1. ELEKTROANALIZNE METODE

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "1. ELEKTROANALIZNE METODE"

Transcript

1 1. ELEKTROANALIZNE METODE Elektroanalizne metode temeljijo predvsem na reakcijah in procesih na elektrodah, ki so v preiskovani raztopini ter na opazovanju električnih lastnosti teh raztopin. Reakcije so v glavnem oksidacijsko redukcijske in potekajo tako, da med elektrodama teče tok (elektrogravimetrija, kulometrija, polarografija in voltametrija), ali pa so v ravnotežju in tok ne teče (potenciometrija). a) i = 0 (potenciometrija, potenciometrične titracije) b) i 0 (elektrogravimetrija, voltamperometrija in polarografija, amperometrične titracije, kulometrija pri konstantnem potencialu, kulometrične titracije) Električne lastnosti, ki jih opazujemo v raztopinah so posledica prevodnosti (konduktometrija) in sprememb dielektrične konstante (dielkometrija). Te lastnosti povezujemo s spremembami koncentracije opazovane zvrsti v raztopini. Ločimo tri skupine elektroanaliznih metod. Glavna skupina vključuje metode, pri katerih opazujemo neko električno količino (potencial, tok, upornost/prevodnost) kot funkcijo koncentracije iskane komponente. Pri drugi skupini uporabimo merjenje te količine za ugotavljanje končne točke pri titrimetričnih metodah. Tretja skupina pa vključuje metode, pri katerih s pomočjo električnega toka pretvorimo posamezno komponento vzorca v obliko, ki jo nato določimo gravimetrično (elektrogravimetrija). Oksidacijsko redukcijske reakcije Prenos elektronov z ene kemijske zvrsti na drugo Oks + ne <======> Red Neka kemijska zvrst se oksidira, če odda elektrone in reducira, če elektrone sprejme, oksidanti sprejemajo elektrone, reducenti pa elektrone oddajajo. Primer: Fe 3+ + Cu > Fe 2+ + Cu + oksidant reducent Elektrokemijske člene sestavljata dva polčlena. Ločimo galvanske člene, pri katerih poteka spontana izmenjava elektronov in elektrolizne člene, pri katerih smer reakcije določimo z zunanjo napetostjo. Rezultat spontanih elektrokemijskih reakcij je lahko električni tok, če sta katodna in anodna reakcija ločeni.

2 Primer elektrokemijskega člena: Oksidacija: Cd(s) > Cd 2+ (aq) + 2e - Redukcija: Ag + (aq) + e > Ag (s) Shema elektrokemijskega člena: Cd(s)/CdCl 2 (aq), 0,01M// AgNO 3 (aq)/ag / fazna meja // elektrolitski ključ Po dogovoru napišemo anodo, kjer poteka oksidacija na levi strani. Elektrolitski ključ omogoča prenos električnega naboja med polčlenoma. Kot elektrolit v ključu (steklena cevka, na konceh zaprta s porozno frito ali napoljnjena z gelom) navadno uporabljamo KCl ali KNO 3 zaradi približno enake gibljivosti K + in Cl -, oziroma K + in NO 3 - ionov. Elektrodni potencial: napetost člena, ki ga sestavljata izbrana elektroda in standardna vodikova elektroda Standardni elektrodni potencial (aktivnosti reaktantov so 1). Nernstova enačba podaja vpliv koncentracije reaktantov na potencial: Če reakcijo zapišemo kot redukcijo aa +ne - <-----> bb, velja naslednja zveza: b o RT B E = E ln a nf A T= 25 o C : o B E = E 0, 059 log n A Napetost člena: E = E katode - E anode b a

3 Če je E > 0 govorimo o galvanskem členu.

4 1.1. POTENCIOMETRIJA, POTENCIOMETRIČNE TITRACIJE Merjenje elektrodnih potencialov lahko uporabljamo v analizne namene tako, da direktno merimo potencial E, ki je funkcija koncentracije/aktivnosti določane zvrsti ali pa z merjenjem potenciala ugotavljamo ekvivalentno točko pri titracijah (Potencial je funkcija volumna titrne raztopine). Direktne potenciometrične metode omogočajo hitro določevanje aktivnosti ionov v raztopinah, zato so primerne za ugotavljanje ravnotežij, za kontinuirna merjenja in za avtomatično vodenje procesov v obratih. Potenciometrične titracije lahko uporabljamo tudi pri obarvanih in motnih raztopinah, so manj subjektivne kot so indikatorni postopki, jih lahko avtomatiziramo. Pri potenciometričnih metodah merimo napetost galvanskega člena, ki ga tvorita indikatorska in referenčna elektroda v raztopini. Potrebujemo tudi napravo za merjenje potencialov. Indikatorske elektrode so kovinske in membranske. INDIKATORSKE ELEKTRODE 1. KOVINSKE INDIKATORSKE ELEKTRODE: Primerne so elektrode iz kovin (npr. Ag, Cu, Hg, Pb, Cd), na katerih so pojavi oksidacije oziroma redukcijereverzibilni, medtem ko dajejo nekatere kovine (npr. Fe, Ni, Co, W, Cr) vrednosti, ki se ne ponavljajo. Glede na vrsto elektrokemijske reakcije delimo kovinske elektrode na elektrode 1., 2. in 3. reda ter elektrode iz inertnih kovin. Elektroda 1. reda je kovinska elektroda (Ag, Cu, Hg, Cd, Pb), ki je v stiku z elektrolitom, katerega sestavni del so ioni te kovine. Potencial te elektrode je odvisen od aktivnosti kovinskih ionov Primer: Ag/Ag + Ag + + e <=====> Ag E o Ag+/Ag = V 0 E = E Ag / 0, 059 log Ag 1 [ Ag ] + + Kovin ne uporabljamo samo kot indikatorske elektrode za svoje katione (elektrode 1. reda), temveč tudi za anione, ki tvorijo s kationom slabo topne oborine ali stabilne komplekse (elektrode 2. reda). Elektroda 2. reda je torej reverzibilna kovinska elektroda,

5 ki je v stiku z elektrolitom, nasičenim s težko topno soljo te kovine. Potencial elektrode je odvisen od aktivnosti aniona, ki tvori težko topno sol. AgCl(s) + e <======> Ag(s) + Cl - E = E [ Ag + o Ag / Ag+ K ] = [ Cl + 0,059(log Ksp log[ Cl sp ] ]) = 0,222V 0,059 log[ Cl ] o Cl E = E + 0, 059log [ ] Ag / Ag Ksp Ag/AgCl/Cl - Srebrova elektroda v raztopini, ki je nasičena z AgCl, omogoča določevanje [Cl - ]. Hg elektrodo lahko uporabimo za določevanje EDTA (Y 4- ) (elektroda 2.reda) HgY e <=====> Hg + Y 4- E 4 0,059 [ Y ] log 2 2 [ HgY ] o = E 2 HgY / Hg HgY 2- je zelo stabilen, zato je njegova koncentracija praktično konstantna, potencial zavisi le od [Y 4- ]. Elektrodo pa lahko uporabimo tudi za določevanje koncentracije kationov, ki tvorijo z EDTA manj stabilne komplekse kot Hg(l). Ca 2+ + Y 4- <====> CaY 2- Hg 2+ + Y 4- <====> HgY 2- E K 2 = CaY 2 [ CaY ] 2+ 4 [ Ca ][ Y ] 2 4 [ CaY ] [ Y ] = [ Ca ] KCaY ,059 [ CaY log 2 [ HgY 2 o Hg = E HgY 2 / Hg 2 2 o 0, 059 [ CaY ] E = E HgY 2 log / Hg [ HgY ][ Ca ] K ] ] Če je Ca 2+ v presežku, sta [CaY 2- ] in [HgY 2- ] praktično konstantni, potencial zavisi le od [Ca 2+ ] (elektroda 3.reda). CaY

6 Elektrodo 3. reda torej uporabljamo za določevanje kovin, ki niso primerne kot elektrode I. reda. V tem primeru morajo ioni kovine, ki jo uporabljamo kot indikatorsko elektrodo in kationi, ki jih določujemo, tvoriti z istim anionom težko topne soli ali stabilnega kompleksa. Če je raztopina nasičena s težko topnima solema obeh kovin, kaže kovinska elektroda potencial, ki je odvisenod aktivnosti druge kovine (npr. potencial Pb elektrode je v nasičeni raztopini PbC 2 O 4 in CaC 2 O 4 odvisen od aktivnosti Ca 2+ ionov, ki jo določujemo)., 0, EHg = K log [ 2+ 2 Ca ] INERTNE ELEKTRODE Če sta oksidirana in reducirana oblika določane zvrsti topni, uporabljamo za oksidacijsko redukcijske reakcije kot indikatorsko elektrodo kovinsko žico iz inertne kovine (zlato, platina). Potencial, ki ga kaže elektroda, je odvisen od razmerja med koncentracijo reducirane in oksidirane oblike. o E = E , 059 log Fe / Fe Fe Fe Membranske elektrode Drugo skupino indikatorskih elektrod predstavljajo membranske elektrode. Osnova delovanja teh elektrod je proces ionske izmenjave in difuzije, oziroma prenos ionov skozi membrano. Steklene elektrode uporabljamo za določevanje ph raztopin, elektrode s trdno in tekočinsko membrano (ionoselektivne elektrode) za potenciometrično določitev različnih lationov in anionov v koncentracijskem območju od 10 0 do 10-7 M, plinske elektrode pa za določanje nekaterih plinov (CO 2, NO 2, NH 3 ). Vrste ionoselektivnih elektrod Osnovni element ionoselektivne elektrode je membran. Potencial ionoselektivne elektrode je odvisen od aktivnosti (koncentracije) posameznega iona v raztopini na obeh straneh membrane. Glede na vrsto membrane jih razdelimo v štiri skupine: steklene elektrode, elektrode s tekočinsko membrano, trdne elektrode plinske elektrode. A) TEKOČINSKE MEMBRANSKE ELEKTRODE

7 STEKLENE ELEKTRODE ZA MERJENJE PH ref(2) Ag/AgCl ref(1) 0,1 M HCl (a2) (a1) Slika Shema steklene elektrode hidratizirani gel zun. raztopina notr. raztopina a mm H + +Na + 0,1 mm 10-4 mm Na+ H + +Na + a2 H + suha. stekl. plast H + steklena membrana

