..., a x } {b 1,..., b y }. Thus, a truth table line for φ 1 φ 2 also gives meaning to φ 1 and φ 2. 34

35 Using the induction hypothesis For a truth table line l for φ 1 φ 2, by induction: γ l (a 1 ),..., γ l (a x ) γ l (φ 1 ) γ l (b 1 ),..., γ l (b y ) γ l (φ 2 ) Our goal: γ l (a 1 ),..., γ l (a x ), γ l (b 1 ),..., γ l (b y ) γ l (φ 1 φ 2 ) Proof structure: Proof of γ l (a 1 ),..., γ l (a x ) γ l (φ 1 ). Proof of γ l (b 1 ),..., γ l (b y ) γ l (φ 2 ). Extend these sequents to include all premises. γ l (φ 1 ) γ l (φ 2 ) : -i Derive γ l (φ 1 φ 2 ) from γ l (φ 1 ) γ l (φ 2 ). 35

36 Cases φ 1 is T, φ 2 is T, and φ is T: Show φ 1 φ 2 implies φ 1 φ 2. φ 1 is T, φ 2 is F, and φ is F: Show φ 1 φ 2 implies (φ 1 φ 2 ). φ 1 is F, φ 2 is T, and φ is T: Show φ 1 φ 2 implies φ 1 φ 2. φ 1 is F, φ 2 is F, and φ is T: Show φ 1 φ 2 implies φ 1 φ 2. Conjunction and disjunction similar. 36

37 Combining sequents We have a complete collection of sequents: γ l (p 1 ), γ l (p 2 ),..., γ l (p n ) γ l (φ) Note: = φ implies l.γ l (φ) = φ. We want to prove: φ Proof idea: Use the Law of the Excluded Middle. 37

38 Example (p q) q Constructed sequents: p, q (p q) q. p, q (p q) q. p, q (p q) q. p, q (p q) q. Consider p, q (p q) q and p, q (p q) q. Proof of p (p q) q: 1. q q LEM 2. q assumption 3 proof of p, q (p q) q 4. q assumption 5 proof of p, q (p q) q 6. (p q) q -e :

39 Proof idea Goal: Reduce γ l (p 1 ), γ l (p 2 ),..., γ l (p n ) φ to φ. Proof by induction on n. Find pairs of sequents that only differ in γ l (p n ). Use LEM to prove a single sequent without either γ l (p n ) in premises. 39

40 Reintroducing premises Theorem: If φ 1 (φ 2... (φ n ψ)), then φ 1, φ 2,..., φ n ψ. Proof idea: Convert φ 1 (φ 2... (φ n ψ)) to φ 1 φ 2... (φ n ψ), and proceed by induction. Problem: Theorem not general enough. Restatement: If Φ φ 1 (φ 2... (φ n ψ)), then Φ, φ 1, φ 2,..., φ n ψ. 40

41 Proof Given a proof of: Φ φ 1 (φ 2... (φ n ψ)) Prove: Φ, φ 1 φ 2... (φ n ψ) Proof of Φ φ 1 (φ 2... (φ n ψ)) φ 1 : premise φ 2... (φ n ψ) : -e By induction, Φ, φ 1, φ 2,..., φ n ψ. Take Φ = to prove the original theorem. 41

42 Summary: completeness 1. Eliminate premises: φ 1, φ 2,..., φ n = ψ implies = φ 1 (φ 2... (φ n ψ)). 2. Show provability: = φ 1 (φ 2... (φ n ψ)) implies φ 1 (φ 2... (φ n ψ)). 3. Reintroduce premises: φ 1 (φ 2... (φ n ψ)) implies φ 1, φ 2,..., φ n ψ. 42

### C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

### Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

### 2 Composition. Invertible Mappings

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

### Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

### CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

### 3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

### EE512: Error Control Coding

EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

### Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

### Homework 3 Solutions

Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

### Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

### The Simply Typed Lambda Calculus

Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

### HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

### Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

Sequent Calculi for the Modal µ-calculus over S5 Luca Alberucci, University of Berne Logic Colloquium Berne, July 4th 2008 Introduction Koz: Axiomatisation for the modal µ-calculus over K Axioms: All classical

Διαβάστε περισσότερα

### Section 8.3 Trigonometric Equations

99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

### Finite Field Problems: Solutions

Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

### Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

### Finitary proof systems for Kozen s µ

Finitary proof systems for Kozen s µ Bahareh Afshari Graham Leigh TU Wien University of Gothenburg homc & cdps 16, Singapore 1 / 17 Modal µ-calculus Syntax: p p φ ψ φ ψ φ φ x µx φ νx φ Semantics: For Kripke

Διαβάστε περισσότερα

### Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Overview Transition Semantics Configurations and the transition relation Executions and computation Inference rules for small-step structural operational semantics for the simple imperative language Transition

Διαβάστε περισσότερα

### Example Sheet 3 Solutions

Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

### Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

### Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

### Section 9.2 Polar Equations and Graphs

180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

### 2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

### LAP 2013 Problems in formulating the consecution calculus of contraction less relevant logics

LAP 2013 Problems in formulating the consecution calculus of contraction less relevant logics Mirjana Ilić, Branislav Boričić Faculty of Economics, Belgrade, Serbia mirjanailic@ekof.bg.ac.rs boricic@ekof.bg.ac.rs

Διαβάστε περισσότερα

### ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

### Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

### ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

### Simulation of G i with prenex cuts

Simulation of G i with prenex cuts Emil Jeřábek Phuong Nguyen November 25, 2010 Abstract We show that the quantified propositional proof systems G i are polynomially equivalent to their restricted versions

Διαβάστε περισσότερα

### Partial Differential Equations in Biology The boundary element method. March 26, 2013

The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

### Areas and Lengths in Polar Coordinates

Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

### derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

### SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

### Models for Probabilistic Programs with an Adversary

Models for Probabilistic Programs with an Adversary Robert Rand, Steve Zdancewic University of Pennsylvania Probabilistic Programming Semantics 2016 Interactive Proofs 2/47 Interactive Proofs 2/47 Interactive

Διαβάστε περισσότερα

### Problem Set 3: Solutions

CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

### Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

### Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

### forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

### Chapter 3: Ordinal Numbers

Chapter 3: Ordinal Numbers There are two kinds of number.. Ordinal numbers (0th), st, 2nd, 3rd, 4th, 5th,..., ω, ω +,... ω2, ω2+,... ω 2... answers to the question What position is... in a sequence? What

Διαβάστε περισσότερα

### Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

### Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

### Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

### Srednicki Chapter 55

Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

### Solutions to Exercise Sheet 5

Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

### CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

### Areas and Lengths in Polar Coordinates

Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

### Bounding Nonsplitting Enumeration Degrees

Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,

Διαβάστε περισσότερα

### ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

### PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

### Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

### Section 7.6 Double and Half Angle Formulas

09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

### Abstract Storage Devices

Abstract Storage Devices Robert König Ueli Maurer Stefano Tessaro SOFSEM 2009 January 27, 2009 Outline 1. Motivation: Storage Devices 2. Abstract Storage Devices (ASD s) 3. Reducibility 4. Factoring ASD

Διαβάστε περισσότερα

### Math221: HW# 1 solutions

Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

### Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

### b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

### Simulating non-prenex cuts in quantified propositional calculus

Simulating non-prenex cuts in quantified propositional calculus Emil Jeřábek Phuong Nguyen May 2, 2011 Abstract We show that the quantified propositional proof systems G i are polynomially equivalent to

Διαβάστε περισσότερα

### 4.6 Autoregressive Moving Average Model ARMA(1,1)

84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

### Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

### DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

### The challenges of non-stable predicates

The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

### 6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

### Second Order Partial Differential Equations

Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

### Συστήματα Διαχείρισης Βάσεων Δεδομένων

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Συστήματα Διαχείρισης Βάσεων Δεδομένων Φροντιστήριο 9: Transactions - part 1 Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Tutorial on Undo, Redo and Undo/Redo

