Μετατροπι Αναλογικοφ Σιματοσ ςε Ψθφιακό. Διάλεξθ 10

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Μετατροπι Αναλογικοφ Σιματοσ ςε Ψθφιακό. Διάλεξθ 10"

Transcript

1 Μετατροπι Αναλογικοφ Σιματοσ ςε Ψθφιακό Διάλεξθ 10

2 Γενικό Σχιμα Μετατροπζασ Αναλογικοφ ςε Ψθφιακό Ψθφιακό Τθλεπικοινωνιακό Κανάλι Μετατροπζασ Ψθφιακοφ ςε Αναλογικό Τα αναλογικά ςιματα μετατρζπονται ςε ψθφιακά προκειμζνου να χρθςιμοποιθκοφν ςε ψθφιακά κανάλια. Με τθν μετατροπι αυτι ο κόρυβοσ, οι παρεμβολζσ και άλλα αρνθτικά φαινόμενα που προκαλεί το κανάλι μποροφν να αντιμετωπιςτοφν με κατάλλθλεσ τεχνικζσ ϊςτε το εκμπεμπόμενο ςιμα να ανακτθκεί με αξιόπιςτο τρόπο ςτον δζκτθ.

3 Μετατροπι Σιματοσ από αναλογικό ςε ψθφιακό ςιμα και αντίςτροφα x () a t Χαμθλοπερατό φίλτρο (antialiasing filter) Δειγματολιπτθσ Κβαντιςτισ Κωδικοποιθτισ Μετατροπι Αναλογικοφ Σιματοσ Σε Ψθφιακό - Πομπόσ Κανάλι Αποκωδικοποίθςθ Χαμθλοπερατό φίλτρο Ανάκτθςθ Αναλογικοφ Σιματοσ Μετατροπι Ψθφιακοφ Σιματοσ ςε Αναλογικό - Δζκτθσ

4 Μετατροπι Σιματοσ από αναλογικό ςε ψθφιακό ςιμα και αντίςτροφα Το χαμηλοπερατό φίλτρο περιορίηει το φάςμα του αναλογικοφ ςιματοσ ϊςτε ςε ςυνδυαςμό με τθν ςυχνότθτα δειγματολθψίασ να ικανοποιείται το κεϊρθμα του Nyquist Ο δειγματολήπτησ μετατρζπει το αναλογικό ςιμα ςυνεχοφσ χρόνου ςε ςιμα διακριτοφ χρόνου Ο κβαντιςτήσ μετατρζπει το αναλογικό ςιμα διακριτοφ χρόνου ςε ςιμα διακριτοφ πλάτουσ διακριτοφ χρόνου Ο κωδικοποιητήσ μετατρζπει τθν ακολουκία των επιπζδων πλάτουσ του κβαντιςτι ςε δυαδικζσ κωδικολζξεισ Στον δζκτθ πραγματοποιοφνται οι αντίςτροφεσ διαδικαςίεσ. Ωςτόςο, ο κβαντιςτισ δεν ζχει αντίςτροφθ λειτουργία.

5 Δειγματολθψία αναλογικϊν ςθμάτων Δειγματολθψία είναι θ διαδικαςία μετατροπισ ενόσ αναλογικοφ ςιματοσ ςε ςιμα διακριτοφ χρόνου

6 Δειγματολθψία αναλογικϊν ςθμάτων Θεϊρθμα δειγματολθψίασ Η ςυχνότθτα F s με τθν οποία λαμβάνονται τα δείγματα ενόσ ςιματοσ πρζπει να είναι τουλάχιςτον διπλάςια από τθν υψθλότερθ ςυχνότθτα F max που περιζχεται ςτο ςιμα, δθλ. F s 2 F max

7 Δειγματολθψία αναλογικϊν ςθμάτων Ζςτω ςιμα m(t) με εφροσ ηϊνθσ W και φάςμα M(f). j(t): Διακριτό ςιμα με άπειρο πλικοσ ςυναρτιςεων Δζλτα με περίοδο T s.

8 Δειγματολθψία αναλογικϊν ςθμάτων j( t) ( t kt ) k s MF 1 k F{ j( t)} J( f ) ( f ) T T s k s z( t) m( t) ( t kt ) m( kt ) ( t kt ) k s s s k MF 1 Z( f ) M ( f kf s) T s k Το φάςμα του ςιματοσ εξόδου αποτελείται από αντίγραφα του M(f) μετατοπιςμζνα ςε ςυχνότθτεσ που είναι ακζραια πολλαπλάςια τθσ ςυχνότθτασ δειγματολθψίασ

9 Δειγματολθψία αναλογικϊν ςθμάτων

10 Δειγματολθψία αναλογικϊν ςθμάτων Άςκθςθ

11 Κβάντιςθ ςθμάτων ςυνεχοφσ πλάτουσ Κβάντιςθ ονομάηεται θ μετατροπι ενόσ διακριτοφ ςιματοσ ςυνεχοφσ πλάτουσ ςε ψθφιακό ςιμα. Η τιμι ενόσ δείγματοσ εκφράηεται ωσ ζνασ αρικμόσ πεπεραςμζνου πλικουσ ψθφίων, αντί για άπειρο πλικοσ ψθφίων που απαιτείται για κάκε ςυνεχοφσ πλάτουσ τιμι.

12 Κβάντιςθ ςθμάτων ςυνεχοφσ πλάτουσ Σφάλμα κβάντισης ι θόρυβος κβάντισης ονομάηεται το ςφάλμα που υπειςζρχεται από τθν αναπαράςταςθ του ςιματοσ ςυνεχϊν τιμϊν με ζνα πεπεραςμζνο πλικοσ διακριτϊν τιμϊν. Ο περιοριςμόσ του κάκε δείγματοσ ςτο επικυμθτό πλικοσ ψθφίων γίνεται είτε με τθν μζκοδο τθσ αποκοπισ (truncation) είτε με τθ μζκοδο τθσ ςτρογγυλοποίθςθσ (rounding). Επίπεδα κβάντιςθσ είναι οι τιμζσ που επιτρζπεται να πάρει κάκε δείγμα. Η απόςταςθ μεταξφ δυο διαδοχικϊν επιπζδων κβάντιςθσ ονομάηεται βήμα κβάντισης ι διακριτική ικανότητα ι ανάλυση. x max x L 1 min Ποιό είναι το εφροσ τιμϊν του ςφάλματοσ κβάντιςθσ; Αν αυξιςω το πλικοσ των επιπζδων κβάντιςθσ, διατθρϊντασ ςτακερι τθ διαφορά μεταξφ x max και x min, τι κα ςυμβεί ςτον κβαντιςτι; Η κβάντιςθ αναλογικϊν ςθμάτων οδθγεί πάντοτε ςε απϊλεια πλθροφορίασ;

13 Κβάντιςθ ςθμάτων ςυνεχοφσ πλάτουσ

14 Κωδικοποίθςθ των κβαντιςμζνων δειγμάτων Ζχοντασ L επίπεδα κβάντιςθσ ςθμαίνει ότι χρειαηόμαςτε L διαφορετικοφσ δυαδικοφσ αρικμοφσ Με ζνα μικοσ λζξθσ b μποροφμε να αναπαριςτιςουμε 2 b διαφορετικοφσ δυαδικοφσ αρικμοφσ Ποιο πρζπει να είναι το μικοσ τθσ λζξθσ για το ψθφιακό μασ ςιμα; b 2 L b log L 2

15 Κωδικοποίθςθ των κβαντιςμζνων δειγμάτων Πόςο πρζπει να είναι το μικοσ τθσ λζξθσ ςτο παράδειγμα;

16 Παλμοκωδικι Διαμόρφωςθ Παλμοκωδικι Διαμόρφωςθ (Pulse Code Modulation PCM) Όλεσ οι λειτουργίεσ, που αναφζρκθκαν προθγουμζνωσ, ςτον πομπό και τον δζκτθ αποτελοφν μζρθ του ςυςτιματοσ που ονομάηεται παλμοκωδική διαμόρφωςη. PCM και παραλλαγζσ του: χρθςιμοποιοφνται: ψθφιακι τθλεφωνία, μουςικά πλθκτρολόγια, ψθφιακόσ ιχοσ και ψθφιακό βίντεο δεν χρθςιμοποιοφνται: ςυςτιματα ψθφιακισ ραδιοφωνίασ και τθλεόραςθσ.

17 Διαφορικι Παλμοκωδικι Διαμόρφωςθ (Differential Pulse Code Modulation - DPCM) Παραλλαγι του PCM Περιλαμβάνει: δειγματολθψία, κβάντιςθ και κωδικοποίθςθ Διαφορά με το PCM: δεν κβαντίηεται θ τιμι του δείγματοσ αλλά θ διαφορά αυτισ με μια εκτιμώμενη τιμή Η τεχνικι DPCM βαςίηεται ςτθν παρατιρθςθ ότι τα περιςςότερα ςιματα που παρουςιάηονται ςτα τθλεπικοινωνιακά ςυςτιματα παρουςιάηουν μεγάλθ ςυςχζτιςθ μεταξφ των δειγμάτων

18 Διαφορικι Παλμοκωδικι Διαμόρφωςθ (Differential Pulse Code m( n) e( n) m( n) Modulation - DPCM) Στο DPCM κβαντίηεται το e(n) και όχι το m(n). Τι κερδίηουμε; Οι τιμζσ του e(n) είναι πολφ μικρότερεσ από τισ τιμζσ του m(n). Για αυτό το λόγο χρθςιμοποιοφμε λιγότερα bits ςτθν κωδικοποίθςθ (λιγότερα επίπεδα κβάντιςθσ) ι αν χρθςιμοποιιςουμε τον ίδιο αρικμό επιπζδων όπωσ και ςτθ PCM κα ζχουμε μεγαλφτερθ ακρίβεια. Υπάρχουν διάφορεσ τεχνικζσ για τθν εκτίμθςθ του m(n). p m( n) a( i) m( n i) i 1

