Fractional Colorings and Zykov Products of graphs

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Fractional Colorings and Zykov Products of graphs"

Transcript

1 Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011

2 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is a set of unordered pairs of vertices

3 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is a set of unordered pairs of vertices Example Figure: Peterson graph

4 Subgraphs A subgraph H of a graph G is a graph such that V (H) V (G) and E(H) E(G).

5 Subgraphs Example A subgraph H of a graph G is a graph such that V (H) V (G) and E(H) E(G). Figure: Subgraph of the Peterson graph

6 Subgraphs An induced subgraph, H, of G is a subgraph with property that any two vertices are adjacent in H if and only if they are adjacent in G.

7 Subgraphs Example An induced subgraph, H, of G is a subgraph with property that any two vertices are adjacent in H if and only if they are adjacent in G. Figure: Induced Subgraph of Peterson graph

8 Independent Sets A set of vertices, S, is said to be independent if those vertices induce a graph with no edges.

9 Example Independent Sets A set of vertices, S, is said to be independent if those vertices induce a graph with no edges. Figure: Independent set

10 Example Independent Sets A set of vertices, S, is said to be independent if those vertices induce a graph with no edges. Figure: Independent set The set of all independent sets of a graph G is denoted I (G).

11 Weighting I (S) A weighting of I (G) is a function w : I (G) R 0.

12 Example Weighting I (S) A weighting of I (G) is a function w : I (G) R 0. e d a c b S w(s) {a} 1/3 {b} 1/3 {c} 1/3 {d} 1/3 {e} 1/3 {a,c} 1/3 {a,d} 1/3 {b,d} 1/3 {b,e} 1/3 {e,c} 1/3 Figure: C 5 and a corresponding weighting

13 Fractional k-coloring A fractional k-coloring of a graph, G, is a weighting of I (G) such that S I (G) w(s) = k; and

14 Fractional k-coloring A fractional k-coloring of a graph, G, is a weighting of I (G) such that S I (G) w(s) = k; and For every v V (G), S I (G) v S w(s) = w[v] 1

15 Example Fractional k-coloring e d a c b S w(s) {a} 1/3 {b} 1/3 {c} 1/3 {d} 1/3 {e} 1/3 {a,c} 1/3 {a,d} 1/3 {b,d} 1/3 {b,e} 1/3 {e,c} 1/3 Figure: A fractional coloring of C 5 with weight 10/3

16 Example Fractional k-coloring e d a c b S w(s) {a} 1/3 {b} 1/3 {c} 1/3 {d} 1/3 {e} 1/3 {a,c} 1/3 {a,d} 1/3 {b,d} 1/3 {b,e} 1/3 {e,c} 1/3 Figure: A fractional coloring of C 5 with weight 10/3 S I (G) w(s) = 10/3

17 Example Fractional k-coloring e d a c b S w(s) {a} 1/3 {b} 1/3 {c} 1/3 {d} 1/3 {e} 1/3 {a,c} 1/3 {a,d} 1/3 {b,d} 1/3 {b,e} 1/3 {e,c} 1/3 Figure: A fractional coloring of C 5 with weight 10/3 S I (G) w(s) = 10/3 w[v] = 1 for every v V (G)

18 Fractional Chromatic Number The fractional chromatic number, χ f (G), is the minimum possible weight of a fractional coloring.