8 H + razt. + Na+ gel- <===> Na+ razt. + H+ gela 2 = konst E = K log a 1 = K ph ' RT µ B E = K + ln a1 + k( ). b1 F µ H µ B, µ H - gibljivosti B+ in H + v gelu K določimo tako, da merimo potencial v raztopini, za katero poznamo a 1. Za merjenje ph do 9 uporabljamo steklene membrane iz stekla z natrijem (22% Na 2 O, 6% Cao, 72% SiO 2), membrane namenjene za merjenje nad ph 9 vsebujejo litij. Asimetrični potencial; E, ko je a 1 = a 2 Steklene elektrode za druge katione: Steklene elektrode so kasneje priredili za merjenje aktivnosti (koncentracije) drugih kationov. Če namreč steklo vsebuje Al 2 O 3, je a1 << k(µ B /µ H )b 1, membrana postane občutljiva na druge katione. Tako poznamo steklene elektrode za Na +, K +, NH 4+, Rb +, Cs +, Li + in Ag +. Tekočinske ionoselektivne elektrode: tek. ionski izmenjevalec Ref.1 Ref.2 a 1 a 2 porozno steklo ali plastika

9 Slika Shema tekočinske ionoselektivne elektrode RCa <====> R 2- + Ca 2+ E = K + 0, 059 loga 2 1 Ionski izmenjevalec je nehlapna organska substanca, ki se ne meša z vodo in ne vsebuje kislinske, bazične ali kelatne funkcionalne skupine. S Ca elektrodo lahko merimo aktivnosti Ca do 10-5 M v ph območju med 5,5 in 11. Motijo Mg, Na in K. S to elektrodeo lahko merimo razropine, v katerih je razmerje med Ca in Mg ioni do 50:1 oziroma Ca: Na,K 1000:1. Na razpolago imamo komercialne elektrode za Ca 2+ Ca 2+ + Mg 2+, ClO 4 -, NO 3 -, BF 4 -, Cl -, K +. Trdne elektrode Najpomembnejšo skupino ionoselektivnih elektrod predstavljajo trdne elektrode, ki jih delimo na homogene (membrana je iz monokristala, npr. fluoridna elektroda, kjer je membrana iz monokristala LaF 3 ) in heterogene (membrana je sestavljena iz nosilne neaktivne mase, npr. silikonska guma, v kateri je dispergirana ionsko selektivna membranska komponenta, npr. AgJ ali AgCl) Princip delovanja ionoselektivnih elektrod Vsaka ionoselektivna elektroda sestoji iz naslednjih delov: membrane, notranje referenčne elektrode in notranje referenčne raztopine, ki je med referenčno elektrodo in membrano. Odvisnost potenciala ionoselektivne elektrode od koncentracije ionov v analizni raztopini lahko prikažemo na primeru fluoridne elektrode. Membrana je iz monokristala LaF 3, ki je zaradi večje prevodnosti dopiran z La ali drugimi elementi iz skupine redkih zemelj. Notranja referenčna raztopina je mešanica raztopin z določeno koncentracijo Na +, F - in Cl - ionov (npr. 0,1M NaF in 0,1M NaCl). Notranja referenčna elektroda je srebrova elektroda, katere potencial določa koncentracija kloridnega iona v referenčni raztopini. Ko elektrodo pomočimo v raztopino z določeno koncentracijo (aktivnostjo) fluoridnih ionov, je potencial elektrode odvisen od koncentracije fluoridnih ionov v analizni raztopini. Potencial fluoridne elektrode merimo proti zunanji referenčni elektrodi (SCE). Elektroda ima 1000 krat večjo občutljivost za F - kot za ostale anione. Celico ponazorimo na naslednji način: Ag/AgCl, Cl(0,1M),F - (0,1M)/LaF 3 /analizna raztopina/sce Napetost (EMS) člena definira Nernstova enačba

10 RT a E = K +.ln F a F razt. F vzorec Ker je aktivnost F- v notranji raztopini konstantna, lahko enačbo pišemo v obliki: E = E, RT F.ln a - F vzorec Enačba kaže, da je merjena napetost člena odvisna od aktivnosti F - v analizirani raztopini. Če poznamo E in izmerimo E, lahko torej določimo aktivnost koncentracijo F - v vzorcu. Ker vrednosti E ne moremo točno izračunati, običajno uporabljamo za določevanje koncentracije (aktivnosti) umeritvene krivulje. Potencial ionoselektivne elektrode pa pogosto ni odvisen samo od aktivnosti iona, ki ga določujemo, ampak vplivajo na njegovo vrednost tudi nekateri ostali ioni. Za vsako ionoselektivno eletrodo moramo zato poznati konstanto selektivnosti. Selektivnostna konstanta je merilo za spremembo elektrodnega potenciala ionoselektivne elektrode v prisotnosti interferenčnega iona v raztopini. Razen tega je potencial ionoselektivne elektrode odvisen še od ionske moči raztopine ter kemijskih reakcij v raztopini. Vse te vplive moramo pri praktičnem delu upoštevati. Komercialno so dostopne ionoselektivne elektrode za Cd 2+, Cu 2+, CN -, F -, Pb 2+, Ag +, S 2-, Na +, SCN -. Elektrode, občutljive za pline: NH 3, NH 4+, SO 2, H 2 SO 3, SO 3 2-, NO 2-, NO 2, S 2-, HS -, H 2 S, CN -, HCN, F -, HF itd. REFERENČNE ELEKTRODE: Standardna vodikova elektroda 1/2 H 2 ( g, p=1atm) <---> H+ (aq, a=1) + e-

11 H 2, p = 1 atm el. klju~ Pt a H + = 1 Slika Shema standardne vodikove elektrode Standardno vodikovo elektrodo v praksi nadomeščajo elektrode, katerih priprava je enostavna, njihovi potenciali pa so ponovljivi ter se ne spreminjajo, če tečejo majhni tokovi. Nasičena kalomelova elektroda (Satorated calomel electrode SCE) Hg 2 Cl 2 (nas), KCl(nas)/Hg Reakcija: Hg 2 Cl 2(s) + 2e <==> 2 Hg (l) + 2 Cl - E o = V E = f(acl -) Shema: Pt `ica Hg(l) Nas. razt. KCl Hg,Hg 2 Cl 2 +KCl Steklena volna KCl(s) Frita Slika Shema nasičene kalomelove elektrode

12 Odvisnost potenciala kalomelove elektrode od koncentracije KCl in temperature konc. KCl E vs SHE nasičena nas. 0,242-7,6x10-4 (t-25) 1 molarna 1.0M 0,280-2,4x10-4 (t-25) 0,1 molarna 0,1M 0,334-7x10-5 (t-25) Ag/AgCl elektroda: AgCl (nas), KCl (xm)/ag AgCl + e<===> Ag + Cl - E o = V, E = V (nas KCl, 25 o C)

13 nas.razt. KCl +AgCl Ag žica AgCl pasta trdni KCl +AgCl Frita Slika 1.1.5: Shema Ag/AgCl elektrode Standardni Westonov člen: Cd (Hg)/ CdSO 4.8/3 H 2 O(nas) / Hg 2 SO 4 (nas) / Hg Reakcije: Cd(Hg) ---> Cd 2+ + Hg +2e Hg 2 SO 4 + 2e ---> 2 Hg + SO 2-4 E o( 25 o C) = 1,0183 V Direktna potenciometrija E = E ref - E ind + E j E j tekočinski potencial, ki nastaja zaradi različnih gibljivosti ionov ob stiku dveh tekočin Eind = K + 0, 059 log a1 n pm = log a = 1 ' ( E ( Eref + E j K) E K = 0, 059 0, 059

14 K' moramo določiti eksperimentalno s standardnimi raztopinami (pufri).

15 Potenciometrične titracije Pri potenciometričnih titracijah merimo med dodajanjem reagenta spremembo potenciala indikatorske elektrode. V začetku titracije so dodatki lahko veliki, v bližini ekvivalentne točke manjši in enaki, titriramo preko ekvivalentne točke. Za potenciometrične titracije potrebujemo instrument za merjenje napetosti (elektronski voltmeter, ph meter), indikatorsko in referenčno elektrodo (Slika ). mv meter indikatorska elektroda referenčna elektroda Slika : Shema aparature za potenciometrično titracijo Končno točko titracije določimo grafično, računsko (prvi odvod, drugi odvod) ali z eksperimentalnimi tehnikami (tehnika z elektrodami z zapisom ali vnaprej določenim potencialom za konec titracije- avtomatski titratorji). Pri računskem načinu je končna točka titracije pri maksimalni vrednosti E/ V ali kadar je 2 E/ V 2 =0. Porabljeni volumen Vx titrne raztopine bo zato: V x 2 Δ E1 = V1 + ΔV 2 2 Δ E Δ E 1 2 kjer je V 1 volumen titrne raztopine, ki ustreza zadnjemu pozitivnemu 2 E/ V 2, V konstantni dodatek reagenta in 2 E 1, 2 E 2 zadnji pozitivni in negativni 2 E/ V 2. Slika kaže tipično titracijsko krivuljo.

