NONTERMINATING EXTENSIONS OF THE SEARS TRANSFORMATION
|
|
- Παρθενιά Αναστασιάδης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 SARAJEVO JOURNAL OF MATHEMATICS Vol1 (5), No, (016), DOI: /SJM107 NONTERMINATING EXTENSIONS OF THE SEARS TRANSFORMATION WENCHANG CHU AND NADIA N LI Abstract By meas of two ad three term relatos of 3φ -seres, we vestgate the otermatg 4φ 3-seres Eght trasformato formulaes to double seres are establshed Four of them are show to be otermatg extesos of the Sears trasformato 1 Itroducto ad motvato For the two determates x ad, the shfted factoral of x wth base reads as (x; ) 0 1 ad (x; ) (1 x) (1 x) (1 1 x) for N Whe < 1, we have two well defed fte products (x; ) (1 x) ad (x; ) (x; ) / ( x; ) 0 The product ad fracto of shfted factorals are abbrevated respectvely to α, β,, γ; (α; ) (β; ) (γ; ), α, β,, γ (α; ) (β; ) (γ; ) A, B,, C (A; ) (B; ) (C; ) Followg Gasper Rahma 4, the basc hypergeometrc seres s defed by a0, a 1,, a r ; { 1+rφ s z ( 1) b 1,, b ( ) } s r a 0, a 1,, a r z s, b 1,, b s 0 where the base wll be restrcted to < 1 for otermatg -seres Most of the -seres results cocer the case r s Whe the parameters 010 Mathematcs Subject Classfcato Prmary 33D15; Secodary 05A15 Key words ad phrases Basc hypergeometrc seres; The -Pfaff Saalschütz theorem; The Sears trasformato; The -Kampé de Féret seres Copyrght c 016 by ANUBIH
2 06 WENCHANG CHU AND NADIA N LI satsfy the codto a 0 a 1 a a r b 1 b b r, the seres s sad to be balaced There are umerous mportat summato ad trasformato formulae the -seres theory Oe of them s due to Sears 5 (cf 4, III 15), whch cocers the termatg balaced 4 φ 3 -seres subject to the codto αβγ 1 bcd: 4φ, b, c, d α/c, γ/c 3 ; α, β, γ α, γ 4φ, c, β/b, β/d 3 ; (1) β, αβ/bd, βγ/bd The am of ths paper s to vestgate ts otermatg form b, c, d, e 4φ 3 ; αβγ ( c, e, bd/β αβγ ) b, d () α, β, γ bcde, α, γ 0 bcde β, bd/β Recall the -Pfaff Saalschütz summato theorem (cf 1, 84 ad 4, II-1) 3φ, a, b c/a, c/b c, 1 ; (3) ab/c c, c/ab Ths ca be utlzed to rewrte the afore-dsplayed 4 φ 3 -seres as b, c, d, e 4φ 3 ; αβγ ( c, e, bd/β αβγ α, β, γ bcde, α, γ 0 bcde ( c, e, bd/β αβγ ), α, γ 0 bcde ) 3φ, β/b, β/d β, 1 β/bd 0, β/b, β/d β, 1 β/bd ; Lettg + the last double sum ad the terchagg the summato order, we get the followg expresso b, c, d, e 4φ 3 ; αβγ ( c, e, β/b, β/d αγ ) α, β, γ bcde, α, β, γ 0 ce 3 φ c, e, bd/β α, ; αβγ (4) γ bcde Ths wll be our startg pot for the subseuet developmet By meas of the -Kummer Thomae Whpple trasformato ad the Hall trasformato (cf Gasper Rahma 4, III 9 & 10), we shall derve four double seres expressos for the 4 φ 3 -seres gve () the ext secto The the thrd secto, further four trasformato formulae wll be establshed by utlzg the two three term trasformatos (cf Gasper Rahma 4, III 33 & 34) Fally, the paper wll ed wth a dscusso of some ow results that are cotaed as partcular cases of the ma theorems proved ths paper
