Η θεωρία τησ ςτατιςτικήσ ςε ερωτήςεισ-απαντήςεισ Μέροσ 1 ον (έωσ ομαδοποίηςη δεδομένων)

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Η θεωρία τησ ςτατιςτικήσ ςε ερωτήςεισ-απαντήςεισ Μέροσ 1 ον (έωσ ομαδοποίηςη δεδομένων)"

Transcript

1 1)Πώσ ορύζεται η Στατιςτικό επιςτόμη; Στατιςτικι είναι ζνα ςφνολο αρχϊν και μεκοδολογιϊν για: το ςχεδιαςμό τθσ διαδικαςίασ ςυλλογισ δεδομζνων τθ ςυνοπτικι και αποτελεςματικι παρουςίαςι τουσ τθν ανάλυςθ και εξαγωγι αντίςτοιχων ςυμπεραςμάτων. 2)Ποιοι εύναι οι κλϊδοι τησ Στατιςτικόσ επιςτόμησ; Με τι αςχολεύται ο κϊθε κλϊδοσ; ςχεδιαςμόσ πειραμάτων περιγραφικι ςτατιςτικι επαγωγικι ςτατιςτικι θ ςτατιςτικι ςυμπεραςματολογία Ο κλάδοσ τθσ Στατιςτικισ που αςχολείται με το ςχεδιαςμό τθσ διαδικαςίασ ςυλλογισ δεδομζνων λζγεται ςχεδιαςμόσ πειραμάτων. Με τθ ςυνοπτικι και αποτελεςματικι παρουςίαςι τουσ αςχολείται θ περιγραφικι ςτατιςτικι που αποτελεί και το αντικείμενο μελζτθσ μασ. Τζλοσ, με τθν ανάλυςθ και εξαγωγι ςυμπεραςμάτων αςχολείται θ επαγωγικι ςτατιςτικι 3)Τι ονομϊζουμε πληθυςμό ; Είναι ζνα ςφνολο του οποίου κζλουμε να εξετάςουμε τα ςτοιχεία του ωσ προσ ζνα ι περιςςότερα χαρακτθριςτικά τουσ. Τα ςτοιχεία του πλθκυςμοφ ςυχνά αναφζρονται και ωσ μονάδεσ ι άτομα του πλθκυςμοφ. 4)Τι ονομϊζουμε μεταβλητϋσ ; Τι εύναι οι τιμϋσ τησ μεταβλητόσ ; Τα χαρακτθριςτικά ωσ προσ τα οποία εξετάηουμε ζναν πλθκυςμό λζγονται μεταβλθτζσ και τισ ςυμβολίηουμε ςυνικωσ με τα κεφαλαία γράμματα Χ, Ψ, Ζ, Οι δυνατζσ τιμζσ ( διαφορετικζσ μεταξφ τουσ) που μπορεί να πάρει μια μεταβλθτι λζγονται τιμζσ τθσ μεταβλθτισ και ςυμβολίηονται ωσ x 1, x2,..., xκ, κ ν όπου ν το πλικοσ των ςτοιχείων του ςυνόλου. Γ Λυκειου μαθηματικά Γενικήσ Παιδείασ Στατιςτική. Σελίδα 1

2 5)Τι λϋμε ςτατιςτικϊ δεδομϋνα ό παρατηρόςεισ ; Από τθ μελζτθ των ατόμων του πλθκυςμοφ ωσ προσ ζνα χαρακτθριςτικό τουσ προκφπτει μια ςειρά από δεδομζνα, που λζγονται ςτατιςτικά δεδομζνα ι παρατθριςεισ και ςυμβολίηονται t t,..., t 1, 2 v 6)Σε τι διακρύνονται οι μεταβλητϋσ Τισ μεταβλθτζσ τισ διακρίνουμε: Σε ποιοτικζσ ι κατθγορικζσ μεταβλθτζσ, των οποίων οι τιμζσ τουσ δεν είναι αρικμοί. Σε ποςοτικζσ μεταβλθτζσ, των οποίων οι τιμζσ είναι αρικμοί 7)Σε τι διακρύνονται οι ποςοτικϋσ μεταβλητϋσ ; Σε διακριτζσ μεταβλθτζσ, που παίρνουν μόνο «μεμονωμζνεσ» τιμζσ. Σε ςυνεχείσ μεταβλθτζσ, που μποροφν να πάρουν οποιαδιποτε τιμι ενόσ διαςτιματοσ πραγματικϊν αρικμϊν (α, β). 8)Τι ονομϊζουμε απογραφό ; Ένασ τρόποσ για να πάρουμε τισ απαραίτθτεσ πλθροφορίεσ που χρειαηόμαςτε για κάποιο πλθκυςμό είναι να εξετάςουμε όλα τα άτομα του πλθκυςμοφ ωσ προσ το χαρακτθριςτικό που μασ ενδιαφζρει. Η μζκοδοσ αυτι ονομάηεται απογραφι 9)Τι ονομϊζουμε δεύγμα ;Τι ονομϊζουμε δημοςκόπηςη ; Σε πολλζσ περιπτϊςεισ θ απογραφι όλων των μονάδων του πλθκυςμοφ είναι Γ Λυκειου μαθηματικά Γενικήσ Παιδείασ Στατιςτική. Σελίδα 2

3 δφςκολθ, ι αςφμφορθ, ι ακόμα και αδφνατθ. Μαηεφονται, τότε, πλθροφορίεσ από κάποια μικρι ομάδα, υποςφνολο του πλθκυςμοφ, το οποίο καλείται δείγμα. Γίνονται παρατθριςεισ ςτο δείγμα αυτό και μετά γενικεφονται τα ςυμπεράςματα για ολόκλθρο τον πλθκυςμό. Τα ςυμπεράςματα αυτά ιςχφουν με ικανοποιθτικι ακρίβεια για όλο τον πλθκυςμό, αν το δείγμα είναι, όπωσ λζμε, αντιπροςωπευτικό του πλθκυςμοφ. Όταν το δείγμα λαμβάνεται από ανκρϊπινο πλθκυςμό, τότε θ ςτατιςτικι μελζτθ και ζρευνα λζγεται δθμοςκόπθςθ 10)Πότε λϋμε ότι ϋνα δεύγμα εύναι αντιπροςωπευτικό ; Ένα δείγμα είναι αντιπροςωπευτικό ενόσ πληθυςμοφ, εάν ζχει επιλεγεί κατά τζτοιο τρόπο, ώςτε κάθε μονάδα του πληθυςμοφ να ζχει την ίδια δυνατότητα να επιλεγεί. 11)Τι εύναι η Δειγματοληψύα ; Οι αρχζσ και οι μζκοδοι για τθ ςυλλογι και ανάλυςθ δεδομζνων από πεπεραςμζνουσ πλθκυςμοφσ είναι το αντικείμενο τθσ Δειγματολθψίασ, που αποτελεί τθ βάςθ τθσ Στατιςτικισ. 12)Τι εύναι οι ςτατιςτικού πύνακεσ Σε τι διακρύνονται ; Τι πρϋπει να περιϋχει ώςτε να εύναι πλόρησ ϋνασ ςτατιςτικόσ πύνακασ ; Μετά τθ ςυλλογι των ςτατιςτικϊν δεδομζνων είναι αναγκαία θ καταςκευι ςυνοπτικϊν πινάκων ι γραφικϊν παραςτάςεων, ϊςτε να είναι εφκολθ θ κατανόθςι τουσ και θ εξαγωγι ςωςτϊν ςυμπεραςμάτων Οι πίνακεσ διακρίνονται ςτουσ: γενικοφσ πίνακεσ, οι οποίοι περιζχουν όλεσ τισ πλθροφορίεσ που προκφπτουν από μία ςτατιςτικι ζρευνα. ειδικοφσ πίνακεσ, οι οποίοι περιζχουν ςυνοπτικά μερικά ςτοιχεία τθσ ζρευνασ που ζχουν Γ Λυκειου μαθηματικά Γενικήσ Παιδείασ Στατιςτική. Σελίδα 3

4 Η θεωρία τησ ςτατιςτικήσ ςε ερωτήςεισ-απαντήςεισ Μέροσ 1ον (έωσ ομαδοποίηςη δεδομένων) λθφκεί από τουσ γενικοφσ πίνακεσ. Κάκε πίνακασ περιζχει: α) τον τίτλο, που περιγράφει το περιεχόμενο του πίνακα, β) τισ επικεφαλίδεσ των ςτθλϊν, που δείχνουν τθ φφςθ και τισ μονάδεσ μζτρθςθσ των δεδομζνων, γ) το κφριο ςϊμα, που περιζχει τα ςτατιςτικά δεδομζνα, δ) τθν πθγι, που γράφεται ςτο κάτω μζροσ του πίνακα και δείχνει τθν προζλευςθ των ςτατιςτικϊν ςτοιχείων. 13)Τι ονομϊζουμε απόλυτη ςυχνότητα Ασ υποκζςουμε ότι x1, x2,..., xκ είναι οι τιμζσ μιασ μεταβλθτισ Χ, που αφορά τα άτομα ενόσ δείγματοσ μεγζκουσ v, κ ν. Στθν τιμι x i αντιςτοιχίηεται θ (απόλυτθ) ςυχνότθτα νi i 1,2,..., κ, δθλαδι, ο φυςικόσ αρικμόσ που δείχνει πόςεσ φορζσ εμφανίηεται θ τιμι x i τθσ εξεταηόμενθσ μεταβλθτισ Χ ςτο ςφνολο των παρατθριςεων. Είναι φανερό ότι το άκροιςμα όλων των ςυχνοτιτων είναι ίςο με το μζγεκοσ ν του δείγματοσ, δθλαδι: ν1 ν2... νκ v ι 14)Τι ονομϊζουμε ςχετικό ςυχνότητα f i ; Τι ονομϊζουμε ςχετικό ςυχνότητα επύ τοισ εκατό f i % ; k i i 1 Αν διαιρζςουμε τθ ςυχνότθτα ν i με το μζγεκοσ ν του δείγματοσ, προκφπτει θ ςχετικι ςυχνότθτα f i τθσ τιμισ x i, δθλαδι νi, i 1,2,..., κ. ν Όταν τισ ςχετικζσ ςυχνότθτεσ f i τισ εκφράηουμε επί τοισ εκατό, τότε ςυμβολίηονται με δθλαδι fi %, f i % 100 f i. fi Γ Λυκειου μαθηματικά Γενικήσ Παιδείασ Στατιςτική. Σελίδα 4