19 Άλλεσ τεχνικζσ Δειγματολθψία: Δειγματολθψία παλμοφ Δειγματολθψία επίπεδθσ κορυφισ Κβάντιςθ Μθ ομοιόμορφθ κβάντιςθ Τεχνικζσ μετατροπισ Αναλογικοφ ςε Ψθφιακό Διαμόρφωςθ Δζλτα (χρθςιμοποιεί κβαντιςτι δφο επιπζδων ι αλλιϊσ ενόσ bit)

Ψθφιακι Επεξεργαςία ιματοσ

Ψθφιακι Επεξεργαςία ιματοσ Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Κδρυμα Ηπείρου Ψθφιακι Επεξεργαςία ιματοσ Ενότθτα 5 : Θεϊρθμα Shanon Κωνςταντίνοσ Αγγζλθσ 1 Ανοιχτά Ακαδημαϊκά Μαθήματα ςτο ΤΕΙ Ηπείρου Σμιμα Μθχανικϊν Πλθροφορικισ

Διαβάστε περισσότερα

Ψθφιακι Επεξεργαςία ιματοσ

Ψθφιακι Επεξεργαςία ιματοσ Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Ψθφιακι Επεξεργαςία ιματοσ Ενότθτα 6 : Κβαντιςμόσ Καταςτάςεων Κωνςταντίνοσ Αγγζλθσ 1 Ανοιχτά Ακαδημαϊκά Μαθήματα ςτο ΤΕΙ Ηπείρου Σμιμα Μθχανικϊν

Διαβάστε περισσότερα

ΘΥ101: Ειςαγωγι ςτθν Πλθροφορικι

ΘΥ101: Ειςαγωγι ςτθν Πλθροφορικι Παράςταςη κινητήσ υποδιαςτολήσ ςφμφωνα με το πρότυπο ΙΕΕΕ Δρ. Χρήστος Ηλιούδης το πρότυπο ΙΕΕΕ 754 ζχει χρθςιμοποιθκεί ευρζωσ ςε πραγματικοφσ υπολογιςτζσ. Το πρότυπο αυτό κακορίηει δφο βαςικζσ μορφζσ κινθτισ

Διαβάστε περισσότερα

Προχωρθμζνα Θζματα Συςτθμάτων Ελζγχου

Προχωρθμζνα Θζματα Συςτθμάτων Ελζγχου ΠΑΝΕΠΙΣΗΜΙΟ ΑΙΓΑIΟΤ & ΑΕΙ ΠΕΙΡΑΙΑ Σ.Σ. Σμήματα Ναυτιλίας και Επιχειρηματικών Τπηρεσιών & Μηχ. Αυτοματισμού ΣΕ Π.Μ.. «Νέες Σεχνολογίες στη Ναυτιλία και τις Μεταφορές» Προχωρθμζνα Θζματα Συςτθμάτων Ελζγχου

Διαβάστε περισσότερα

Ενδεικτικζσ Λφςεισ Θεμάτων

Ενδεικτικζσ Λφςεισ Θεμάτων c AM (t) x(t) ΤΕΙ Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σειρά Β Ειςηγητήσ: Δρ Απόςτολοσ Γεωργιάδησ ΕΠΙΚΟΙΝΩΝΙΕΣ Ι Ενδεικτικζσ Λφςεισ Θεμάτων Θζμα 1 ο (1 μον.) Ζςτω περιοδικό ςιμα πλθροφορίασ με περίοδο.

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium V

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium V Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium V Στατιςτική Συμπεραςματολογία Ι Σημειακζσ Εκτιμήςεισ Διαςτήματα Εμπιςτοςφνησ Στατιςτική Συμπεραςματολογία (Statistical Inference) Το πεδίο τθσ Στατιςτικισ Συμπεραςματολογία,

Διαβάστε περισσότερα

Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2

Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2 Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2 Δρ. Χρήζηος Ηλιούδης Μθ Προςθμαςμζνοι Ακζραιοι Εφαρμογζσ (ςε οποιαδιποτε περίπτωςθ δεν χρειάηονται αρνθτικοί αρικμοί) Καταμζτρθςθ. Διευκυνςιοδότθςθ.

Διαβάστε περισσότερα

Παράςταςη ςυμπλήρωμα ωσ προσ 1

Παράςταςη ςυμπλήρωμα ωσ προσ 1 Δρ. Χρήστος Ηλιούδης Θζματα διάλεξησ ΣΤ1 Προςθεςη αφαίρεςη ςτο ΣΤ1 2 ή ΣΤ1 Ονομάηουμε ςυμπλιρωμα ωσ προσ μειωμζνθ βάςθ R ενόσ μθ προςθμαςμζνου αρικμοφ Χ = ( Χ θ-1 Χ θ-2... Χ 0 ) R ζναν άλλον αρικμό Χ'

Διαβάστε περισσότερα

Θεςιακά ςυςτιματα αρίκμθςθσ

Θεςιακά ςυςτιματα αρίκμθςθσ Θεςιακά ςυςτιματα αρίκμθςθσ Δρ. Χρήστος Ηλιούδης αρικμθτικό ςφςτθμα αρίκμθςθσ (Number System) Αξία (value) παράςταςθ Οι αξίεσ (π.χ. το βάροσ μιασ ποςότθτασ μιλων) μποροφν να παραςτακοφν με πολλοφσ τρόπουσ

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών

Συστήματα Επικοινωνιών Συστήματα Επικοινωνιών Ενότητα 9: Παλμοκωδική Διαμόρφωση (PCM) Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Περιγραφή της μεθόδου παλμοκωδικής

Διαβάστε περισσότερα

Πόςο εκτατό μπορεί να είναι ζνα μη εκτατό νήμα και πόςο φυςικό. μπορεί να είναι ζνα μηχανικό ςτερεό. Συνιςταμζνη δφναμη versus «κατανεμημζνησ» δφναμησ

Πόςο εκτατό μπορεί να είναι ζνα μη εκτατό νήμα και πόςο φυςικό. μπορεί να είναι ζνα μηχανικό ςτερεό. Συνιςταμζνη δφναμη versus «κατανεμημζνησ» δφναμησ Πόςο εκτατό μπορεί να είναι ζνα μη εκτατό νήμα και πόςο φυςικό μπορεί να είναι ζνα μηχανικό ςτερεό. Συνιςταμζνη δφναμη versus «κατανεμημζνησ» δφναμησ Για τθν ανάδειξθ του κζματοσ κα λφνουμε κάποια προβλιματα

Διαβάστε περισσότερα

Ένα πρόβλθμα γραμμικοφ προγραμματιςμοφ βρίςκεται ςτθν κανονικι μορφι όταν:

Ένα πρόβλθμα γραμμικοφ προγραμματιςμοφ βρίςκεται ςτθν κανονικι μορφι όταν: Μζθοδος Simplex Η πλζον γνωςτι και περιςςότερο χρθςιμοποιουμζνθ μζκοδοσ για τθν επίλυςθ ενόσ γενικοφ προβλιματοσ γραμμικοφ προγραμματιςμοφ, είναι θ μζκοδοσ Simplex θ οποία αναπτφχκθκε από τον George Dantzig.

Διαβάστε περισσότερα

ΛΕΙΣΟΤΡΓΙΚΆ ΤΣΉΜΑΣΑ. 7 θ Διάλεξθ Διαχείριςθ Μνιμθσ Μζροσ Γ

ΛΕΙΣΟΤΡΓΙΚΆ ΤΣΉΜΑΣΑ. 7 θ Διάλεξθ Διαχείριςθ Μνιμθσ Μζροσ Γ ΛΕΙΣΟΤΡΓΙΚΆ ΤΣΉΜΑΣΑ 7 θ Διάλεξθ Διαχείριςθ Μνιμθσ Μζροσ Γ ελιδοποίθςθ (1/10) Σόςο θ κατάτμθςθ διαμεριςμάτων ςτακεροφ μεγζκουσ όςο και θ κατάτμθςθ διαμεριςμάτων μεταβλθτοφ και άνιςου μεγζκουσ δεν κάνουν

Διαβάστε περισσότερα

ΗΥ101: Ειςαγωγι ςτθν Πλθροφορικι

ΗΥ101: Ειςαγωγι ςτθν Πλθροφορικι Παράςταςη κινητήσ υποδιαςτολήσ Δρ. Χρήστος Ηλιούδης Θζματα διάλεξησ Παράςταςη ςταθεροφ ςημείου Παράςταςη αριθμών κινητοφ ςημείου 2 Παράςταςη ςταθεροφ ςημείου Στθν παράςταςθ αρικμϊν ςτακεροφ ςθμείου (Fixed

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΣΙΜΌ ΤΠΟΛΟΓΙΣΏΝ. Κεφάλαιο 8 Η γλϊςςα Pascal

ΠΡΟΓΡΑΜΜΑΣΙΜΌ ΤΠΟΛΟΓΙΣΏΝ. Κεφάλαιο 8 Η γλϊςςα Pascal ΠΡΟΓΡΑΜΜΑΣΙΜΌ ΤΠΟΛΟΓΙΣΏΝ Κεφάλαιο 8 Η γλϊςςα Pascal Παράγραφοσ 8.2 Βαςικοί τφποι δεδομζνων Σα δεδομζνα ενόσ προγράμματοσ μπορεί να: είναι αποκθκευμζνα εςωτερικά ςτθν μνιμθ είναι αποκθκευμζνα εξωτερικά

Διαβάστε περισσότερα

x n D 2 ENCODER m - σε n (m 2 n ) x 1 Παραδείγματα κωδικοποιθτϊν είναι ο κωδικοποιθτισ οκταδικοφ ςε δυαδικό και ο κωδικοποιθτισ BCD ςε δυαδικό.

x n D 2 ENCODER m - σε n (m 2 n ) x 1 Παραδείγματα κωδικοποιθτϊν είναι ο κωδικοποιθτισ οκταδικοφ ςε δυαδικό και ο κωδικοποιθτισ BCD ςε δυαδικό. Κωδικοποιητές Ο κωδικοποιθτισ (nor) είναι ζνα κφκλωμα το οποίο διακζτει n γραμμζσ εξόδου και το πολφ μζχρι m = 2 n γραμμζσ ειςόδου και (m 2 n ). Οι ζξοδοι παράγουν τθν κατάλλθλθ λζξθ ενόσ δυαδικοφ κϊδικα