3 NONTERMINATING EXTENSIONS OF THE SEARS TRANSFORMATION 07 Trasformatos to double seres Based o the double sum expresso dsplayed (4), we shall derve four trasformato theorems ths secto The ma tools are the -Kummer Thomae Whpple trasformato (cf Gasper Rahma 4, III 9) 3φ b, c, d α, γ ; αγ bcd α/d, αγ/bc α, αγ/bcd 3φ d, γ/b, γ/c γ, αγ/bc ; α d ad the Hall trasformato (cf Gasper Rahma 4, III 10) b, c, d 3φ ; αγ b, αγ/bd, αγ/bc α/b, γ/b, αγ/bcd α, γ bcd α, γ, αγ/bcd 3φ ; b αγ/bd, αγ/bc (6) 1 Accordg to (5), we ca reformulate the 3 φ -seres dsplayed (4) as 3φ c, e, bd/β α, ; αβγ αγ/ce, αβ/bd γ bcde α, αβγ/bcde bd/β, γ/c, γ/e 3 φ αγ/ce, ; αβ γ bd Substtutg the last expresso to (4), we get the frst trasformato formula Theorem 1 (Double sum expresso) b, c, d, e 4φ 3 ; αβγ αβ/bd, αγ/ce α, β, γ bcde α, αβγ/bcde ( c, e, β/b, β/d αγ ) bd/β, γ/c, γ/e (γ; ) +, β, αβ/bd ce, αγ/ce, 0 ( αβ ) bd Whe d 1, the last theorem gves, uder the replacemet b bβ, the followg closed formula for the double seres, whch s euvalet to Gasper s oe (cf Gasper Rahma 4, P300) Corollary (Summato formula of double seres) α, αγ/bce ( c, e, 1/b αγ ) ( b, γ/c, γ/e α ) α/b, αγ/ce (γ; ) +, α/b, 0 ce, αγ/ce b The last formula may be cosdered as a double seres exteso of the well ow -Gauss summato theorem (cf Baley1, 84 ad Gasper Rahma 4, II 8) because for γ e, t reduces euvaletly to the followg a, b φ 1 ; c c/a, c/b where c/ab < 1 (7) c ab c, c/ab (5)
4 08 WENCHANG CHU AND NADIA N LI Alteratvely, applyg (5) to the 3 φ -seres dsplayed (4) 3φ c, e, bd/β α, ; αβγ c, αγ/ce, αβγ/bcd γ bcde α, γ, αβγ/bcde α/c, γ/c, αβγ/bcde 3 φ αγ/ce, ; c αβγ/bcd we derve from (4) the secod trasformato formula Theorem 3 (Double sum expresso) b, c, d, e 4φ 3 ; αβγ c, αγ/ce, αβγ/bcd α, β, γ bcde α, γ, αβγ/bcde c ( e, β/b, β/d αγ ) α/c, γ/c, αβγ/bcde (αβγ/bcd; ) +, β ce, αγ/ce, 0 Lettg β e bd the last theorem, we get the followg terestg reducto formula for the -Appell le Φ (3) -seres (cf Gasper Rahma 4, 10) Corollary 4 (Reducto formula of double seres) b, c, d 3φ ; αγ α, γ α, γ bcd c, αγ/c c b, d (αγ/c; ) +, 0 ( αγ bcd ) α/c, γ/c Ths detty exteds aga the -Gauss summato theorem (7), whch correspods, fact, to the partcular case d 1 of the formula dsplayed the last corollary 3 By meas of (6), the 3 φ -seres (4) ca be reformulated as 3φ c, e, bd/β α, ; αβγ γ bcde α/e, αβγ/bcd α, αβγ/bcde 3φ e, γ/c, βγ/bd γ, ; α αβγ/bcd e Substtutg ths expresso to (4), we get the thrd trasformato formula Theorem 5 (Double sum expresso) b, c, d, e 4φ 3 ; αβγ α/e, αβγ/bcd α, β, γ bcde α, αβγ/bcde
5 NONTERMINATING EXTENSIONS OF THE SEARS TRANSFORMATION 09 e, βγ/bd γ, αβγ/bcd, 0 + ( αγ ce ) c, β/b, β/d, β, βγ/bd (γ/c; ) ( α ) (; ) e Lettg β 0 the last theorem, we fd aother terestg summato formula for the -Appell Φ (1) -seres (cf Gasper Rahma 4, 10) Corollary 6 (Summato formula of double seres) (α; ) (e; ) + (c; ) ( αγ ) (γ/c; ) ( α ) (α/e; ) (γ; ) + (; ) ce (; ) e, 0 Whe γ 0, ths detty recovers the -bomal seres (cf 1, 8 ad 4, II 3) a 1φ 0 ; x (ax; ) where x < 1 (8) (x; ) 4 Aalogously, by utlzg (6), we ca restate 3 φ -seres (4) as 3φ c, e, bd/β α, ; αβγ bd/β, αβγ/bcd, αβγ/bde γ bcde α, γ, αβγ/bcd αβγ/bcde, 3 φ αβ/bd, βγ/bd αβγ/bcd, ; bd αβγ/bde β Ths leads (4) to the fourth trasformato formula Theorem 7 (Double sum expresso) b, c, d, e 4φ 3 ; αβγ bd/β, αβγ/bcd, αβγ/bde αβ bd, βγ bd α, β, γ bcde α, γ, αβγ/bcde αβγ, 0 bcd, αβγ bde c, e, β/b, β/d ( αγ ) (αβγ/bcde; ) ( bd ), β, αβ bd, βγ bd ce (; ) β Lettg d 1 ad the replacg b by bβ the last theorem, we obta the followg terestg summato formula Corollary 8 (Summato formula of double seres) α, γ, αγ/bce α/b, γ/b b, αγ/bc, αγ/be αγ/bc, αγ/be, 0 + c, e, 1/b (αγ ) (αγ/bce; ) b, α/b, γ/b ce (; ) Whe c 1, ths detty recovers aga the -Gauss summato theorem (7) +
6 10 WENCHANG CHU AND NADIA N LI 3 Two terms trasformatos I ths secto, four trasformato theorems volvg two double sums wll be establshed by employg the followg two three term trasformato formulae (cf Gasper Rahma 4, III 33 & 34): b, c, d 3φ ; αγ α/b, α/c b, c, γ/d α, γ abc α, α/bc 3φ ; γ, bc/α (9) b, c, γ/d, αγ/bc α/b, α/c, αγ/bcd + 3φ ; ; α, γ, bc/α, αγ/bcd b, c, d 3φ ; αγ α, γ bcd α/b, α/c, c/d, /γ α, c/γ, /d, α/bc /γ, α/γ, b, c, γ/d, αγ/bc, bc/αγ γ/, α, b/γ, c/γ, /d, α/bc, bc/α αγ/bc, α/bc c, γ/d, c/α 3φ ; b c/d, bc/α γ b γ 3φ, c γ, d γ γ, α ; αγ bcd γ (10) 31 Accordg to (9), we ca reformulate the 3 φ -seres (4) as 3φ c, e, bd/β α, ; αβγ α/e, αβ/bd γ bcde α, αβ/bde 3φ e, γ/c, bd/β ; γ, bde/αβ γ/c, bd/β, + e, αβγ/bde α/e, α, γ, bde/αβ, αβγ/bcde 3φ αβ/bd, αβγ/bcde ; αβγ/bde, αβ/bde Substtutg ths to (4) results the frst trasformato formula Theorem 9 (Double sum expresso) b, c, d, e 4φ 3 ; αβγ α/e, αβ/bd (e; ) ( + αγ ) α, β, γ bcde α, αβ/bde (γ; ) + ce, 0 c, β/b, β/d γ/c, bd/β, β, αβ/bd, bde/αβ e, γ/c, bd/β, αβγ/bde + α, γ, bde/αβ, αβγ/bcde (αβ/bd; ) ( + c, β/b, β/d αγ ) α/e, αβγ/bcde (αβγ/bde; ) +, β, αβ/bd ce, αβ/bde, 0 Whe d 1, the last theorem yelds the followg two-term relato Corollary 10 (Two term summato formula) (αβγ/bce; ) α/e, αβ/b, αβγ/bce (αβγ/be; ) α, αβ/be, αβγ/be (e; ) ( + αγ ) c, β/b γ/c, b/β (γ; ) + ce, αβ/b, be/αβ e, γ/c, b/β + α, γ, be/αβ, 0
7 , 0 NONTERMINATING EXTENSIONS OF THE SEARS TRANSFORMATION 11 (αβ/b; ) + (αβγ/be; ) + c, β/b, αβ/b ( αγ ce ) α/e, αβγ/bce, αβ/be 3 By meas of (9), the 3 φ -seres dsplayed (4) ca be expressed as 3φ c, e, bd/β α, ; αβγ α/c, α/e γ bcde α, α/ce 3 φ c, e, βγ/bd 1+ ce/α, ; + c, e, βγ/bd, αγ/ce γ α, γ, ce/α, αβγ/bcde α/c, α/e, αβγ/bcde 3 φ αγ/ce, 1 ; α/ce The correspodg (4) yelds the secod trasformato formula Theorem 11 (Double sum expresso) b, c, d, e 4φ 3 ; αβγ α/c, α/e α, β, γ bcde α, α/ce β/b, β/d, β, βγ/bd, 0 ( )+ ( γ) (α/ce; ), 0 c, e, βγ/bd ce/α, γ ()+ ( γ) c, e, αγ/ce, βγ/bd + (; ) α, γ, ce/α, αβγ/bcde β/b, β/d α/c, α/e, αβγ/bcde, β, βγ/bd, αγ/ce Whe d 1, the last theorem gves aother two-term relato Corollary 1 (Two term summato formula) (αβγ/bce; ) (αγ/ce; ) α/c, α/e, αβγ/bce α, α/ce, αγ/ce c, e, βγ/b + α, γ, ce/α, 0, 0 ( )+ ( γ) (α/ce; ) c, e, βγ/b ce/α, γ + β/b, βγ/b β/b, βγ/b + ( )+ ( γ) (; ) α/c, α/e, αβγ/bce, αγ/ce 33 Applyg (10) to the 3 φ -seres (4), we get the expresso 3φ c, e, bd/β α, ; αβγ γ 3 φ e, αβ/bd, e/γ bcde 1+ eβ/bd, 1+ ; c ce/γ α γ/c, γ/e, 1 /α, 1+ eβ/bd c/α, e/α, e/α, β/bd, γ, γ/ce 3 φ 1 bd/αβ γ/α, ; αβγ /α bcde
