σ = PMF OSNOVE STROJARSTVA -PODLOGE ZA PREDAVANJA

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "σ = PMF OSNOVE STROJARSTVA -PODLOGE ZA PREDAVANJA"

Transcript

1 PMF OSNOVE STROJARSTVA -PODLOGE ZA PREDAVANJA OSNOVE NAUKE O ČVRSTOĆI Nauka o čvrstoći proučava ravnotežu između vanjskih i unutarnjih sila i deformacije čvrstih tijela uzrokovanih vanjskim silama. Na osnovu ovih odnosa određuju se dimenzije i oblik tijela. OPTEREĆENJA Djelovanje vanjskih sila i momenata na neko tijelo predstavlja opterećenje tog tijela. Opterećenje može biti: - silama: koncentriranim kontinuirano raspoređenim ili kombinirano i koncentriranim i kontinuirano raspoređenim, - momentima savijanja i uvijanja izazvanim djelovanjem odgovarajućih sila. Obzirom na smjer djelovanja vanjskih sila razlikujemo: - opterećenje na vlak, - opterećenje na tlak, - opterećenje na smicanje, - opterećenje na savijanje, - opterećenje na uvijanje, - opterećenje na izvijanje. Prema vremenu trajanja opterećenja razlikujemo: - trajno opterećenje, - povremeno opterećenje. Prema karakteru djelovanja opterećenja se mogu podijeliti na: - satatičko opterećenje, - dinamičko opterećenje, - periodičko opterećenje. NAPREZANJA Kao posljedica djelovanja vanjskih opterećenja na čvrsto tijelo nastaje promjena njegovog oblika tj. ono se deformira, pri čemu se unutar njegove strukture pojavljuju unutarnje sile, koje će nastojati spriječiti deformaciju. U nekom promatranom presjeku tijela unutarnja sila F može se rastaviti na normalnu komponentu F n i tangencijalnu komponentu F t u tom presjeku. Ove unutarnje sile svedene na jedinicu površine presjeka nazivaju se naprezanja. Oznake za naprezanja su б i Т, gdje б predstavlja normalno naprezanje, a Т tangencijalno naprezanje, te = vrijede odnosi F n A F τ = t A Bilo koje stanje naprezanja može se svesti na sustav normalnih i tangencijalnih komponenata naprezanja, te se stoga smatraju osnovnim oblicima naprezanja.

2 Tri osnovna pojma iz Nauke o čvrstoći : 1. OPTEREĆENJE strojnog dije la može biti izazvano: SILAMA oznaka u SI sistemu F [N] i MOMENTIMA- savijanja oznaka M [J= - uvijanja (torzije) - T =Nm] Vrste po načinu djelovanja: a) mirna ili statička opterećenja b) promjenljiva ili dinamička opterećenja koja mogu biti - ciklička Pravilna promjena opterećenja sinusoidalne promjene se u ciklusima ponavljaju. - udarna Nagle promjene opterećenja. - stohastična Promjene opterećenja se pojavljuju bez ikakvih pravilnosti.

3 . NAPREZANJE Opterećenja strojnog dijela izazivaju u materijalu tog opterećenog strojnog dijela naprezanja. Promatrano prema bilo kojem presjeku strojnog dijela naprezanja mogu općenito biti normalna i tangencijalna. Prema načinu opterećenja strojnog dijela razlikujemo: F - vlačna i tlačna naprezanja = [ V / mm ][ Pa] A - savojna naprezanja (naprezanja na savijanje) M f = s = [ N / mm ][ Pa] W - uvojna naprezanja (torziona naprezanja, naprezanja na τ τ = τ = N / mm Pa uvijanje, npr. na torziju) [ ][ ] - smična naprezanja (naprezanje na smix, naprezanje na F odrez) τ = τ s = [ N / mm ][ Pa] A Općenito je naprezanje: - sila na jedinicu površine presjeka - moment na jedinicu momenta otpora presjeka Ekvivalentno opterećenjima i naprezanja mogu biti po načinu djelovanja: a) statička b) dinamička t u W o r = min = 1 max Karakteristike cikličkih dinamičkih naprezanja razlikuju se po veličini i položaju srednjih naprezanja ( m ) i pripadajućih amplituda naprezanja ( a ), a definiraju se preko odnosa graničnih min naprezanja r =, gdje je: min apsolutno najmanje naprezanje, a max - apsolutno min najveće naprezanje. Udarna i stohastična naprezanja obuhvaćaju se u proračunima odgovarajućim iskustvenim faktorima. CIKLIČKA DINAMIČKA NAPREZANJA

4 - istosmjerno promjenljivo naprezanje s prednaprezanjem (0 < r < 1) m - srednje naprezanje (prednaprezanje) a amplituda naprezanja d donje naprezanje g gornje naprezanje g + d g d m = a = - čisto istosmjerno promjenljivo naprezanje (r = 0) a = m - naizmjenično promjenljivo naprezanje s prednaprezanjem (-1 < r < 0) - čisto naizmjenično promjenljivo naprezanje (r = -1) m =0 Napomena: Kod izračunavanja vrijednosti r uzeti u obzir predznake (+ ili-) graničnih naprezanja. 3. ČVRSTOĆA Čvrstoća je sposobnost materijala da preuzme odgovarajuće vrste naprezanja. Određuje se ispitivanjima na standardiziranim probnim epruvetama. - statička čvrstoća Vlačna statička čvrstoća određuje se na kidalicama, gdje se probna epruveta izlaže kontinuiranom F porastu opterećenja, što izaziva njezino izduživanje. δ = U dijagram se unosi odgovarajuće naprezanje б probnog štapa svedeno na njegov početni presjek, uz pripadajuće njegovo relativno izduženje ε, te se dobiva б- ε dijagram ili dijagram naprezanje istezanje. R m = čvrstoća materijala < l l lo R e = granica tečenja (razvlačenja) ε = = 100 [%] l l o o Kod čelika viših mehaničkih svojstava (na pr. liegiranih) nije R e u dijagramu jasno izražen, te se uzima da granica naprezanja kod kojeg počinju plastične deformacije odgovara relativnom izduženju ε=0,% i označava se s RP0,, dakle uzima se da je ReH R P0,. - dinamička čvrstoća A o