5 15)Να αποδεύξετε ότι για την ςχετικό ςυχνότητα ιςχύουν : (i) 0 f 1 για i 1,2,..., κ. i (ii) f f... f κ νi ι ) αφοφ 0 ν i ν είναι 0 1 ν ι 0 f i 1 ιι ) Είναι : 1 2 f1 f2... f )Τι λϋμε πύνακα κατανομόσ ςυχνοτότων ; Οι ποςότθτεσ x i, νi, fi για ζνα δείγμα ςυγκεντρϊνονται ςε ζνα ςυνοπτικό πίνακα, που ονομάηεται πίνακασ κατανομισ ςυχνοτιτων ι απλά πίνακασ ςυχνοτιτων 17)Τι εύναι η κατανομό ςυχνοτότων ό η κατανομό ςχετικών ςυχνοτότων Για μια μεταβλθτι, το ςφνολο των ηευγϊν ( x i, νi ) λζμε ότι αποτελεί τθν κατανομι ςυχνοτιτων και το ςφνολο των ηευγϊν ( x i, fi ), ι των ηευγϊν ( x i, fi %), τθν κατανομι των ςχετικϊν ςυχνοτιτων. 18)Τι εύναι η αθροιςτικό ςυχνότητα, η ςχετικό αθροιςτικό ςυχνότητα, ςε ποιο εύδοσ μεταβλητόσ χρηςιμοποιούνται ; Οι ακροιςτικζσ ςυχνότθτεσ N i εκφράηουν το πλικοσ των παρατθριςεων που είναι μικρότερεσ ι ίςεσ τθσ τιμισ x, i 1,2,..., κ. Οι ακροιςτικζσ ςχετικζσ ςυχνότθτεσ F i, εκφράηουν το ποςοςτό των παρατθριςεων που είναι μικρότερεσ ι ίςεσ τθσ τιμισ x i, i 1,2,...,κ. Συχνά οι F i πολλαπλαςιάηονται επί 100 εκφραηόμενεσ ζτςι επί τοισ εκατό, δθλαδι F % 100. i F i Χρθςιμοποιοφνται για ποςοτικζσ i Γ Λυκειου μαθηματικά Γενικήσ Παιδείασ Στατιςτική. Σελίδα 5

6 Η θεωρία τησ ςτατιςτικήσ ςε ερωτήςεισ-απαντήςεισ Μέροσ 1ον (έωσ ομαδοποίηςη δεδομένων) μεταβλθτζσ Ιςχφει: N i ν1 ν2... νi i 1,2,...,κ Και Fi f1 f 2... f i, για i 1,2,...,κ μόνο όταν οι τιμζσ x1, x2,...,xκ μιασ ποςοτικισ μεταβλθτισ είναι ςε αφξουςα ςειρά. Προφανϊσ ιςχφει : ν1 N1, ν2 N 2 N1,...,νκ N κ N κ 1, Νκ = ν Και f1 F1, f 2 F2 F1,..., f κ Fκ Fκ 1, Fκ = 1 19)Τι εύναι το ραβδόγραμμα ςυχνοτότων ; Το ραβδόγραμμα ςυχνοτιτων χρθςιμοποιείται για τθ γραφικι παράςταςθ των τιμϊν μιασ ποιοτικής μεταβλητής. Το ραβδόγραμμα αποτελείται από ορκογϊνιεσ ςτιλεσ που οι βάςεισ τουσ βρίςκονται πάνω ςτον οριηόντιο ι τον κατακόρυφο άξονα και το μικοσ των βάςεων ι των ορκογωνίων ςτθλϊν είναι αυκαίρετο. Σε κάκε τιμι τθσ μεταβλθτισ Χ αντιςτοιχεί μια ορκογϊνια ςτιλθ τθσ οποίασ το φψοσ είναι ίςο με τθν αντίςτοιχθ ςυχνότθτα. Έτςι ζχουμε το ραβδόγραμμα ςυχνοτιτων. Αντίςτοιχα ορίηεται και το ραβδόγραμμα ςχετικϊν ςυχνοτιτων. 20)Τι εύναι το διϊγραμμα ςυχνοτότων; Στθν περίπτωςθ που ζχουμε μια ποσοτική μεταβλητή αντί του ραβδογράμματοσ χρθςιμοποιείται το διάγραμμα ςυχνοτιτων. Αυτό μοιάηει με το ραβδόγραμμα με μόνθ διαφορά ότι αντί να χρθςιμοποιοφμε ςυμπαγι ορκογϊνια υψϊνουμε ςε κάκε x i μία κάκετθ γραμμι με μικοσ ίςο προσ τθν αντίςτοιχθ ςυχνότθτα. Αν αντί των ςυχνοτιτων ν i ςτον κάκετο άξονα να βάλουμε τισ ςχετικζσ ςυχνότθτεσ f i, ζχουμε το διάγραμμα ςχετικϊν ςυχνοτιτων. Γ Λυκειου μαθηματικά Γενικήσ Παιδείασ Στατιςτική. Σελίδα 6

7 Η θεωρία τησ ςτατιςτικήσ ςε ερωτήςεισ-απαντήςεισ Μέροσ 1ον (έωσ ομαδοποίηςη δεδομένων) 21)Τι εύναι το διϊγραμμα αθροιςτικών ςυχνοτότων Ν i και τι το διϊγραμμα ςχετικών αθροιςτικών ςυχνοτότων F i ; Τοποκετοφμε τα xi με ςειρά μεγζκουσ ςτον οριηόντιο άξονα Χ και υψϊνουμε ςε κάκε x i μία κάκετθ γραμμι με μικοσ ίςο προσ τθν αντίςτοιχθ ακροιςτικι ςυχνότθτα Νi Αντίςτοιχα υψϊνουμε ςε κάκε x i μία κάκετθ γραμμι με μικοσ ίςο προσ τθν αντίςτοιχθ ςχετικι ακροιςτικι ςυχνότθτα Fi 22)Τι εύναι το πολύγωνο ςυχνοτότων ; Ενϊνοντασ τα ςθμεία ( xi, νi ) ι ( xi, f i ) ζχουμε το λεγόμενο πολφγωνο ςυχνοτιτων ι πολφγωνο ςχετικϊν ςυχνοτιτων, αντίςτοιχα, που μασ δίνουν μια γενικι ιδζα για τθ μεταβολι τθσ ςυχνότθτασ ι τθσ ςχετικισ ςυχνότθτασ όςο μεγαλϊνει θ τιμι τθσ μεταβλθτισ που εξετάηουμε. 23)Τι είναι το κυκλικό διάγραμμα ; Το κυκλικό διάγραμμα χρθςιμοποιείται για τθ γραφικι παράςταςθ τόςο των ποιοτικϊν όςο και των ποςοτικϊν δεδομζνων ςυνικωσ όταν οι τιμζσ είναι λίγεσ. Το κυκλικό διάγραμμα είναι ζνασ κυκλικόσ δίςκοσ χωριςμζνοσ ςε κυκλικοφσ τομείσ, τα τόξα των οποίων είναι ανάλογα προσ τισ αντίςτοιχεσ ςυχνότθτεσ νi ι τισ ςχετικζσ f i των τιμϊν xi τθσ ςυχνότθτεσ μεταβλθτισ. 24)Με ποιο τύπο υπολογύζω το μϋτρο τησ επύκεντρησ γωνύασ ό του αντύςτοιχου τόξου ςτο κυκλικό διϊγραμμα ; Αν ςυμβολίςουμε με α i το αντίςτοιχο τόξο ενόσ κυκλικοφ τμιματοσ ςτο κυκλικό διάγραμμα ςυχνοτιτων, τότε 360o α i νi 360o f i για i 1,2,...,κ. ν Γ Λυκειου μαθηματικά Γενικήσ Παιδείασ Στατιςτική. Σελίδα 7

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium V

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium V Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium V Στατιςτική Συμπεραςματολογία Ι Σημειακζσ Εκτιμήςεισ Διαςτήματα Εμπιςτοςφνησ Στατιςτική Συμπεραςματολογία (Statistical Inference) Το πεδίο τθσ Στατιςτικισ Συμπεραςματολογία,

Διαβάστε περισσότερα

1 ο ΜΑΘΗΜΑ Κεφάλαιο 1, Παράγραφοι 1.1, 1.2 ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ

1 ο ΜΑΘΗΜΑ Κεφάλαιο 1, Παράγραφοι 1.1, 1.2 ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ 1 ο ΜΑΘΗΜΑ Κεφάλαιο 1, Παράγραφοι 1.1, 1.2 ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Στατιςτικι είναι ο κλάδοσ των μακθματικϊν που αςχολείται με τθ ςυλλογι, τθν οργάνωςθ, τθν παρουςίαςθ και τθν ανάλυςθ αρικμθτικϊν

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη

Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη MSc Τραπεζική & Χρηματοοικονομική Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium I

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium I Σ ΤΑΤ Ι Σ Τ Ι Κ Η Statisticum collegium I Τι κάνει η Στατιςτική Στατιςτικι (Statistics) Μετατρζπει αρικμθτικά δεδομζνα ςε χριςιμθ πλθροφορία. Εξάγει ςυμπεράςματα για ζναν πλθκυςμό. Τισ περιςςότερεσ φορζσ,

Διαβάστε περισσότερα

ΘΥ101: Ειςαγωγι ςτθν Πλθροφορικι

ΘΥ101: Ειςαγωγι ςτθν Πλθροφορικι Παράςταςη κινητήσ υποδιαςτολήσ ςφμφωνα με το πρότυπο ΙΕΕΕ Δρ. Χρήστος Ηλιούδης το πρότυπο ΙΕΕΕ 754 ζχει χρθςιμοποιθκεί ευρζωσ ςε πραγματικοφσ υπολογιςτζσ. Το πρότυπο αυτό κακορίηει δφο βαςικζσ μορφζσ κινθτισ

Διαβάστε περισσότερα

Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2

Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2 Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2 Δρ. Χρήζηος Ηλιούδης Μθ Προςθμαςμζνοι Ακζραιοι Εφαρμογζσ (ςε οποιαδιποτε περίπτωςθ δεν χρειάηονται αρνθτικοί αρικμοί) Καταμζτρθςθ. Διευκυνςιοδότθςθ.

Διαβάστε περισσότερα

3 ο ΜΑΘΗΜΑ ΑΡΙΘΜΗΣΙΚΑ ΠΕΡΙΓΡΑΦΙΚΑ ΜΕΣΡΑ Ι ΣΑ ΜΕΣΡΑ ΚΕΝΣΡΙΚΗ ΣΑΗ

3 ο ΜΑΘΗΜΑ ΑΡΙΘΜΗΣΙΚΑ ΠΕΡΙΓΡΑΦΙΚΑ ΜΕΣΡΑ Ι ΣΑ ΜΕΣΡΑ ΚΕΝΣΡΙΚΗ ΣΑΗ 3 ο ΜΑΘΗΜΑ ΑΡΙΘΜΗΣΙΚΑ ΠΕΡΙΓΡΑΦΙΚΑ ΜΕΣΡΑ Ι ΣΑ ΜΕΣΡΑ ΚΕΝΣΡΙΚΗ ΣΑΗ Πολλζσ φορζσ μασ είναι ιδιαίτερα χριςιμο να περιγράφουμε ζνα ςφνολο αρικμθτικϊν δεδομζνων από ζναν μοναδικό αρικμό. Σζτοιου είδουσ αρικμοί

Διαβάστε περισσότερα

Παράςταςη ςυμπλήρωμα ωσ προσ 1

Παράςταςη ςυμπλήρωμα ωσ προσ 1 Δρ. Χρήστος Ηλιούδης Θζματα διάλεξησ ΣΤ1 Προςθεςη αφαίρεςη ςτο ΣΤ1 2 ή ΣΤ1 Ονομάηουμε ςυμπλιρωμα ωσ προσ μειωμζνθ βάςθ R ενόσ μθ προςθμαςμζνου αρικμοφ Χ = ( Χ θ-1 Χ θ-2... Χ 0 ) R ζναν άλλον αρικμό Χ'

Διαβάστε περισσότερα

Σ Τ Α Τ Ι Σ Τ Ι Κ Η 2. 1. Β Α Σ Ι Κ Ε Σ Ε Ν Ν Ο Ι Ε Σ.