Διαβάστε περισσότερα

Συςκευζσ τθλεπικοινωνιϊν και δικτφωςθσ:

Συςκευζσ τθλεπικοινωνιϊν και δικτφωςθσ: Συςκευζσ τθλεπικοινωνιϊν και δικτφωςθσ: Σειριακι Θφρα (1/2): Σειριακι Θφρα Σειριακι (2/2): Σειριακι Θφρα Σειριακι Θφρα (1/2): Σειριακι Θφρα Ακροδζκτεσ Σειριακισ Θφρασ Σειριακι Θφρα Dial Up Mo.dem: Mo.dem:

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών

Συστήματα Επικοινωνιών Συστήματα Επικοινωνιών Ενότητα 4: Μετατροπή Αναλογικών Σημάτων σε Ψηφιακά Μαθιόπουλος Παναγιώτης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Περιγραφή ενότητας Δειγματοληψία: Ιδανική

Διαβάστε περισσότερα

ΕΙΑΓΨΓΗ ΣΙ ΣΕΦΝΟΛΟΓΙΕ ΣΟΤ ΧΗΥΙΑΚΟ ΗΦΟ ΡΑΔΙΟΥΨΝΟΤ: Ηλεκτρονικά ΜΜΕ. Εργαστήριο Ηλεκτρονικών ΜΜΕ http://e-media.jour.auth.gr

ΕΙΑΓΨΓΗ ΣΙ ΣΕΦΝΟΛΟΓΙΕ ΣΟΤ ΧΗΥΙΑΚΟ ΗΦΟ ΡΑΔΙΟΥΨΝΟΤ: Ηλεκτρονικά ΜΜΕ. Εργαστήριο Ηλεκτρονικών ΜΜΕ http://e-media.jour.auth.gr Σμήμα Δημοσιογραφίας & Μέσων Μαζικής Επικοινωνίας ΑΠΘ ΕΙΑΓΨΓΗ ΣΙ ΣΕΦΝΟΛΟΓΙΕ ΣΟΤ ΡΑΔΙΟΥΨΝΟΤ: ΧΗΥΙΑΚΟ ΗΦΟ Δημούλας Φαράλαμπος (babis@jour.auth.gr) Δρ. Μηχ., Λέκτορας ΑΠΘ Εργαστήριο Ηλεκτρονικών ΜΜΕ http://e-media.jour.auth.gr

Διαβάστε περισσότερα

ΕΡΓΑΣΗΡΙΑΚΗ ΑΚΗΗ 4.1

ΕΡΓΑΣΗΡΙΑΚΗ ΑΚΗΗ 4.1 ΕΡΓΑΣΗΡΙΑΚΗ ΑΚΗΗ 4. Να γίνει πρόγραμμα το οποίο να επιλφει το Διαγώνιο Σφςτθμα: A ι το ςφςτθμα : ι ςε μορφι εξιςώςεων το ςφςτθμα : Αλγόρικμοσ m(). Διαβάηουμε τθν τιμι του ( θ διάςταςθ του Πίνακα Α )..

Διαβάστε περισσότερα

Η θεωρία τησ ςτατιςτικήσ ςε ερωτήςεισ-απαντήςεισ Μέροσ 1 ον (έωσ ομαδοποίηςη δεδομένων)

Η θεωρία τησ ςτατιςτικήσ ςε ερωτήςεισ-απαντήςεισ Μέροσ 1 ον (έωσ ομαδοποίηςη δεδομένων) 1)Πώσ ορύζεται η Στατιςτικό επιςτόμη; Στατιςτικι είναι ζνα ςφνολο αρχϊν και μεκοδολογιϊν για: το ςχεδιαςμό τθσ διαδικαςίασ ςυλλογισ δεδομζνων τθ ςυνοπτικι και αποτελεςματικι παρουςίαςι τουσ τθν ανάλυςθ

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 2: ΕΠΙΚΟΙΝΩΝΩ ΜΕ ΤΟΝ ΥΠΟΛΟΓΙΣΤΗ. ΚΕΦΑΛΑΙΟ 5: Αρχεία - Φάκελοι

ΕΝΟΤΗΤΑ 2: ΕΠΙΚΟΙΝΩΝΩ ΜΕ ΤΟΝ ΥΠΟΛΟΓΙΣΤΗ. ΚΕΦΑΛΑΙΟ 5: Αρχεία - Φάκελοι ΕΝΟΤΗΤΑ 2: ΕΠΙΚΟΙΝΩΝΩ ΜΕ ΤΟΝ ΥΠΟΛΟΓΙΣΤΗ Αρχείο (File) Φάκελοσ (Folder) Διαχειριςτισ Αρχείων (File Manager) Τφποι Αρχείων Σε τι εξυπθρετεί θ οργάνωςθ των εργαςιϊν μασ ςτουσ υπολογιςτζσ; Πϊσ κα οργανϊςουμε

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών ΙI

Συστήματα Επικοινωνιών ΙI + Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών ΙI Διαφορική Παλμοκωδική Διαμόρφωση + Ιστοσελίδα nιστοσελίδα του μαθήματος: n https://eclass.uowm.gr/courses/icte302/ +

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη

Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη MSc Τραπεζική & Χρηματοοικονομική Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR

Διαβάστε περισσότερα

Αςκήςεισ. Ενότητα 1. Πηγζσ τάςησ, ρεφματοσ και αντιςτάςεισ

Αςκήςεισ. Ενότητα 1. Πηγζσ τάςησ, ρεφματοσ και αντιςτάςεισ Αςκήςεισ Ενότητα 1. Πηγζσ τάςησ, ρεφματοσ και αντιςτάςεισ 1. Ζςτω το ςιμα τάςθσ V(t)=V dc +Asin(ωt) που βλζπουμε ςτο επόμενο ςχιμα. Να προςδιορίςετε το πλάτοσ Α και τθν dc ςυνιςτώςα κακώσ και να υπολογίςτε

Διαβάστε περισσότερα

Ψθφιακι Επεξεργαςία ιματοσ

Ψθφιακι Επεξεργαςία ιματοσ Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Ψθφιακι Επεξεργαςία ιματοσ Ενότθτα 4 : Μετατροπι Αναλογικοφ ιματοσ ςε Ψθφιακό Κωνςταντίνοσ Αγγζλθσ 1 Ανοιχτά Ακαδημαϊκά Μαθήματα ςτο ΤΕΙ Ηπείρου

Διαβάστε περισσότερα

ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΙΣΟΤΣΟ ΚΤΠΡΟΤ Πρόγραμμα Επιμόρυωσης Τποψηυίων Καθηγητών Σεχνολογίας. Ηλεκτρονικά ΙΙ

ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΙΣΟΤΣΟ ΚΤΠΡΟΤ Πρόγραμμα Επιμόρυωσης Τποψηυίων Καθηγητών Σεχνολογίας. Ηλεκτρονικά ΙΙ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΙΣΟΤΣΟ ΚΤΠΡΟΤ Πρόγραμμα Επιμόρυωσης Τποψηυίων Καθηγητών Σεχνολογίας Ηλεκτρονικά ΙΙ Πέμπτη 3/3/2011 Διδάζκων: Γιώργος Χαηζηιωάννοσ Τηλέθωνο: 99653828 Ε-mail: georghios.h@cytanet.com.cy Ώρες

Διαβάστε περισσότερα

ΓΕΦΤΡΟΠΟΙΪΑ: ΜΟΝΙΜΑ ΚΑΙ ΚΙΝΗΣΑ ΦΟΡΣΙΑ. ΔΙΟΝΥΣΙΟΣ Ε. ΜΠΙΣΚΙΝΗΣ Τμήμα Πολιτικών Μηχανικών Τ.Ε. Τ.Ε.Ι. Δυτικής Ελλάδας

ΓΕΦΤΡΟΠΟΙΪΑ: ΜΟΝΙΜΑ ΚΑΙ ΚΙΝΗΣΑ ΦΟΡΣΙΑ. ΔΙΟΝΥΣΙΟΣ Ε. ΜΠΙΣΚΙΝΗΣ Τμήμα Πολιτικών Μηχανικών Τ.Ε. Τ.Ε.Ι. Δυτικής Ελλάδας 1 ΓΕΦΤΡΟΠΟΙΪΑ: ΜΟΝΙΜΑ ΚΑΙ ΚΙΝΗΣΑ ΦΟΡΣΙΑ ΔΙΟΝΥΣΙΟΣ Ε. ΜΠΙΣΚΙΝΗΣ Τμήμα Πολιτικών Μηχανικών Τ.Ε. Τ.Ε.Ι. Δυτικής Ελλάδας Μόνιμα Φορτία Ίδιον Βάροσ (για Οπλιςμζνο Σκυρόδεμα): g=25 KN/m 3 Σε οδικζσ γζφυρεσ πρζπει

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΣΗ ΝΟΗΛΕΤΣΙΚΗ. Φιλιοποφλου Ειρινθ

ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΣΗ ΝΟΗΛΕΤΣΙΚΗ. Φιλιοποφλου Ειρινθ ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΣΗ ΝΟΗΛΕΤΣΙΚΗ Φιλιοποφλου Ειρινθ Προςθήκη νζων πεδίων Ασ υποκζςουμε ότι μετά τθ δθμιουργία του πίνακα αντιλαμβανόμαςτε ότι ζχουμε ξεχάςει κάποια πεδία. Είναι ζνα πρόβλθμα το οποίο

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 2: ΤΟ ΛΟΓΙΣΜΙΚΟ ΤΟΥ ΥΠΟΛΟΓΙΣΤΗ. ΚΕΦΑΛΑΙΟ 5: Γνωριμία με το λογιςμικό του υπολογιςτι