5 Kod ispitivanja dinamičke čvrstoće, odn. dinamičke izdržljivosti pri ciklički promjenljivom opterećenju odnosno naprezanu prisutne su dvije bitne karakteristike: 1. Do loma dolazi a da ne nastupa plastična deformacija;. Lom nastaje kod naprezanja koja su niža od statičke čvrstoće na granici elastičnosti. Do gornjih pojava dolazi uslijed nehomogene strukture materijala, gdje nejednaka čvrstoća u raznim smjerovima kristala izaziva uslijed opterećenja unutarnje lokalne plastične deformacije. Daljnjim opterećivanjima dolazi na tim mjestima do očvršćivanja materijala, te nakon toga do mikropukotina, koje se s vremenom opterećivanja šire, izazivaju koncentraciju naprezanja (nastaju tzv. žarišta zareznog djelovanja), oslabljuju presjek i dovode do naglog loma. Prilikom korištenja strojni dijelovi su vrlo rijetko statički opterećeni i gotovo svi su izloženi promjenjivim opterećenjima koja najčešće imaju ciklički karakter, a uz koja se mogu pojavljivati i udarna i stohastička. Zbog toga je proučavanje i poznavanje dinamičke čvrstoće materijala kod cikličkih promjenljivih naprezanja od posebne važnosti. Veličina naprezanja koja kod cikličkih dinamičkih opterećenja izaziva lom nije konstantna, već zavisi od broja promjena ovih naprezanja. Što je broj promjena naprezanja veći, to će i veličina naprezanja kod koje će nastupiti lom, biti manja. Ovu pojavu smanjenja otpornosti materijala pri dinamičkom naprezanju nazivamo i umornošću materijala. Dinamička čvrstoća kod vlačno-tlačnih naprezanja određuje se na pulzatoru, a dinamička čvrstoća na savijanje kod rotacije određuje se na posebnim strojevima. DIJAGRAM DINAMIČKE ČVRSTOĆE -Wőhlerova krivulja - za čelični materijal - za jedan način opterećenja (vlak-tlak, savijanje, torzija i sl.) - za jednu vrstu cikličkog dinamičkog naprezanja Napomena: Naprezanja i čvrstoće označavaju se identičnim simbolima (ε), s time da kod naprezanja ovi simboli nose indekse s malim slovima, a kod čvrstoće s velikim slovima. Vrsta cikličkog dinamičkog naprezanja ima veliki utjecaj na dinamičku čvrstoću. Znači kod jednog načina opterećenja (na pr. savijanja) moramo za svaku vrstu dinamičkog naprezanja imati posebni Wőhlerov dijagram. Dinamička izdržljivost D za određeni način i vrstu dinamičkog opterećenja predstavlja odgovarajuću veličinu maksimalnog dinamičkog naprezanja, kojemu možemo trajno izložiti probnu epruvetu, a da ne doše do njezinog loma. Utjecaj preopterećenja Strojni dijelovi mogu uz nominalna dinamička opterećenja biti povremeno izloženi i određenom broju promjena povećanih naprezanja ( na pr. puštanje stroja u rad, u području n krit i sl.). Iskustvo je pokazalo da mali broj promjena relativno velikog preopterećenja ne utječe na dinamičku izdržljivost. Krivulju utjecaja preopterećenja na dinamičku izdržljivost uz Wőhlerovu krivulju ucrtao je French (Frenč). Ako 1 nastupi do N 1 puta, odnosno do N puta, onda te pojave ne utiču na dinamičku izdržljivost D.

6 Ako se 3 pojavi N 3 puta nastaje oštećenje i utiče na D. Dakle, Frenchova (Frenčova) krivulja pokazuje do kuda se smije i koliko puta povisiti naprezanje iznad dinamičke izdržljivosti D, a da to ne utječe na samu dinamičku izdržljivost. Smith-ov dijagram Na osnovi dinamičkih izdržljivosti dobivenih iz Wőhlerovih dijagrama za razne vrste cikličkog dinamičkog naprezanja, a za jedan način opterećenja (na pr. za savijanje), izrađen je jedinstven dijagram dinamičkih izdržljivosti za sve vrste cikličkih dinamičkih naprezanja i jedan način opterećenja, koji se po prvom autoru naziva Smith-ov dijagram. Vrijednosti dinamičkih čvrstoća,odnosno dinamičkih izdržljivosti, različite su za pojedine načine opterećenja (vlak, tlak, savijanje, torzija) kod inače iste vrste materijala. To znači da ćemo za jednu vrstu materijala imati za svaki način opterećenja posebni Smith-ov dijagram, za čelične materijale vrijednosti dinamičkih izdržljivosti su najniže kod torzije. Izrada Smith-ovog dijagrama.. dinamička izdržljivost kod čisto istosmjerno promjenljivog naprezanja Primjeri: ucrtane točke 1-1 i - s označim pripadajućim m, A, G (gornja vrijednost trajne čvrstoće = dinamička izdržljivost za dani slučaj naprezanja). Na apscisu se nanose srednja naprezanja m (prednaprezanja) ciklički promjenljivog naprezanja, a na ordinatu dinamičke izdržljivosti D za za pripadajuću vrstu dinamičkog naprezanja. Oko pravca pod 45º raspoređene su amplitude dinamičke izdržljivosti A. Smith-ov dijagram je ograničen s granicom tećenja T da ne bi nastupile plastične deformacije (od točke - ). Područje I-II dinamičke izdržljivosti za istosmjerna promjenljiva naprezanja s prednaprezanjem PodručjeII-III dinamičke izdržljivosti za naizmjenično promjenljiva naprezanja s prednaprezanjem Iz Smith-ovog dijagrama za jedan materijal i jedan način opterećenja (na pr. za savijanje) mogu se očitavati sve vrijednosti dinamičkih izdržljivosti tog materijala kod svih vrsta cikličkih dinamičkih naprezanja pri danom načinu opterećenja (na pr. savijanje), za što bi inače bilo potrebno posjedovati čitav niz Wöhlerovih krivulja. Sve prethodno navedeno o dinamičkoj izdržljivosti materijala određeno je, kako je već spomenuto, na standardiziranim probnim epruvetama. Stvarni oblik, dimenzije, karakteristike i stanje strojnih dijelova u pravilu se bitno razlikuju od probne epruvete, tako da ove razlike treba obuhvatiti prilikom utvrđivanja visine dinamičke izdržljivosti strojnih dijelova. UTJECAJI NA VISINU DINAMIČKE IZDRŽLJIVOSTI 1. Metalurški utjecaji. Tehnološki utjecaji 3. Utjecaj toplinske obrade