8 1 WENCHANG CHU AND NADIA N LI γ/α, 1 /α, c, e, αβ/bd, αγ/ce, ce/αγ 1 α, γ, c/α, e/α, β/bd, γ/ce, 1+ ce/γ Substtutg the last euato to (4) gves rse to the thrd trasformato formula Theorem 13 (Double sum expresso) b, c, d, e 4φ 3 ; αβγ /α, γ/c, γ/e, βe/bd α, β, γ bcde γ, γ/ce, e/α, β/bd e, αβ/bd c, β/b, β/d (e/γ; ) eβ/bd, ce/γ, β, αβ/bd, 0 + (; ) + /α, γ/α, c, e, αβ/bd, αγ/ce, ce/αγ α α, γ, c/α, e/α, β/bd, γ/ce, ce/γ (α/; ) β/b, β/d c/α, e/α (αβ/bd; ), β, γ/α, 0 ( c ) α ( αγ ) ce For ths theorem ad the ext oe, we shall ot produce the two term relatos correspodg to the case d 1, whch wll resemble Corollares 10 ad 1 34 Fally, the 3 φ -seres dsplayed (4) ca be reformulated through (10) as 3φ c, e, bd/β α, ; αβγ γ/e, βγ/bd, 1 /α, 1 bd/cβ γ bcde βγ/bde, 1 /c, γ, 1 bd/αβ bd/β, α/c, 3 φ 1 bd/βγ bde/βγ, 1 ; e c bd/cβ 3 φ α, e α, 1 bd αβ α γ/α, ; αβγ /α bcde γ/α, 1 /α, e, bd/β, α/c, 1 αβγ/bde, bde/αβγ 1 α, γ, e/α, βγ/bde, 1 bd/αβ, 1 /c, bde/βγ whch leads (4) to the fourth trasformato formula Theorem 14 (Double sum expresso) b, c, d, e 4φ 3 ; αβγ γ/e, βγ/bd, bd/cβ, /α α, β, γ bcde γ, bd/αβ, /c, βγ/bde (cβ/bd; ) ( e, β/b, β/d αγ ) α/c, bd/β (βγ/bd; ), β, αβ/bd, 0 ce, bde/βγ + /α, γ/α, e, bd/β, α/c, αβγ/bde, bde/αβγ α α, γ, bd/αβ, e/α, /c, βγ/bde, bde/βγ ( ce ) αγ
9 NONTERMINATING EXTENSIONS OF THE SEARS TRANSFORMATION 13, 0 (α/; ) (αβ/bd; ) β/b, β/d, β c/α, e/α, γ/α ( αγ ) ce It s wdely ow that some two term relatos ca be rewrtte compact form terms of -tegrals For the -double seres, there s also such a example Gasper Rahma 4, Exercse 1016) However, t s ulely to do so for the theorems derved ths secto because the two double sums volved are very dfferet ther structure The oly excepto s Theorem 9 wth the two double sums havg the same symmetrc form However, t seems a ueasy tas to express t -tegrals due to the presece of varable (αγ/ce) 4 Further ow examples The four theorems establshed the last secto are all reduced to the Sears trasformato (1) whe the 4 φ 3 -seres s termatg balaced oe I fact, for αβγ bcde, the 4 φ 3 -seres Theorem 9 s balaced The correspodg result ca be stated as the followg proposto Proposto 15 (αβγ bcde) b, c, d, e α/e, αβ/bd 4φ 3 ; α, β, γ α, αβ/bde c, β/b, β/d (bd/β; ), β, αβ/bd c (; ) γ ( αγ ) c, β/b, β/d ce, β, αβ/bd, 0, 0 (e; ) ( + αγ (γ; ) + ce e, c, bd/β, α, γ ) (αβ/bd; ) + (α/e; ) (c; ) + (αβ/bde; ) +1 Whe e, the secod part wll be ahlated by the zero factor ( ; ), whle the frst sum ca be mapulated as follows ( ; ) ( + αγ ) c, β/b, β/d (bd/β; ) (γ; ) + c, β, αβ/bd +, 0 (; ) (, c, β/b, β/d αγ ), β, γ, αβ/bd φ, bd/β 1 0 c ; γ Evaluatg the φ 1 -seres by meas of the -Chu Vadermode Gauss formula (cf 4, II 6) φ, bd/β 1 ; ( βγ/bd; ) ( bd ) γ ( γ; ) β (βγ/bd; ) (γ; ) (βγ/bd; ) (γ; ) ( bd β )