Σ Τ Α Τ Ι Σ Τ Ι Κ Η 2. 1. Β Α Σ Ι Κ Ε Σ Ε Ν Ν Ο Ι Ε Σ. Σ Τ Α Τ Ι Σ Τ Ι Κ Η Στατιστική έρευνα : Πρόκειται για ένα σύνολο αρχών και μεθοδολογιών με αντικείμενο : 1) το σχεδιασμό της διαδικασίας συλλογής δεδομένων. Κλάδος της στατιστικής που ασχολείται : Σχεδιασμός

Διαβάστε περισσότερα

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας.

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας. 7 ο ΜΑΘΗΜΑ ΚΕΦΑΛΑΙΟ 2 ΣΤΑΤΙΣΤΙΚΗ Σκοπός Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας. Προσδοκώμενα αποτελέσματα Όταν θα έχετε ολοκληρώσει τη μελέτη αυτού του κεφαλαίου

Διαβάστε περισσότερα

Ενδεικτική Οργάνωςη Ενοτήτων. Α Σάξη. Διδ. 1 ΕΝΟΣΗΣΑ 1. 6 Ομαδοποίθςθ, Μοτίβα,

Ενδεικτική Οργάνωςη Ενοτήτων. Α Σάξη. Διδ. 1 ΕΝΟΣΗΣΑ 1. 6 Ομαδοποίθςθ, Μοτίβα, Ενδεικτική Οργάνωςη Ενοτήτων Α Σάξη Α/ Μαθηματικό περιεχόμενο Δείκτεσ Επιτυχίασ Ώρεσ Α Διδ. 1 ΕΝΟΣΗΣΑ 1 Αλ1.1 υγκρίνουν και ταξινομοφν αντικείμενα ςφμφωνα με κάποιο χαρακτθριςτικό/κριτιριο/ιδιότθτά Ομαδοποίθςθ,

Διαβάστε περισσότερα

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ο Κεφάλαιο: Στατιστική ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός: Λέγεται ένα σύνολο στοιχείων που θέλουμε να εξετάσουμε με ένα ή περισσότερα χαρακτηριστικά. Μεταβλητές X: Ονομάζονται

Διαβάστε περισσότερα

ΖΗΤΗΜ Α 1 Ο. Α1. Τι είναι το ραβδόγραµµα και πότε χρησιµοποιείται; 5) Α2. Σε τι διακρίνονται οι µεταβλητές και τι είναι οι τιµές τους;

ΖΗΤΗΜ Α 1 Ο. Α1. Τι είναι το ραβδόγραµµα και πότε χρησιµοποιείται; 5) Α2. Σε τι διακρίνονται οι µεταβλητές και τι είναι οι τιµές τους; ΔΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 1 ΦΕΒΡΟΥΑΡΙΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΖΗΤΗΜ Α 1 Ο Α1. Τι είναι το ραβδόγραµµα

Διαβάστε περισσότερα

Θεςιακά ςυςτιματα αρίκμθςθσ

Θεςιακά ςυςτιματα αρίκμθςθσ Θεςιακά ςυςτιματα αρίκμθςθσ Δρ. Χρήστος Ηλιούδης αρικμθτικό ςφςτθμα αρίκμθςθσ (Number System) Αξία (value) παράςταςθ Οι αξίεσ (π.χ. το βάροσ μιασ ποςότθτασ μιλων) μποροφν να παραςτακοφν με πολλοφσ τρόπουσ

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ. για τα οποία ισχύει y f (x) , δηλαδή το σύνολο, x A, λέγεται γραφική παράσταση της f και συμβολίζεται συνήθως με C

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ. για τα οποία ισχύει y f (x) , δηλαδή το σύνολο, x A, λέγεται γραφική παράσταση της f και συμβολίζεται συνήθως με C Επιμέλεια: Κ Μυλωνάκης ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΕΡΩΤΗΣΗ Τι ονομάζεται πραγματική συνάρτηση με πεδίο ορισμού το Α; Έστω Α ένα υποσύνολο του R Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α μια διαδικασία

Διαβάστε περισσότερα

ΡΟΓΑΜΜΑΤΙΣΤΙΚΟ ΡΕΙΒΑΛΛΟΝ MICRO WORLDS PRO

ΡΟΓΑΜΜΑΤΙΣΤΙΚΟ ΡΕΙΒΑΛΛΟΝ MICRO WORLDS PRO ΡΟΓΑΜΜΑΤΙΣΤΙΚΟ ΡΕΙΒΑΛΛΟΝ MICRO WORLDS PRO Το Micro Worlds Pro είναι ζνα ολοκλθρωμζνο περιβάλλον προγραμματιςμοφ. Χρθςιμοποιεί τθ γλϊςςα προγραμματιςμοφ Logo (εξελλθνιςμζνθ) Το Micro Worlds Pro περιλαμβάνει

Διαβάστε περισσότερα

Μετατροπι Αναλογικοφ Σιματοσ ςε Ψθφιακό. Διάλεξθ 10

Μετατροπι Αναλογικοφ Σιματοσ ςε Ψθφιακό. Διάλεξθ 10 Μετατροπι Αναλογικοφ Σιματοσ ςε Ψθφιακό Διάλεξθ 10 Γενικό Σχιμα Μετατροπζασ Αναλογικοφ ςε Ψθφιακό Ψθφιακό Τθλεπικοινωνιακό Κανάλι Μετατροπζασ Ψθφιακοφ ςε Αναλογικό Τα αναλογικά ςιματα μετατρζπονται ςε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου Ενότητα 1β: Ισότητα - Εξίσωση ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου Ενότητα 1β: Ισότητα - Εξίσωση Συγγραφή:

Διαβάστε περισσότερα

Μέτρηςη τησ Εμφάνιςησ τησ Νόςου Νοςηρότητα : Επίπτωςη, Επιπολαςμόσ. Δρ. Ιωάννθσ Δετοράκθσ

Μέτρηςη τησ Εμφάνιςησ τησ Νόςου Νοςηρότητα : Επίπτωςη, Επιπολαςμόσ. Δρ. Ιωάννθσ Δετοράκθσ Μέτρηςη τησ Εμφάνιςησ τησ Νόςου Νοςηρότητα : Επίπτωςη, Επιπολαςμόσ Δρ. Ιωάννθσ Δετοράκθσ Πληθυςμόσ : Η εξζλιξη τησ νόςου από υγιζσ άτομα ςε άτομα με βαθμό ςοβαρότητασ τησ νόςου που είναι μεταβαλλόμενοσ

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Α ΔΙΑΓΩΝΙΣΜΟΣ ΕΠΙΛΟΓΗΣ IMC (Key Stage II) 9 Μαρτίου 2016 ΧΡΟΝΟΣ: 2 ΩΡΕΣ Λύςεισ : Πρόβλημα 1 (α) Να βρείτε τθν τιμι του για να ιςχφει θ πιο κάτω ςχζςθ: (β) Ο Ανδρζασ τελειϊνει

Διαβάστε περισσότερα

Στατιςτικζσ δοκιμζσ. Συνεχι δεδομζνα. Γεωργία Σαλαντι

Στατιςτικζσ δοκιμζσ. Συνεχι δεδομζνα. Γεωργία Σαλαντι Στατιςτικζσ δοκιμζσ Συνεχι δεδομζνα Γεωργία Σαλαντι Τι κζλουμε να ςυγκρίνουμε; Δφο δείγματα Μζςθ αρτθριακι πίεςθ ςε δφο ομάδεσ Πικανότθτα κανάτου με δφο διαφορετικά είδθ αντικατακλιπτικϊν Τθν μζςθ τιμι

Διαβάστε περισσότερα

ΕΛΛΘΝΙΚΘ ΔΘΜΟΚΡΑΣΙΑ ΕΛΛΘΝΙΚΘ ΣΑΣΙΣΙΚΘ ΑΡΧΘ Πειραιάσ, 14 Ιουλίου 2016 ΔΕΛΣΙΟ ΣΤΠΟΤ

ΕΛΛΘΝΙΚΘ ΔΘΜΟΚΡΑΣΙΑ ΕΛΛΘΝΙΚΘ ΣΑΣΙΣΙΚΘ ΑΡΧΘ Πειραιάσ, 14 Ιουλίου 2016 ΔΕΛΣΙΟ ΣΤΠΟΤ ΕΛΛΘΝΙΚΘ ΔΘΜΟΚΡΑΣΙΑ ΕΛΛΘΝΙΚΘ ΣΑΣΙΣΙΚΘ ΑΡΧΘ Πειραιάσ, 14 Ιουλίου 2016 ΔΕΛΣΙΟ ΣΤΠΟΤ ΕΡΕΤΝΑ ΧΟΙΡΩΝ ΒΟΟΕΙΔΩΝ ΠΡΟΒΑΣΩΝ ΑΙΓΩΝ Αποτελζςματα Ερευνϊν Ηωικοφ Κεφαλαίου: Ζτοσ 2015 Από τθν Ελλθνικι Στατιςτικι Αρχι

Διαβάστε περισσότερα

Πειραματικι Ψυχολογία (ΨΧ66)

Πειραματικι Ψυχολογία (ΨΧ66) Πειραματικι Ψυχολογία (ΨΧ66) Διδάςκουςα: Αλεξάνδρα Οικονόμου Παρουςίαςη διαλζξεων: Πζτροσ Ροφςςοσ Διάλεξη 1 Ειςαγωγι Αντικείμενο και τρόποσ λειτουργίασ του μακιματοσ Τι είναι επιςτιμθ; Καλωςορίςατε ςτο

Διαβάστε περισσότερα

Ζρευνα ικανοποίθςθσ τουριςτϊν

Ζρευνα ικανοποίθςθσ τουριςτϊν Ζρευνα ικανοποίθςθσ τουριςτϊν Ammon Ovis_Ζρευνα ικανοποίθςθσ τουριςτϊν_ Ραδιοςτακμόσ Flash 96 1 ΣΤΟΙΧΕΙΑ ΔΕΙΓΜΑΤΟΣ Σο δείγμα περιλαμβάνει 332 τουρίςτεσ από 5 διαφορετικζσ θπείρουσ. Οι περιςςότεροι εξ αυτϊν

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ 1 Τί λέγεται πληθυσμός τι άτομα και τι μεταβλητή ενός πληθυσμού 2. Ποιες μεταβλητές λέγονται ποιοτικές ή κατηγορικές; 3.