7 4. Utjecaj preostalih naprezanja 5. Utjecaj načina mjerenja dinamičke izdržljivosti 6. Utjecaj temperature 7. Utjecaj načina uzimanja uzoraka 8. Utjecaj zareza 9. Utjecaj veličine probnog uzorka 10. Utjecaj kvalitete površinske obrade 11. Utjecaj opetovanog brzog zagrijavanja i hlađenja (toplinski šok) 1. Utjecaj korozije Uzimajući u obzir sve naprijed navedene utjecajne faktore dolazimo do dva pojma čvrstoće strojnih dijelova: POGONSKA ČVRSTOĆA je čvrstoća gotovo oblikovanog strojnog dijela. Određivanje pogonske čvrstoće, tj. dinamičke izdržljivosti gotovo oblikovanog strojnog dijela, može se izvršiti bilo direktnim pogonskim (eksploatacionim) ispitivanjem, bilo laboratorijskim ispitivanjem pod identičnim uvjetima kakvima će strojni dio biti izložen u stvarnom pogonu. ČVRSTOĆA OBLIKA je izračunata vrijednost čvrstoće gotovo oblikovanog strojnog dijela. Čvrstoća oblika dobiva se tako, da se u njezin proračun uključe svi utjecajni faktori. Time dinamička izdržljivost gotovo oblikovanog strojnog dijela postiže daleko niže vrijednosti od dinamičke izdržljivosti samog materijala iz kojeg je taj strojni dio izrađen. Čvrstoća oblika se označava sa G O odnosno G OG, gdje tada znači-gornja granična vrijednost čvrstoće oblika Općeniti izrazi za izračunavanje čvrstoće oblika glase: b1b G OG = za TLAK-VLAK (b 1 =1) ϕβ FOG b b 1 ϕβ kf fg k za SAVIJANJE b b τ τ 1 tg tog = za TORZIJU ϕβkt U gornjim jednadžbama obuhvaćeni su svi utjecajni faktori na visinu dinamičke izdržljivosti: -prvih sedam faktora (dakle utjecaji od 1. do 7.) uzeto je u obzir, odnosno mora biti uzeto u obzir, kod određivanja G G, G fg ili T tg -8. utjecaj-utjecaj zareza uzet je u obzir kroz faktor zareznog djelovanja β k,β kf,β kt -9. utjecaj obuhvaćen je faktorom veličine b 1 (kod tlačno-vlačnih naprezanja veličina strojnog dijela nema utjecaja na dinamičku izdržljivost, pa je b 1 =1) -10. utjecaj uzima se u obzir s faktorom kvalitete površinske obrade b - jedino 11. i 1. utjecajni faktori nisu zbog svojih specifičnosti obuhvaćeni u gornjim općim izrazima za proračun čvrstoće oblika. Ako se ovi utjecaji na strojnim