10 14 WENCHANG CHU AND NADIA N LI we fd that the last double sum reduces to a sgle oe The the resultg expresso gves the Sears trasformato (1) after some route smplfcato Two further partcular cases of Proposto 15 may be worthy of metog The frst case α e results a specal form of (5) whe the seres s balaced Aother oe s the otermatg -Vadermode sum (cf 4, II 3) whch correspods to the case c 1 Corollary 16 (αβγ bde) a, b /c, ab/c φ 1 ; c a/c, b/c + /c, a, b a/c, b/c c c, a/c, b/c φ 1 ; /c Aalogously, we may exame Theorem 13 Whe αβγ bcde, the 4 φ 3 - seres s balaced The the frst double sum ca be reduced to a sgle oe e, αβ/bd (e/γ; ) ( c, β/b, β/d c ) eβ/bd, ce/γ, 0 + (; ), β, αβ/bd α c, e, β/b, β/d e/γ,, β, αβ/bd, eβ/bd φ e 1 1+ ; c eβ/bd 0 α c, e, β/b, β/d βγ/bd, β/bd, β, αβ/bd, βe/bd 1+ eβ/bd, c/α 0 βγ/bd, β/bd c, e, β/b, β/d eβ/bd, c/α 4φ 3 ;, β, αβ/bd, βγ/bd where the last φ 1 -seres has bee evaluated through (7) Hece, Theorem 13 uder the balaced codto αβγ bcde becomes the followg trasformato formula Proposto 17 (αβγ bcde) b, c, d, e /α, γ/c, γ/e, ce/α c, e, β/b, β/d 4φ 3 ; α, β, γ γ, c/α, e/α, γ/ce 4φ 3 ; β, αβ/bd, βγ/bd + /α, c, e, bd/β, γ/α α α, c/α, e/α, bd/αβ, γ β/b, β/d (α/) ( c/α, e/α bd ), β (αβ/bd), γ/α β, 0 Furthermore, we ca chec wthout dffculty that the termatg case e of ths proposto recovers aga the Sears trasformato (1) Istead, whe β d, Proposto 17 reduces to the followg otermatg -Pfaff-Saalschütz theorem (cf 4, II 4)
11 NONTERMINATING EXTENSIONS OF THE SEARS TRANSFORMATION 15 Corollary 18 (αγ bcd) b, c, d /γ, α/b, α/c, α/d 3φ ; α, γ α, b/γ, c/γ, d/γ + α/γ, /γ, b, c, d γ α, γ, b/γ, c/γ, d/γ 3φ b/γ, c/γ, d/γ /γ, α/γ ; Before edg the paper, we would le to pot out that all the theorems obtaed ths paper volve the double -seres Oe mportat class of them s called -Kampé de Féret Seres (cf Gasper Rahma 4, 10 for example) The formed reader ca chec wthout dffculty that Theorem 3 s, fact, euvalet to a trasformato due to Chu Ja, Proposto 3, whle Theorem 7 s essetally a reducto formula Further summato ad trasformato formulae ca be foud the papers by Chu et al, 3 Acowledgemet The authors are scerely grateful to a aoymous referee for the crtcal commets ad valuable suggestos, that helped us substatally to mprove the mauscrpt revso Refereces 1 W N Baley, Geeralzed Hypergeometrc Seres, Cambrdge Uversty Press, Cambrdge, 1935 W Chu ad C Ja, Trasformato ad reducto formulae for double -Clause hypergeometrc seres, Math Methods Appl Sc, 31 (1) (008), W Chu ad N N L, Termatg -Kampé de Féret seres Φ 1:3;λ 1:;µ ad Φ:;λ :1;µ, Hroshma Math J, 4 () (01), G Gasper ad M Rahma, Basc Hypergeometrc Seres (d ed), Cambrdge Uversty Press, Cambrdge, D B Sears, O the trasformato theory of basc hypergeometrc fuctos, Proc Lodo Math Soc, 53 (1951), (Receved: August 30, 015) (Revsed: Jauary 1, 016) Wechag Chu Dpartmeto d Matematca e Fsca Eo De Gorg Uverstá del Saleto Lecce Aresao P O Box Lecce Italy chuwechag@usaletot Nada N L Departmet of Mathematcs Zhouou Normal Uversty Zhouou P R Cha la3718@163com
12
Estimators when the Correlation Coefficient. is Negative
It J Cotemp Math Sceces, Vol 5, 00, o 3, 45-50 Estmators whe the Correlato Coeffcet s Negatve Sad Al Al-Hadhram College of Appled Sceces, Nzwa, Oma abur97@ahoocouk Abstract Rato estmators for the mea of