ΕΝΟΤΗΤΑ 2: ΤΟ ΛΟΓΙΣΜΙΚΟ ΤΟΥ ΥΠΟΛΟΓΙΣΤΗ. ΚΕΦΑΛΑΙΟ 5: Γνωριμία με το λογιςμικό του υπολογιςτι ΕΝΟΤΗΤΑ 2: ΤΟ ΛΟΓΙΣΜΙΚΟ ΤΟΥ ΥΠΟΛΟΓΙΣΤΗ ΚΕΦΑΛΑΙΟ 5: Γνωριμία με το λογιςμικό του υπολογιςτι Λογιςμικό (Software), Πρόγραμμα (Programme ι Program), Προγραμματιςτισ (Programmer), Λειτουργικό Σφςτθμα (Operating

Διαβάστε περισσότερα

1 0 ΕΠΑΛ ΞΑΝΘΗ ΕΙΔΙΚΟΣΗΣΑ : ΗΛΕΚΣΡΟΝΙΚΩΝ ΕΙΔΙΚΗ ΘΕΜΑΣΙΚΗ ΕΡΓΑΙΑ Β ΗΛΕΚΣΡΟΝΙΚΩΝ ΘΕΜΑ : ΚΑΣΑΚΕΤΗ ΠΟΜΠΟΤ FM

1 0 ΕΠΑΛ ΞΑΝΘΗ ΕΙΔΙΚΟΣΗΣΑ : ΗΛΕΚΣΡΟΝΙΚΩΝ ΕΙΔΙΚΗ ΘΕΜΑΣΙΚΗ ΕΡΓΑΙΑ Β ΗΛΕΚΣΡΟΝΙΚΩΝ ΘΕΜΑ : ΚΑΣΑΚΕΤΗ ΠΟΜΠΟΤ FM 1 0 ΕΠΑΛ ΞΑΝΘΗ ΕΙΔΙΚΟΣΗΣΑ : ΗΛΕΚΣΡΟΝΙΚΩΝ ΕΙΔΙΚΗ ΘΕΜΑΣΙΚΗ ΕΡΓΑΙΑ Β ΗΛΕΚΣΡΟΝΙΚΩΝ ΘΕΜΑ : ΚΑΣΑΚΕΤΗ ΠΟΜΠΟΤ FM ΣΙ ΕΙΝΑΙ ΠΟΜΠΟ FM; Πρόκειται για μια θλεκτρονικι διάταξθ που ςκοπό ζχει τθν εκπομπι ραδιοςυχνότθτασ

Διαβάστε περισσότερα

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Εισαγωγή στα Συστήματα Τηλεπικοινωνιών Συστήματα Παλμοκωδικής Διαμόρφωσης

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Εισαγωγή στα Συστήματα Τηλεπικοινωνιών Συστήματα Παλμοκωδικής Διαμόρφωσης Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Εισαγωγή στα Συστήματα Τηλεπικοινωνιών Συστήματα Παλμοκωδικής Διαμόρφωσης Καθηγητής Ι. Τίγκελης itigelis@phys.uoa.gr ΚΒΑΝΤΙΣΗ Διαδικασία με την

Διαβάστε περισσότερα

Παλμοκωδική Διαμόρφωση. Pulse Code Modulation (PCM)

Παλμοκωδική Διαμόρφωση. Pulse Code Modulation (PCM) Παλμοκωδική Διαμόρφωση Pulse Code Modulation (PCM) Pulse-code modulation (PCM) Η PCM είναι ένας στοιχειώδης τρόπος διαμόρφωσης που δεν χρησιμοποιεί φέρον! Το μεταδιδόμενο (διαμορφωμένο) σήμα PCM είναι

Διαβάστε περισσότερα

Διαγώνισμα Φυσική ς Κατευ θυνσής Γ Λυκει ου - Ταλαντώσεις

Διαγώνισμα Φυσική ς Κατευ θυνσής Γ Λυκει ου - Ταλαντώσεις Διαγώνισμα Φυσική ς Κατευ θυνσής Γ Λυκει ου - Ταλαντώσεις Επιμέλεια: Σ. Ασημέλλης Θέμα Α Να γράψετε ςτο φφλλο απαντιςεϊν ςασ τον αρικμό κακεμιάσ από τισ παρακάτω ερωτιςεισ 1-4 και δίπλα το γράμμα που αντιςτοιχεί

Διαβάστε περισσότερα

Ακολουκιακά Λογικά Κυκλώματα

Ακολουκιακά Λογικά Κυκλώματα Ακολουκιακά Λογικά Κυκλώματα Τα ψθφιακά λογικά κυκλϊματα που μελετιςαμε μζχρι τϊρα ιταν ςυνδυαςτικά κυκλϊματα. Στα ςυνδυαςτικά κυκλϊματα οι ζξοδοι ςε κάκε χρονικι ςτιγμι εξαρτϊνται αποκλειςτικά και μόνο

Διαβάστε περισσότερα

Ψθφιακι Επεξεργαςία ιματοσ

Ψθφιακι Επεξεργαςία ιματοσ Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Ψθφιακι Επεξεργαςία ιματοσ Ενότθτα 3 : Παρακφρωςθ Δεδομζνων Κωνςταντίνοσ Αγγζλθσ Ανοιχτά Ακαδημαϊκά Μαθήματα ςτο ΤΕΙ Ηπείρου Σμιμα Μθχανικών

Διαβάστε περισσότερα

Περιοριςμοί μιασ Β.Δ. ςτθν Access(1/3)

Περιοριςμοί μιασ Β.Δ. ςτθν Access(1/3) Περιοριςμοί μιασ Β.Δ. ςτθν Access(1/3) Το όνομα ενόσ πίνακα, όπωσ και κάκε άλλου αντικειμζνου, μπορεί να ζχει μζγεκοσ ζωσ 64 χαρακτιρεσ. Το όνομα ενόσ πεδίου μπορεί να ζχει μζγεκοσ ζωσ 64 χαρακτιρεσ. Κάκε

Διαβάστε περισσότερα

Εργαστηριακή άσκηση στο μάθημα του Αυτομάτου Ελέγχου (ΜΜ803)

Εργαστηριακή άσκηση στο μάθημα του Αυτομάτου Ελέγχου (ΜΜ803) Εργαστηριακή άσκηση στο μάθημα του Αυτομάτου Ελέγχου (ΜΜ803) Το ςφςτθμα τθσ φωτογραφίασ αποτελείται από ζνα κινθτιρα ςτον άξονα του οποίου ζχουμε προςαρμόςει ζνα φορτίο. Στον κινθτιρα υπάρχει ςυνδεδεμζνοσ

Διαβάστε περισσότερα

Δείκτεσ Διαχείριςθ Μνιμθσ. Βαγγζλθσ Οικονόμου Διάλεξθ 8

Δείκτεσ Διαχείριςθ Μνιμθσ. Βαγγζλθσ Οικονόμου Διάλεξθ 8 Δείκτεσ Διαχείριςθ Μνιμθσ Βαγγζλθσ Οικονόμου Διάλεξθ 8 Δείκτεσ Κάκε μεταβλθτι ςχετίηεται με μία κζςθ ςτθν κφρια μνιμθ του υπολογιςτι. Κάκε κζςθ ςτθ μνιμθ ζχει τθ δικι τθσ ξεχωριςτι διεφκυνςθ. Με άμεςθ

Διαβάστε περισσότερα

ΧΗΥΙΑΚΟ ΔΚΠΑΙΔΔΤΣΙΚΟ ΒΟΗΘΗΜΑ «ΥΤΙΚΗ ΘΔΣΙΚΗ ΚΑΙ ΣΔΦΝΟΛΟΓΙΚΗ ΚΑΣΔΤΘΤΝΗ» ΦΥΣΙΚΗ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ ΘΔΜΑ Α ΘΔΜΑ Β

ΧΗΥΙΑΚΟ ΔΚΠΑΙΔΔΤΣΙΚΟ ΒΟΗΘΗΜΑ «ΥΤΙΚΗ ΘΔΣΙΚΗ ΚΑΙ ΣΔΦΝΟΛΟΓΙΚΗ ΚΑΣΔΤΘΤΝΗ» ΦΥΣΙΚΗ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ ΘΔΜΑ Α ΘΔΜΑ Β 4 o ΔΙΓΩΝΙΜ ΠΡΙΛΙΟ 04: ΔΝΔΔΙΚΣΙΚΔ ΠΝΣΗΔΙ ΦΥΣΙΚΗ ΘΔΤΙΚΗΣ ΚΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΤΔΥΘΥΝΣΗΣ 4 ο ΔΙΓΩΝΙΣΜ ΔΝΔΔΙΚΤΙΚΔΣ ΠΝΤΗΣΔΙΣ ΘΔΜ. β. β 3. α 4. γ 5. α.σ β.σ γ.λ δ.σ ε.λ. ΘΔΜ Β Σωςτι είναι θ απάντθςθ γ. Έχουμε ελαςτικι

Διαβάστε περισσότερα

Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο)

Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο) Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο) Ιοφνιοσ 2013 Περιεχόμενα: Ειςαγωγή... 3 1.Εθνικό Τυπογραφείο... 3 1.1. Είςοδοσ... 3 1.2. Αρχική Οθόνη... 4 1.3. Διεκπεραίωςη αίτηςησ...