16 Potenciometrično določanje končne točke uporabljamo predvsem pri oksidacijskoredukcijskih, nevtralizacijskih in obarjalnih titracijah, deloma tudi v nevodnih raztopinah. A B C E / V E 2 E / V 2 0 V [ m l ] Slika 1.6. Titracijske krivulje A: Krivulja potenciometrične titracije B: Prvi odvod krivulje C: Drugi odvod krivulje V [ m l ] V [ m l ]

17 1.2. ELEKTROGRAVIMETRIJA Elektrogravimetrija je elektroanalizna metoda, pri kateri izločimo element iz vodne raztopine na elektrodo, ki jo nato stehtamo in tako določimo njegovo množino. Elektrogravimetrične postopke delimo v tri skupine. V prvi so postopki, pri katerih je jakost toka ali napetost celice konstantna, pri drugi skupini je konstanten potencial na delovni elektrodi, v tretjo skupino pa sodijo elektrogravimetrični postopki brez zunanje napetosti. Če elektroliziramo raztopino Cu 2+ ionov ([Cu 2+ ] = 0,1 mol l -1, 1M H 2 SO 4, površina elektrode = 100 cm 2, upornost celice = 0,5 Ω, jakost toka = 1A), ne bi smel teči tok pri napetostih člena, ki so manjše od -0,92 V pri višjih napetostih pa bi morala upornost celice določati jakost toka (slika 1.2.1). Slika Tokovno napetostna krivulja pri elektrolizi E = E k - E a -ir teor. krivulja koncentracijska polarizacija i (A) dejanska krivulja E = E k - E a - ir - E ov E (V) prenapetost Cu 2+ + H 2 O > 1/2 O 2 + 2H + + Cu Katoda: Cu e > Cu E o = 0,34 V Anoda: 1/2 O 2 + 2H + + 2e > H 2 O E o = 1,23 V

18 V resnici pa teče majhen tok že v začetku in začne naraščati šele pri napetosti -2,3 V ( E = 0,92-0,5-0,85). ki jo določata prenapetost kisika na platinasti elektrodi in padec napetosti zaradi upornosti celice. Najprimernejše gostote toka pri elektrogravimetriji so od 0,01 do 0,1 A cm -2, zato je v našem primeru za elektrolizo Cu 2+ ionov napetost -2,3 V najnižja še primerna napetost. Elektrolizo pri konstantni napetosti izvedemo tako, da pritisnemo na elektrodi primerno napetost in jo med poskusom držimo konstantno. Koncentracija Cu 2+ ionov med elektrolizo pada, naraste pa koncentracija H 3 O +. Nastopi tudi koncentracijska polarizacija na katodi. Zaradi tega se premakne E k k bolj negativnim vrednostim. Izločijo se lahko tudi drugi ioni, razvija pa se vodik. Tehnika je predvsem primerna za določevanje kovin, ki se lahko reducirajo (npr. Cu). Tudi pri elektrolizi s konstantnim tokom se zaradi koncentracijske polarizacije zmanjšuje jakost toka. Na določeni vrednosti jo obdržimo z zviševanjem napetosti celice, razvijati se lahko začne H 2. H 2 vpliva na kvaliteto oborin, zato navadno dodajamo snovi, ki se lažje reducirajo, npr. NO 3-. NO H + + 8e NH H 2 O

19 Tabela 1: Elementi, ki jih določamo z elektrogravimetrijo Ion OBORINA pogoji Cd 2+ Cd alkalna cianidna raztopina Co 2+ Co amoniakalna, sulfatna raztopina Cu 2+ Cu HNO 3 -H 2 SO 4 raztopina Fe 3+ Fe amoniakalna sulfatna raztopina Pb 2+ PbO 2 HNO 3 Ni 2+ Ni amoniakalna sulfatna raztopina Ag + Ag cianidna raztopina Sn 2+ Sn raztopina amonijevega oksalata, H 2 SO 4 Zn 2+ Zn amoniakalna ali NaOH raztopina Kovinski ioni se reducirajo na katodi, lahko pa se izločijo na anodi tudi kot oksidi (PbO 2, Co 2 O 3 ) Pb H 2 O > PbO 2 + 4H + + 2e Elektroliza pri konstantnem katodnem potencialu nima prej omenjenih pomanjkljivosti. [Cu 2+ ]: 0,1 ---> 10-6 E k +0, > +0,16V Če pade koncentracija Cu 2+ od 0,1 M do 10-6 M, se spremeni potencial katode od 0,21 V do 0,16 V Teoretično lahko ločimo Cu od vsakega elementa, ki se ne izloča v tem območju. Na splošno velja, da lahko izložimo kvantitativno ( > 10-6 M) M 3+, M 2+, M + v potencionalnem območju, ki je približno 0,1 V, 0,2 v oziroma 0,3 V. Navadno delamo tako, da med elektrolizo kontroliramo potencial katode. Elektrolizo končamo, ko pade jakost toka na 0. Z elektrolizo pri kontroliranem potencialu lahko določimo zaporedno več kovin v raztopini. Tako, na primer, lahko določimo Cu, Bi, Pb in Sn v raztopini. Prve tri elemente izločimo iz nevtralne tartratne raztopine (Cu, E k = - 0,2V; Bi, E k = -0,4V; Pb, E k = -0,6V vs SCE), nakar raztopino nakisamo in izločimo Sn pri E k = -0,65 V vs. SCE,

20 Na sliki in sta prikazani načelni shemi aparatur za elektrolizo pri kontroliranem toku oziroma napetosti celice (a) in kontroliranem katodnem potencialu (b). Slika Shema aparature za elektrolizo pri kontroliranem toku oziroma napetosti A A V Pt elektrodi Slika Shema aparature pri kontroliranem potencialu delovne elektrode B A V mv meter SCE Pt elektrodi Tabela 2: Eektroliza s kontroliranim katodnim potencialom element Ag možni navzoči elementi Cu, težke kovine

21 Cu Bi Sb Sn Pb Cd Ni Bi,Sb, Sn, Pb, Ni, Cd, Zn Cu, Pb, Zn, Sb, Cd, Sn Pb, Sn Cd, Zn, Mn, Fe Cd, Sn, Ni, Zn, Mn, Al, Fe Zn Zn, Al, Fe

22 Spontana elektrogravimetrična analiza Zn + Cu > Zn 2+ + Cu Slika Shema aparature za spontano elektrolizo Pt Zn ZnSO 4 Cu 2+ S primerno izbiro elektrod in elektroltov lahko izvedemo elektrogravimetrično določitev brez zunanjega izvora napetosti Tabela 3: Spontana elektroliza Določani element Anoda Ne motijo Ag Cu, CuSO 4 Cu, Fe, Ni, Zn Cu Zn, ZnCl 2 Ni, Zn Bi Mg, MgCl 2 Pb Zn, ZnCl 2 Zn Ni Mg, MgSO 4 Co Mg, NH 4, HCl Cd Zn, ZnCl 2 Zn Zn Mg, NH 4 Cl, HCl

23 1.3. POLAROGRAFIJA Polarografija je pomembna elektroanalizna metoda za določevanje anorganskih in organskih spojin. Z njo lahko določujemo nekatere snovi v zelo širokem koncentracijskem območju, s klasično tehniko od 10-2 M do 10-6 M, z novejšimi tehnikami diferencialne pulzne polarografije in voltametrije pa do M. Pri klasični (d.c.) polarografiji dosežemo največjo natančnost, če je koncentracija določene snovi v raztopini od 10-2 M do 10-4 M (r.s.d. = 1-3%), v koncentracijskem območju od 10-3 do 10-6 M pa je natančnost manjša (r.s.d. = 5%). Klasična polarografija Zaradi elektrodne in koncentracijske polarizacije daje ion (zvrst) pri polarografiranju i-e krivuljo značilne oblike (polarogram) slika Lega polarografskega vala (E 1/2 ) zavisi predvsem od iona oziroma zvrsti, višina (jakost mejnega toka) pa od koncentracije zvrsti. Slika 1.3.1: Oblika polarograma i limitni tok rezidualni tok E E 1/2 (polvalni potencial) Tok je posledica oksidacijsko redukcijske reakcije na Hg elektrodi: Ox + ne <=====> red Ox - substanca, ki jo reduciramo na Hg mikroelektrodi Red - reakcijski produkt (kovinski amalgam, oborina na elektrodi, topni ion ali molekula)

24 Pogoji za elektrodno reakcijo : Elektrodni proces mora biti hiter in reverzibilen, koncentracija kovinskih ionov v tanki plasti določa potencial elektrode (slika ) Slika C C o plast, v kateri se vzpostavi ravnotežje Poprečni difuzijski tok je po Ilkoviču za živosrebrno kapalno elektrodo: I d = 607 nd 1/2 m 2/3 t 1/6 c kjer so: Id n D m t c poprečni difuzijski tok (µa) število izmenjanih elektronov difuzijski koeficient (cm2s-1) masni pretok Hg skozi kapilaro (mgs-1) kapalni čas (s) koncentracija določane zvrsti (mmoll-1) S polarografijo določamo torej koncentracijo zvrsti (depolarizatorja) tako, da merimo limitni (difuzijski, adsorpcijski, katalitični, kinetični) tok. Razen njega pa lahko še nastopijo migracijski in konvekcijki tok, zato jih moramo odstraniti oziroma zmanjšati. Migracijski tok zmanjšamo z nosilnim elektrolitom, katerega koncentracija mora biti najmanj dvajsetkrat višja, kot je koncentracija zvrsti, ki jo določamo. če se traztopina med merjenjem ne meša, lahko zanemarimo vpliv konvekcijskega toka. Pri praktičnem delu sta važni še temperatura in višina živosrebrnega stolpa nad kapilaro, ki vplivata na velikost difuziskega toka, zato morata biti med delom konstantni. Višina Hg stolpa naj bo taka, da bo kapalni čas 2-5 sekund.

25 Polarografski val lahko deformirajo tudi polarografski maksimumi in vali zaradi redukcije kisika v raztopini, pri nizjih koncentracijah pa kapacitivni tok (slika ). Polarografske maksimume odstranjujemo z dodatkom površinsko aktivnih snovi (želatina, Triton X-100). Te snovi vplivajo tudi na mejni difuzijski tok, zato mora biti njihova koncentracija vedno enaka. Slika 1.3.3: Maksimum 1. reda i d maksimum Vodne raztopine vsebujejo kisik (cca mol/l). Kisik daje dva polarografska vala, zato ga moramo odstraniti. Navadno uvajamo čiste pline (N 2, H 2, Ar) ali pa ga reduciramo (npr. v alkalnem z Na 2 S 2 O 3 ). Redukcija kisika na Hg elektrodi (dva vala): O 2 + 2H e > H 2 O 2 0 do -0,4 V vs SCE H 2 O 2 + 2H e -----> 2 H 2 O -0,5 do -1,6 V vs SCE E Pri klasični polarografiji lahko kapacitivni tok le kompenziramo, zaoto z njo ne moremo določevati depolarizatorjev, ki so v koncentracijah pod 10-5 mol/l. Aparatura

26 Načelno shemo aparature za polarografijo (polarografa) kaže slika Polarograf mora omogočati kontinuirni dviganje napetosti na elektrodah s pomočjo potenciometra in merjenje difuzijskih tokov (µa, ma). Kapalna živosrebrna elektroda sestoji iz steklene kapilare in nivojske cevi, da je nivo Hg stalen. Pojem polarografije je vezan z uporabo živosrebrne kapalne elektrode kot delovne elektrode ( t kap. = 3-6 sek) Zakaj je Hg primeren elektrodni material? Velika prenapetost H 2, površina se obnavlja, dobro se ponavljajo poprečne jakosti tokov, delovno območje od +0,4 do - 2,8 V vs. SCE; Ostale delovne elektrode, ki jih uporabljamo v voltametriji so Pt rotirajoča elektroda, ogljikove elektrode (grafitna pasta, steklasti grafit). Referenčne elektrode: SCE, živo srebro na dnu polarografske celice, Ag/AgCl Slika Načelna shema polarografa (J. Heyrovsky 1922): izvor istosmerne napetosti - + Potenciometer A V kapalna živosrebrna elektroda