19 Example Fractional Chromatic Number The fractional chromatic number, χ f (G), is the minimum possible weight of a fractional coloring. e d a c b S w(s) {a} 0 {b} 0 {c} 0 {d} 0 {e} 0 {a,c} 1/2 {a,d} 1/2 {b,d} 1/2 {b,e} 1/2 {e,c} 1/2 Figure: A weighting C 5

20 Example Fractional Chromatic Number e d a c b S w(s) {a} 0 {b} 0 {c} 0 {d} 0 {e} 0 {a,c} 1/2 {a,d} 1/2 {b,d} 1/2 {b,e} 1/2 {e,c} 1/2 Figure: A fractional 5/2-coloring of C 5

21 Example Fractional Chromatic Number e d a c b S w(s) {a} 0 {b} 0 {c} 0 {d} 0 {e} 0 {a,c} 1/2 {a,d} 1/2 {b,d} 1/2 {b,e} 1/2 {e,c} 1/2 Figure: A fractional 5/2-coloring of C 5 S I (G) w(s) = 5/2

22 Example Fractional Chromatic Number e d a c b S w(s) {a} 0 {b} 0 {c} 0 {d} 0 {e} 0 {a,c} 1/2 {a,d} 1/2 {b,d} 1/2 {b,e} 1/2 {e,c} 1/2 Figure: A fractional 5/2-coloring of C 5 S I (G) w(s) = 5/2 w[v] = 1 for every v V (G)

23 Fractional Chromatic Number How do we know what the minimum is?

24 Fractional Chromatic Number How do we know what the minimum is? Linear Programming

25 Fractional Chromatic Number How do we know what the minimum is? Linear Programming Formulas

26 Zykov Product of Graphs

27 Zykov Product of Graphs The Zykov product Z(G 1, G 2,..., G n ) of simple graphs G 1, G 2,..., G n is formed as follows.

28 Zykov Product of Graphs The Zykov product Z(G 1, G 2,..., G n ) of simple graphs G 1, G 2,..., G n is formed as follows. Take the disjoint union of G i

29 Zykov Product of Graphs The Zykov product Z(G 1, G 2,..., G n ) of simple graphs G 1, G 2,..., G n is formed as follows. Take the disjoint union of G i Example Figure: Drawings of P 2 and P 3

30 Zykov Product of Graphs The Zykov product Z(G 1, G 2,..., G n ) of simple graphs G 1, G 2,..., G n is formed as follows. Take the disjoint union of G i For each (x 1,..., x n ) V (G 1 ) V (G 2 )... V (G n ) add a new vertex adjacent to the vertices {x 1,..., x n }

31 Zykov Product of Graphs The Zykov product Z(G 1, G 2,..., G n ) of simple graphs G 1, G 2,..., G n is formed as follows. Take the disjoint union of G i For each (x 1,..., x n ) V (G 1 ) V (G 2 )... V (G n ) add a new vertex adjacent to the vertices {x 1,..., x n } Example Figure: Constructing Z(P 2, P 3 )

32 Zykov Product of Graphs The Zykov product Z(G 1, G 2,..., G n ) of simple graphs G 1, G 2,..., G n is formed as follows. Take the disjoint union of G i For each (x 1,..., x n ) V (G 1 ) V (G 2 )... V (G n ) add a new vertex adjacent to the vertices {x 1,..., x n } Example Figure: Z(P 2, P 3 )

33 Zykov Graphs

34 Zykov Graphs The Zykov graphs, Z n, are formed as follows: Set Z 1 as a single vertex

35 Zykov Graphs The Zykov graphs, Z n, are formed as follows: Set Z 1 as a single vertex Define Z n := Z(Z 1,..., Z n 1 ) for all n 2 Figure: Drawing of Z 1

36 Zykov Graphs The Zykov graphs, Z n, are formed as follows: Set Z 1 as a single vertex Define Z n := Z(Z 1,..., Z n 1 ) for all n 2 Figure: Drawings of Z 1 and Z 2

37 Zykov Graphs The Zykov graphs, Z n, are formed as follows: Set Z 1 as a single vertex Define Z n := Z(Z 1,..., Z n 1 ) for all n 2 Figure: Drawings of Z 1, Z 2, and Z 3

38 Zykov Graphs The Zykov graphs, Z n, are formed as follows: Set Z 1 as a single vertex Define Z n := Z(Z 1,..., Z n 1 ) for all n 2 Figure: Drawing of Z 4