Διαβάστε περισσότερα

Ψθφιακά Ηλεκτρονικά. Ενότθτα 5 : Ανάλυςθ κυκλώματοσ με D και JK FLIP- FLOP Φώτιοσ Βαρτηιώτθσ

Ψθφιακά Ηλεκτρονικά. Ενότθτα 5 : Ανάλυςθ κυκλώματοσ με D και JK FLIP- FLOP Φώτιοσ Βαρτηιώτθσ Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Ψθφιακά Ηλεκτρονικά Ενότθτα 5 : Ανάλυςθ κυκλώματοσ με D και JK FLIP- FLOP Φώτιοσ Βαρτηιώτθσ 1 Ανοιχτά Ακαδημαϊκά Μαθήματα ςτο ΤΕΙ Ηπείρου Σμιμα

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες

Εισαγωγή στις Τηλεπικοινωνίες ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στις Τηλεπικοινωνίες Ενότητα 4: Κβάντιση και Κωδικοποίηση Σημάτων Όνομα Καθηγητή: Δρ. Ηρακλής Σίμος Τμήμα: Ηλεκτρονικών

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΕΠΙΠΕΔΟ 11 12 (Β - Γ Λυκείου)

ΜΑΘΗΜΑΤΙΚΑ ΕΠΙΠΕΔΟ 11 12 (Β - Γ Λυκείου) ΕΠΙΠΕΔΟ 11 12 (Β - Γ Λυκείου) 19 Μαρτίου 2011 10:00-11:15 3 point/μονάδες 1) Στθν πιο κάτω εικόνα πρζπει να υπάρχει αρικμόσ ςε κάκε κουκκίδα ϊςτε το άκροιςμα των αρικμϊν ςτα άκρα κάκε ευκφγραμμου τμιματοσ

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Α ΔΙΑΓΩΝΙΣΜΟΣ ΕΠΙΛΟΓΗΣ IMC (Key Stage II) 9 Μαρτίου 2016 ΧΡΟΝΟΣ: 2 ΩΡΕΣ Λύςεισ : Πρόβλημα 1 (α) Να βρείτε τθν τιμι του για να ιςχφει θ πιο κάτω ςχζςθ: (β) Ο Ανδρζασ τελειϊνει

Διαβάστε περισσότερα

Σχεδίαςη Σφγχρονων Ακολουθιακών Κυκλωμάτων

Σχεδίαςη Σφγχρονων Ακολουθιακών Κυκλωμάτων Σχεδίαςη Σφγχρονων Ακολουθιακών Κυκλωμάτων Πίνακεσ Διζγερςησ των FF Όπωσ είδαμε κατά τθ μελζτθ των FF, οι χαρακτθριςτικοί πίνακεσ δίνουν τθν τιμι τθσ επόμενθσ κατάςταςθσ κάκε FF ωσ ςυνάρτθςθ τθσ παροφςασ

Διαβάστε περισσότερα

Δομζσ Αφαιρετικότθτα ςτα Δεδομζνα

Δομζσ Αφαιρετικότθτα ςτα Δεδομζνα Δομζσ Αφαιρετικότθτα ςτα Δεδομζνα Περιεχόμενα Ζννοια δομισ Οριςμόσ δομισ Διλωςθ μεταβλθτϊν Απόδοςθ Αρχικϊν τιμϊν Αναφορά ςτα μζλθ μιασ δομισ Ζνκεςθ Δομισ Πίνακεσ Δομϊν Η ζννοια τθσ δομισ Χρθςιμοποιιςαμε

Διαβάστε περισσότερα

Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο)

Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο) Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο) Πάτρα, 2013 Περιεχόμενα: Ειςαγωγή... 4 1. Επιμελητήριο... Error! Bookmark not defined. 1.1 Διαχειριςτήσ Αιτήςεων Επιμελητηρίου...

Διαβάστε περισσότερα

ςυςτιματα γραμμικϊν εξιςϊςεων

ςυςτιματα γραμμικϊν εξιςϊςεων κεφάλαιο 7 Α ςυςτιματα γραμμικϊν εξιςϊςεων αςικζσ ζννοιεσ Γραμμικά, λζγονται τα ςυςτιματα εξιςϊςεων ςτα οποία οι άγνωςτοι εμφανίηονται ςτθν πρϊτθ δφναμθ. Σα γραμμικά ςυςτιματα με δφο εξιςϊςεισ και δφο

Διαβάστε περισσότερα

Τηλεπικοινωνιακά Συστήματα Ι

Τηλεπικοινωνιακά Συστήματα Ι Τηλεπικοινωνιακά Συστήματα Ι Διάλεξη 10: Παλμοκωδική Διαμόρφωση, Διαμόρφωση Δέλτα και Πολύπλεξη Διαίρεσης Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Παλμοκωδική Διαμόρφωση (PCM) Παλμοκωδική Διαμόρφωση

Διαβάστε περισσότερα

ΑΤΡΜΑΣΕ ΕΠΙΚΟΙΝΩΝΙΕ ΑΚΗΕΙ

ΑΤΡΜΑΣΕ ΕΠΙΚΟΙΝΩΝΙΕ ΑΚΗΕΙ ΑΤΡΜΑΣΕ ΕΠΙΚΟΙΝΩΝΙΕ ΑΚΗΕΙ Άςκθςθ 1 Η μζγιςτθ τιμι του ρεφματοσ που διαρρζει μία κεραία είναι 0.5 Α, θ αντίςταςθ ακτινοβολίασ τθσ είναι 200 Ω, θ πυκνότθτα ιςχφοσ ςε απόςταςθ 10 km από τθν κεραία είναι 1

Διαβάστε περισσότερα

α) Στο μιγαδικό επίπεδο οι εικόνεσ δφο ςυηυγϊν μιγαδικϊν είναι ςθμεία ςυμμετρικά ωσ προσ τον πραγματικό άξονα

α) Στο μιγαδικό επίπεδο οι εικόνεσ δφο ςυηυγϊν μιγαδικϊν είναι ςθμεία ςυμμετρικά ωσ προσ τον πραγματικό άξονα ΘΕΜΑ Α ΠΑΝΕΛΛΗΝΙΕ ΕΞΕΣΑΕΙ Γ ΣΑΞΗ ΗΜΕΡΗΙΟΤ ΓΕΝΙΚΟΤ ΛΤΚΕΙΟΤ ΚΑΙ ΕΠΑΛ ΟΜΑΔΑ Β ΔΕΤΣΕΡΑ 8 ΜΑΪΟΤ ΕΞΕΣΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΣΙΚΑ ΘΕΣΙΚΗ ΚΑΙ ΣΕΧΝΟΛΟΓΙΚΗ ΚΑΣΕΤΘΤΝΗ ΤΝΟΛΟ ΕΛΙΔΩΝ: ΣΕΕΡΙ A. Ζςτω μια ςυνάρτθςθ f θ

Διαβάστε περισσότερα

Virtualization. Στο ςυγκεκριμζνο οδηγό, θα παρουςιαςτεί η ικανότητα δοκιμήσ τησ διανομήσ Ubuntu 9.04, χωρίσ την ανάγκη του format.

Virtualization. Στο ςυγκεκριμζνο οδηγό, θα παρουςιαςτεί η ικανότητα δοκιμήσ τησ διανομήσ Ubuntu 9.04, χωρίσ την ανάγκη του format. Virtualization Στο ςυγκεκριμζνο οδηγό, θα παρουςιαςτεί η ικανότητα δοκιμήσ τησ διανομήσ Ubuntu 9.04, χωρίσ την ανάγκη του format. Το virtualization πρόκειται για μια τεχνολογία, θ οποία επιτρζπει το διαχωριςμό

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 4 ΠΑΛΜΟΚΩΔΙΚΗ ΔΙΑΜΟΡΦΩΣΗ - PCM (ΜΕΡΟΣ Α)

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 4 ΠΑΛΜΟΚΩΔΙΚΗ ΔΙΑΜΟΡΦΩΣΗ - PCM (ΜΕΡΟΣ Α) ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 4 ΠΑΛΜΟΚΩΔΙΚΗ ΔΙΑΜΟΡΦΩΣΗ - PCM (ΜΕΡΟΣ Α) 3.1. ΣΚΟΠΟΣ ΑΣΚΗΣΗΣ Σκοπός της εργαστηριακής αυτής άσκησης είναι η μελέτη της παλμοκωδικής διαμόρφωσης που χρησιμοποιείται στα σύγχρονα τηλεπικοινωνιακά

Διαβάστε περισσότερα

Ψθφιακά Ηλεκτρονικά. Ενότθτα 7 : Ελαχιςτοποίθςθ και κωδικοποίθςθ καταςτάςεων Φϊτιοσ Βαρτηιϊτθσ

Ψθφιακά Ηλεκτρονικά. Ενότθτα 7 : Ελαχιςτοποίθςθ και κωδικοποίθςθ καταςτάςεων Φϊτιοσ Βαρτηιϊτθσ Ελλθνικι Δθμοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Ψθφιακά Ηλεκτρονικά Ενότθτα 7 : Ελαχιςτοποίθςθ και κωδικοποίθςθ καταςτάςεων Φϊτιοσ Βαρτηιϊτθσ 1 Ανοιχτά Ακαδημαϊκά Μαθήματα ςτο ΤΕΙ Ηπείρου Τμιμα

Διαβάστε περισσότερα

1 ο Διαγώνιςμα για το Α.Ε.Π.Π.