27 Sestava raztopine, ki jo polarografiramo: a) depolarizator: b) nosilni elektrolit M; nosilni elektrolit praktično odstrani vpliv migracijskega toka na višino polarografskega vala, včasih tudi loči vale. c) supresor maksimumov (slika 1.3.6): 0,01% želatina, Triton X-100 d) pufer (pri organskih substancah) e) odstranjevanje kisika (N 2, Ar, Na 2 SO 3 ); Polarografija anorganskih spojin a) kovinski ioni: Redukcija lahko poteče do nižje oksidacijske stopnje ali do elementarne kovine, pri čemer s Hg nastane amalgam: M 2+ + e > M + M + + e >M o Oblika porarograma pri polarografiranju raztopino, ki vsebuje več kovinskih ionov je prikazana na sliki Slika 1.3.5: Polarogram raztopine, ki vsebuje več kovinskih ionov I d razkroj nosil. elektrolita M 3 M 2 M 1 E

28 b) Polarografiramo lahko tudi alkalije, uporabljati moramo nosilni elektrolit z dovolj negativnim razkrojnim potencialom ( tetraalkil- amonijevi halogenidi), anione, ki se na elektrodi reducirajo ( BrO 3 -, JO3 -, Cr2 O 6 2-, VO 3-, SeO 3 2-, NO 2 - ), anione, ki tvorijo komplekse ali oborine s Hg (Br -, J -, SCN -,CN - ) 2Hg(I) + 2 Cl - <====> Hg 2 Cl 2 + 2e Hg(I) + 2S 2 O 3 2- <=====> Hg(S 2 O 3 ) e ter nekatere zvrsti brez naboja: O 2, H 2 O 2, N 2 H 4, S, SO 2 Polarografija organskih spojin Na Hg elektrodi lahko oksidiramo ali reduciramo mnoge funkcionalne skupine in tako določimo spojine, ki vsebujejo te skupine. Reakcije so navadno počasne in bolj zapletene, na polvalni potencial redukcije ali oksidacije pa vpliva ph, saj vodikovi ioni navadno sedelujejo pri reakcijah na elektrodi. Odvisnost polvalnega potenciala od ph raztopine: 1. E 1/2 = f (ph) : R + nh + + ne <===> RHn 2. Pri različnih ph so mehanizmi elektrodnih reakcij lahko različni: a) alkalna raztopina ( E 1/2 = 1,4 V) C 6 H 5 CHO + 2H e <======>C 6 H 5 CH 2 OH benzaldehid benzilalkohol b) ph<2 (E 1/2 = -1,0 V ): val je polovico manjši 2 C 6 H 5 CHO + 2H+ + 2e <======> C 6 H 5 CHOHCHOHC 6 H 5 hidrobenzoin Topila, ki so primerna za polarografijo organskih substanc, so glikol, dioksan, alkoholi, ocetna kislina, etilenglikol, formamid. Nosilni elektrolit: tetraalkilamonijeve soli Reakcije so često ireverzibilne. Funkcionalne skupine, ki so polarografsko"aktivne": 1. Karboksilna skupina (aldehidi, ketoni, kinoni)

29 2. Karboksilne kisline (ne enostavne alifatske in aromatske monokarboksilne kisline) 3. Peroksidi i eposkidi 4. Nitro, nitozo, N-oksidne in azo-skupine 5. Organske halogenidne skupine (zamenjava halogena z vodikom) 6. C=C skupina, če je konjugirana z drugo dvojno vezjo, aromatskim obročem ali nenasičeno skupino 7. Hidrokinoni in merkaptani (anodni val) Določevanje koncentracij depolarizatorjev Ilkovičeva enačba kaže, da je mejni difuzijski tok premo sorazmeren koncentraciji depolarizatorja. Z merjenjem difuzijskega toka in poznavanjem ostalih količin (D, n, m, t) lahko izračunamo koncentracijo depolarizatorja. Pri kvantitativni analizi je sestava raztopine odvisna od analiznega vzorca in zato se spreminjajo tudi te količine, kar onemogoča direkten izračun koncentracije depolarizatorja po Ilkovičevi enačbi. Pri praktičnem delu določujemo koncentracijo na več primerjalnih načinov. Navedli bomo dva, ki ju navadno uporabljamo. Način z umeritveno krivuljo: Ta način je primeren ze serijske analize in za zelo različne koncentracije depolarizatorja v analiznem vzorcu. Raztopine za umeritveno krivuljo, katerim dodajamo točne množine standardene raztopine depolarizatorja, pripravimo na enak način in po enakem postopku kot pri vzorcu. Ostali pogoji (temperatura, kapilara, osnovni elektrolit, višina Hg stolpa) morajo biti pri polarografiranju analiznega vzorca. Način standardnega dodatka z dvema raztopinama: Ta način je predvsem uporaben pri analizi vzorcev, pri katerih ne motemo predvideti vpliva posameznih sestavin (npr. adsorpcija, koprecipitacije itd.). Pri tej metodi postopamo takole: zatehtamo dvakrat analizni vzorec in jih po raztapljanju prelijemo v dve merilni buči. V obe dodamo vse predpisane kemikalije in nato dodamo eni raztopini še znan volumen znane koncentracije standardne raztopine depolarizatorja. Obe raztopini polarografiramo pri enakih pogojih. Neznano koncentracijo izračunamo po enačbi: c x cs.v s.h = V h x ( h ) x c x iskana koncentracija c s koncentracija standardne raztopine depolarizatorja V s volumen dodane standarden raztopine V volumen merilne buče h x višine mejnega difuzijskega toka pri polarografiranju raztopine brez dodatka standardne raztopine h višina mejnega difuzijskega toka pri polarografiranju raztopine z dodatkom standardne raztopine

30 PULZNA POLAROGRAFIJA Zaradi večje občutljivosti je diferencialna puzna polarografija danes povsem nadomestila klasično tehniko. Razumevanje te tehnike pa terja poznavanje teoretskih osnov klasične d.c. polarografije (elektrodni procesi, izbira osnovnega elektrolita in ostalih pogojev). Omenili smo že, d.c. polarografiji narašča potencial delovne elektrode linearno s časom. Tok merimo neprekinjeno, zato ima polarogram obliko, ki je prikazana na sliki Slika 1.3.7: Primerjava konvencionalnega "d.c." polarograma s polarogramom, ki ga dobimo pri diferencialni pulzni polarografiji I "DC" polarogram "DPP" polarogram E Pri diferencialni pulzni polarografiji ob koncu vsake kapljice (zadnjih 60 ms) superponiramo kratke napetostne pulze z amplitudo med 5 in 100 mv na linearno spreminjajoči se potencial, kot je prikazano na sliki Slika konec kapljice Potencial 17 ms 17 ms 60 ms amplituda pulzov ( mv) ~as

31 Kapljico nato prekinemo z mehanskim sunkom. Tok merimo pred pulzom in ob koncu (zadnjih 17 ms) ter zabeležimo razliko tokov posameznih meritev, ki jo opazujemo v odvisnosti od potenciala delovne elekrode. Rezultat meritev je polarogram, ki ima obliko vrha, kar je posledica načina merjenja tokov (odvajanje) (slika ). Velikost maksimalnih tokov je odvisna od amplitude superponiranih pulzov. V primerjavo s klasično tehniko je diferencialna pulzna polarografija mnogo bolj občutljiva. Večja občutljivost je posledica povečanega Faradayevega toka (tok zaradi elektrodne reakcije) in zmanjšanja kapacitivnih tokov, ki predstavljajo omejitev v klasični tehniki. razmerje Faradayevega in kapacitivnega toka med meritvijo je prikazano na sliki Slika i "Faradayev" tok "kapacitivni" tok ~as Večji tokovi so prav tako posledica načina merjenja, saj merimo tokove ob koncu posamezne kaplice, ko je površina elektrode največja. VOLTAMETRIJA Kot delovno elektrodo uporabimo stacionarno mikro elektrodo (stacionarna živosrebrna elektroda, elektroda iz grafitne paste ali steklastega grafita) Stripping voltametrija Občutljivost polarografskih metod lahko v znatni meri izboljšamo, če pred merjenjem izvedemo ustrezno predkoncentriranje komponente, ki jo želimo določevati. Tako pri stripping voltametriji zvrsti, ki jih določujemo, v prvi stopnji z elektrolizo izločimo na delovno elektrodo. Tako lahko npr. kovinski kation reduciramo do kovine, ki se

32 akumulira na delovni elektrodi. Če uporabimo kot delovno elektrodo stacionarno Hg elektrodo in je kovina, ki se je na elektrodi izločila topna v živem srebru, bo nastal kovinski amalgam. M n+ + ne ----> M o (Hg) koncentriranje Po elektrolizi s spreminjanjem potenciala izločeno kovino raztopino ter merimo anodni tok, ki je posledica oksidacije kovine (slika ). Mo(Hg) > M n+ + ne voltametrična določitev (raztapljanje kovine - oksidacija) Slika Potencial, V -0,8-0,6-0,4-0,2 elektroliza raztapljanje 0 čas Oblika voltamograma je prikazana na sliki Slika