A Class of Orthohomological Triangles
A Class of Orthohomologcal Trangles Prof. Claudu Coandă Natonal College Carol I Craova Romana. Prof. Florentn Smarandache Unversty of New Mexco Gallup USA Prof. Ion Pătraşcu Natonal College Fraţ Buzeşt
Generalized Fibonacci-Like Polynomial and its. Determinantal Identities
Int. J. Contemp. Math. Scences, Vol. 7, 01, no. 9, 1415-140 Generalzed Fbonacc-Le Polynomal and ts Determnantal Identtes V. K. Gupta 1, Yashwant K. Panwar and Ompraash Shwal 3 1 Department of Mathematcs,
Examples of Cost and Production Functions
Dvso of the Humates ad Socal Sceces Examples of Cost ad Producto Fuctos KC Border October 200 v 20605::004 These otes sho ho you ca use the frst order codtos for cost mmzato to actually solve for cost
On Generating Relations of Some Triple. Hypergeometric Functions
It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade
One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF
One and two partcle densty matrces for sngle determnant HF wavefunctons One partcle densty matrx Gven the Hartree-Fock wavefuncton ψ (,,3,!, = Âϕ (ϕ (ϕ (3!ϕ ( 3 The electronc energy s ψ H ψ = ϕ ( f ( ϕ
1. For each of the following power series, find the interval of convergence and the radius of convergence:
Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si
Fractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.
EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.
A summation formula ramified with hypergeometric function and involving recurrence relation
South Asian Journal of Mathematics 017, Vol. 7 ( 1): 1 4 www.sajm-online.com ISSN 51-151 RESEARCH ARTICLE A summation formula ramified with hypergeometric function and involving recurrence relation Salahuddin
α & β spatial orbitals in
The atrx Hartree-Fock equatons The most common method of solvng the Hartree-Fock equatons f the spatal btals s to expand them n terms of known functons, { χ µ } µ= consder the spn-unrestrcted case. We
Multi-dimensional Central Limit Theorem
Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme
A study on generalized absolute summability factors for a triangular matrix
Proceedigs of the Estoia Acadey of Scieces, 20, 60, 2, 5 20 doi: 0.376/proc.20.2.06 Available olie at www.eap.ee/proceedigs A study o geeralized absolute suability factors for a triagular atrix Ere Savaş
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
On Inclusion Relation of Absolute Summability
It. J. Cotemp. Math. Scieces, Vol. 5, 2010, o. 53, 2641-2646 O Iclusio Relatio of Absolute Summability Aradhaa Dutt Jauhari A/66 Suresh Sharma Nagar Bareilly UP) Idia-243006 aditya jauhari@rediffmail.com
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Commutative Monoids in Intuitionistic Fuzzy Sets
Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,
Multi-dimensional Central Limit Theorem
Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();
Discrete Fourier Transform { } ( ) sin( ) Discrete Sine Transformation. n, n= 0,1,2,, when the function is odd, f (x) = f ( x) L L L N N.