Διαβάστε περισσότερα

### Trigonometry 1.TRIGONOMETRIC RATIOS

Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y

Διαβάστε περισσότερα

### Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2)

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2) Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών NP-Completeness (2) x 1 x 1 x 2 x 2 x 3 x 3 x 4 x 4 12 22 32 11 13 21

Διαβάστε περισσότερα

### Lecture 15 - Root System Axiomatics

Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the

Διαβάστε περισσότερα

### If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

### 5. Choice under Uncertainty

5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation

Διαβάστε περισσότερα

### A Conception of Inductive Logic: Example

A Conception of Inductive Logic: Example Patrick Maher Department of Philosophy, University of Illinois at Urbana-Champaign This paper presents a simple example of inductive logic done according to the

Διαβάστε περισσότερα

### A Note on Intuitionistic Fuzzy. Equivalence Relation

International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

### New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

### Matrices and Determinants

Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

### Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

### If we restrict the domain of y = sin x to [ π 2, π 2

Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

### Homework 8 Model Solution Section

MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

### Reminders: linear functions

Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

### The Pohozaev identity for the fractional Laplacian

The Pohozaev identity for the fractional Laplacian Xavier Ros-Oton Departament Matemàtica Aplicada I, Universitat Politècnica de Catalunya (joint work with Joaquim Serra) Xavier Ros-Oton (UPC) The Pohozaev

Διαβάστε περισσότερα

### LTL to Buchi. Overview. Buchi Model Checking LTL Translating LTL into Buchi. Ralf Huuck. Buchi Automata. Example

Overview LTL to Buchi Buchi Model Checking LTL Translating LTL into Buchi Ralf Huuck Buchi Automata Example Automaton which accepts infinite traces δ A Buchi automaton is 5-tuple Σ, Q, Q 0,δ, F Σ is a

Διαβάστε περισσότερα

### CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

### k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

### Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

### Formal Semantics. 1 Type Logic

Formal Semantics Principle of Compositionality The meaning of a sentence is determined by the meanings of its parts and the way they are put together. 1 Type Logic Types (a measure on expressions) The

Διαβάστε περισσότερα

### Completeness Theorem for System AS1

11 The Completeness Theorem for System AS1 1. Introduction...2 2. Previous Definitions...2 3. Deductive Consistency...2 4. Maximal Consistent Sets...5 5. Lindenbaum s Lemma...6 6. Every Maximal Consistent

Διαβάστε περισσότερα

### Trigonometric Formula Sheet

Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

### TMA4115 Matematikk 3

TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

### Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

### Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =

Διαβάστε περισσότερα

### Numerical Analysis FMN011

Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

### ( y) Partial Differential Equations

Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

### ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

### Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα

### MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

### ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

### ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/2006

ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/26 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι το 1 εκτός αν ορίζεται διαφορετικά στη διατύπωση

Διαβάστε περισσότερα

### Theorem 8 Let φ be the most powerful size α test of H

Testing composite hypotheses Θ = Θ 0 Θ c 0 H 0 : θ Θ 0 H 1 : θ Θ c 0 Definition 16 A test φ is a uniformly most powerful (UMP) level α test for H 0 vs. H 1 if φ has level α and for any other level α test

Διαβάστε περισσότερα

### Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

### ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

### D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

### de Rham Theorem May 10, 2016

de Rham Theorem May 10, 2016 Stokes formula and the integration morphism: Let M = σ Σ σ be a smooth triangulated manifold. Fact: Stokes formula σ ω = σ dω holds, e.g. for simplices. It can be used to define

Διαβάστε περισσότερα

### Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

### The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

The Probabilistic Method - Probabilistic Techniques Lecture 7: The Janson Inequality Sotiris Nikoletseas Associate Professor Computer Engineering and Informatics Department 2014-2015 Sotiris Nikoletseas,

Διαβάστε περισσότερα