ΣΤΑΤΙΣΤΙΚΗ 1 Τί λέγεται πληθυσμός τι άτομα και τι μεταβλητή ενός πληθυσμού 2. Ποιες μεταβλητές λέγονται ποιοτικές ή κατηγορικές; 3. .. ΣΤΑΤΙΣΤΙΚΗ 1 Τί λέγεται πληθυσμός τι άτομα και τι μεταβλητή ενός πληθυσμού 2. Ποιες μεταβλητές λέγονται ποιοτικές ή κατηγορικές; 3. Ποιες μεταβλητές λέγονται ποσοτικές; 4. Πότε μια ποσοτική μεταβλητή

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ

ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ 2o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ: ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδες Μαθήματος: users.auth.gr/gvasil

Διαβάστε περισσότερα

x n D 2 ENCODER m - σε n (m 2 n ) x 1 Παραδείγματα κωδικοποιθτϊν είναι ο κωδικοποιθτισ οκταδικοφ ςε δυαδικό και ο κωδικοποιθτισ BCD ςε δυαδικό.

x n D 2 ENCODER m - σε n (m 2 n ) x 1 Παραδείγματα κωδικοποιθτϊν είναι ο κωδικοποιθτισ οκταδικοφ ςε δυαδικό και ο κωδικοποιθτισ BCD ςε δυαδικό. Κωδικοποιητές Ο κωδικοποιθτισ (nor) είναι ζνα κφκλωμα το οποίο διακζτει n γραμμζσ εξόδου και το πολφ μζχρι m = 2 n γραμμζσ ειςόδου και (m 2 n ). Οι ζξοδοι παράγουν τθν κατάλλθλθ λζξθ ενόσ δυαδικοφ κϊδικα

Διαβάστε περισσότερα

Slide 1. Εισαγωγή στη ψυχρομετρία

Slide 1. Εισαγωγή στη ψυχρομετρία Slide 1 Εισαγωγή στη ψυχρομετρία 1 Slide 2 Σφντομη ειςαγωγή ςτη ψυχρομετρία. Διάγραμμα Mollier (πίεςησ-ενθαλπίασ P-H) Σο διάγραμμα Mollier είναι μία γραφικι παράςταςθ ςε ζναν άξονα ςυντεταγμζνων γραμμϊν

Διαβάστε περισσότερα

NH 2 R COOH. Σο R είναι το τμιμα του αμινοξζοσ που διαφζρει από αμινοξφ ςε αμινοξφ. 1 Πρωτεΐνες

NH 2 R COOH. Σο R είναι το τμιμα του αμινοξζοσ που διαφζρει από αμινοξφ ςε αμινοξφ. 1 Πρωτεΐνες 1 Πρωτεΐνες Πρωτεΐνεσ : Οι πρωτεΐνεσ είναι ουςίεσ «πρώτθσ» γραμμισ για τουσ οργανιςμοφσ (άρα και για τον άνκρωπο). Σα κφτταρα και οι ιςτοί αποτελοφνται κατά κφριο λόγο από πρωτεΐνεσ. Ο ςθμαντικότεροσ όμωσ

Διαβάστε περισσότερα

groupsms Interface: Εργαλείο μαζικών αποζηολών SMS

groupsms Interface: Εργαλείο μαζικών αποζηολών SMS groupsms Interface: Εργαλείο μαζικών αποζηολών SMS Έκδοζη: 27 Μαρηίου 2012 Τποδομι groupsms: Γενικά Πλεονεκτιματα Βελτιςτοποιθμζνθ διαδικαςία SMS αποςτολϊν Μαηικζσ αποςτολζσ μζςω πολλαπλϊν γραμμϊν που

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΒΙΟΛΟΓΙΑΣ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΔΙΑΓΩΝΙΣΜΑ ΒΙΟΛΟΓΙΑΣ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΓΩΝΙΣΜΑ ΒΙΟΛΟΓΙΑΣ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Όνομα. Ημερομηνία. Ζήτημα Α : Να βάλετε ςε κφκλο τθ ςωςτι απάντθςθ 1. Κυτταρικόσ κφκλοσ είναι το χρονικό διάςτθμα που μεςολαβεί: α. μεταξφ δφο μιτωτικϊν

Διαβάστε περισσότερα

Megatron ERP Βάςη δεδομζνων Π/Φ - κατηγοριοποίηςη Databox

Megatron ERP Βάςη δεδομζνων Π/Φ - κατηγοριοποίηςη Databox Megatron ERP Βάςη δεδομζνων Π/Φ - κατηγοριοποίηςη Databox 03 05 ΙΛΤΔΑ ΠΛΗΡΟΦΟΡΙΚΗ Α.Ε. αρμά Ιηαμπζλλα Βαρλάμθσ Νίκοσ Ειςαγωγι... 1 Σι είναι το Databox...... 1 Πότε ανανεϊνεται...... 1 Μπορεί να εφαρμοςτεί

Διαβάστε περισσότερα

Ενδεικτικζσ Λφςεισ Θεμάτων

Ενδεικτικζσ Λφςεισ Θεμάτων c AM (t) x(t) ΤΕΙ Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σειρά Β Ειςηγητήσ: Δρ Απόςτολοσ Γεωργιάδησ ΕΠΙΚΟΙΝΩΝΙΕΣ Ι Ενδεικτικζσ Λφςεισ Θεμάτων Θζμα 1 ο (1 μον.) Ζςτω περιοδικό ςιμα πλθροφορίασ με περίοδο.

Διαβάστε περισσότερα

Γράφοι. Δομζσ Δεδομζνων Διάλεξθ 9

Γράφοι. Δομζσ Δεδομζνων Διάλεξθ 9 Γράφοι Δομζσ Δεδομζνων Διάλεξθ 9 Περιεχόμενα Γράφοι Γενικζσ ζννοιεσ, οριςμόσ, κτλ Παραδείγματα Γράφων Αποκικευςθ Γράφων Βαςικοί Οριςμοί Γράφοι και Δζντρα Διάςχιςθ Γράφων Περιοδεφων Πωλθτισ Γράφοι Οριςμόσ:

Διαβάστε περισσότερα

Εφδοξοσ+ Συνδεκείτε ςτθν Εφαρμογι Φοιτθτϊν και μεταβείτε ςτθ ςελίδα «Ανταλλαγι Βιβλίων (Εφδοξοσ+)».

Εφδοξοσ+ Συνδεκείτε ςτθν Εφαρμογι Φοιτθτϊν και μεταβείτε ςτθ ςελίδα «Ανταλλαγι Βιβλίων (Εφδοξοσ+)». Εφδοξοσ+ Διαθζτοντασ βιβλία μζςω του «Εφδοξοσ+» Συνδεκείτε ςτθν Εφαρμογι Φοιτθτϊν και μεταβείτε ςτθ ςελίδα «Ανταλλαγι Βιβλίων (Εφδοξοσ+)». Εμφανίηεται θ λίςτα με όλα ςασ τα βιβλία. Από εδϊ μπορείτε: -

Διαβάστε περισσότερα

ΕΞΟΙΚΟΝΟΜΘΘ ΝΕΡΟΤ!!!!

ΕΞΟΙΚΟΝΟΜΘΘ ΝΕΡΟΤ!!!! ΕΞΟΙΚΟΝΟΜΘΘ ΝΕΡΟΤ!!!! Χωρίσ νερό δεν μπορεί να υπάρξει ανκρϊπινθ ηωι! Ζνασ μζςοσ άνκρωποσ μπορεί να αντζξει χωρίσ τροφι 2 μινεσ, ενϊ χωρίσ νερό μόνο 2-3 μζρεσ. Αν ο ανκρϊπινοσ οργανιςμόσ χάςει μεγάλθ ποςότθτα

Διαβάστε περισσότερα

ΑΤΣΟΝΟΜΟΙ ΠΡΑΚΣΟΡΕ ΕΡΓΑΙΑ ΕΞΑΜΗΝΟΤ HEARTSTONE ΑΛΕΞΑΝΔΡΟ ΛΟΤΚΟΠΟΤΛΟ ΑΜ:

ΑΤΣΟΝΟΜΟΙ ΠΡΑΚΣΟΡΕ ΕΡΓΑΙΑ ΕΞΑΜΗΝΟΤ HEARTSTONE ΑΛΕΞΑΝΔΡΟ ΛΟΤΚΟΠΟΤΛΟ ΑΜ: ΑΤΣΟΝΟΜΟΙ ΠΡΑΚΣΟΡΕ ΕΡΓΑΙΑ ΕΞΑΜΗΝΟΤ HEARTSTONE ΑΛΕΞΑΝΔΡΟ ΛΟΤΚΟΠΟΤΛΟ ΑΜ: 2008030075 ΕΙΑΓΩΓΗ Το Heartstone είναι ζνα ψθφιακό παιχνίδι καρτϊν που διεξάγιεται πάνω ςτο Battle.net, ζναν διακομιςτι τθσ εταιρίασ

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΔΙΑΔΙΚΣΤΟΤ. Φιλιοποφλου Ειρινθ

ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΔΙΑΔΙΚΣΤΟΤ. Φιλιοποφλου Ειρινθ ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΔΙΑΔΙΚΣΤΟΤ Φιλιοποφλου Ειρινθ Βάςθ Δεδομζνων Βάζη δεδομένων είναι μια οπγανωμένη ζςλλογή πληποθοπιών οι οποίερ πποζδιοπίζοςν ένα ζςγκεκπιμένο θέμα.χπηζιμεύοςν ζηην Σςλλογή

Διαβάστε περισσότερα

ΧΗΥΙΑΚΟ ΔΚΠΑΙΔΔΤΣΙΚΟ ΒΟΗΘΗΜΑ «ΥΤΙΚΗ ΘΔΣΙΚΗ ΚΑΙ ΣΔΦΝΟΛΟΓΙΚΗ ΚΑΣΔΤΘΤΝΗ» ΦΥΣΙΚΗ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ ΘΔΜΑ Α ΘΔΜΑ Β

ΧΗΥΙΑΚΟ ΔΚΠΑΙΔΔΤΣΙΚΟ ΒΟΗΘΗΜΑ «ΥΤΙΚΗ ΘΔΣΙΚΗ ΚΑΙ ΣΔΦΝΟΛΟΓΙΚΗ ΚΑΣΔΤΘΤΝΗ» ΦΥΣΙΚΗ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ ΘΔΜΑ Α ΘΔΜΑ Β 4 o ΔΙΓΩΝΙΜ ΠΡΙΛΙΟ 04: ΔΝΔΔΙΚΣΙΚΔ ΠΝΣΗΔΙ ΦΥΣΙΚΗ ΘΔΤΙΚΗΣ ΚΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΤΔΥΘΥΝΣΗΣ 4 ο ΔΙΓΩΝΙΣΜ ΔΝΔΔΙΚΤΙΚΔΣ ΠΝΤΗΣΔΙΣ ΘΔΜ. β. β 3. α 4. γ 5. α.σ β.σ γ.λ δ.σ ε.λ. ΘΔΜ Β Σωςτι είναι θ απάντθςθ γ. Έχουμε ελαςτικι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ. 1. α. Tι ονοµάζεται συνάρτηση από το σύνολο Α στο σύνολο Β; β. Tι ονοµάζεται πραγµατική συνάρτηση πραγµατικής µεταβλητής;

ΚΕΦΑΛΑΙΟ. 1. α. Tι ονοµάζεται συνάρτηση από το σύνολο Α στο σύνολο Β; β. Tι ονοµάζεται πραγµατική συνάρτηση πραγµατικής µεταβλητής; Μαθηµατικά και Στοιχεία Στατιστικής ΚΕΦΑΛΑΙΟ ο 1 : ιαφορικός Λογισµός 1. α. Tι ονοµάζεται συνάρτηση από το σύνολο Α στο σύνολο Β; β. Tι ονοµάζεται πραγµατική συνάρτηση πραγµατικής µεταβλητής; 2. Έστω µια

Διαβάστε περισσότερα

ΟΝΟΜΑΣΟΛΟΓΙΑ ΠΑΡΑΜΕΣΡΩΝ ΓΙΑ ΠΡΟΑΡΜΟΜΕΝΕ ΑΝΑΦΟΡΕ. @XXX@_<όνομα παραμζτρου> (Εμφανίηεται ςαν Caption ςτθν φόρμα των φίλτρων).