39 Jacobs Conjecture

40 Jacobs Conjecture Corollary For n 1, χ f (Z n+1 ) = χ f (Z n ) + 1 χ f (Z n )

41 Jacobs Conjecture Corollary For n 1, χ f (Z n+1 ) = χ f (Z n ) + 1 χ f (Z n ) Example χ f (Z 1 ) = 1

42 Jacobs Conjecture Corollary For n 1, χ f (Z n+1 ) = χ f (Z n ) + 1 χ f (Z n ) Example χ f (Z 1 ) = 1 χ f (Z 2 ) = = 2

43 Jacobs Conjecture Corollary For n 1, χ f (Z n+1 ) = χ f (Z n ) + 1 χ f (Z n ) Example χ f (Z 1 ) = 1 χ f (Z 2 ) = = 2 χ f (Z 3 ) = = 5 2

44 Verifying χ f (C 5 )

45 Verifying χ f (C 5 ) Notice that Figure: Z 3 and C 5

46 Verifying χ f (C 5 ) Notice that Figure: Z 3 and C 5 So, χ f (Z 3 ) = χ f (C 5 ) = 5/2

47 The Main Result: Theorem 1

48 Theorem The Main Result: Theorem 1 For n 2, let G 1,..., G n be graphs. Set G := Z(G 1,..., G n ) and χ i = χ f (G i ). Suppose also that the graphs G i are numbered such that χ i χ i+1. Then ( n n ) χ f (G) = max χ n, 2 + (1 ) 1χk i=2 k=i

49 Theorem Example The Main Result: Theorem 1 For n 2, let G 1,..., G n be graphs. Set G := Z(G 1,..., G n ) and χ i = χ f (G i ). Suppose also that the graphs G i are numbered such that χ i χ i+1. Then ( n n ) χ f (G) = max χ n, 2 + (1 ) 1χk i=2 k=i ( ( χ f (Z(P 2, P 3 )) = max 2, )) 2 = max(2, 5 2 ) = 5 2.

50 Lower Bound: χ f (G) max (χ n, f (n))

51 Lower Bound: χ f (G) max (χ n, f (n)) Lemma The fractional chromatic number of a subgraph, H, is at most equal to the fractional chromatic number of a graph, G.

52 Lower Bound: χ f (G) max (χ n, f (n)) Lemma Conclusion The fractional chromatic number of a subgraph, H, is at most equal to the fractional chromatic number of a graph, G. χ f (G) χ n

53 Lower Bound: χ f (G) max (χ n, f (n)) Lemma Let G be a graph and w a weighting of X I (G). Then, for every induced subgraph H of G, there exists x V (H) such that w[x] 1 χ f (H) w(s). S X

54 Lower Bound: χ f (G) max (χ n, f (n)) Start with w, a χ f -coloring of G and x 1 V (G 1 ).

55 Lower Bound: χ f (G) max (χ n, f (n)) Start with w, a χ f -coloring of G and x 1 V (G 1 ). Construct F 1 = {S I (G) : x 1 S} with the property S F 1 w(s) = w[x 1 ] 1.

56 Lower Bound: χ f (G) max (χ n, f (n)) Start with w, a χ f -coloring of G and x 1 V (G 1 ). Construct F 1 = {S I (G) : x 1 S} with the property S F 1 w(s) = w[x 1 ] 1. Construct F 2 = {S I (G) : S {x 1, x 2 } } with the property ( ) S F 2 w(s) χ 2 S F 1 w(s).