Dscrete Fourer Trasform Refereces:. umercal Aalyss of Spectral Methods: Theory ad Applcatos, Davd Gottleb ad S.A. Orszag, Soc. for Idust. App. Math. 977.. umercal smulato of compressble flows wth smple
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018
Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2
On Hypersurface of Special Finsler Spaces. Admitting Metric Like Tensor Field
It J otem Mat Sceces Vo 7 0 o 9 99-98 O Hyersurface of Seca Fser Saces Admttg Metrc Lke Tesor Fed H Wosoug Deartmet of Matematcs Isamc Azad Uversty Babo Brac Ira md_vosog@yaoocom Abstract I te reset work
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΨΥΧΟΛΟΓΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ ΣΕ ΓΥΝΑΙΚΕΣ ΜΕΤΑ ΑΠΟ ΜΑΣΤΕΚΤΟΜΗ ΓΕΩΡΓΙΑ ΤΡΙΣΟΚΚΑ Λευκωσία 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ
Srednicki Chapter 55
Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third
n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)
8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Article Multivariate Extended Gamma Distribution
axoms Artcle Multvarate Exteded Gamma Dstrbuto Dhaya P. Joseph Departmet of Statstcs, Kurakose Elas College, Maaam, Kottayam, Kerala 686561, Ida; dhayapj@gmal.com; Tel.: +91-9400-733-065 Academc Edtor:
CS 1675 Introduction to Machine Learning Lecture 7. Density estimation. Milos Hauskrecht 5329 Sennott Square
CS 675 Itroducto to Mache Learg Lecture 7 esty estmato Mlos Hausrecht mlos@cs.tt.edu 539 Seott Square ata: esty estmato {.. } a vector of attrbute values Objectve: estmate the model of the uderlyg robablty
On a four-dimensional hyperbolic manifold with finite volume
BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Presentation of complex number in Cartesian and polar coordinate system
1 a + bi, aεr, bεr i = 1 z = a + bi a = Re(z), b = Im(z) give z = a + bi & w = c + di, a + bi = c + di a = c & b = d The complex cojugate of z = a + bi is z = a bi The sum of complex cojugates is real:
ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΚΛΑ ΕΜΑ ΟΜΑ ΑΣ ΚΑΤΑ ΠΕΡΙΠΤΩΣΗ ΜΕΣΩ ΤΑΞΙΝΟΜΗΣΗΣ ΠΟΛΛΑΠΛΩΝ ΕΤΙΚΕΤΩΝ» (Instance-Based Ensemble
( y) Partial Differential Equations
Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
Homework for 1/27 Due 2/5
Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where
8.324 Relativistic Quantum Field Theory II
Lecture 8.3 Relatvstc Quantum Feld Theory II Fall 00 8.3 Relatvstc Quantum Feld Theory II MIT OpenCourseWare Lecture Notes Hon Lu, Fall 00 Lecture 5.: RENORMALIZATION GROUP FLOW Consder the bare acton
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS
Pa J Statist 2009 Vol 25(2), 135-140 ON NEGTIVE MOMENTS OF CERTIN DISCRETE DISTRIBUTIONS Masood nwar 1 and Munir hmad 2 1 Department of Maematics, COMSTS Institute of Information Technology, Islamabad,
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that
Concrete Mathematics Exercises from 30 September 2016
Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH LEAN PRODUCTION TOOLS
ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH
Uniform Convergence of Fourier Series Michael Taylor
Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Degenerate Perturbation Theory
R.G. Griffi BioNMR School page 1 Degeerate Perturbatio Theory 1.1 Geeral Whe cosiderig the CROSS EFFECT it is ecessary to deal with degeerate eergy levels ad therefore degeerate perturbatio theory. The
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Section 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
Markov Processes and Applications
Markov rocesses ad Applcatos Dscrete-Tme Markov Chas Cotuous-Tme Markov Chas Applcatos Queug theory erformace aalyss ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) Dscrete-Tme
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:
ΝΕΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΣΧΕΤΙΚΑ ΜΕ ΤΗΝ ΥΠΑΡΞΗ ΕΚΤΙΜΗΤΩΝ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ ΓΙΑ ΤΗΝ 3-ΠΑΡΑΜΕΤΡΙΚΗ ΓΑΜΜΑ ΚΑΤΑΝΟΜΗ
Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά ου Πανελληνίου Συνεδρίου Στατιστικής 008, σελ 9-98 ΝΕΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΣΧΕΤΙΚΑ ΜΕ ΤΗΝ ΥΠΑΡΞΗ ΕΚΤΙΜΗΤΩΝ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ ΓΙΑ ΤΗΝ 3-ΠΑΡΑΜΕΤΡΙΚΗ ΓΑΜΜΑ ΚΑΤΑΝΟΜΗ Γεώργιος
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Generating Set of the Complete Semigroups of Binary Relations
Applied Mathematics 06 7 98-07 Published Online January 06 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/036/am067009 Generating Set of the Complete Semigroups of Binary Relations Yasha iasamidze
HIV HIV HIV HIV AIDS 3 :.1 /-,**1 +332
,**1 The Japanese Society for AIDS Research The Journal of AIDS Research +,, +,, +,, + -. / 0 1 +, -. / 0 1 : :,**- +,**. 1..+ - : +** 22 HIV AIDS HIV HIV AIDS : HIV AIDS HIV :HIV AIDS 3 :.1 /-,**1 HIV
POWER SUMS OF PELL AND PELL LUCAS POLYNOMIALS
POWER SUMS OF PELL AND PELL LUCAS POLYNOMIALS WENCHANG CHU AND NADIA N LI Abstract Power sums of Pell and Pell Lucas polynomials are examined Twelve summation formulas are derived which contain the identities
A General Note on δ-quasi Monotone and Increasing Sequence
International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in
SOLVING CUBICS AND QUARTICS BY RADICALS
SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
!! " &' ': " /.., c #$% & - & ' ()",..., * +,.. * ' + * - - * ()",...(.