33 Pb Pb e tok Cd Cd e -0,6-0,4-0,2 Potencial, V vs SCE Halide in nekatere druge anione lahko določamo, če uporabimo elektrodo, ki reagira z anionom. Tako npr. Hg pri oksidaciji tvori v prisotnosti halidni anionov težkotopno sol, ki se v stopnji predkoncentriranja akumulira na elektrodni površini. Po predkoncentriranju nastalo zvrst reduciramo ter opazujemo nastale katodne tokove (katodna stripping voltametrija). Reakcije: 2 Cl Hg - 2e > Hg 2 Cl 2 predkoncentriranje Hg 2 Cl 2 +2e > 2 Hg + 2 Cl - voltametrična določitev (redukcija) Ker je koncentracija izločene kovine na elektrodni površini (v amalgamu) večja, kot je njegova koncentracija v analizni raztopini, bodo tokovi, ki so posledica oksidacije elementa bistveno večji od ustreznih redukcijskih tokov. Z elektrolizo iz raztopine izločimo le del elementa, ki ga določamo, zato je pomembno, da so elektrolizni pogoji konstantni (velikost elektrode, hitrost mešanja, potencial elektrode, čas elektrolize). Tehnika je relativna, zato vrednotimo rezultate kot pri polarografiji t.j. s pomočjo umeritvene krivulja in/ali tehniko standardnega dodatka.. Anodna stripping voltametrija omogoča tudi hkratno določitev več kovinskih ionov, terja pa popolno mineralizacijo vzorca. S to tehniko največ določujemo sledove bakra, bizmuta, svinca, talija, kadmija in cinka v vodah, bioloških vzorcih in čistih materialih. Delovne elektrode: Najpogosteje uporabljamo stacionarno živosrebrno elektrodo, večjo občutljivost meritev pa dosežemo z uporabo trdne elektrode iz steklastega grafita, na katero je nanešena tanka plast živega srebra. Za delo v anodnem področju so primerne elektrode iz grafitne paste in steklastega grafita. AMPEROMETRIČNE TITRACIJE Amperometrične titracije so titracije, pri katerih merimo med dodajanjem reagenta jakost toka med dvema elektrodama. Na elektrodi pritisnemo konstantno napetost. Glede na to

34 ali se lahko polarizirata ena ali obe elektrodi govorimo o amperometrični titraciji z eno polarizirano elektrodo ali amperometrični titraciji z dvema polariziranima elektrodama. Amperometrična titracija z eno polarizirano elektrodo Pri amperometrični titraciji merimo jakost limitnega toka pri vsakem dodatku reagenta. Za metodo veljajo zakonitosti polarografije, oziroma voltametrije ter titrimetrije, saj ugotavljamo končno točko titracije z merjenjem polarografskih (voltametričnih) limitnih tokov. Amperometrične titracijske krivulje imajo značilne prelome pri končni točki titracije, ki jo lahko določimo grafično (slika1.3.12). Njihova oblika zavisi od elektrokemijskih lastnosti zvrsti, ki jo določamo, reagenta ter od pritisnjene napetosti. a b c i i i V Slika : Titracijske krivulje pri amperometrični titraciji a)titracija Pb 2+ s Cr 2 O 72 - (E=-1,0 V vs.sce) b) Titracija Pb 2+ z SO 4 2- (E = -0,6 V vs. SCE) c)titracija SO 4 2- s Pb 2+ (E= -0,6 V vs. SCE) V V Za amperometrično titracijo potrebujemo izvor konstantne napetosti, občutljivi amperometer ter indikatorsko in referenčno elektrodo. Indikatorska (polarizirana) elektroda je lahko živosrebrna kapalna ali rotirajoča platinska elektroda, referenčna pa je navadno nasičena kalomelova elektroda. Amperometrično titracijo lahko izvedemo tudi s polarografom (slika ). Slika : Shema aparature ta amperometrično titracijo z eno polarizirano elektrodo (rotirajoča Pt elektroda)

35 Polarograf ref. elektroda Rotirajoča Pt el. Amperometrična titracija z dvema polariziranima elektrodama (dead-stop titracija, biamperometrična titracija) Amperometrična titracija z dvema polariziranima elektrodama temelji na ugotavljanju končne točke titracije s pomočjo merjenja toka, ki teče med dvema elektrodama, na kateri smo pritisnili ustrezno, navadno majhno napetost ( mv). Tok, ki teče, ko je v raztopini oksidacijsko-redukcijski sistem, ki reagira na elektrodah reverzibilno in dovolj hitro. Jakost toka določa elektrodna komponenta, ki je v raztopini v nižji koncentraciji. Tok med elektrodama ne teče, ko ene od obeh elektroaktivnih komponent ni v raztopini. To je lahko v začetku titracije, vedno pa je v ekvivalentni točki, kar dosežemo z dodatkom titrirnega reagenta. Tipične titracijske krivulje, ki jih dobimo pri titraciji, so prikazane na sliki Za biamperometrično titracijo rabimo dve enaki mikroplatinski elektrodi, izvor napetosti in instrument za merjenje jakosti toka.

36 1a 1b V K 2 CrO 7 (ml) V K 2 CrO 7 (ml) 2a 2b V K 2 CrO 7 (ml) V K 2 CrO 7 (ml) Slika : Titracijske krivulje pri amperometrični titraciji z dvema polariziranima elektrodama; titracija Fe 2 + s K 2 Cr 2 O 7 a) E dovolj velik b) E majhen 1. v začetku [Fe 3+ ] > [Fe 2+ ], 2. v začetku [Fe 3+ ] = 0

37

38

Kovinske indikatorske elektrode. Inertne elektrode. Membranske indikatorske elektrode

Kovinske indikatorske elektrode. Inertne elektrode. Membranske indikatorske elektrode Indikatorske elektrode Indikatorske elektrode Kovinske indikatorske elektrode Inertne elektrode Membranske indikatorske elektrode Elektroda 1. reda je kovinska elektroda (Ag, Cu, Hg, Cd, Pb), ki je v stiku

Διαβάστε περισσότερα

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki

Διαβάστε περισσότερα

Osnove elektrotehnike uvod

Osnove elektrotehnike uvod Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.

Διαβάστε περισσότερα

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2 Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,

Διαβάστε περισσότερα

Tretja vaja iz matematike 1

Tretja vaja iz matematike 1 Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +

Διαβάστε περισσότερα

Ravnotežja v raztopini

Ravnotežja v raztopini Ravnotežja v raztopini TOPILO: komponenta, ki jo je več v raztopini.v analizni kemiji uporabljamo organska in anorganska topila. Topila z veliko dielektrično konstanto (ε > 10) so polarna in ionizirajo

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma

Διαβάστε περισσότερα

vaja Kvan*ta*vno določanje proteinov. 6. vaja Kvan*ta*vno določanje proteinov. 6. vaja Kvan*ta*vno določanje proteinov

vaja Kvan*ta*vno določanje proteinov. 6. vaja Kvan*ta*vno določanje proteinov. 6. vaja Kvan*ta*vno določanje proteinov 28. 3. 11 UV- spektrofotometrija Biuretska metoda Absorbanca pri λ=28 nm (A28) UV- spektrofotometrija Biuretska metoda vstopni žarek intenziteta I Lowrijeva metoda Bradfordova metoda Bradfordova metoda

Διαβάστε περισσότερα

1. Trikotniki hitrosti

1. Trikotniki hitrosti . Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

2.1. MOLEKULARNA ABSORPCIJSKA SPEKTROMETRIJA

2.1. MOLEKULARNA ABSORPCIJSKA SPEKTROMETRIJA 2.1. MOLEKULARNA ABSORPCJSKA SPEKTROMETRJA Molekularna absorpcijska spektrometrija (kolorimetrija, fotometrija, spektrofotometrija) temelji na merjenju absorpcije svetlobe, ki prehaja skozi preiskovano

Διαβάστε περισσότερα

Delovna točka in napajalna vezja bipolarnih tranzistorjev

Delovna točka in napajalna vezja bipolarnih tranzistorjev KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.

Διαβάστε περισσότερα

Galvanski členi. Mentor: Gregor Skačej. 24. september 2009

Galvanski členi. Mentor: Gregor Skačej. 24. september 2009 Galvanski členi Blaž Šterbenc Mentor: Gregor Skačej 24. september 2009 Povzetek V seminarju bom na kratko opisal zgodovinski razvoj galvanskih členov, obravnaval nernstovo enačbo uporaba za izračun električnih

Διαβάστε περισσότερα

PONOVITEV SNOVI ZA 4. TEST

PONOVITEV SNOVI ZA 4. TEST PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.

Διαβάστε περισσότερα

13. Vaja: Reakcije oksidacije in redukcije

13. Vaja: Reakcije oksidacije in redukcije 1. Vaja: Reakcije oksidacije in redukcije a) Osnove: Oksidacija je reakcija pri kateri posamezen element (reducent) oddaja elektrone in se pri tem oksidira (oksidacijsko število se zviša). Redukcija pa

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Sreda, 3. junij 2015 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Sreda, 3. junij 2015 SPLOŠNA MATURA Državni izpitni center *M15143113* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sreda, 3. junij 2015 SPLOŠNA MATURA RIC 2015 M151-431-1-3 2 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

Raztopine. Raztopine. Elektroliti. Elektrolit je substanca, ki pri raztapljanju (v vodi) daje ione. A a B b aa b+ + bb a-

Raztopine. Raztopine. Elektroliti. Elektrolit je substanca, ki pri raztapljanju (v vodi) daje ione. A a B b aa b+ + bb a- Raztopine Mnoge analizne metode temeljijo na opazovanju ravnotežnih sistemov, ki se vzpostavijo v raztopinah. Najpogosteje uporabljeno topilo je voda! RAZTOPINE: topljenec topilo (voda) (Enote za koncentracije!)