ΟΝΟΜΑΣΟΛΟΓΙΑ ΠΑΡΑΜΕΣΡΩΝ ΓΙΑ ΠΡΟΑΡΜΟΜΕΝΕ ΑΝΑΦΟΡΕ. @XXX@_<όνομα παραμζτρου> (Εμφανίηεται ςαν Caption ςτθν φόρμα των φίλτρων). ΟΝΟΜΑΣΟΛΟΓΙΑ ΠΑΡΑΜΕΣΡΩΝ ΓΙΑ ΠΡΟΑΡΜΟΜΕΝΕ ΑΝΑΦΟΡΕ. @XXX@_ (Εμφανίηεται ςαν Caption ςτθν φόρμα των φίλτρων). Βαςικοί παράμετροι @EDT@_ @CHK@_ @CXD@_ @CXDC@_ @CMB@_ @CHKLB@_ Παράμετροσ που

Διαβάστε περισσότερα

ΕΝΩΗ ΚΥΠΡΙΩΝ ΦΥΙΚΩΝ. 4η ΠΑΓΚΤΠΡΙΑ ΟΛΤΜΠΙΑΔΑ ΕΠΙΣΗΜΗ Δ ΣΑΞΗ ΔΗΜΟΣΙΚΟΤ. Κυριακή, 7 Ιουνίου 2015, ώρα: 10:00-11:00

ΕΝΩΗ ΚΥΠΡΙΩΝ ΦΥΙΚΩΝ. 4η ΠΑΓΚΤΠΡΙΑ ΟΛΤΜΠΙΑΔΑ ΕΠΙΣΗΜΗ Δ ΣΑΞΗ ΔΗΜΟΣΙΚΟΤ. Κυριακή, 7 Ιουνίου 2015, ώρα: 10:00-11:00 ΕΝΩΗ ΚΥΠΡΙΩΝ ΦΥΙΚΩΝ 4η ΠΑΓΚΤΠΡΙΑ ΟΛΤΜΠΙΑΔΑ ΕΠΙΣΗΜΗ Δ ΣΑΞΗ ΔΗΜΟΣΙΚΟΤ Κυριακή, 7 Ιουνίου 2015, ώρα: 10:00-11:00 Οδηγίερ: 1) Το εξεηαζηικό δοκίμιο αποηελείηαι από 5 ζελίδερ και πεπιλαμβάνει 25 θέμαηα. 2)

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ Η ΤΑΞΗ ΤΗΣ ΤΕΛΙΚΗΣ ΕΠΙΛΟΓΗΣ. Στθ ΓϋΛυκείου οι Ομάδεσ Προςανατολιςμοφ είναι τρεισ:

Γ' ΛΥΚΕΙΟΥ Η ΤΑΞΗ ΤΗΣ ΤΕΛΙΚΗΣ ΕΠΙΛΟΓΗΣ. Στθ ΓϋΛυκείου οι Ομάδεσ Προςανατολιςμοφ είναι τρεισ: Γ' ΛΥΚΕΙΟΥ Η ΤΑΞΗ ΤΗΣ ΤΕΛΙΚΗΣ ΕΠΙΛΟΓΗΣ Στθ ΓϋΛυκείου οι Ομάδεσ Προςανατολιςμοφ είναι τρεισ: 1. Ομάδα Ανκρωπιςτικών Σπουδών 2. Ομάδα Οικονομικών, Πολιτικών, Κοινωνικών & Παιδαγωγικών Σπουδών 3. Ομάδα Θετικών

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΕΝΙΣΧΥΤΗΣ PUSH-PULL ΤΑΞΗΣ AB

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΕΝΙΣΧΥΤΗΣ PUSH-PULL ΤΑΞΗΣ AB ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΕΝΙΣΧΥΤΗΣ PUSH-PULL ΤΑΞΗΣ AB ΘΕΩΡΗΣΙΚΗ ΕΙΑΓΩΓΗ Οι ενιςχυτζσ ιςχφοσ αποτελοφν μια ιδιαίτερθ κατθγορία ενιςχυτϊν που χαρακτθριςτικό τουσ είναι θ μεγάλθ ιςχφσ που μποροφν να αποδϊςουν

Διαβάστε περισσότερα

ΓΕΦΤΡΟΠΟΙΪΑ: ΜΟΝΙΜΑ ΚΑΙ ΚΙΝΗΣΑ ΦΟΡΣΙΑ. ΔΙΟΝΥΣΙΟΣ Ε. ΜΠΙΣΚΙΝΗΣ Τμήμα Πολιτικών Μηχανικών Τ.Ε. Τ.Ε.Ι. Δυτικής Ελλάδας

ΓΕΦΤΡΟΠΟΙΪΑ: ΜΟΝΙΜΑ ΚΑΙ ΚΙΝΗΣΑ ΦΟΡΣΙΑ. ΔΙΟΝΥΣΙΟΣ Ε. ΜΠΙΣΚΙΝΗΣ Τμήμα Πολιτικών Μηχανικών Τ.Ε. Τ.Ε.Ι. Δυτικής Ελλάδας 1 ΓΕΦΤΡΟΠΟΙΪΑ: ΜΟΝΙΜΑ ΚΑΙ ΚΙΝΗΣΑ ΦΟΡΣΙΑ ΔΙΟΝΥΣΙΟΣ Ε. ΜΠΙΣΚΙΝΗΣ Τμήμα Πολιτικών Μηχανικών Τ.Ε. Τ.Ε.Ι. Δυτικής Ελλάδας Μόνιμα Φορτία Ίδιον Βάροσ (για Οπλιςμζνο Σκυρόδεμα): g=25 KN/m 3 Σε οδικζσ γζφυρεσ πρζπει

Διαβάστε περισσότερα

ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΙΣΟΤΣΟ ΚΤΠΡΟΤ Πρόγραμμα Επιμόρυωσης Τποψηυίων Καθηγητών Σεχνολογίας. Ηλεκτρονικά ΙΙ

ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΙΣΟΤΣΟ ΚΤΠΡΟΤ Πρόγραμμα Επιμόρυωσης Τποψηυίων Καθηγητών Σεχνολογίας. Ηλεκτρονικά ΙΙ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΙΣΟΤΣΟ ΚΤΠΡΟΤ Πρόγραμμα Επιμόρυωσης Τποψηυίων Καθηγητών Σεχνολογίας Ηλεκτρονικά ΙΙ Πέμπτη 3/3/2011 Διδάζκων: Γιώργος Χαηζηιωάννοσ Τηλέθωνο: 99653828 Ε-mail: georghios.h@cytanet.com.cy Ώρες

Διαβάστε περισσότερα

Άπειρεσ κροφςεισ. Τθ χρονικι ςτιγμι. t, ο δακτφλιοσ ςυγκροφεται με τον τοίχο με ταχφτθτα (κζντρου μάηασ) μζτρου

Άπειρεσ κροφςεισ. Τθ χρονικι ςτιγμι. t, ο δακτφλιοσ ςυγκροφεται με τον τοίχο με ταχφτθτα (κζντρου μάηασ) μζτρου Άπειρεσ κροφςεισ Δακτφλιοσ ακτίνασ κυλάει ςε οριηόντιο δάπεδο προσ ζνα κατακόρυφο τοίχο όπωσ φαίνεται ςτο ςχιμα. Ο ςυντελεςτισ τριβισ ίςκθςθσ του δακτυλίου με το δάπεδο είναι, ενϊ ο τοίχοσ είναι λείοσ.

Διαβάστε περισσότερα

Στα προθγοφμενα δφο εργαςτιρια είδαμε τθ δομι απόφαςθσ (ι επιλογισ ι ελζγχου ροισ). Ασ κυμθκοφμε:

Στα προθγοφμενα δφο εργαςτιρια είδαμε τθ δομι απόφαςθσ (ι επιλογισ ι ελζγχου ροισ). Ασ κυμθκοφμε: ΔΟΜΗ ΑΠΟΦΑΗ Στα προθγοφμενα δφο εργαςτιρια είδαμε τθ δομι απόφαςθσ (ι επιλογισ ι ελζγχου ροισ). Ασ κυμθκοφμε: Όταν το if που χρθςιμοποιοφμε παρζχει μόνο μία εναλλακτικι διαδρομι εκτζλεςθ, ο τφποσ δομισ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΕΠΙΠΕΔΟ 11 12 (Β - Γ Λυκείου)

ΜΑΘΗΜΑΤΙΚΑ ΕΠΙΠΕΔΟ 11 12 (Β - Γ Λυκείου) ΕΠΙΠΕΔΟ 11 12 (Β - Γ Λυκείου) 19 Μαρτίου 2011 10:00-11:15 3 point/μονάδες 1) Στθν πιο κάτω εικόνα πρζπει να υπάρχει αρικμόσ ςε κάκε κουκκίδα ϊςτε το άκροιςμα των αρικμϊν ςτα άκρα κάκε ευκφγραμμου τμιματοσ

Διαβάστε περισσότερα

ΣΑ ΔΑΘ ΣΘΝ ΕΛΛΑΔΑ. Θ παραγωγι δαςικϊν προϊόντων. H εκτίμθςθ των ποςοτιτων

ΣΑ ΔΑΘ ΣΘΝ ΕΛΛΑΔΑ. Θ παραγωγι δαςικϊν προϊόντων. H εκτίμθςθ των ποςοτιτων ΣΑ ΔΑΘ ΣΘΝ ΕΛΛΑΔΑ Θ παραγωγι δαςικϊν προϊόντων H εκτίμθςθ των ποςοτιτων «Θ αειφορία του δάςουσ είναι προχπόκεςθ για τθν ςωτθρία του περιβάλλοντοσ, του κλίματοσ και του ανκρϊπου.» Μεταφορά ξυλείασ από το

Διαβάστε περισσότερα

Δζντρα. Δομζσ Δεδομζνων

Δζντρα. Δομζσ Δεδομζνων Δζντρα Δομζσ Δεδομζνων Περιεχόμενα Δζντρα Γενικζσ ζννοιεσ Κόμβοσ ενόσ δζντρου Δυαδικά δζντρα αναηιτθςθσ Αναηιτθςθ Κόμβου Ειςαγωγι ι δθμιουργία κόμβου Δζντρα Γενικζσ ζννοιεσ Οι προθγοφμενεσ δομζσ που εξετάςτθκαν

Διαβάστε περισσότερα

Σα Μαθηματικά και εμείς

Σα Μαθηματικά και εμείς Σα Μαθηματικά και εμείς ΜΑΘΗΜΑΤΙΚΑ Τα Μακθματικά αποτελοφν ζναν από τουσ βαςικότερουσ παράγοντεσ τθσ ανκρϊπινθσ γνϊςθσ και του ανκρϊπινου πολιτιςμοφ. Μζςο για τθν καλλιζργεια τθσ απαιτοφμενθσ ορκολογικισ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ο : ΣΤΑΤΙΣΤΙΚΗ

ΚΕΦΑΛΑΙΟ 2 ο : ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 2 ο : ΣΤΑΤΙΣΤΙΚΗ 1 ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Ποιες μεταβλητές λέγονται ποσοτικές; (ΓΕΛ 2005) 2. Πότε μια ποσοτική μεταβλητή ονομάζεται διακριτή και πότε συνεχής; (ΓΕΛ 2005,2014) 3. Τι ονοµάζεται απόλυτη