..,.. 00 !!.6 7 " 57 +: #$% & - & ' ()",..., * +,.. * ' + * - - * ()",.....(. 8.. &' ': " /..,... :, 00. c. " *+ ' * ' * +' * - * «/'» ' - &, $%' * *& 300.65 «, + *'». 3000400- -00 3-00.6, 006 3 4.!"#"$
MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)
1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations
2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)
Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok
Homework 4.1 Solutions Math 5110/6830
Homework 4. Solutios Math 5/683. a) For p + = αp γ α)p γ α)p + γ b) Let Equilibria poits satisfy: p = p = OR = γ α)p ) γ α)p + γ = α γ α)p ) γ α)p + γ α = p ) p + = p ) = The, we have equilibria poits
1. Introduction and Preliminaries.
Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We
MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS
MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed
J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5
Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Quadratic Expressions
Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι
She selects the option. Jenny starts with the al listing. This has employees listed within She drills down through the employee. The inferred ER sttricture relates this to the redcords in the databasee
Trigonometric Formula Sheet
Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ
George S. A. Shaker ECE477 Understanding Reflections in Media. Reflection in Media
Geoge S. A. Shake C477 Udesadg Reflecos Meda Refleco Meda Ths hadou ages a smplfed appoach o udesad eflecos meda. As a sude C477, you ae o equed o kow hese seps by hea. I s jus o make you udesad how some
Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population
Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Revew of Mean Trat Value n Inbred Populatons We showed n the last lecture that for a populaton
: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM
2008 6 Chinese Journal of Applied Probability and Statistics Vol.24 No.3 Jun. 2008 Monte Carlo EM 1,2 ( 1,, 200241; 2,, 310018) EM, E,,. Monte Carlo EM, EM E Monte Carlo,. EM, Monte Carlo EM,,,,. Newton-Raphson.
Lecture 15 - Root System Axiomatics
Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the
J. of Math. (PRC) Shannon-McMillan, , McMillan [2] Breiman [3] , Algoet Cover [10] AEP. P (X n m = x n m) = p m,n (x n m) > 0, x i X, 0 m i n. (1.
Vol. 35 ( 205 ) No. 4 J. of Math. (PRC), (, 243002) : a.s. Marov Borel-Catelli. : Marov ; Borel-Catelli ; ; ; MR(200) : 60F5 : O2.4; O236 : A : 0255-7797(205)04-0969-08 Shao-McMilla,. Shao 948 [],, McMilla
DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS
GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University
Multi-Body Kinematics and Dynamics in Terms of Quaternions: Langrange Formulation in Covariant Form Rodriguez Approach
Nemaa D. Zorc Research Assstat Uversty of Belgrade Faculty of Mechacal Egeerg Mhalo P. Lazarevc Full Professor Uversty of Belgrade Faculty of Mechacal Egeerg Alesadar M. Smoovc Assstat Professor Uversty
Exam Statistics 6 th September 2017 Solution
Exam Statstcs 6 th September 17 Soluto Maura Mezzett Exercse 1 Let (X 1,..., X be a raom sample of... raom varables. Let f θ (x be the esty fucto. Let ˆθ be the MLE of θ, θ be the true parameter, L(θ be
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Universal Levenshtein Automata. Building and Properties
Sofa Uversty St. Klmet Ohrdsk Faculty of Mathematcs ad Iformatcs Departmet of Mathematcal Logc ad Applcatos Uversal Leveshte Automata. Buldg ad Propertes A thess submtted for the degree of Master of Computer
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008
Sequent Calculi for the Modal µ-calculus over S5 Luca Alberucci, University of Berne Logic Colloquium Berne, July 4th 2008 Introduction Koz: Axiomatisation for the modal µ-calculus over K Axioms: All classical