Διαβάστε περισσότερα

KISLINE IN BAZE ARRHENIUSOVA DEFINICIJA KISLIN IN BAZ

KISLINE IN BAZE ARRHENIUSOVA DEFINICIJA KISLIN IN BAZ 6. KISLINE IN BAZE KISLINE IN BAZE ARRHENIUSOVA DEFINICIJA KISLIN IN BAZ kisline so snovi, ki v vodni raztopini disocirajo vodikove ione (H + ), baze pa snovi, ki v vodni raztopini disocirajo hidroksidne

Διαβάστε περισσότερα

Numerično reševanje. diferencialnih enačb II

Numerično reševanje. diferencialnih enačb II Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke

Διαβάστε περισσότερα

13. Jacobijeva metoda za računanje singularnega razcepa

13. Jacobijeva metoda za računanje singularnega razcepa 13. Jacobijeva metoda za računanje singularnega razcepa Bor Plestenjak NLA 25. maj 2010 Bor Plestenjak (NLA) 13. Jacobijeva metoda za računanje singularnega razcepa 25. maj 2010 1 / 12 Enostranska Jacobijeva

Διαβάστε περισσότερα

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design Supplemental Material for Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design By H. A. Murdoch and C.A. Schuh Miedema model RKM model ΔH mix ΔH seg ΔH

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014. ÄÉÁÍüÇÓÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014. ÄÉÁÍüÇÓÇ ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΧΗΜΕΙΑ Ηµεροµηνία: Τετάρτη 23 Απριλίου 2014 ιάρκεια Εξέτασης: 2 ώρες ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιο σας τον αριθµό κάθε µίας από τις ερωτήσεις A1 έως A4 και δίπλα

Διαβάστε περισσότερα

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Γενικής Παιδείας Χημεία Α Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: ΒΑΣΙΛΗΣ ΛΟΓΟΘΕΤΗΣ

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Γενικής Παιδείας Χημεία Α Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: ΒΑΣΙΛΗΣ ΛΟΓΟΘΕΤΗΣ ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Γενικής Παιδείας Χημεία Α Λυκείου Επιμέλεια: ΒΑΣΙΛΗΣ ΛΟΓΟΘΕΤΗΣ e-mail: info@iliaskos.gr www.iliaskos.gr 1 57 1.. 1 kg = 1000 g 1 g = 0,001 kg 1

Διαβάστε περισσότερα

panagiotisathanasopoulos.gr

panagiotisathanasopoulos.gr . Παναγιώτης Αθανασόπουλος Χηµικός ιδάκτωρ Παν. Πατρών. Οξειδοαναγωγή Παναγιώτης Αθανασόπουλος Χημικός, Διδάκτωρ Πανεπιστημίου Πατρών 95 Χηµικός ιδάκτωρ Παν. Πατρών 96 Χηµικός ιδάκτωρ Παν. Πατρών. Τι ονοµάζεται

Διαβάστε περισσότερα

Vaje: Električni tokovi

Vaje: Električni tokovi Barbara Rovšek, Bojan Golli, Ana Gostinčar Blagotinšek Vaje: Električni tokovi 1 Merjenje toka in napetosti Naloga: Izmerite tok, ki teče skozi žarnico, ter napetost na žarnici Za izvedbo vaje potrebujete

Διαβάστε περισσότερα

IZPIT IZ ANALIZE II Maribor,

IZPIT IZ ANALIZE II Maribor, Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),

Διαβάστε περισσότερα

Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM

Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM Slika 7. 1: Normirana blokovna shema regulacije EM Fakulteta za elektrotehniko 1 Slika 7. 2: Principielna shema regulacije AM v KSP Fakulteta za elektrotehniko 2 Slika 7. 3: Merjenje komponent fluksa s

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,

Διαβάστε περισσότερα

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK 1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24

Διαβάστε περισσότερα

Παραδοχές στις οποίες στις οποίες στηρίζεται ο αριθμός οξείδωσης

Παραδοχές στις οποίες στις οποίες στηρίζεται ο αριθμός οξείδωσης Αριθμός Οξείδωσης ή τυπικό σθένος Είναι ένας αριθμός που εκφράζει την ενωτική ικανότητα των στοιχείων με βάση ορισμένες παραδοχές. Η χρησιμοποίηση του επιβλήθηκε για τους πιο κάτω λόγους : Χρησιμεύει στη

Διαβάστε περισσότερα

Kotne in krožne funkcije

Kotne in krožne funkcije Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΟ Μ.Ε. ΣΥΜΒΟΛΟ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Α ΛΥΚΕΙΟΥ ΑΝΤΙ ΡΑΣΕΙΣ

ΦΡΟΝΤΙΣΤΗΡΙΟ Μ.Ε. ΣΥΜΒΟΛΟ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Α ΛΥΚΕΙΟΥ ΑΝΤΙ ΡΑΣΕΙΣ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Α ΛΥΚΕΙΟΥ ΑΝΤΙ ΡΑΣΕΙΣ Όλες οι αντιδράσεις που ζητούνται στη τράπεζα θεµάτων πραγµατοποιούνται. Στην πλειοψηφία των περιπτώσεων απαιτείται αιτιολόγηση της πραγµατοποίησης των αντιδράσεων.

Διαβάστε περισσότερα

Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba.

Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba. 1. Osnovni pojmi Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba. Primer 1.1: Diferencialne enačbe so izrazi: y

Διαβάστε περισσότερα

Transformator. Delovanje transformatorja I. Delovanje transformatorja II

Transformator. Delovanje transformatorja I. Delovanje transformatorja II Transformator Transformator je naprava, ki v osnovi pretvarja napetost iz enega nivoja v drugega. Poznamo vrsto različnih izvedb transformatorjev, glede na njihovo specifičnost uporabe:. Energetski transformator.

Διαβάστε περισσότερα

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα

Διαβάστε περισσότερα

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE NEPARAMETRIČNI TESTI pregledovanje tabel hi-kvadrat test as. dr. Nino RODE Parametrični in neparametrični testi S pomočjo z-testa in t-testa preizkušamo domneve o parametrih na vzorcih izračunamo statistike,

Διαβάστε περισσότερα

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij): 4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n

Διαβάστε περισσότερα

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu. Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

UVOD GORIVNE CELICE...

UVOD GORIVNE CELICE... GORIVNE CELICE 1 Kazalo UVOD... 3 1 GORIVNE CELICE... 4 1.1 VRSTE IN LASTNOSTI GORIVNIH CELIC... 4 1.2 DELOVANJE GORIVNIH CELIC... 5 2 TEMELJI ELEKTROKEMIJE... 7 2.1 ELEKTROKEMIJSKE REAKCIJE... 7 2.2 ELEKTROKEMIJSKI

Διαβάστε περισσότερα

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:

Διαβάστε περισσότερα

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

Funkcije več spremenljivk

Funkcije več spremenljivk DODATEK C Funkcije več spremenljivk C.1. Osnovni pojmi Funkcija n spremenljivk je predpis: f : D f R, (x 1, x 2,..., x n ) u = f (x 1, x 2,..., x n ) kjer D f R n imenujemo definicijsko območje funkcije

Διαβάστε περισσότερα

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΑΣΚΗΣΗ

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΑΣΚΗΣΗ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΑΣΚΗΣΗ 1 η : A) 9,8g H 3 PO 4 αντιδρούν με την κατάλληλη ποσότητα NaCl σύμφωνα με την χημική εξίσωση: H 3 PO 4 + 3NaCl Na 3 PO 4 + 3HCl. Να υπολογίσετε πόσα λίτρα αέριου HCl παράγονται,

Διαβάστε περισσότερα

Tekočinska kromatografija

Tekočinska kromatografija Tekočinska kromatografija Kromatografske tehnike uporabljamo za ločevanje posameznih komponent v vzorcu. Ločitev temelji na različnem porazdeljevanju komponent med stacionarno fazo, ki se nahaja v kromatografski

Διαβάστε περισσότερα

Katedra za farmacevtsko kemijo. Sinteza mimetika encima SOD 2. stopnja: Mn 3+ ali Cu 2+ salen kompleks. 25/11/2010 Vaje iz Farmacevtske kemije 3 1

Katedra za farmacevtsko kemijo. Sinteza mimetika encima SOD 2. stopnja: Mn 3+ ali Cu 2+ salen kompleks. 25/11/2010 Vaje iz Farmacevtske kemije 3 1 Katedra za farmacevtsko kemijo Sinteza mimetika encima SOD 2. stopnja: Mn 3+ ali Cu 2+ salen kompleks 25/11/2010 Vaje iz Farmacevtske kemije 3 1 Sinteza kompleksa [Mn 3+ (salen)oac] Zakaj uporabljamo brezvodni

Διαβάστε περισσότερα

Θέμα Α. Ονοματεπώνυμο: Χημεία Α Λυκείου Διαγώνισμα εφ όλης της ύλης. Αξιολόγηση :

Θέμα Α. Ονοματεπώνυμο: Χημεία Α Λυκείου Διαγώνισμα εφ όλης της ύλης. Αξιολόγηση : Ονοματεπώνυμο: Μάθημα: Υλη: Επιμέλεια διαγωνίσματος: Αξιολόγηση : Χημεία Α Λυκείου Διαγώνισμα εφ όλης της ύλης Τσικριτζή Αθανασία Θέμα Α 1. Να επιλέξετε τη σωστή απάντηση σε καθεμία από τις επόμενες ερωτήσεις.

Διαβάστε περισσότερα

Splošno o interpolaciji

Splošno o interpolaciji Splošno o interpolaciji J.Kozak Numerične metode II (FM) 2011-2012 1 / 18 O funkciji f poznamo ali hočemo uporabiti le posamezne podatke, na primer vrednosti r i = f (x i ) v danih točkah x i Izberemo

Διαβάστε περισσότερα

Booleova algebra. Izjave in Booleove spremenljivke

Booleova algebra. Izjave in Booleove spremenljivke Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre

Διαβάστε περισσότερα

ΜΑΞΙΜΟΣ ΚΟΤΕΛΙΔΑΣ. β) Να βρεθεί σε ποια οµάδα και σε ποια περίοδο του Περιοδικού Πίνακα ανήκουν.

ΜΑΞΙΜΟΣ ΚΟΤΕΛΙΔΑΣ. β) Να βρεθεί σε ποια οµάδα και σε ποια περίοδο του Περιοδικού Πίνακα ανήκουν. ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΘΕΜΑΤΑ: 03490 ΗΜΕΡΟΜΗΝΙΑ: 27/5/2014 ΟΙ ΚΑΘΗΓΗΤΕΣ: ΜΑΞΙΜΟΣ ΚΟΤΕΛΙΔΑΣ ΕΚΦΩΝΗΣΕΙΣ Θέμα 2ο Α) Για τα στοιχεία: 12 Μg και 8 Ο α) Να κατανεµηθούν τα ηλεκτρόνιά τους σε στιβάδες. (µονάδες 2) β)

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΧΗΜΕΙΑ ΕΚΦΩΝΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΧΗΜΕΙΑ ΕΚΦΩΝΗΣΕΙΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΧΗΜΕΙΑ ΘΕΜΑ Α Ηµεροµηνία: Κυριακή 26 Απριλίου 2015 ιάρκεια Εξέτασης: 2 ώρες ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιο σας τον αριθµό κάθε µίας από τις ερωτήσεις A1 έως A5 και δίπλα

Διαβάστε περισσότερα

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. 1. Ο ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Οι άνθρωποι από την φύση τους θέλουν να πετυχαίνουν σπουδαία αποτελέσµατα καταναλώνοντας το λιγότερο δυνατό κόπο και χρόνο. Για το σκοπό αυτό προσπαθούν να οµαδοποιούν τα πράγµατα