Διαβάστε περισσότερα

Μάρκετινγκ V Κοινωνικό Μάρκετινγκ. Πόπη Σουρμαΐδου. Σεμινάριο: Αναπτφςςοντασ μια κοινωνική επιχείρηςη

Μάρκετινγκ V Κοινωνικό Μάρκετινγκ. Πόπη Σουρμαΐδου. Σεμινάριο: Αναπτφςςοντασ μια κοινωνική επιχείρηςη Μάρκετινγκ V Κοινωνικό Μάρκετινγκ Πόπη Σουρμαΐδου Σεμινάριο: Αναπτφςςοντασ μια κοινωνική επιχείρηςη Σφνοψη Τι είναι το Marketing (βαςικι ειςαγωγι, swot ανάλυςθ, τα παλιά 4P) Τι είναι το Marketing Plan

Διαβάστε περισσότερα

Επιχειρηςιακή Ζρευνα και εφαρμογζσ με την χρήςη του λογιςμικοφ R

Επιχειρηςιακή Ζρευνα και εφαρμογζσ με την χρήςη του λογιςμικοφ R Επιχειρηςιακή Ζρευνα και εφαρμογζσ με την χρήςη του λογιςμικοφ R Ενότητα 5 η : Η Μζθοδοσ Simplex Παρουςίαςη τησ μεθόδου Κων/νοσ Κουνετάσ, Επίκουροσ Κακθγθτισ Νίκοσ Χατηθςταμοφλου, Υπ. Δρ. Οικονομικισ Επιςτιμθσ

Διαβάστε περισσότερα

Οδηγύεσ Εφαρμογόσ Ηλεκτρονικόσ Κοςτολόγηςησ

Οδηγύεσ Εφαρμογόσ Ηλεκτρονικόσ Κοςτολόγηςησ Οδηγύεσ Εφαρμογόσ Ηλεκτρονικόσ Κοςτολόγηςησ Η εφαρμογι κοςτολόγθςθσ δίνει ςτουσ διακζτεσ ςυγγραμμάτων τθ δυνατότθτα υποβολισ αίτθςθσ κοςτολόγθςθσ για βιβλία τα οποία ζχουν ςυμπεριλθφκεί ςε μία τουλάχιςτον

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ )

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ ) 5 1 1 1η σειρά ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ ) ΘΕΜΑ 1 Α. Ας υποθέσουμε ότι x 1,x,...,x κ είναι οι τιμές μιας μεταβλητής X, που αφορά τα άτομα ενός δείγματος μεγέθους

Διαβάστε περισσότερα

Πωσ δημιουργώ μάθημα ςτο e-class του ΠΣΔ [επίπεδο 1]

Πωσ δημιουργώ μάθημα ςτο e-class του ΠΣΔ [επίπεδο 1] Το e-class του Πανελλινιου Σχολικοφ Δίκτυου [ΠΣΔ/sch.gr] είναι μια πολφ αξιόλογθ και δοκιμαςμζνθ πλατφόρμα για αςφγχρονο e-learning. Ανικει ςτθν κατθγορία του ελεφκερου λογιςμικοφ. Αρχίηουμε από τθ διεφκυνςθ

Διαβάστε περισσότερα

Τ α Μ α θ η μ α τ ι κ ά τ η σ. Β ϋ Γ υ μ ν α ς ί ο υ. Θ ε ω ρ ε ί α & Α ς κ ή ς ε ι σ ς τ η Γ ε ω μ ε τ ρ ί α

Τ α Μ α θ η μ α τ ι κ ά τ η σ. Β ϋ Γ υ μ ν α ς ί ο υ. Θ ε ω ρ ε ί α & Α ς κ ή ς ε ι σ ς τ η Γ ε ω μ ε τ ρ ί α Τ α Μ α θ η μ α τ ι κ ά τ η σ Β ϋ Γ υ μ ν α ς ί ο υ Θ ε ω ρ ε ί α & Α ς κ ή ς ε ι σ ς τ η Γ ε ω μ ε τ ρ ί α Σ χ ο λ ι κ ό Ζ τ ο σ 2 0 1 5 2 0 1 6 Τςατςαρϊνησ Δημήτριοσ ΠΕ03 Μθηματικόσ Μονάδεσ μζτρηςησ

Διαβάστε περισσότερα

1 0 ΕΠΑΛ ΞΑΝΘΗ ΕΙΔΙΚΟΣΗΣΑ : ΗΛΕΚΣΡΟΝΙΚΩΝ ΕΙΔΙΚΗ ΘΕΜΑΣΙΚΗ ΕΡΓΑΙΑ Β ΗΛΕΚΣΡΟΝΙΚΩΝ ΘΕΜΑ : ΚΑΣΑΚΕΤΗ ΠΟΜΠΟΤ FM

1 0 ΕΠΑΛ ΞΑΝΘΗ ΕΙΔΙΚΟΣΗΣΑ : ΗΛΕΚΣΡΟΝΙΚΩΝ ΕΙΔΙΚΗ ΘΕΜΑΣΙΚΗ ΕΡΓΑΙΑ Β ΗΛΕΚΣΡΟΝΙΚΩΝ ΘΕΜΑ : ΚΑΣΑΚΕΤΗ ΠΟΜΠΟΤ FM 1 0 ΕΠΑΛ ΞΑΝΘΗ ΕΙΔΙΚΟΣΗΣΑ : ΗΛΕΚΣΡΟΝΙΚΩΝ ΕΙΔΙΚΗ ΘΕΜΑΣΙΚΗ ΕΡΓΑΙΑ Β ΗΛΕΚΣΡΟΝΙΚΩΝ ΘΕΜΑ : ΚΑΣΑΚΕΤΗ ΠΟΜΠΟΤ FM ΣΙ ΕΙΝΑΙ ΠΟΜΠΟ FM; Πρόκειται για μια θλεκτρονικι διάταξθ που ςκοπό ζχει τθν εκπομπι ραδιοςυχνότθτασ

Διαβάστε περισσότερα

Βασικές έννοιες. Παραδείγµατα: Το σύνολο των φοιτητών που είναι εγγεγραµµένοι

Βασικές έννοιες. Παραδείγµατα: Το σύνολο των φοιτητών που είναι εγγεγραµµένοι Τι είναι η Στατιστική? Η ΣΤΑΤΙΣΤΙΚΗ ορίζεται σήµερα ως η επιστήµη που σχετίζεται µε τις επιστηµονικές µεθόδους συλλογής, παρουσίασης, αξιολόγησης και γενίκευσης (: εξαγωγής συµπερασµάτων) της πληροφορίας.

Διαβάστε περισσότερα

3 ΕΝΤΟΛΕΣ ΕΠΑΝΑΛΗΨΗΣ ( while, do while )

3 ΕΝΤΟΛΕΣ ΕΠΑΝΑΛΗΨΗΣ ( while, do while ) 3 ΕΝΤΟΛΕΣ ΕΠΑΝΑΛΗΨΗΣ ( while, do while ) Στα πιο πολλά προγράμματα απαιτείται κάποια ι κάποιεσ εντολζσ να εκτελοφνται πολλζσ φορζσ για όςο ιςχφει κάποια ςυνκικθ. Ο αρικμόσ των επαναλιψεων μπορεί να είναι

Διαβάστε περισσότερα

MySchool Πρακτικζσ οδθγίεσ χριςθσ

MySchool Πρακτικζσ οδθγίεσ χριςθσ MySchool Πρακτικζσ οδθγίεσ χριςθσ 1) Δθμιουργία τμθμάτων (ΣΧΟΛΙΚΗ ΜΟΝΑΔΑ, Διαχείριςθ, Διαχείριςθ τμθμάτων) Το πρώτο που πρζπει να κάνουμε ςτο MySchool είναι να δθμιουργιςουμε τα τμιματα που υπάρχουν ςτο

Διαβάστε περισσότερα

Η αυτεπαγωγή ενός δακτυλίου

Η αυτεπαγωγή ενός δακτυλίου Η αυτεπαγωγή ενός δακτυλίου Υποκζςτε ότι κρατάτε ςτο χζρι ςασ ζναν μεταλλικό δακτφλιο διαμζτρου πχ 5 cm. Ζνασ φυςικόσ πικανότθτα κα προβλθματιςτεί: τι αυτεπαγωγι ζχει άραγε; Νομίηω κα ιταν μια καλι ιδζα

Διαβάστε περισσότερα

Στατιςτικά Μοντζλα και ο Κανόνασ του Bayes

Στατιςτικά Μοντζλα και ο Κανόνασ του Bayes Στατιςτικά Μοντζλα και ο Κανόνασ του Bayes Κϊςτασ Διαμαντάρασ Τμιμα Πλθροφορικισ ΤΕΛ Κεςςαλονίκθσ 1 Ο κανόνασ του Bayes (προφ. Μπζιη): Κυμόμαςτε τισ πικανότθτεσ Θ πικανότθτα ωσ κλάςμα επί ενόσ ςυνόλου:

Διαβάστε περισσότερα

ΔΟΜΗ ΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Αςκήςεισ με ψευδογλώςςα/ διάγραμμα ροήσ. Αντώνης Μαϊργιώτης

ΔΟΜΗ ΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Αςκήςεισ με ψευδογλώςςα/ διάγραμμα ροήσ. Αντώνης Μαϊργιώτης ΔΟΜΗ ΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Αςκήςεισ με ψευδογλώςςα/ διάγραμμα ροήσ Αντώνης Μαϊργιώτης Να γραφεί αλγόριθμοσ με τη βοήθεια διαγράμματοσ ροήσ, που να υπολογίζει το εμβαδό Ε ενόσ τετραγώνου με μήκοσ Α. ΑΡΧΗ ΔΙΑΒΑΣΕ

Διαβάστε περισσότερα

Ο ήχοσ ωσ φυςικό φαινόμενο

Ο ήχοσ ωσ φυςικό φαινόμενο Ο ήχοσ ωσ φυςικό φαινόμενο Φφλλο Εργαςίασ Ονοματεπώνυμο. Παραγωγή και διάδοςη του ήχου Ήχοσ παράγεται όταν τα ςωματίδια κάποιου υλικοφ μζςου αναγκαςκοφν να εκτελζςουν ταλάντωςθ. Για να διαδοκεί ο ιχοσ

Διαβάστε περισσότερα

Ανάπτυξη Εφαρμογών με Σχεςιακέσ Βάςεισ Δεδομένων

Ανάπτυξη Εφαρμογών με Σχεςιακέσ Βάςεισ Δεδομένων Ανάπτυξη Εφαρμογών με Σχεςιακέσ Βάςεισ Δεδομένων Δρ. Θεοδώρου Παύλοσ theodorou@uoc.gr Περιεχόμενα Τι είναι οι Βάςεισ Δεδομζνων (DataBases) Τι είναι Σφςτθμα Διαχείριςθσ Βάςεων Δεδομζνων (DBMS) Οι Στόχοι