8 dijelovima pojave, treba ih posebno razmotriti i prema specifičnosti svog djelovanja uzeti u obzir kod izračunavanja čvrstoće oblika. -pojava udarnog opterećenja strojnog dijela obuhvaćena je faktorom udara φ. Najčešći slučaj naprezanja strojnih dijelova je čisto naizmjenično promjenljivo naprezanje ili čisto istosmjerno promjenljivo naprezanje, tako da se kod proračuna čvrstoće oblika za G G, G fg i T tg uzimaju slijedeće vrijednosti: za G G G DN ili G DI ; za G fg G fdn ili G fdi ; za T tg T tdn ili T tdi Kod ostalih načina naizmjenično, odnosno istosmjerno promjenljivog naprezanja strojnih dijelova prednje vrijednosti uzete u proračunu čvrstoće oblika povećavaju njezinu pouzdanost. Određivanje dinamičke izdržljivosti G G (G fg ili T tg ) iz Smith-ovog dijagrama za bilo koji slučaj naprezanja vrši se inače na slijedeći način: naprezanje strojnog dijela G G = dinamička izdržljivost (gornja granična vrijednost čvrstoće) za razmatrani slučaj naprezanja G A = amplituda dinamičke izdržljivosti G M = srednja vrijednost dinamičke izdržljivosti G OG = čvrstoća oblika strojnog dijela G OA = amplituda čvrstoće oblika Stvarno naprezanje strojnog dijela unosi se u Smith-ov dijagram prema pripadajućem prednaprezanju (srednjem naprezanju T m ). Kroz tako dobivene točke 1 i povlače se iz ishodišta dijagrama (D) zrake do sjecišta s gornjom graničnom vrijednosti dinamičke izdržljivosti, dobivaju se točke 1 ' i ', a time i dinamička izdržljivost G G (gornja granična vrijednost čvrstoće) za dani slučaj naprezanja strojnog dijela. Prema tako utvrđenoj vrijednosti trajne dinamičke čvrstoće G G može se izračunati G OG i unijeti ovaj podatak u prikaz naprezanja i čvrstoća razmatranog strojnog dijela. SIGURNOST Prema prethodnom prikazu očito je da mora biti zadovoljen uvjet OG g Odnos čvrstoće i stvarnih naprezanja definira se kao postojeća sigurnost, dakle S post =čvrstoća / stvarna naprezanja Prednja definicija postojeće sigurnosti vrijedi općenito, tako da se može govoriti o sigurnosti u odnosu na lomnu čvrstoću G M, u odnosu na granicu tečenja G T ili dinamičkoj sigurnosti u odnosu na dinamičku čvrstoću (čvrstoću oblika), koja je kod proračuna strojnih dijelova od primarnog značenja. Postojeća dinamička sigurnost je dakle OG fog τ tog S = = = post odnosnos post ilis post stv. fstv. τ tstv. S obzirom da pouzdanost u obuhvaćanju svih utjecajnih faktora kod proračuna čvrstoće oblika nije i ne može biti apsolutna, to mora biti uvijek G OG >G g, a to ujedno znači i S post >1.

9 Prema iskustvenim i statističkim pokazateljima utvrđena je za razne slučajeve naprezanja potrebna sigurnost S potr, tako da kod proračuna i dimenzioniranja strojnih dijelova mora uvijek biti zadovoljen uvjet S post S potr DOPUŠTENO NAPREZANJE Dopušteno naprezanje dop (ili dop 6) već i prema samom nazivu mora uvijek zadovoljiti uvjet, da je stv. dop U literaturi, a posebno u priručnicima, su često za pojedine vrste materijala i naprezanja navedena dopuštena naprezanja, koja se međutim mogu koristiti samo za orijentacione i prethodne proračune Stvarno se dopušteno naprezanje može utvrditi jedino proračunom za svaki pojedinačni slučaj, odnosno u svakoj fazi proračuna strojnog dijela. Općenito je dopušteno naprezanje definirano kao dop = čvrstoća/potrebna sigurnost odnosno u području dinamičkih naprezanja dop =čvrstoća oblika/potrebna sigurnost Na pr.: Za proračun i dimenzioniranje jednog presjeka nekog strojnog dijela, koji je opterećen naizmjenično promjenljivo na savijanje, dopušteno naprezanje izračunat će se prema izrazu fog b1b fdn dop = = S potr ϕβkf S potr gdje je G fdn odgovarajuća naizmjenična dinamička izdržljivost materijala iz kojeg će strojni dio biti izrađen, b 1, b i β kf faktori karakteristični za razmatrani presjek, φ faktor udara i S potr potrebna sigurnost za dani slučaj naprezanja. Primjer 1. Prilikom ispitivanja dinamičke čvrstoće kod savijanja materijala Č.0461 pri čisto naizmjenično promjenljivom naprezanju dobiveni su slijedeći podaci: G M =40N/mm - čvrstoća materijala kod statičkog naprezanja G fn = 410 N/mm kod broja promjena N=10 G fn =370 N/mm za N=10 4 G fn =335 N/mm za N=3, G fn =300 N/mm za N=10 5 G fn =50 N/mm za N=10 5 G fn =30 N/mm za N=10 6 G fn =18N/mm za N=3, 10 6 G fdn =10 N/mm za N=10 7 Prema dobivenim podacima treba nacrtati Wöhlerov dijagram u mjerilu za : 1mm = ˆ 5N / mm za N : 16mm = ˆ log10 Rješenje:

10 Wöhlerov dijagram Mjerilo: za : 1mm = ˆ 5N / mm za N = 16 mm = ˆ log10 Primjer. Strojni dio izrađen je iz materijala Č.0461 i čisto je naizmjenično promjenljivo napregnut na savijanje s faktorom udara Y=1,, a u jednom njegovom karakterističnom presjeku faktor zareznog djelovanja iznosi β kf = 1,4, faktor veličine je b 1 =0,85 i faktor kvalitete površinske obrade b =0,9. a) Potrebno je izračunati čvrstoću oblika karakterističnog presjeka za područje vremenske čvrstoće uzimajući u obzir podatke za materijal Č.0461 iz primjera 1. nacrtati u području vremenske čvrstoće Wöhlerovu krivulju za materijal, te Wöhlerovu krivulju vremenske čvrstoće oblika promatranog presjeka u istom dijagramu u mjerilu za : 1mm = ˆ 5N / mm za N : 40mm = ˆ log10 b) Ako je strojni dio opterećen N= puta, a promatrani karakteristični presjek strojnog dijela napregnut sa G fg (G fmaks )=110 N/mm i G fd (G fmin )=60 N/mm pri h bmaks =40%, ucrtati u prednji Wöhlerov dijagram zbirnu krivulju naprezanja tog presjeka, te utvrditi postojeću sigurnost S post u tom presjeku. Rješenje: b1b fn Općenito: fon = ϕβkf Poznato: b 1 =0,85 b=0,9 φ=1, β kf =1,4 0,85 0,9 fn fon = = 0, 459 1, 1,4 fn za N= G fon = 0, =170 N/mm za N= G fon = 0, =154 N/mm za N= G fon = 0, =138 N/mm za N= G fon = 0, =115 N/mm za N= G fon = 0,459 30=106 N/mm za N= G fon = 0, =100 N/mm