Διαβάστε περισσότερα

1A skupina alkalijske kovine

1A skupina alkalijske kovine 1. NALOGA: KATERA IZMED SPOJIN JE NAJBOLJ TOPNA V VODI? NaCl, KBr, RbBr ALI NaF? ZAKAJ? 1. NALOGA: ODGOVOR Topnost je odvisna od mrežne entalpije ΔH mr (energija, potrebna za razgradnjo kristala na anione

Διαβάστε περισσότερα

Αλληλεπίδραση ακτίνων-χ με την ύλη

Αλληλεπίδραση ακτίνων-χ με την ύλη Άσκηση 8 Αλληλεπίδραση ακτίνων-χ με την ύλη Δ. Φ. Αναγνωστόπουλος Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων Ιωάννινα 2013 Άσκηση 8 ii Αλληλεπίδραση ακτίνων-χ με την ύλη Πίνακας περιεχομένων

Διαβάστε περισσότερα

1. Arrhenius. Ion equilibrium. ก - (Acid- Base) 2. Bronsted-Lowry *** ก - (conjugate acid-base pairs) HCl (aq) H + (aq) + Cl - (aq)

1. Arrhenius. Ion equilibrium. ก - (Acid- Base) 2. Bronsted-Lowry *** ก - (conjugate acid-base pairs) HCl (aq) H + (aq) + Cl - (aq) Ion equilibrium ก ก 1. ก 2. ก - ก ก ก 3. ก ก 4. (ph) 5. 6. 7. ก 8. ก ก 9. ก 10. 1 2 สารล ลายอ เล กโทรไลต (Electrolyte solution) ก 1. strong electrolyte ก HCl HNO 3 HClO 4 NaOH KOH NH 4 Cl NaCl 2. weak

Διαβάστε περισσότερα

C M. V n: n =, (D): V 0,M : V M P = ρ ρ V V. = ρ

C M. V n: n =, (D): V 0,M : V M P = ρ ρ V V. = ρ »»...» -300-0 () -300-03 () -3300 3.. 008 4 54. 4. 5 :.. ;.. «....... :. : 008. 37.. :....... 008.. :. :.... 54. 4. 5 5 6 ... : : 3 V mnu V mn AU 3 m () ; N (); N A 6030 3 ; ( ); V 3. : () 0 () 0 3 ()

Διαβάστε περισσότερα

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d) Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2

Διαβάστε περισσότερα

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής ΗΛΕΚΤΡΟΝΙΚΗ ΟΜΗ ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ Παππάς Χρήστος Επίκουρος Καθηγητής ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Ατομική ακτίνα (r) : ½ της απόστασης μεταξύ δύο ομοιοπυρηνικών ατόμων, ενωμένων με απλό ομοιοπολικό δεσμό.

Διαβάστε περισσότερα

Tabele termodinamskih lastnosti vode in vodne pare

Tabele termodinamskih lastnosti vode in vodne pare Univerza v Ljubljani Fakulteta za strojništvo Laboratorij za termoenergetiko Tabele termodinamskih lastnosti vode in vodne pare po modelu IAPWS IF-97 izračunano z XSteam Excel v2.6 Magnus Holmgren, xsteam.sourceforge.net

Διαβάστε περισσότερα

vezani ekstremi funkcij

vezani ekstremi funkcij 11. vaja iz Matematike 2 (UNI) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 ekstremi funkcij več spremenljivk nadaljevanje vezani ekstremi funkcij Dana je funkcija f(x, y). Zanimajo nas ekstremi nad

Διαβάστε περισσότερα

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS Electronic Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry. This journal is The Royal Society of Chemistry 2018 SUPPLEMENTAL INFORMATION Fully Automated Total Metals and Chromium

Διαβάστε περισσότερα

Υ ΑΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΟΜΕΑΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΕΠΙΣΤΗΜΗΣ Κ. Π. ΧΑΛΒΑ ΑΚΗΣ ΜΥΤΙΛΗΝΗ 2004. Καθηγητής Περ.

Υ ΑΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΟΜΕΑΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΕΠΙΣΤΗΜΗΣ Κ. Π. ΧΑΛΒΑ ΑΚΗΣ ΜΥΤΙΛΗΝΗ 2004. Καθηγητής Περ. ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΟΜΕΑΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΕΠΙΣΤΗΜΗΣ Υ ΑΤΙΚΗ ΧΗΜΕΙΑ ΤΜΗΜΑ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΜΥΤΙΛΗΝΗ 2004 Κ. Π. ΧΑΛΒΑ ΑΚΗΣ Καθηγητής Περ. Μηχανικής ΠΕΡΙΕΧΟΜΕΝΑ ΠΕΡΙΕΧΟΜΕΝΑ...1 1 ΕΙΣΑΓΩΓΗ...3

Διαβάστε περισσότερα

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ Περίοδοι περιοδικού πίνακα Ο περιοδικός πίνακας αποτελείται από 7 περιόδους. Ο αριθμός των στοιχείων που περιλαμβάνει κάθε περίοδος δεν είναι σταθερός, δηλ. η περιοδικότητα

Διαβάστε περισσότερα

KOLOKVIJI IZ ANALIZNE KEMIJE

KOLOKVIJI IZ ANALIZNE KEMIJE Stari kolokviji iz analizne kemije KOLOKVIJI IZ ANALIZNE KEMIJE 1. Tableto, ki vsebuje železo in tehta 6,08g, smo raztopili v 1L vode. 10mL alikvota vzorca smo dodali 25mL reagenta (1,10-fenantrolin) in

Διαβάστε περισσότερα

Kotni funkciji sinus in kosinus

Kotni funkciji sinus in kosinus Kotni funkciji sinus in kosinus Oznake: sinus kota x označujemo z oznako sin x, kosinus kota x označujemo z oznako cos x, DEFINICIJA V PRAVOKOTNEM TRIKOTNIKU: Kotna funkcija sinus je definirana kot razmerje

Διαβάστε περισσότερα

ΙΑΦΑ Φ ΝΕΙ Ε ΕΣ Ε ΧΗΜΕ Μ Ι Ε ΑΣ ΓΥΜΝ Μ ΑΣΙΟΥ H

ΙΑΦΑ Φ ΝΕΙ Ε ΕΣ Ε ΧΗΜΕ Μ Ι Ε ΑΣ ΓΥΜΝ Μ ΑΣΙΟΥ H Hταξινόµηση των στοιχείων τάξη Γ γυµνασίου Αναγκαιότητα ταξινόµησης των στοιχείων Μέχρι το 1700 µ.χ. ο άνθρωπος είχε ανακαλύψει µόνο 15 στοιχείακαι το 1860 µ.χ. περίπου 60στοιχεία. Σηµαντικοί Χηµικοί της

Διαβάστε περισσότερα

Vaja: Odbojnostni senzor z optičnimi vlakni. Namen vaje

Vaja: Odbojnostni senzor z optičnimi vlakni. Namen vaje Namen vaje Spoznavanje osnovnih fiber-optičnih in optomehanskih komponent Spoznavanje načela delovanja in praktične uporabe odbojnostnega senzorja z optičnimi vlakni, Delo z merilnimi instrumenti (signal-generator,

Διαβάστε περισσότερα

Αναπληρωτής Καθηγητής Τμήμα Συντήρησης Αρχαιοτήτων και Έργων Τέχνης Πανεπιστήμιο Δυτικής Αττικής - ΣΑΕΤ

Αναπληρωτής Καθηγητής Τμήμα Συντήρησης Αρχαιοτήτων και Έργων Τέχνης Πανεπιστήμιο Δυτικής Αττικής - ΣΑΕΤ Γενική και Ανόργανη Χημεία Περιοδικές ιδιότητες των στοιχείων. Σχηματισμός ιόντων. Στ. Μπογιατζής 1 Αναπληρωτής Καθηγητής Τμήμα Συντήρησης Αρχαιοτήτων και Έργων Τέχνης Π Δ Χειμερινό εξάμηνο 2018-2019 Π

Διαβάστε περισσότερα

ΑΡΙΘΜΟΣ ΟΞΕΙΔΩΣΗΣ - ΓΡΑΦΗ ΧΗΜΙΚΩΝ ΤΥΠΩΝ- ΟΝΟΜΑΤΟΛΟΓΙΑ

ΑΡΙΘΜΟΣ ΟΞΕΙΔΩΣΗΣ - ΓΡΑΦΗ ΧΗΜΙΚΩΝ ΤΥΠΩΝ- ΟΝΟΜΑΤΟΛΟΓΙΑ ΑΡΙΘΜΟΣ ΟΞΕΙΔΩΣΗΣ - ΓΡΑΦΗ ΧΗΜΙΚΩΝ ΤΥΠΩΝ- ΟΝΟΜΑΤΟΛΟΓΙΑ Τι είναι ο αριθμός οξείδωσης Αριθμό οξείδωσης ενός ιόντος σε μια ετεροπολική ένωση ονομάζουμε το πραγματικό φορτίο του ιόντος. Αριθμό οξείδωσης ενός

Διαβάστε περισσότερα

3. Υπολογίστε το μήκος κύματος de Broglie (σε μέτρα) ενός αντικειμένου μάζας 1,00kg που κινείται με ταχύτητα1 km/h.