1 ο Διαγώνιςμα για το Α.Ε.Π.Π. 1 ο Διαγώνιςμα για το Α.Ε.Π.Π. Θ Ε Μ Α Α Α 1. Ν α γ ρ ά ψ ε τ ε ς τ ο τ ε τ ρ ά δ ι ό ς α σ τ ο ν α ρ ι κ μ ό κ α κ ε μ ι ά σ α π ό τ ι σ π α ρ α κ ά τ ω π ρ ο τ ά ς ε ι σ 1-8 κ α ι δ ί π λ α τ θ λ ζ ξ

Διαβάστε περισσότερα

ΕΝΟΣΗΣΑ 1: ΓΝΩΡIΖΩ ΣΟΝ ΤΠΟΛΟΓΙΣΗ. ΚΕΦΑΛΑΙΟ 3: Εργονομία

ΕΝΟΣΗΣΑ 1: ΓΝΩΡIΖΩ ΣΟΝ ΤΠΟΛΟΓΙΣΗ. ΚΕΦΑΛΑΙΟ 3: Εργονομία ΕΝΟΣΗΣΑ 1: ΓΝΩΡIΖΩ ΣΟΝ ΤΠΟΛΟΓΙΣΗ Εργονομία, ωςτι ςτάςθ εργαςίασ, Εικονοςτοιχείο (pixel), Ανάλυςθ οκόνθσ (resolution), Μζγεκοσ οκόνθσ Ποιεσ επιπτϊςεισ μπορεί να ζχει θ πολφωρθ χριςθ του υπολογιςτι ςτθν

Διαβάστε περισσότερα

Μετατροπεσ Παραςταςεων

Μετατροπεσ Παραςταςεων Δρ. Χρήστος Ηλιούδης Μεηαηποπή 346 10 ζε δςαδικο 346 10 1) 346/2 = 173 με ςπόλοιπο 0 2) 173/2 = 86 με ςπόλοιπο 1 3) 86/2 = 43 με ςπόλοιπο 0 4) 43/2 = 21 με ςπόλοιπο 1 5) 21/2 = 10 με ςπόλοιπο 1 6) 10/2

Διαβάστε περισσότερα

ΕΝΟΣΗΣΑ 1: ΓΝΩΡIΖΩ ΣΟΝ ΤΠΟΛΟΓΙΣΗ. ΚΕΦΑΛΑΙΟ 2: Σο Τλικό του Τπολογιςτι

ΕΝΟΣΗΣΑ 1: ΓΝΩΡIΖΩ ΣΟΝ ΤΠΟΛΟΓΙΣΗ. ΚΕΦΑΛΑΙΟ 2: Σο Τλικό του Τπολογιςτι ΕΝΟΣΗΣΑ 1: ΓΝΩΡIΖΩ ΣΟΝ ΤΠΟΛΟΓΙΣΗ ΚΕΦΑΛΑΙΟ 2: Σο Τλικό του Τπολογιςτι Τλικό υπολογιςτι (Hardware), Προςωπικόσ Τπολογιςτισ (ΡC), υςκευι ειςόδου, υςκευι εξόδου, Οκόνθ (Screen), Εκτυπωτισ (Printer), αρωτισ

Διαβάστε περισσότερα

ΛΕΙΣΟΤΡΓΙΚΆ ΤΣΉΜΑΣΑ. 9 θ & 10 θ Διάλεξθ Ιδεατι Μνιμθ Μζροσ Β

ΛΕΙΣΟΤΡΓΙΚΆ ΤΣΉΜΑΣΑ. 9 θ & 10 θ Διάλεξθ Ιδεατι Μνιμθ Μζροσ Β 1 ΛΕΙΣΟΤΡΓΙΚΆ ΤΣΉΜΑΣΑ 9 θ & 10 θ Διάλεξθ Ιδεατι Μνιμθ Μζροσ Β 2 ελιδοποίθςθ με Χριςθ Ιδεατισ Μνιμθσ (1/5) Ο όροσ ιδεατή μνήμη ςυνικωσ ςχετίηεται με ςυςτιματα τα οποία εφαρμόηουν ςελιδοποίθςθ, παρόλο που

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών

Συστήματα Επικοινωνιών Συστήματα Επικοινωνιών Ενότητα 8: Δειγματοληψία - Διαμόρφωση παλμών Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Περιγραφή της διαδικασίας

Διαβάστε περισσότερα

Internet a jeho role v našem životě Το Διαδίκτυο και ο ρόλοσ του ςτθ ηωι μασ

Internet a jeho role v našem životě Το Διαδίκτυο και ο ρόλοσ του ςτθ ηωι μασ Internet a jeho role v našem životě Το Διαδίκτυο και ο ρόλοσ του ςτθ ηωι μασ Διαδίκτυο: μια πόρτα ςτον κόςμο Πϊσ μπορεί κανείσ ςε λίγα λεπτά να μάκει ποιεσ ταινίεσ παίηονται ςτουσ κινθματογράφουσ, να ςτείλει

Διαβάστε περισσότερα

Παλμοκωδική Διαμόρφωση. Pulse Code Modulation (PCM)

Παλμοκωδική Διαμόρφωση. Pulse Code Modulation (PCM) Παλμοκωδική Διαμόρφωση Pulse Code Modulation (PCM) Pulse-code modulation (PCM) Η PCM είναι ένας στοιχειώδης τρόπος διαμόρφωσης που δεν χρησιμοποιεί φέρον! Το μεταδιδόμενο (διαμορφωμένο) σήμα PCM είναι

Διαβάστε περισσότερα

ΔC= C - C. Μια γρήγορη επανάληψη. Αρτές λειηοσργίας

ΔC= C - C. Μια γρήγορη επανάληψη. Αρτές λειηοσργίας Αρτές λειηοσργίας Μια γρήγορη επανάληψη Αρχή λειτουργίασ H φυςικι αρχι ςτθν οποία βαςίηεται θ λειτουργία του αιςκθτιρα. (Ειδικότερα, το φυςικό μζγεκοσ ςτο οποίο βαςίηεται ο μετατροπζασ του αιςκθτιρα.)

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο

Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο Εργαστηριακή Άσκηση 7: Κβάντιση και Κωδικοποίηση Σημάτων Προσομοίωση σε Η/Υ Δρ. Ηρακλής

Διαβάστε περισσότερα

EUROPEAN TRADESMAN PROJECT NOTES ON ELECTRICAL TESTS OF ELECTRICAL INSTALLATIONS

EUROPEAN TRADESMAN PROJECT NOTES ON ELECTRICAL TESTS OF ELECTRICAL INSTALLATIONS EUROPEAN TRADESMAN PROJECT NOTES ON ELECTRICAL TESTS OF ELECTRICAL INSTALLATIONS EUROPEAN TRADESMAN PROJECT NOTES ON ELECTRICAL TESTS OF ELECTRICAL INSTALLATIONS Οι μαθηηές να μάθοσν πώς να διενεργήζοσν

Διαβάστε περισσότερα

Δομθμζνοσ Προγραμματιςμόσ. Βαγγζλθσ Οικονόμου Εργαςτιριο 9

Δομθμζνοσ Προγραμματιςμόσ. Βαγγζλθσ Οικονόμου Εργαςτιριο 9 Δομθμζνοσ Προγραμματιςμόσ Βαγγζλθσ Οικονόμου Εργαςτιριο 9 Συναρτιςεισ Αφαιρετικότθτα ςτισ διεργαςίεσ Συνάρτθςεισ Διλωςθ, Κλιςθ και Οριςμόσ Εμβζλεια Μεταβλθτών Μεταβίβαςθ παραμζτρων ςε ςυναρτιςεισ Συναρτιςεισ

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΕΝΙΣΧΥΤΗΣ PUSH-PULL ΤΑΞΗΣ AB

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΕΝΙΣΧΥΤΗΣ PUSH-PULL ΤΑΞΗΣ AB ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΕΝΙΣΧΥΤΗΣ PUSH-PULL ΤΑΞΗΣ AB ΘΕΩΡΗΣΙΚΗ ΕΙΑΓΩΓΗ Οι ενιςχυτζσ ιςχφοσ αποτελοφν μια ιδιαίτερθ κατθγορία ενιςχυτϊν που χαρακτθριςτικό τουσ είναι θ μεγάλθ ιςχφσ που μποροφν να αποδϊςουν

Διαβάστε περισσότερα

Δείκτεσ απόδοςθσ υλικών

Δείκτεσ απόδοςθσ υλικών Δείκτεσ απόδοςθσ υλικών Κάκε ςυνδυαςμόσ λειτουργίασ, περιοριςμϊν και ςτόχων, οδθγεί ςε ζνα μζτρο τθσ απόδοςθσ τθσ λειτουργίασ του εξαρτιματοσ και περιζχει μια ομάδα ιδιοτιτων των υλικϊν. Αυτι θ ομάδα των

Διαβάστε περισσότερα

Γράφοι. Δομζσ Δεδομζνων Διάλεξθ 9

Γράφοι. Δομζσ Δεδομζνων Διάλεξθ 9 Γράφοι Δομζσ Δεδομζνων Διάλεξθ 9 Περιεχόμενα Γράφοι Γενικζσ ζννοιεσ, οριςμόσ, κτλ Παραδείγματα Γράφων Αποκικευςθ Γράφων Βαςικοί Οριςμοί Γράφοι και Δζντρα Διάςχιςθ Γράφων Περιοδεφων Πωλθτισ Γράφοι Οριςμόσ:

Διαβάστε περισσότερα

Ελλθνικι Δθμοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Ψθφιακά Ηλεκτρονικά. Ενότθτα 13 : Άλλοι Μετρθτζσ Φϊτιοσ Βαρτηιϊτθσ

Ελλθνικι Δθμοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Ψθφιακά Ηλεκτρονικά. Ενότθτα 13 : Άλλοι Μετρθτζσ Φϊτιοσ Βαρτηιϊτθσ Ελλθνικι Δθμοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Ψθφιακά Ηλεκτρονικά Ενότθτα 13 : Άλλοι Μετρθτζσ Φϊτιοσ Βαρτηιϊτθσ 1 Ανοιχτά Τμιμα Ψθφιακά Ηλεκτρονικά Ενότητα 13: Άλλοι Μετρθτζσ Φϊτιοσ Βαρτηιϊτθσ

Διαβάστε περισσότερα

ΚΤΚΛΩΜΑ RLC Ε ΕΙΡΑ (Απόκριςη ςε ημιτονοειδή είςοδο)

ΚΤΚΛΩΜΑ RLC Ε ΕΙΡΑ (Απόκριςη ςε ημιτονοειδή είςοδο) ΚΤΚΛΩΜΑ RLC Ε ΕΙΡΑ (Απόκριςη ςε ημιτονοειδή είςοδο) χήμα Κφκλωμα RLC ςε ςειρά χήμα 2 Διανυςματικι παράςταςθ τάςεων και ρεφματοσ Ζςτω ότι ςτο κφκλωμα του ςχιματοσ που περιλαμβάνει ωμικι, επαγωγικι και χωρθτικι

Διαβάστε περισσότερα

ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΙΣΟΤΣΟ ΚΤΠΡΟΤ Πρόγραμμα Επιμόρυωσης Τποψηυίων Καθηγητών Σεχνολογίας. Σηλεπικοινωνίες

ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΙΣΟΤΣΟ ΚΤΠΡΟΤ Πρόγραμμα Επιμόρυωσης Τποψηυίων Καθηγητών Σεχνολογίας. Σηλεπικοινωνίες ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΙΣΟΤΣΟ ΚΤΠΡΟΤ Πρόγραμμα Επιμόρυωσης Τποψηυίων Καθηγητών Σεχνολογίας Σηλεπικοινωνίες Πέμπτη 24/3/2011 Διδάζκων: Γιώργος Χαηζηιωάννοσ Τηλέθωνο: 99653828 Ε-mail: georghios.h@cytanet.com.cy

Διαβάστε περισσότερα

ΕΝΟΣΗΣΑ 1: ΓΝΩΡIΖΩ ΣΟΝ ΤΠΟΛΟΓΙΣΗ Ω ΕΝΙΑΙΟ ΤΣΗΜΑ. ΚΕΦΑΛΑΙΟ 2: Σο Εςωτερικό του Τπολογιςτι

ΕΝΟΣΗΣΑ 1: ΓΝΩΡIΖΩ ΣΟΝ ΤΠΟΛΟΓΙΣΗ Ω ΕΝΙΑΙΟ ΤΣΗΜΑ. ΚΕΦΑΛΑΙΟ 2: Σο Εςωτερικό του Τπολογιςτι ΕΝΟΣΗΣΑ 1: ΓΝΩΡIΖΩ ΣΟΝ ΤΠΟΛΟΓΙΣΗ ΚΕΦΑΛΑΙΟ 2: Σο Εςωτερικό του Τπολογιςτι 2.1 Ο Προςωπικόσ Υπολογιςτήσ εςωτερικά Σροφοδοτικό, Μθτρικι πλακζτα (Motherboard), Κεντρικι Μονάδα Επεξεργαςίασ (CPU), Κφρια Μνιμθ

Διαβάστε περισσότερα

ΕΝΟΤΘΤΑ 2: ΕΠΙΚΟΙΝΩΝΩ ΜΕ ΤΟΝ ΥΠΟΛΟΓΙΣΤΘ. ΚΕΦΑΛΑΙΟ 6: Θ «Βοικεια» ςτον Υπολογιςτι

ΕΝΟΤΘΤΑ 2: ΕΠΙΚΟΙΝΩΝΩ ΜΕ ΤΟΝ ΥΠΟΛΟΓΙΣΤΘ. ΚΕΦΑΛΑΙΟ 6: Θ «Βοικεια» ςτον Υπολογιςτι ΕΝΟΤΘΤΑ 2: ΕΠΙΚΟΙΝΩΝΩ ΜΕ ΤΟΝ ΥΠΟΛΟΓΙΣΤΘ ΚΕΦΑΛΑΙΟ 6: Θ «Βοικεια» ςτον Υπολογιςτι Βοικεια (Help), Ευρετιριο, Κόμβοσ, Λζξθ κλειδί, Σφνδεςμόσ, Υπερκείμενο Τι είναι θ «Βοικεια» ςτουσ υπολογιςτζσ; Πώσ ενεργοποιοφμε

Διαβάστε περισσότερα

Μθχανολογικό Σχζδιο, από τθ κεωρία ςτο πρακτζο Χριςτοσ Καμποφρθσ, Κων/νοσ Βαταβάλθσ

Μθχανολογικό Σχζδιο, από τθ κεωρία ςτο πρακτζο Χριςτοσ Καμποφρθσ, Κων/νοσ Βαταβάλθσ Λεπτζσ Αξονικζσ γραμμζσ χρθςιμοποιοφνται για να δθλϊςουν τθν φπαρξθ ςυμμετρίασ του αντικειμζνου. Υπενκυμίηουμε ότι οι άξονεσ ςυμμετρίασ χρθςιμοποιοφνται μόνον όταν το ίδιο το εξάρτθμα είναι πραγματικά

Διαβάστε περισσότερα

Πολυπλέκτες. 0 x 0 F = S x 0 + Sx 1 1 x 1

Πολυπλέκτες. 0 x 0 F = S x 0 + Sx 1 1 x 1 Πολυπλέκτες Ο πολυπλζκτθσ (multipleer - ) είναι ζνα ςυνδυαςτικό κφκλωμα που επιλζγει δυαδικι πλθροφορία μιασ από πολλζσ γραμμζσ ειςόδου και τθν κατευκφνει ςε μια και μοναδικι γραμμι εξόδου. Η επιλογι μιασ

Διαβάστε περισσότερα

Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Ψθφιακά Ηλεκτρονικά. Ενότθτα 9 : Διαδικαςία φνκεςθσ Φϊτιοσ Βαρτηιϊτθσ

Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Ψθφιακά Ηλεκτρονικά. Ενότθτα 9 : Διαδικαςία φνκεςθσ Φϊτιοσ Βαρτηιϊτθσ Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Ψθφιακά Ηλεκτρονικά Ενότθτα 9 : Διαδικαςία φνκεςθσ Φϊτιοσ Βαρτηιϊτθσ 1 Ανοιχτά Σμιμα Ψθφιακά Ηλεκτρονικά Ενότητα 9: Διαδικαςία φνκεςθσ Φϊτιοσ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΕΠΙΠΕΔΟ 7 8 (Α - Β Γυμνασίου)

ΜΑΘΗΜΑΤΙΚΑ ΕΠΙΠΕΔΟ 7 8 (Α - Β Γυμνασίου) ΕΠΙΠΕΔΟ 7 8 (Α - Β Γυμνασίου) 19 Μαρτίου 011 10:00-11:15 EUROPEAN KANGOUROU 010-011 3 points/μονάδες 1) Ποια από τισ πιο κάτω παραςτάςεισ ζχει τθ μεγαλφτερθ τιμι; (A) 011 1 (B) 1 011 (C) 1 x 011 (D) 1

Διαβάστε περισσότερα

ΛΕΙΣΟΤΡΓΙΚΆ ΤΣΉΜΑΣΑ. 8 θ Διάλεξθ Ιδεατι Μνιμθ Μζροσ Α

ΛΕΙΣΟΤΡΓΙΚΆ ΤΣΉΜΑΣΑ. 8 θ Διάλεξθ Ιδεατι Μνιμθ Μζροσ Α ΛΕΙΣΟΤΡΓΙΚΆ ΤΣΉΜΑΣΑ 8 θ Διάλεξθ Ιδεατι Μνιμθ Μζροσ Α Βαςικι Ορολογία Ιδεατή Μνήμη: χιμα ανάκεςθσ αποκθκευτικοφ χϊρου, ςτο οποίο θ δευτερεφουςα μνιμθ μπορεί να διευκυνςιοδοτθκεί ςαν να ιταν μζροσ τθσ κφριασ

Διαβάστε περισσότερα

ΟΔΗΓΟ ΛΗΨΗ ΣΗ ΤΠΗΡΕΙΑ EDCAST

ΟΔΗΓΟ ΛΗΨΗ ΣΗ ΤΠΗΡΕΙΑ EDCAST ΟΔΗΓΟ ΛΗΨΗ ΣΗ ΤΠΗΡΕΙΑ EDCAST 1 1.1 Ειςαγωγό Για να λάβετε τα δεδομζνα του Τπ. Παιδείασ μζςω του επίγειου ψθφιακοφ ςιματοσ τθσ ΝΕΡΙΣ κα πρζπει, εάν δεν διακζτετε ιδθ, να προμθκευτείτε, να εγκαταςτιςετε

Διαβάστε περισσότερα

HY220 Εργαςτήριο Ψηφιακών Κυκλωμάτων. 9/28/ ΗΥ220 - Διάλεξθ 3θ, Επανάλθψθ

HY220 Εργαςτήριο Ψηφιακών Κυκλωμάτων.  9/28/ ΗΥ220 - Διάλεξθ 3θ, Επανάλθψθ HY220 Εργαςτήριο Ψηφιακών Κυκλωμάτων Διδάςκων: Χ. Σωτηρίου, Βοηθοί: Ε. Κουναλάκησ, Π. Ματτθαιάκησ http://www.csd.uoc.gr/~hy220 1 Περιεχόμενα Συςτιματα Αρικμϊν και Δυαδικοί Αρικμοί Ψθφιακι Λογικι Ηλεκτρικά

Διαβάστε περισσότερα

3 θ διάλεξθ Επανάλθψθ, Επιςκόπθςθ των βαςικϊν γνϊςεων τθσ Ψθφιακισ Σχεδίαςθσ

3 θ διάλεξθ Επανάλθψθ, Επιςκόπθςθ των βαςικϊν γνϊςεων τθσ Ψθφιακισ Σχεδίαςθσ 3 θ διάλεξθ Επανάλθψθ, Επιςκόπθςθ των βαςικϊν γνϊςεων τθσ Ψθφιακισ Σχεδίαςθσ 1 2 3 4 5 6 7 Παραπάνω φαίνεται θ χαρακτθριςτικι καμπφλθ μετάβαςθσ δυναμικοφ (voltage transfer characteristic) για ζναν αντιςτροφζα,

Διαβάστε περισσότερα

Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Ψθφιακά Ηλεκτρονικά. Ενότθτα 11 : Μετρθτζσ Ριπισ Φϊτιοσ Βαρτηιϊτθσ

Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Ψθφιακά Ηλεκτρονικά. Ενότθτα 11 : Μετρθτζσ Ριπισ Φϊτιοσ Βαρτηιϊτθσ Ελλθνικι Δθμοκρατία Σεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Ψθφιακά Ηλεκτρονικά Ενότθτα 11 : Μετρθτζσ Ριπισ Φϊτιοσ Βαρτηιϊτθσ 1 Ανοιχτά Σμιμα Ψθφιακά Ηλεκτρονικά Ενότητα 11: Μετρθτζσ Ριπισ Φϊτιοσ Βαρτηιϊτθσ

Διαβάστε περισσότερα

Βασικά Τετνικά Χαρακτηριστικά Σσστήματος Ψηυιακής Τηλεόρασης βασισμένο στο πρότσπο DVB-T

Βασικά Τετνικά Χαρακτηριστικά Σσστήματος Ψηυιακής Τηλεόρασης βασισμένο στο πρότσπο DVB-T Βασικά Τετνικά Χαρακτηριστικά Σσστήματος Ψηυιακής Τηλεόρασης βασισμένο στο πρότσπο DVB-T ΑΡΒΑΝΙΣΑΚΗ ΣΑΤΡΟΤΛΑ Ηλεκτρονικός Μηχανικός, ΓΚΟΤΓΙΝΟΤΓΗ ΩΣΗΡΙΟ Ηλεκτρολόγος Μηχανικός & Μηχανικός Η/Τ, ΦΩΣΟΠΟΤΛΟ

Διαβάστε περισσότερα

cdna ΒΙΒΛΙΟΘΗΚΗ Καρβέλης Φώτης Φώτο 1

cdna ΒΙΒΛΙΟΘΗΚΗ Καρβέλης Φώτης Φώτο 1 cdna ΒΙΒΛΙΟΘΗΚΗ Καρβέλης Φώτης Φώτο 1 Λόγοι για τουσ οποίουσ αναγκαςτικαμε να δθμιουργιςουμε τθ cdna βιβλιοκικθ Σα γονίδια των ευκαρυωτικών είναι αςυνεχι. Οι περιοριςτικζσ ενδονουκλεάςεισ δεν κόβουν ςτθν

Διαβάστε περισσότερα

Ιδιότθτεσ πεδίων Γενικζσ.