Dimenzioniranje nosaa. 1. Uvjeti vrstoe

Dimenzioniranje nosaa. 1. Uvjeti vrstoe Dimenzioniranje nosaa 1. Uvjeti vrstoe 1 Otpornost materijala prouava probleme 1. vrstoe,. krutosti i 3. elastine stabilnosti konstrukcija i dijelova konstrukcija od vrstog deformabilnog materijala. Moraju

Διαβάστε περισσότερα

SRĐAN PODRUG ELEMENTI STROJEVA

SRĐAN PODRUG ELEMENTI STROJEVA S V E U Č I L I Š T E U S P L I T U FAKULTET ELEKTROTEHNIKE, STROJARSTVA I BRODOGRADNJE U SPLITU SRĐAN PODRUG ELEMENTI STROJEVA Predavanja za stručni studij BRODOGRADNJE za šk. god. 2006/2007. Split, 2006.

Διαβάστε περισσότερα

Proizvoljno opterećenje tijela može zahtijevati složenu analizu naprezanja i deformacija,

Proizvoljno opterećenje tijela može zahtijevati složenu analizu naprezanja i deformacija, 1. Osnove čvrstoće 1.1. Pojam i vrste opterećenja Nauka o čvrstoći proučava utjecaj vanjskih sila i momenata na ponašanje čvrstih (realnih) tijela. Djelovanje vanjskih sila i momenata na tijelo naziva

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio Geometrijske karakteristike poprenih presjeka nosaa 9. dio 1 Sile presjeka (unutarnje sile): Udužna sila N Poprena sila T Moment uvijanja M t Moment savijanja M Napreanja 1. Normalno napreanje σ. Posmino

Διαβάστε περισσότερα

PRETHODNI PRORACUN VRATILA (dimenzionisanje vratila)

PRETHODNI PRORACUN VRATILA (dimenzionisanje vratila) Predet: Mašinski eleenti Proračun vratila strana Dienzionisati vratilo elektrootora sledecih karakteristika: oinalna snaga P = 3kW roj obrtaja n = 400 in Shea opterecenja: Faktor neravnoernosti K =. F

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

PROSTORNI STATIČKI ODREĐENI SUSTAVI

PROSTORNI STATIČKI ODREĐENI SUSTAVI PROSTORNI STATIČKI ODREĐENI SUSTAVI - svi elementi ne leže u istoj ravnini q 1 Z F 1 F Y F q 5 Z 8 5 8 1 7 Y y z x 7 X 1 X - svi elementi su u jednoj ravnini a opterećenje djeluje izvan te ravnine Z Y

Διαβάστε περισσότερα

PROSTA GREDA (PROSTO OSLONJENA GREDA)

PROSTA GREDA (PROSTO OSLONJENA GREDA) ROS GRED (ROSO OSONJEN GRED) oprečna sila i moment savijanja u gredi y a b c d e a) Zadana greda s opterećenjem l b) Sile opterećenja na gredu c) Određivanje sila presjeka grede u presjeku a) Unutrašnje

Διαβάστε περισσότερα

MATERIJALI I MEHANIČKA SVOJSTVA MATERIJALA. Prof. dr. sc. Ivica Kladarić

MATERIJALI I MEHANIČKA SVOJSTVA MATERIJALA. Prof. dr. sc. Ivica Kladarić MATERIJALI I MEHANIČKA SVOJSTVA MATERIJALA Statički vlačni pokus Prof. dr. sc. Ivica Kladarić 1 UVOD Metalni materijali najviše se upotrebljavaju u tehničkoj praksi zbog povoljnih mehaničkih, tehnoloških,

Διαβάστε περισσότερα

Kolegij: Konstrukcije Rješenje zadatka 2. Okno Građevinski fakultet u Zagrebu. Efektivna. Jedinična težina. 1. Glina 18,5 21,

Kolegij: Konstrukcije Rješenje zadatka 2. Okno Građevinski fakultet u Zagrebu. Efektivna. Jedinična težina. 1. Glina 18,5 21, Kolegij: Konstrukcije 017. Rješenje zadatka. Okno Građevinski fakultet u Zagrebu 1. ULAZNI PARAETRI. RAČUNSKE VRIJEDNOSTI PARAETARA ATERIJALA.1. Karakteristične vrijednosti parametara tla Efektivna Sloj

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

NOSIVI DIJELOVI MEHATRONIČKIH KONSTRUKCIJA

NOSIVI DIJELOVI MEHATRONIČKIH KONSTRUKCIJA NOSIVI DIJELOVI MEHATRONIČKIH KONSTRUKCIJA Zavareni spojevi - I. dio 1 ZAVARENI SPOJEVI Nerastavljivi spojevi Upotrebljavaju se prije svega za spajanje nosivih mehatroničkih dijelova i konstrukcija 2 ŠTO

Διαβάστε περισσότερα

ČVRSTOĆA 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA

ČVRSTOĆA 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA ČVRSTOĆA 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA STATIČKI MOMENTI I MOMENTI INERCIJE RAVNIH PLOHA Kao što pri aksijalnom opterećenju štapa apsolutna vrijednost naprezanja zavisi, između ostalog,

Διαβάστε περισσότερα

35(7+2'1,3525$&8195$7,/$GLPHQ]LRQLVDQMHYUDWLOD

35(7+2'1,3525$&8195$7,/$GLPHQ]LRQLVDQMHYUDWLOD Predmet: Mašinski elementi Proraþun vratila strana 1 Dimenzionisati vratilo elektromotora sledecih karakteristika: ominalna snaga P 3kW Broj obrtaja n 14 min 1 Shema opterecenja: Faktor neravnomernosti

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11.