3. Υπολογίστε το μήκος κύματος de Broglie (σε μέτρα) ενός αντικειμένου μάζας 1,00kg που κινείται με ταχύτητα1 km/h. 1 Ο ΚΕΦΑΛΑΙΟ ΑΣΚΗΣΕΙΣ 1. Ποια είναι η συχνότητα και το μήκος κύματος του φωτός που εκπέμπεται όταν ένα e του ατόμου του υδρογόνου μεταπίπτει από το επίπεδο ενέργειας με: α) n=4 σε n=2 b) n=3 σε n=1 c)

Διαβάστε περισσότερα

3 o Μάθημα : Αντιδράσεις απλής αντικατάστασης

3 o Μάθημα : Αντιδράσεις απλής αντικατάστασης 3 o Μάθημα : Αντιδράσεις απλής αντικατάστασης 1. Στόχοι του μαθήματος Οι μαθητές να γνωρίσουν:i) πότε πραγματοποιείται μια αντίδραση απλής αντικατάστασης, με βάση τη σειρά δραστικότητας των μετάλλων και

Διαβάστε περισσότερα

Ονοματεπώνυμο: Χημεία Α Λυκείου Αριθμός Οξείδωσης Ονοματολογία Απλή Αντικατάσταση. Αξιολόγηση :

Ονοματεπώνυμο: Χημεία Α Λυκείου Αριθμός Οξείδωσης Ονοματολογία Απλή Αντικατάσταση. Αξιολόγηση : Ονοματεπώνυμο: Μάθημα: Υλη: Επιμέλεια διαγωνίσματος: Αξιολόγηση : Χημεία Α Λυκείου Αριθμός Οξείδωσης Ονοματολογία Απλή Αντικατάσταση Τσικριτζή Αθανασία Θέμα Α 1. Να επιλέξετε τη σωστή απάντηση σε καθεμία

Διαβάστε περισσότερα

ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής

ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ04.01 5 ο Γυμνάσιο Αγ. Παρασκευής Όπως συμβαίνει στη φύση έτσι και ο άνθρωπος θέλει να πετυχαίνει σπουδαία αποτελέσματα καταναλώνοντας το λιγότερο δυνατό

Διαβάστε περισσότερα

Χημικές Αντιδράσεις. Εισαγωγική Χημεία

Χημικές Αντιδράσεις. Εισαγωγική Χημεία Χημικές Αντιδράσεις Εισαγωγική Χημεία Κατηγορίες Χημικών Αντιδράσεων Πέντε κυρίως κατηγορίες: Σύνθεσης Διάσπασης Απλής αντικατάστασης Διπλής αντικατάστασης Καύσης Αντιδράσεις σύνθεσης Ένωση δύο ή περισσότερων

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 Β ΦΑΣΗ

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 Β ΦΑΣΗ ΤΑΞΗ: ΜΑΘΗΜΑ: A ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΧΗΜΕΙΑ Ημερομηνία: Σάββατο 14 Απριλίου 2018 Διάρκεια Εξέτασης: 2 ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Για τις ερωτήσεις Α1 έως και Α4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης

Διαβάστε περισσότερα

Precipitacija i otapanje

Precipitacija i otapanje Precipitacija i otapanje Uklanjanje karbonatne tvrdoće vode CaCO 3 (c) Ca 2+ + CO 3 2- Uklanjanje toksičnih iona teških metala Pb(OH) 2 (c) Pb 2+ + 2OH - Uklanjanje željeza i mangana Fe(OH) 3 (c)

Διαβάστε περισσότερα

Α ΛΥΚΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ (ΚΕΦΑΛΑΙΑ 2-3) ( ) ΘΕΜΑ Α Α1.

Α ΛΥΚΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ (ΚΕΦΑΛΑΙΑ 2-3) ( ) ΘΕΜΑ Α Α1. Α ΛΥΚΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ (ΚΕΦΑΛΑΙΑ 2-3) (5 2 2017) ΘΕΜΑ Α Α1. Επιλέξτε τη σωστή απάντηση σε καθεμία από τις επόμενες ερωτήσεις : 1. Σε ποια από τις επόμενες ενώσεις το χλώριο έχει μεγαλύτερο αριθμό

Διαβάστε περισσότερα

Ονοματολογία ανόργανων χημικών ενώσεων Γραφή ανόργανων χημικών ενώσεων Οξέα, βάσεις, άλατα

Ονοματολογία ανόργανων χημικών ενώσεων Γραφή ανόργανων χημικών ενώσεων Οξέα, βάσεις, άλατα Ονοματολογία ανόργανων χημικών ενώσεων Γραφή ανόργανων χημικών ενώσεων Οξέα, βάσεις, άλατα Βοηθητικές Σημειώσεις Αγγελική Απ. Γαλάνη, Χημικός Ph.D. Εργαστηριακό Διδακτικό Προσωπικό, (Ε.ΔΙ.Π.) Χημείας Γραφή

Διαβάστε περισσότερα

Analizna kemija. Odgovori na izpitna vprašanja 2. del. Laboratorijska biomedicina šolsko leto 2008/2009

Analizna kemija. Odgovori na izpitna vprašanja 2. del. Laboratorijska biomedicina šolsko leto 2008/2009 Analizna kemija Odgovori na izpitna vprašanja 2. del Laboratorijska biomedicina šolsko leto 2008/2009 Elektroanalizne metode: Potenciometrija in voltametrija. Molekularna absorpcijska spektrometrija in

Διαβάστε περισσότερα

Θέματα Ανόργανης Χημείας Γεωπονικής ΓΟΜΗ ΑΣΟΜΩΝ

Θέματα Ανόργανης Χημείας Γεωπονικής ΓΟΜΗ ΑΣΟΜΩΝ Θέματα Ανόργανης Χημείας Γεωπονικής 1 ΓΟΜΗ ΑΣΟΜΩΝ 1. α) Γχζηε ηζξ ααζζηέξ ανπέξ μζημδυιδζδξ ημο δθεηηνμκζημφ πενζαθήιαημξ ηςκ αηυιςκ Mg (Z=12), K (Z=19), ηαζ Ag (Ε=47). Δλδβήζηε ιε ηδ εεςνία ηςκ ιμνζαηχκ

Διαβάστε περισσότερα

diferencialne enačbe - nadaljevanje

diferencialne enačbe - nadaljevanje 12. vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 diferencialne enačbe - nadaljevanje Ortogonalne trajektorije Dana je 1-parametrična družina krivulj F(x, y, C) = 0. Ortogonalne

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ V. Πρότυπα δυναμικά αναγωγής ( ) ΠΡΟΤΥΠΑ ΔΥΝΑΜΙΚΑ ΑΝΑΓΩΓΗΣ ΣΤΟΥΣ 25 o C. Ημιαντιδράσεις αναγωγής , V. Antimony. Bromine. Arsenic.

ΠΑΡΑΡΤΗΜΑ V. Πρότυπα δυναμικά αναγωγής ( ) ΠΡΟΤΥΠΑ ΔΥΝΑΜΙΚΑ ΑΝΑΓΩΓΗΣ ΣΤΟΥΣ 25 o C. Ημιαντιδράσεις αναγωγής , V. Antimony. Bromine. Arsenic. ΠΑΡΑΡΤΗΜΑ V. ΠΡΟΤΥΠΑ ΔΥΝΑΜΙΚΑ ΑΝΑΓΩΓΗΣ ΣΤΟΥΣ 5 o C ΠΑΡΑΡΤΗΜΑ V. Πρότυπα δυναμικά αναγωγής ΠΡΟΤΥΠΑ ΔΥΝΑΜΙΚΑ ΑΝΑΓΩΓΗΣ ΣΤΟΥΣ 5 o C, V, V Auminum Bervium A ( H ) e A H. 0 Be e Be H. 1 ( ) [ ] e A F. 09 AF

Διαβάστε περισσότερα

Gimnazija Krˇsko. vektorji - naloge

Gimnazija Krˇsko. vektorji - naloge Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor

Διαβάστε περισσότερα

ZAKLJUČNI PROCESI V BIOTEHNOLOGIJI. Membranski separacijski procesi: diafiltracija, elektrodializa, reverzna osmoza, pervaporacija

ZAKLJUČNI PROCESI V BIOTEHNOLOGIJI. Membranski separacijski procesi: diafiltracija, elektrodializa, reverzna osmoza, pervaporacija ZAKLJUČNI PROCESI V BIOTEHNOLOGIJI Membranski separacijski procesi: diafiltracija, elektrodializa, reverzna osmoza, pervaporacija Membranski separacijski procesi v biotehnologiji proces mikrofiltracija

Διαβάστε περισσότερα

Energije in okolje 1. vaja. Entalpija pri kemijskih reakcijah

Energije in okolje 1. vaja. Entalpija pri kemijskih reakcijah Entalpija pri kemijskih reakcijah Pri obravnavi energijskih pretvorb pri kemijskih reakcijah uvedemo pojem entalpije, ki popisuje spreminjanje energije sistema pri konstantnem tlaku. Sistemu lahko povečamo

Διαβάστε περισσότερα

NALOGE IZ ANALIZNE KEMIJE I

NALOGE IZ ANALIZNE KEMIJE I FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO Darinka Brodnjak Vončina NALOGE IZ ANALIZNE KEMIJE I Zbrano gradivo Maribor, marec 2009 1 1.) Koliko g/l Na 2 CO 3 vsebuje raztopina Na 2 CO 3, če za nevtralizacijo

Διαβάστε περισσότερα

CO2 + H2O sladkor + O2

CO2 + H2O sladkor + O2 VAJA 5 FOTOSINTEZA CO2 + H2O sladkor + O2 Meritve fotosinteze CO 2 + H 2 O sladkor + O 2 Fiziologija rastlin laboratorijske vaje SVETLOBNE REAKCIJE (tilakoidna membrana) TEMOTNE REAKCIJE (stroma kloroplasta)

Διαβάστε περισσότερα

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013 Numerične metode, sistemi linearnih enačb B. Jurčič Zlobec Numerične metode FE, 2. december 2013 1 Vsebina 1 z n neznankami. a i1 x 1 + a i2 x 2 + + a in = b i i = 1,..., n V matrični obliki zapišemo:

Διαβάστε περισσότερα

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ ΤΑΞΗ: ΜΑΘΗΜΑ: A ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΧΗΜΕΙΑ Ημερομηνία: Σάββατο 20 Απριλίου 2019 Διάρκεια Εξέτασης: 2 ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α1. Δίνεται στοιχείο Χ το οποίο έχει οκτώ ηλεκτρόνια στην εξωτερική του στιβάδα.

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΧΗΜΕΙΑ

ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΧΗΜΕΙΑ ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΧΗΜΕΙΑ (Επιλέγετε δέκα από τα δεκατρία θέματα) ΘΕΜΑΤΑ 1. Ποιες από τις παρακάτω προτάσεις είναι σωστές και ποιες λάθος; Γιατί; (α) Από τα στοιχεία Mg, Al, Cl, Xe, C και Ρ, τον μεγαλύτερο

Διαβάστε περισσότερα

8. Diskretni LTI sistemi

8. Diskretni LTI sistemi 8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z

Διαβάστε περισσότερα

Praktikum iz instrumentalnih metod analize

Praktikum iz instrumentalnih metod analize Univerza v Ljubljani Fakulteta za kemijo in kemijsko tehnologijo Katedra za analizno kemijo Praktikum iz instrumentalnih metod analize za univerzitetni študijski program KEMIJSKO INŽENIRSTVO 2. letnik

Διαβάστε περισσότερα