Ιδιότθτεσ πεδίων Γενικζσ. Οι ιδιότθτεσ των πεδίων διαφζρουν ανάλογα με τον τφπο δεδομζνων που επιλζγουμε. Ορίηονται ςτο κάτω μζροσ του παρακφρου ςχεδίαςθσ του πίνακα, ςτθν καρτζλα Γενικζσ. Ιδιότθτα: Μζγεκοσ πεδίου (Field size)

Διαβάστε περισσότερα

HY220 Εργαςτόριο Ψηφιακών Κυκλωμϊτων

HY220 Εργαςτόριο Ψηφιακών Κυκλωμϊτων HY220 Εργαςτόριο Ψηφιακών Κυκλωμϊτων Διδϊςκων: Χ. Σωτηρύου, Βοηθού: Ε. Κουναλϊκησ, Π. Ματτθαιϊκησ, Δ. Τςαλιαγκόσ http://www.csd.uoc.gr/~hy220 1 Περιεχόμενα Ρολυδιάςτατοσ Δυαδικόσ Χϊροσ Δυαδικζσ Συναρτιςεισ

Διαβάστε περισσότερα

ΛΕΙΤΟΥΓΙΚΆ ΣΥΣΤΉΜΑΤΑ. 5 ο Εργαςτιριο Ειςαγωγι ςτθ Γραμμι Εντολϊν

ΛΕΙΤΟΥΓΙΚΆ ΣΥΣΤΉΜΑΤΑ. 5 ο Εργαςτιριο Ειςαγωγι ςτθ Γραμμι Εντολϊν ΛΕΙΤΟΥΓΙΚΆ ΣΥΣΤΉΜΑΤΑ 5 ο Εργαςτιριο Ειςαγωγι ςτθ Γραμμι Εντολϊν Τι είναι θ Γραμμι Εντολϊν (1/6) Στουσ πρϊτουσ υπολογιςτζσ, και κυρίωσ από τθ δεκαετία του 60 και μετά, θ αλλθλεπίδραςθ του χριςτθ με τουσ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 7 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst15

Διαβάστε περισσότερα

Ημιτονοειδή σήματα Σ.Χ.

Ημιτονοειδή σήματα Σ.Χ. Ημιτονοειδή σήματα Σ.Χ. Αρμονική ταλάντωση και επειδή Ω=2πF Περιοδικό με βασική περίοδο Τ p =1/F Ημιτονοειδή σήματα Σ.Χ. 1 Ημιτονοειδή σήματα Σ.Χ. Σύμφωνα με την ταυτότητα του Euler Το ημιτονοειδές σήμα

Διαβάστε περισσότερα

Τάξη Β. Φυςικθ Γενικθσ Παιδείασ. Τράπεζα ιεμάτων Κεφ.1 ο ΘΕΜΑ Δ. Για όλεσ τισ αςκθςεισ δίνεται η ηλεκτρικθ ςταιερά

Τάξη Β. Φυςικθ Γενικθσ Παιδείασ. Τράπεζα ιεμάτων Κεφ.1 ο ΘΕΜΑ Δ. Για όλεσ τισ αςκθςεισ δίνεται η ηλεκτρικθ ςταιερά Τάξη Β Φυςικθ Γενικθσ Παιδείασ Τράπεζα ιεμάτων Κεφ.1 ο ΘΕΜΑ Δ Για όλεσ τισ αςκθςεισ δίνεται η ηλεκτρικθ ςταιερά k 2 9 9 10 Nm 2 1. Δφο ακίνθτα ςθμειακά θλεκτρικά φορτία q 1 = - 2 μq και q 2 = + 3 μq, βρίςκονται

Διαβάστε περισσότερα

Πόροι και διεθνές εμπόριο: Το σπόδειγμα Heckscher-Ohlin

Πόροι και διεθνές εμπόριο: Το σπόδειγμα Heckscher-Ohlin Πόροι και διεθνές εμπόριο: Το σπόδειγμα Heckscher-Ohlin 1 Το υπόδειγμα Heckscher-Ohlin με δφο παραγωγικοφσ ςυντελεςτζσ: Υποκζςεισ 1. Δφο χϊρεσ, δφο ομογενι προϊόντα, δφο ομογενείσ ςυντελεςτζσ τθσ παραγωγισ

Διαβάστε περισσότερα

Ο ήχοσ ωσ φυςικό φαινόμενο

Ο ήχοσ ωσ φυςικό φαινόμενο Ο ήχοσ ωσ φυςικό φαινόμενο Φφλλο Εργαςίασ Ονοματεπώνυμο. Παραγωγή και διάδοςη του ήχου Ήχοσ παράγεται όταν τα ςωματίδια κάποιου υλικοφ μζςου αναγκαςκοφν να εκτελζςουν ταλάντωςθ. Για να διαδοκεί ο ιχοσ

Διαβάστε περισσότερα

1 ο ΜΑΘΗΜΑ Κεφάλαιο 1, Παράγραφοι 1.1, 1.2 ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ

1 ο ΜΑΘΗΜΑ Κεφάλαιο 1, Παράγραφοι 1.1, 1.2 ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ 1 ο ΜΑΘΗΜΑ Κεφάλαιο 1, Παράγραφοι 1.1, 1.2 ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Στατιςτικι είναι ο κλάδοσ των μακθματικϊν που αςχολείται με τθ ςυλλογι, τθν οργάνωςθ, τθν παρουςίαςθ και τθν ανάλυςθ αρικμθτικϊν

Διαβάστε περισσότερα

ΑΝΣΙΣΡΟΦΗ ΤΝΑΡΣΗΗ. f y x y f A αντιςτοιχίηεται ςτο μοναδικό x A για το οποίο. Παρατθριςεισ Ιδιότθτεσ τθσ αντίςτροφθσ ςυνάρτθςθσ 1. Η. f A τθσ f.

ΑΝΣΙΣΡΟΦΗ ΤΝΑΡΣΗΗ. f y x y f A αντιςτοιχίηεται ςτο μοναδικό x A για το οποίο. Παρατθριςεισ Ιδιότθτεσ τθσ αντίςτροφθσ ςυνάρτθςθσ 1. Η. f A τθσ f. .. Αντίςτροφθ ςυνάρτθςθ Ζςτω θ ςυνάρτθςθ : A θ οποία είναι " ". Τότε ορίηεται μια νζα ςυνάρτθςθ, θ μζςω τθσ οποίασ το κάκε ιςχφει y. : A με Η νζα αυτι ςυνάρτθςθ λζγεται αντίςτροφθ τθσ. y y A αντιςτοιχίηεται

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 8 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst15

Διαβάστε περισσότερα

Φυςικι δραςτθριότθτα παιδιών και εφιβων ςτθ χώρα μασ: ςυμβολι ςτθν υγεία και παράγοντεσ που επθρεάηουν τθ ςυμμετοχι ςτθν άςκθςθ

Φυςικι δραςτθριότθτα παιδιών και εφιβων ςτθ χώρα μασ: ςυμβολι ςτθν υγεία και παράγοντεσ που επθρεάηουν τθ ςυμμετοχι ςτθν άςκθςθ Φυςικι δραςτθριότθτα παιδιών και εφιβων ςτθ χώρα μασ: ςυμβολι ςτθν υγεία και παράγοντεσ που επθρεάηουν τθ ςυμμετοχι ςτθν άςκθςθ Γρθγόρθσ Μπογδάνθσ, PhD, Επίκουροσ Κακθγθτισ ΣΕΦΑΑ ΕΚΠΑ Παιδικι Παχυςαρκία

Διαβάστε περισσότερα

Καζάνης Θεόδωρος ΜΗΧΑΝΟΛΟΓΟΣ ΜΗΧΑΝΙΚΟΣ ΕΜΠ Δ/νηης Πιζηοποίηζης & Εκπαίδεσζης Δικηύοσ

Καζάνης Θεόδωρος ΜΗΧΑΝΟΛΟΓΟΣ ΜΗΧΑΝΙΚΟΣ ΕΜΠ Δ/νηης Πιζηοποίηζης & Εκπαίδεσζης Δικηύοσ Καζάνης Θεόδωρος ΜΗΧΑΝΟΛΟΓΟΣ ΜΗΧΑΝΙΚΟΣ ΕΜΠ Δ/νηης Πιζηοποίηζης & Εκπαίδεσζης Δικηύοσ ΚΑΣΑΝΗΣ ΠΙΝΑΚΑ ΔΕΙΓΜΑΣΟΛΗΠΣΙΚΩΝ ΕΛΕΓΧΩΝ ΚΑΙ ΠΑΡΑΛΑΒΩΝ ISO 2859 W Z Z W Προδιαγραφι ΕΣΕΜ 0,6 x 0.7 = 0,42 0.6 L Προδιαγραφι

Διαβάστε περισσότερα