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11. Dijagrami:. Udužnih sia N Greda i konoa. Popre nih sia TZ 3. Momenata savijanja My. dio Prosta greda. Optere ena koncentriranom siom F I. Reaktivne sie:. M A = 0 R B F a = 0. M B = 0 R A F b = 0 3. F =

Διαβάστε περισσότερα

OSOVINE I VRATILA. Pomoćni nastavni materijali uz kolegij "Konstrukcijski elementi I" Ak. godina 2011./12.

OSOVINE I VRATILA. Pomoćni nastavni materijali uz kolegij Konstrukcijski elementi I Ak. godina 2011./12. OSOVINE I VRATILA Pomoćni nastavni materijali uz kolegij "Konstrukcijski elementi I" Ak. godina 2011./12. Nositelj kolegija: Prof. dr. sc. Božidar Križan - 1 - OSOVINE I VRATILA Funkcija, opterećenja,

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

OSOVINE I VRATILA. Pomoćni nastavni materijali uz kolegij "Konstrukcijski elementi I" Ak. godina 2010./11.

OSOVINE I VRATILA. Pomoćni nastavni materijali uz kolegij Konstrukcijski elementi I Ak. godina 2010./11. OSOVINE I VRATILA Pomoćni nastavni materijali uz kolegij "Konstrukcijski elementi I" Ak. godina 2010./11. Nositelji kolegija: Prof. dr. sc. Božidar Križan Prof. dr. sc. Saša Zelenika - 1 - OSOVINE I VRATILA

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

PREDNAPETI BETON Primjer nadvožnjaka preko autoceste

PREDNAPETI BETON Primjer nadvožnjaka preko autoceste PREDNAPETI BETON Primjer nadvožnjaka preko autoceste 7. VJEŽBE PLAN ARMATURE PREDNAPETOG Dominik Skokandić, mag.ing.aedif. PLAN ARMATURE PREDNAPETOG 1. Rekapitulacija odabrane armature 2. Određivanje duljina

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

TEORIJA BETONSKIH KONSTRUKCIJA 79

TEORIJA BETONSKIH KONSTRUKCIJA 79 TEORIJA BETOSKIH KOSTRUKCIJA 79 Primer 1. Odrediti potrebn površin armatre za stb poznatih dimenzija, pravogaonog poprečnog preseka, opterećen momentima savijanja sled stalnog ( g ) i povremenog ( w )

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

Zadatak 4b- Dimenzionisanje rožnjače

Zadatak 4b- Dimenzionisanje rožnjače Zadatak 4b- Dimenzionisanje rožnjače Rožnjača je statičkog sistema kontinualnog nosača raspona L= 5x6,0m. Usvaja se hladnooblikovani šuplji profil pravougaonog poprečnog preseka. Raster rožnjača: λ r 2.5m

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Geodetski akultet, dr sc J Beban-Brkić Predavanja iz Matematike 9 GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Granična vrijednost unkcije kad + = = Primjer:, D( )

Διαβάστε περισσότερα

UZDUŽNA DINAMIKA VOZILA

UZDUŽNA DINAMIKA VOZILA UZDUŽNA DINAMIKA VOZILA MODEL VOZILA U UZDUŽNOJ DINAMICI Zanemaruju se sva pomeranja u pravcima normalnim na pravac kretanja (ΣZ i = 0, ΣY i = 0) Zanemaruju se svi vidovi pobuda na oscilovanje i vibracije,

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu

Διαβάστε περισσότερα

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO Matematičke metode u marketingu Multidimenzionalno skaliranje Lavoslav Čaklović PMF-MO 2016 MDS Čemu služi: za redukciju dimenzije Bazirano na: udaljenosti (sličnosti) među objektima Problem: Traži se

Διαβάστε περισσότερα

10. STABILNOST KOSINA

10. STABILNOST KOSINA MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

PRIMJERI TEST PITANJA iz OTPORNOSTI MATERIJALA I 1

PRIMJERI TEST PITANJA iz OTPORNOSTI MATERIJALA I 1 PRIMJERI TEST PITANJA iz OTPORNOSTI MATERIJALA I 1 Napomene: Pitanja služe kao priprema za izradu testova iz Otpornosti Materijala I, koji se polažu parcijalno i integralno. Testovi su koncipirani kao

Διαβάστε περισσότερα

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C)

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) PRILOG Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) Tab 3. Vrednosti sačinilaca α i β za tipične konstrukcije SN-sabirnica Tab 4. Minimalni

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

4 INTEGRALI Neodredeni integral Integriranje supstitucijom Parcijalna integracija Odredeni integral i

4 INTEGRALI Neodredeni integral Integriranje supstitucijom Parcijalna integracija Odredeni integral i Sdržj 4 INTEGRALI 64 4. Neodredeni integrl........................ 64 4. Integrirnje supstitucijom.................... 68 4. Prcijln integrcij....................... 7 4.4 Odredeni integrl i rčunnje površine

Διαβάστε περισσότερα

STATIČKI ODREĐENI SUSTAVI

STATIČKI ODREĐENI SUSTAVI STTIČKI ODREĐENI SUSTVI STTIČKI ODREĐENI SUSTVI SVOJSTV SUSTV Kod statički određenih nosača rješenja za reakcije i unutrašnje sile su jednoznačna. F C 1. F x =0 C 2. M =0 3. F y =0 Jednoznačno rješenje

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 16. UVOD U STATISTIKU Statistika je nauka o sakupljanju i analizi sakupljenih podatka u cilju donosenja zakljucaka o mogucem toku ili obliku neizvjesnosti koja se obradjuje. Frekventna distribucija - je