Διαβάστε περισσότερα

ΣΙΜΟΛΟΓΗΗ ΤΝΣΑΓΩΝ ΜΕ ΥΑΡΜΑΚΑ ΠΟΤ ΕΦΟΤΝ ΣΙΜΗ ΑΝΑΥΟΡΑ ΜΕΓΑΛΤΣΕΡΗ ΑΠΟ ΣΗΝ ΣΙΜΗ ΛΙΑΝΙΚΗ

ΣΙΜΟΛΟΓΗΗ ΤΝΣΑΓΩΝ ΜΕ ΥΑΡΜΑΚΑ ΠΟΤ ΕΦΟΤΝ ΣΙΜΗ ΑΝΑΥΟΡΑ ΜΕΓΑΛΤΣΕΡΗ ΑΠΟ ΣΗΝ ΣΙΜΗ ΛΙΑΝΙΚΗ ΣΙΜΟΛΟΓΗΗ ΤΝΣΑΓΩΝ ΜΕ ΥΑΡΜΑΚΑ ΠΟΤ ΕΦΟΤΝ ΣΙΜΗ ΑΝΑΥΟΡΑ ΜΕΓΑΛΤΣΕΡΗ ΑΠΟ ΣΗΝ ΣΙΜΗ ΛΙΑΝΙΚΗ Μπορεί να ςυμβαίνει αυτό; Ναί. Απλά τϊρα εμφανίςτθκαν τζτοιεσ τιμζσ ςτον κατάλογο φαρμάκων. Μζχρι τϊρα πάντα οι τιμζσ

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ 1ΟΡΙΣΜΟΣ ΣΤΑΤΙΣΤΙΚΗΣ Ο ορισμός της Στατιστικής οφείλεται στον Fisher (1890 1962) Στατιστική είναι ένα σύνολο αρχών και μεθοδολογιών που ασχολείται με: α) το

Διαβάστε περισσότερα

ΔΕΛΣΙΟ ΣΤΠΟΤ. ΔΤΝΑΜΗ ΕΛΛΗΝΙΚΟΤ ΕΜΠΟΡΙΚΟΤ ΣΟΛΟΤ: ΝΟΕΜΒΡΙΟ 2016 (Προςωρινά ςτοιχεία) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΡΧΗ

ΔΕΛΣΙΟ ΣΤΠΟΤ. ΔΤΝΑΜΗ ΕΛΛΗΝΙΚΟΤ ΕΜΠΟΡΙΚΟΤ ΣΟΛΟΤ: ΝΟΕΜΒΡΙΟ 2016 (Προςωρινά ςτοιχεία) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΡΧΗ Ιαν Δεκ Ιαν Δεκ Ιαν Αριθμόσ πλοίων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΡΧΗ Πειραιάσ, 16 Ιανουαρίου 217 ΔΕΛΣΙΟ ΣΤΠΟΤ ΔΤΝΑΜΗ ΕΛΛΗΝΙΚΟΤ ΕΜΠΟΡΙΚΟΤ ΣΟΛΟΤ: ΝΟΕΜΒΡΙΟ 216 (Προςωρινά ςτοιχεία) Η Ελλθνικι Στατιςτικι

Διαβάστε περισσότερα

Ανάπτυξη Εφαρμογών Σε Προγραμματιςτικό Περιβάλλον

Ανάπτυξη Εφαρμογών Σε Προγραμματιςτικό Περιβάλλον Γραπτι Εξζταςθ ςτο μάκθμα Ανάπτυξη Εφαρμογών Σε Προγραμματιςτικό Περιβάλλον Όνομα: Επϊνυμο: Τμιμα: Ημερομθνία: 20/02/11 Θζμα 1 ο Α. Να χαρακτθρίςετε κακεμιά από τισ παρακάτω προτάςεισ ωσ Σωςτι (Σ) ι Λάκοσ

Διαβάστε περισσότερα

Διαδικαζία Διατείριζης Εκηύπωζης Ιζοζσγίοσ Γενικού - Αναλσηικών Καθολικών. (v )

Διαδικαζία Διατείριζης Εκηύπωζης Ιζοζσγίοσ Γενικού - Αναλσηικών Καθολικών. (v ) Διαδικαζία Διατείριζης Εκηύπωζης Ιζοζσγίοσ Γενικού - Αναλσηικών Καθολικών (v.1. 0.7) 1 Περίλθψθ Το ςυγκεκριμζνο εγχειρίδιο δθμιουργικθκε για να βοθκιςει τθν κατανόθςθ τθσ διαδικαςίασ διαχείριςθσ Εκτφπωςθσ

Διαβάστε περισσότερα

Από κεωρια εχουμε μακει ότι ενασ υπολογιςτθσ ςε ζνα δικτυο προςδιοριηεται από μια Ip διευκυνςθ που ζχει τθ γενικι μορφι X.Y.Z.W

Από κεωρια εχουμε μακει ότι ενασ υπολογιςτθσ ςε ζνα δικτυο προςδιοριηεται από μια Ip διευκυνςθ που ζχει τθ γενικι μορφι X.Y.Z.W Ασ αναλυςουμε μερικεσ εννοιεσ που προκαλουν ςυγχυςθ ςε μερικουσ από εμασ ι δεν είναι τοςο ςαφεισ. Για λογουσ ευκολιασ ςτθν αναλυςθ των εννοιων κανουμε τθν παραδοχθ ότι ενα Δικτυο μπορει να φιλοξενθςει

Διαβάστε περισσότερα

Αυτόνομοι Πράκτορες. Αναφορά Εργασίας Εξαμήνου. Το αστέρι του Aibo και τα κόκαλα του

Αυτόνομοι Πράκτορες. Αναφορά Εργασίας Εξαμήνου. Το αστέρι του Aibo και τα κόκαλα του Αυτόνομοι Πράκτορες Αναφορά Εργασίας Εξαμήνου Το αστέρι του Aibo και τα κόκαλα του Jaohar Osman Η πρόταςθ εργαςίασ που ζκανα είναι το παρακάτω κείμενο : - ξ Aibo αγαπάει πάρα πξλύ ρα κόκαλα και πάμρα ρα

Διαβάστε περισσότερα

Διαδικαςία Προγράμματοσ Ωρομζτρθςθσ. (v.1.0.7)

Διαδικαςία Προγράμματοσ Ωρομζτρθςθσ. (v.1.0.7) (v.1.0.7) 1 Περίλθψθ Σο ςυγκεκριμζνο εγχειρίδιο δθμιουργικθκε για να βοθκιςει τθν κατανόθςθ τθσ Διαδικαςίασ Προγράμματοσ Ωρομζτρθςθσ. Παρακάτω προτείνεται μια αλλθλουχία ενεργειϊν τθν οποία ο χριςτθσ πρζπει

Διαβάστε περισσότερα

Ακολουκιακά Λογικά Κυκλώματα

Ακολουκιακά Λογικά Κυκλώματα Ακολουκιακά Λογικά Κυκλώματα Τα ψθφιακά λογικά κυκλϊματα που μελετιςαμε μζχρι τϊρα ιταν ςυνδυαςτικά κυκλϊματα. Στα ςυνδυαςτικά κυκλϊματα οι ζξοδοι ςε κάκε χρονικι ςτιγμι εξαρτϊνται αποκλειςτικά και μόνο

Διαβάστε περισσότερα

φγκριςθ Πλθκυςμών 1. Ζλεγχοι Τποκζςεων για τθ Διαφορά των μζςων τιμών δφο Πλθκυςμών Δείγματα Ανεξάρτθτα : 1 2 Z t s Pooled Variance t- test

φγκριςθ Πλθκυςμών 1. Ζλεγχοι Τποκζςεων για τθ Διαφορά των μζςων τιμών δφο Πλθκυςμών Δείγματα Ανεξάρτθτα : 1 2 Z t s Pooled Variance t- test φγκριςθ Πλθκυςμών 1. Ζλεγχοι Τποκζςεων για τθ Διαφορά των μζςων τιμών δφο Πλθκυςμών Δείγματα Ανεξάρτθτα Προχποκζςεισ Εναλλακτικι Τπόκεςθ τατιςτικό Κριτικζσ Σιμζσ ( 1 ) Πλθκυςμοί Κανονικοί Διακυμάνςεισ

Διαβάστε περισσότερα

Μθχανολογικό Σχζδιο, από τθ κεωρία ςτο πρακτζο Χριςτοσ Καμποφρθσ, Κων/νοσ Βαταβάλθσ

Μθχανολογικό Σχζδιο, από τθ κεωρία ςτο πρακτζο Χριςτοσ Καμποφρθσ, Κων/νοσ Βαταβάλθσ Λεπτζσ Αξονικζσ γραμμζσ χρθςιμοποιοφνται για να δθλϊςουν τθν φπαρξθ ςυμμετρίασ του αντικειμζνου. Υπενκυμίηουμε ότι οι άξονεσ ςυμμετρίασ χρθςιμοποιοφνται μόνον όταν το ίδιο το εξάρτθμα είναι πραγματικά

Διαβάστε περισσότερα

Α. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ. Πληθυσμός: Το συνόλου του οποίου τα στοιχεία εξετάζουμε ως προς ένα ή περισσότερα χαρακτηριστικά τους.

Α. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ. Πληθυσμός: Το συνόλου του οποίου τα στοιχεία εξετάζουμε ως προς ένα ή περισσότερα χαρακτηριστικά τους. 1 Κεφάλαιο. ΣΤΑΤΙΣΤΙΚΗ Α. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Στατιστική: ένα σύνολο αρχών και μεθοδολογιών για: το σχεδιασμό της διαδικασίας συλλογής δεδομένων τη συνοπτική και αποτελεσματική παρουσίασή τους την ανάλυση

Διαβάστε περισσότερα

ΔC= C - C. Μια γρήγορη επανάληψη. Αρτές λειηοσργίας

ΔC= C - C. Μια γρήγορη επανάληψη. Αρτές λειηοσργίας Αρτές λειηοσργίας Μια γρήγορη επανάληψη Αρχή λειτουργίασ H φυςικι αρχι ςτθν οποία βαςίηεται θ λειτουργία του αιςκθτιρα. (Ειδικότερα, το φυςικό μζγεκοσ ςτο οποίο βαςίηεται ο μετατροπζασ του αιςκθτιρα.)