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

VOLUMEN ILI OBUJAM TIJELA

VOLUMEN ILI OBUJAM TIJELA VOLUMEN ILI OBUJAM TIJELA Veličina prostora kojeg tijelo zauzima Izvedena fizikalna veličina Oznaka: V Osnovna mjerna jedinica: kubni metar m 3 Obujam kocke s bridom duljine 1 m jest V = a a a = a 3, V

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

ISPIT GRUPA A - RJEŠENJA

ISPIT GRUPA A - RJEŠENJA Pismeni ispit iz OTPORNOSTI MATERIJALA I - grupa A 1. Kruta poluga AB oslonjena je na dva čelična štapa u A i B i opterećena trouglastim opterećenjem, kao na slici desno. Ako su oba štapa iste dužine L,

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET TEORIJA BETONSKIH KONSTRUKCIJA 1 PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET ODREĐIVANJE MOMENTA LOMA - "T" PRESEK Na skici dole su prikazane sve potrene geometrijske veličine, dijagrami dilatacija i napona,

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

Proračunski model - pravougaoni presek

Proračunski model - pravougaoni presek Proračunski model - pravougaoni presek 1 ε b 3.5 σ b f B "" ηx M u y b x D bu G b h N u z d y b1 a1 "1" b ε a1 10 Z au a 1 Složeno savijanje - VEZNO dimenzionisanje Poznato: statički uticaji za (M i, N

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

SRĐAN PODRUG ELEMENTI STROJEVA

SRĐAN PODRUG ELEMENTI STROJEVA S V E U Č I L I Š T E U S P L I T U FAKULTET ELEKTROTEHNIKE, STROJARSTVA I BRODOGRADNJE U SPLITU SRĐAN PODRUG ELEMENTI STROJEVA Predavanja za stručni i preddiplomski studij BRODOGRADNJE za školsku godinu

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. Neka je a 3 x 3 + a x + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. 1 Normiranje jednadžbe. Jednadžbu podijelimo s a 3 i dobivamo x 3 +

Διαβάστε περισσότερα

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1)

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 2.2 Srednje vrijednosti aritmetička sredina, medijan, mod Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 1 2.2.1 Aritmetička sredina X je numerička varijabla. Aritmetička sredina od (1) je broj:

Διαβάστε περισσότερα

PRIMJER 3. MATLAB filtdemo

PRIMJER 3. MATLAB filtdemo PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8

Διαβάστε περισσότερα

TABLICE I DIJAGRAMI iz predmeta BETONSKE KONSTRUKCIJE II

TABLICE I DIJAGRAMI iz predmeta BETONSKE KONSTRUKCIJE II TABLICE I DIJAGRAMI iz predmeta BETONSKE KONSTRUKCIJE II TABLICA 1: PARCIJALNI KOEFICIJENTI SIGURNOSTI ZA DJELOVANJA Parcijalni koeficijenti sigurnosti γf Vrsta djelovanja Djelovanje Stalno Promjenjivo

Διαβάστε περισσότερα

Teorija betonskih konstrukcija 1. Vežbe br. 4. GF Beograd

Teorija betonskih konstrukcija 1. Vežbe br. 4. GF Beograd Teorija betonskih konstrukcija 1 Vežbe br. 4 GF Beograd Teorija betonskih konstrukcija 1 1 "T" preseci - VEZANO dimenzionisanje Poznato: statički uticaji (M G,Q ) sračunato kvalitet materijala (f cd, f

Διαβάστε περισσότερα

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD Osijek, 15. rujan 2015. Marija Vidović SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJE

Διαβάστε περισσότερα

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2 (kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

, 81, 5?J,. 1o~",mlt. [ BO'?o~ ~Iel7L1 povr.sil?lj pt"en:nt7 cf~ ~ <;). So. r~ ~ I~ + 2 JA = (;82,67'11:/'+2-[ 4'33.10'+ 7M.

, 81, 5?J,. 1o~,mlt. [ BO'?o~ ~Iel7L1 povr.sil?lj pten:nt7 cf~ ~ <;). So. r~ ~ I~ + 2 JA = (;82,67'11:/'+2-[ 4'33.10'+ 7M. J r_jl v. el7l1 povr.sl?lj pt"en:nt7 cf \ L.sj,,;, ocredz' 3 Q),sof'stvene f1?(j'me")7e?j1erc!je b) po{o!.aj 'i1m/' ce/y11ra.[,p! (j'j,a 1lerc!/e

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Osječki matematički list 000), 5 9 5 Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Šefket Arslanagić Alija Muminagić Sažetak. U radu se navodi nekoliko različitih dokaza jedne poznate

Διαβάστε περισσότερα

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,

Διαβάστε περισσότερα

NERASTAVLJIVE VEZE I SPOJEVI. Zakovični spojevi

NERASTAVLJIVE VEZE I SPOJEVI. Zakovični spojevi NERASTAVLJIVE VEZE I SPOJEVI Zakovični spojevi Zakovice s poluokruglom glavom - za čelične konstrukcije (HRN M.B3.0-984), (lijevi dio slike) - za kotlove pod tlakom (desni dio slike) Nazivni promjer (sirove)

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a.

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a. Determinante Determinanta A deta je funkcija definirana na skupu svih kvadratnih matrica, a poprima vrijednosti iz skupa skalara Osim oznake deta za determinantu kvadratne matrice a 11 a 12 a 1n a 21 a

Διαβάστε περισσότερα

Snage u kolima naizmjenične struje

Snage u kolima naizmjenične struje Snage u kolima naizmjenične struje U naizmjeničnim kolima struje i naponi su vremenski promjenljive veličine pa će i snaga koja se isporučuje potrošaču biti vremenski promjenljiva Ta snaga naziva se trenutna

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

STATIČKI PRORAČUN KROVIŠTA SA DVOSTRUKOM STOLICOM

STATIČKI PRORAČUN KROVIŠTA SA DVOSTRUKOM STOLICOM STATIČKI PRORAČUN KROVIŠTA SA DVOSTRUKOM STOLICOM Autor: Ivan Volarić, struč. spec. ing. aedif. Zagreb, Siječanj 2017. TEHNIČKI OPIS KONSTRUKCIJE OPIS PROJEKTNOG ZADATKA Projektni zadatak prema kojem je

Διαβάστε περισσότερα

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET TEORIJA BETONSKIH KONSTRUKCIJA PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET ODREĐIVANJE MOMENTA LOMA - PRAVOUGAONI PRESEK Moment loma za pravougaoni presek prikazan na skici odrediti za slučajeve:. kada

Διαβάστε περισσότερα

Zavod za tehnologiju, Katedra za alatne strojeve: GLODANJE

Zavod za tehnologiju, Katedra za alatne strojeve: GLODANJE Glodanje je postupak obrade odvajanjem čestica (rezanjem) obradnih površina proizvoljnih oblika. Izvodi se na alatnim strojevima, glodalicama, pri čemu je glavno (rezno) gibanje kružno kontinuirano i pridruženo

Διαβάστε περισσότερα

Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo:

Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo: 2 Skupovi Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo: A B def ( x)(x A x B) Kažemo da su skupovi A i

Διαβάστε περισσότερα

Rad, snaga, energija. Tehnička fizika 1 03/11/2017 Tehnološki fakultet

Rad, snaga, energija. Tehnička fizika 1 03/11/2017 Tehnološki fakultet Rad, snaga, energija Tehnička fizika 1 03/11/2017 Tehnološki fakultet Rad i energija Da bi rad bio izvršen neophodno je postojanje sile. Sila vrši rad: Pri pomjeranju tijela sa jednog mjesta na drugo Pri

Διαβάστε περισσότερα

PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ).

PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ). 0.1 Faktorizacija: ID, ED, PID, ND, FD, UFD Definicija. Najava pojmova: [ID], [ED], [PID], [ND], [FD] i [UFD]. ID: Komutativan prsten P, sa jedinicom 1 0, je integralni domen [ID] oblast celih), ili samo

Διαβάστε περισσότερα

Uvod u neparametarske testove

Uvod u neparametarske testove Str. 148 Uvod u neparametarske testove Predavač: Dr Mirko Savić savicmirko@ef.uns.ac.rs www.ef.uns.ac.rs Hi-kvadrat testovi c Str. 149 Koristi se za upoređivanje dve serije frekvencija. Vrste c testa:

Διαβάστε περισσότερα

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1. σ-algebra skupova Definicija : Neka je Ω neprazan skup i F P(Ω). Familija skupova F je σ-algebra skupova na Ω ako vrijedi:. F, 2. A F A C F, 3. A n, n N} F n N A n F. Borelova σ-algebra Definicija 2: Neka

Διαβάστε περισσότερα

3 Populacija i uzorak

3 Populacija i uzorak 3 Populacija i uzorak 1 3.1 Slučajni uzorak X varijabla/stat. obilježje koje izučavamo Cilj statističke analize na osnovi uzorka izvesti odredene zaključke o (populacijskoj) razdiobi od X 2 Primjer 3.1.

Διαβάστε περισσότερα

Savijanje nosaa. Savijanje ravnog štapa prizmatinog poprenog presjeka. a)isto savijanje. b) Savijanje silama. b) Savijanje silama.

Savijanje nosaa. Savijanje ravnog štapa prizmatinog poprenog presjeka. a)isto savijanje. b) Savijanje silama. b) Savijanje silama. Štap optereen na savijanje naivamo nosa ili grea. Savijanje nosaa a) Napreanja ( i τ) b) Deformacije progib (w) Os štapa se ko savijanja akrivljuje to je elastina ili progibna linija nosaa. Savijanje ravnog

Διαβάστε περισσότερα

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET TEORIJ ETONSKIH KONSTRUKCIJ 1 PRESECI S PRSLINO - VELIKI EKSCENTRICITET ČISTO SVIJNJE - VEZNO DIENZIONISNJE Poznato: - statički ticaji za pojedina opterećenja ( i ) - kalitet materijala (f, σ ) - dimenzije

Διαβάστε περισσότερα

Srednjenaponski izolatori

Srednjenaponski izolatori Srednjenaponski izolatori Linijski potporni izolatori tip R-ET Komercijalni naziv LPI 24 N ET 1) LPI 24 L ET/5 1)2) LPI 24 L ET/6 1)2) LPI 38 L ET 1) Oznaka prema IEC 720 R 12,5 ET 125 N R 12,5 ET 125

Διαβάστε περισσότερα

PRORAČUN AB STUPA STATIČKI SUSTAV, GEOMETRIJSKE KARAKTERISTIKE I MATERIJAL

PRORAČUN AB STUPA STATIČKI SUSTAV, GEOMETRIJSKE KARAKTERISTIKE I MATERIJAL PRORAČUN AB STUPA STATIČKI SUSTAV, GEOMETRIJSKE KARAKTERISTIKE I MATERIJAL Materijal: Beton: C25/30 C f ck /f ck,cube valjak/kocka f ck 25 N/mm 2 karakteristična tlačna čvrstoća fcd proračunska tlačna

Διαβάστε περισσότερα

UZDUŽNA DINAMIKA VOZILA

UZDUŽNA DINAMIKA VOZILA UZDUŽNA DINAMIKA VOZILA MODEL VOZILA U UZDUŽNOJ DINAMICI Zanemaruju se sva pomeranja u pravcima normalnim na pravac kretanja (ΣZ i = 0, ΣY i = 0) Zanemaruju se svi vidovi pobuda na oscilovanje i vibracije,

Διαβάστε περισσότερα