Διαβάστε περισσότερα

ΕΓΚΑΤΑΣΤΑΣΕΙΣ ΚΛΙΜΑΤΙΣΜΟΥ ΙΙ

ΕΓΚΑΤΑΣΤΑΣΕΙΣ ΚΛΙΜΑΤΙΣΜΟΥ ΙΙ ΕΓΚΑΤΑΣΤΑΣΕΙΣ ΚΛΙΜΑΤΙΣΜΟΥ ΙΙ μέρος Α ΚΟΝΤΟΣ ΟΔΥΣΣΕΑΣ ΠΕ12.04 1 ΚΜ: Κλιματιςτικι μονάδα Ορολογία ΚΚΜ: Κεντρικι κλιματιςτικι μονάδα ΗΚΜ: Ημικεντρικι κλιματιςτικι μονάδα ΤΚΜ: Σοπικι κλιματιςτικι μονάδα Δίκτυο

Διαβάστε περισσότερα

25. Ποια είναι τα ψυκτικά φορτία από εξωτερικζσ πθγζσ. Α) Τα ψυκτικά φορτία από αγωγιμότθτα. Β) Τα ψυκτικά φορτία από ακτινοβολία και

25. Ποια είναι τα ψυκτικά φορτία από εξωτερικζσ πθγζσ. Α) Τα ψυκτικά φορτία από αγωγιμότθτα. Β) Τα ψυκτικά φορτία από ακτινοβολία και 25. Ποια είναι τα ψυκτικά φορτία από εξωτερικζσ πθγζσ Α) Τα ψυκτικά φορτία από αγωγιμότθτα. Β) Τα ψυκτικά φορτία από ακτινοβολία και Γ) Τα ψυκτικά φορτία από είςοδο εξωτερικοφ αζρα. 26. Ποιζσ είναι οι

Διαβάστε περισσότερα

The Weather Experts Team. Φεβρουάριοσ 2013

The Weather Experts Team. Φεβρουάριοσ 2013 1 Φεβρουάριοσ 2013 2 Οδηγίεσ για την ειδική πρόςβαςη ςτο WeatherExpert 1. Μζςω του browser του υπολογιςτι ςασ (π.χ. InternetExplorer, Mozilla Firefox κ.α.) ςυνδεκείτε ςτθν ιςτοςελίδα μασ : http://www.weatherexpert.gr

Διαβάστε περισσότερα

Ερωτιςεισ & απαντιςεισ για τα ξφλινα πνευςτά

Ερωτιςεισ & απαντιςεισ για τα ξφλινα πνευςτά Τα νύλιμα! ΧΟΡΗΓΟΣ Ερωτιςεισ & απαντιςεισ για τα ξφλινα πνευςτά τα ξφλινα! 1. Γιατί τα λζμε ξφλινα πνευςτά; Πνευςτά ονομάηονται τα όργανα ςτα οποία ο ιχοσ παράγεται μζςα ςε ζνα ςωλινα απ όπου περνάει ο

Διαβάστε περισσότερα

Τεχνικι Παρουςιάςεων με PowerPoint

Τεχνικι Παρουςιάςεων με PowerPoint Τεχνικι Παρουςιάςεων με PowerPoint Δρ. Παφλοσ Θεοδϊρου Ανϊτατθ Εκκλθςιαςτικι Ακαδθμία Ηρακλείου Κριτθσ Περιεχόμενα Ειςαγωγι Γιατί πρζπει να γίνει παρουςίαςθ τθσ εργαςίασ μου Βαςικι προετοιμαςία Δομι παρουςίαςθσ

Διαβάστε περισσότερα

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. 1. Στον παρακάτω πίνακα δίνονται οι βαθμοί που πήραν είκοσι φοιτητές του Μαθηματικού τμήματος σ ένα μάθημα

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. 1. Στον παρακάτω πίνακα δίνονται οι βαθμοί που πήραν είκοσι φοιτητές του Μαθηματικού τμήματος σ ένα μάθημα .. ΕΝΟΤΗΤΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ 8 ου ΜΑΘΗΜΑΤΟΣ 1. Στον παρακάτω πίνακα δίνονται οι βαθμοί που πήραν είκοσι φοιτητές του Μαθηματικού τμήματος σ ένα μάθημα 9 3 1 7 5 3 6 5 7 5 7 3 6 1 5 1 3 5 α. Ποια είναι η

Διαβάστε περισσότερα

Διαγωνιςμόσ "Μακθτζσ ςτθν Ζρευνα (ΜΕΡΑ) 2011-2012"

Διαγωνιςμόσ Μακθτζσ ςτθν Ζρευνα (ΜΕΡΑ) 2011-2012 Διαγωνιςμόσ "Μακθτζσ ςτθν Ζρευνα (ΜΕΡΑ) 2011-2012" Ο Διαγωνιςμόσ «ΜΕΡΑ» προκθρφςςεται από το 2001 ςε ετιςια βάςθ, ωσ αποτζλεςμα τθσ διαπίςτωςθσ ότι θ καλλιζργεια πνεφματοσ δθμιουργικότθτασ και πρωτοβουλίασ

Διαβάστε περισσότερα

Επιχειρηςιακή Ζρευνα και εφαρμογζσ με την χρήςη του λογιςμικοφ R

Επιχειρηςιακή Ζρευνα και εφαρμογζσ με την χρήςη του λογιςμικοφ R Επιχειρηςιακή Ζρευνα και εφαρμογζσ με την χρήςη του λογιςμικοφ R Ενότητα 2 η : Ειςαγωγή ςτον Γραμμικό Προγραμματιςμό Κων/νοσ Κουνετάσ, Επίκουροσ Κακθγθτισ Νίκοσ Χατηθςταμοφλου, Υπ. Δρ. Οικονομικισ Επιςτιμθσ

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Nα χαρακτηρίσετε τις προτάσεις που ακλουθούν γράφοντας στο τετράδιο σας την ένδειξη Σωστό ή Λάθος δίπλα στο γράμμα που αντιστοιχεί σε κάθε

Διαβάστε περισσότερα

Σύ ντομος Οδηγο ς χρη σης wikidot για τα projects

Σύ ντομος Οδηγο ς χρη σης wikidot για τα projects Σύ ντομος Οδηγο ς χρη σης wikidot για τα projects Ειςαγωγή κοπόσ αυτοφ του κειμζνου είναι να δϊςει ςφντομεσ οδθγίεσ για τθν επεξεργαςία των ςελίδων του wiki τθσ ερευνθτικισ εργαςίασ. Πλιρθσ οδθγόσ για

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ. Βασικές έννοιες

ΕΙΣΑΓΩΓΗ. Βασικές έννοιες ΕΙΣΑΓΩΓΗ Βασικές έννοιες Σε ένα ερωτηματολόγιο έχουμε ένα σύνολο ερωτήσεων. Μπορούμε να πούμε ότι σε κάθε ερώτηση αντιστοιχεί μία μεταβλητή. Αν θεωρήσουμε μια ερώτηση, τα άτομα δίνουν κάποιες απαντήσεις

Διαβάστε περισσότερα

Ανάλυςη των επιλεγμζνων Επιχειρηςιακϊν Προγραμμάτων ςτο πλαίςιο του SURF-NATURE

Ανάλυςη των επιλεγμζνων Επιχειρηςιακϊν Προγραμμάτων ςτο πλαίςιο του SURF-NATURE Ανάλυςη των επιλεγμζνων Επιχειρηςιακϊν Προγραμμάτων ςτο πλαίςιο του SURF-NATURE Περίληψη Η βιοποικιλότθτα ζχει αλλάξει δραματικά τα τελευταία 50 χρόνια ςυγκριτικά με τισ αλλαγζσ που παρατθροφνται ςε όλθ

Διαβάστε περισσότερα

ΕΠΙΔΗΜΙΟΛΟΓIΑ. Επιμέλεια : Δρ. Ι. Δετοράκης

ΕΠΙΔΗΜΙΟΛΟΓIΑ. Επιμέλεια : Δρ. Ι. Δετοράκης ΕΠΙΔΗΜΙΟΛΟΓIΑ Επιμέλεια : Δρ. Ι. Δετοράκης ΣΙ ΕIΝΑΙ ΕΠΙΔΗΜΙΟΛΟΓIΑ Επιδθμιολογία είναι θ μελζτθ τθσ κατανομισ μιασ νόςου ςτον πλθκυςμό και οι παράγοντεσ που επθρεάηουν ι προςδιορίηουν αυτι τθν κατανομι.

Διαβάστε περισσότερα

Βάςεισ Δεδομζνων Ι. Ενότητα 12: Κανονικοποίηςη. Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικών Πλθροφορικισ ΤΕ

Βάςεισ Δεδομζνων Ι. Ενότητα 12: Κανονικοποίηςη. Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικών Πλθροφορικισ ΤΕ Βάςεισ Δεδομζνων Ι Ενότητα 12: Κανονικοποίηςη Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικών Πλθροφορικισ ΤΕ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Περιεχόμενα. Τι Είναι Ζνα Domain Name;.1. Λάκθ Που Πρζπει Να Αποφφγετε.2. Φόρμουλα Για Ζνα Πετυχθμζνο Domain Name..5

Περιεχόμενα. Τι Είναι Ζνα Domain Name;.1. Λάκθ Που Πρζπει Να Αποφφγετε.2. Φόρμουλα Για Ζνα Πετυχθμζνο Domain Name..5 Περιεχόμενα Τι Είναι Ζνα Domain Name;.1 Λάκθ Που Πρζπει Να Αποφφγετε.2 Φόρμουλα Για Ζνα Πετυχθμζνο Domain Name..5 Επιλογι Domain Name Βιμα Προσ Βιμα 7 Τι Είναι Ένα Domain Name; Το domain name (ςτα ελλθνικά

Διαβάστε περισσότερα

ΑΠΑΝΣΗΕΙ ΒΙΟΛΟΓΙΑ ΓΕΝΙΚΗ ΠΑΙΔΕΙΑ ΣΕΣΑΡΣΗ 20 ΜΑΪΟΤ 2015

ΑΠΑΝΣΗΕΙ ΒΙΟΛΟΓΙΑ ΓΕΝΙΚΗ ΠΑΙΔΕΙΑ ΣΕΣΑΡΣΗ 20 ΜΑΪΟΤ 2015 ΑΠΑΝΣΗΕΙ ΒΙΟΛΟΓΙΑ ΓΕΝΙΚΗ ΠΑΙΔΕΙΑ ΘΕΜΑ Α ΣΕΣΑΡΣΗ 20 ΜΑΪΟΤ 2015 Α1. - γ. ςφφιλθ Α2. - α. ερυκρόσ μυελόσ των οςτών Α3. - β. εντομοκτόνο Α4. - β. καταναλωτζσ 1θσ τάξθσ Α5. - δ. μία οικογζνεια ΘΕΜΑ Β Β1. 1.

Διαβάστε περισσότερα

Ψθφιακι Επεξεργαςία ιματοσ

Ψθφιακι Επεξεργαςία ιματοσ Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Ψθφιακι Επεξεργαςία ιματοσ Ενότθτα 3 : Παρακφρωςθ Δεδομζνων Κωνςταντίνοσ Αγγζλθσ Ανοιχτά Ακαδημαϊκά Μαθήματα ςτο ΤΕΙ Ηπείρου Σμιμα Μθχανικών

Διαβάστε περισσότερα

ΟΜΑΔΟΠΟΙΗΣΗ ΠΑΡΑΤΗΡΗΣΕΩΝ

ΟΜΑΔΟΠΟΙΗΣΗ ΠΑΡΑΤΗΡΗΣΕΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ Όταν το πλήθος των παρατηρήσεων είναι μεγάλο, είναι απαραίτητο οι παρατηρήσεις να ταξινομηθούν σε μικρό πλήθος ομάδων που ονομάζονται κλάσεις (class intervals). Η ομαδοποίηση αυτή γίνεται

Διαβάστε περισσότερα

Μθχανικι Μάκθςθ Μάκθμα 1 Βαςικζσ ζννοιεσ

Μθχανικι Μάκθςθ Μάκθμα 1 Βαςικζσ ζννοιεσ Μθχανικι Μάκθςθ Μάκθμα 1 Βαςικζσ ζννοιεσ Κϊςτασ Διαμαντάρασ Σμιμα Πλθροφορικισ ΣΕΙ Θεςςαλονίκθσ 1 τοιχεία επικοινωνίασ Κϊςτασ Διαμαντάρασ Σθλ. 2310 013592 Email: kdiamant@it.teithe.gr http://www.it.teithe.gr/~kdiamant/

Διαβάστε περισσότερα