57 Lower Bound: χ f (G) max (χ n, f (n)) Continue this process so that for all k {1,..., n},

58 Lower Bound: χ f (G) max (χ n, f (n)) Continue this process so that for all k {1,..., n}, F k = {S I (G) : S {x 1,..., x k } } with the property ( ) S F k w(s) χ k S F k 1 w(s)

59 Lower Bound: χ f (G) max (χ n, f (n)) Continue this process so that for all k {1,..., n}, F k = {S I (G) : S {x 1,..., x k } } with the property ( ) S F k w(s) χ k S F k 1 w(s) It follows that w(s) 1 + S F n n n ) (1 1χk = f (n) 1. i=2 k=i

60 Lower Bound: χ f (G) max (χ n, f (n)) Conclusion χ f (G) f (n)

61 Upper Bound: χ f (G) max (χ n, f (n)) Special Sets and Cool Weightings

62 Upper Bound: χ f (G) max (χ n, f (n)) Special Sets and Cool Weightings Special Sets Let M (G) I (G) be the set of all maximal independent sets of G

63 Upper Bound: χ f (G) max (χ n, f (n)) Special Sets and Cool Weightings Special Sets Let M (G) I (G) be the set of all maximal independent sets of G and for each i {1,..., n}, F i := {S M (G) S V (G j ) = if and only if j < i}

64 Upper Bound: χ f (G) max (χ n, f (n)) Special Sets and Cool Weightings Special Sets Let M (G) I (G) be the set of all maximal independent sets of G and for each i {1,..., n}, F i := {S M (G) S V (G j ) = if and only if j < i} Weightings w i : I (G i ) R 0, a χ f (G i )-coloring of each G i

65 Upper Bound: χ f (G) max (χ n, f (n)) Special Sets and Cool Weightings Special Sets Let M (G) I (G) be the set of all maximal independent sets of G and for each i {1,..., n}, F i := {S M (G) S V (G j ) = if and only if j < i} Weightings w i : I (G i ) R 0, a χ f (G i )-coloring of each G i p i : I (G i ) R 0 where p i := w i (S)/χ i

66 Upper Bound: χ f (G) max (χ n, f (n)) Special Sets and Cool Weightings Special Sets Let M (G) I (G) be the set of all maximal independent sets of G and for each i {1,..., n}, F i := {S M (G) S V (G j ) = if and only if j < i} Weightings w i : I (G i ) R 0, a χ f (G i )-coloring of each G i p i : I (G i ) R 0 where p i := w i (S)/χ i p : n i=1 F i R 0 where p(s) := n i=1 p i(s V (G i ))

67 Upper Bound: χ f (G) max (χ n, f (n)) The Final Weighting Final Weighting We construct a fractional max(χ n, f (n))-coloring of G defined by the weighting (χ i χ i 1 )p(s), S F i w(s) = max(0, f (n) χ n ), S = V 0 0, otherwise

68 Upper Bound: χ f (G) max (χ n, f (n)) The Final Weighting works! We can show, S I (G) w(s) = max(χ n, f (n)) w[x] 1 for all x V (G) So, w is a fractional max(χ n, f (n))-coloring of G. Conclusion χ f (G) max (χ n, f (n))

69 Results Theorem For n 2, let G 1,..., G n be graph. Suppose also that the graphs G i are numbered such that χ i χ i+1. Then ( n n ) χ f (Z(G 1,..., G n )) = max χ n, 2 + (1 ) 1χk i=2 k=i Corollary For every n 2, χ f (Z n+1 ) = χ f (Z n ) + 1 χ f (Z n )

70 Jacobs Conjecture - Proved! Corollary For every n 2, χ f (Z n+1 ) = χ f (Z n ) + 1 χ f (Z n )

71 Jacobs Conjecture - Proved! Corollary For every n 2, χ f (Z n+1 ) = χ f (Z n ) + 1 χ f (Z n ) Proof. By induction on n 2, we prove χ n+1 = f (n) = χ n + χ 1 n.

72 Jacobs Conjecture - Proved! Corollary For every n 2, χ f (Z n+1 ) = χ f (Z n ) + 1 χ f (Z n ) Proof. By induction on n 2, we prove χ n+1 = f (n) = χ n + χ 1 n. Base Case: χ f (Z 1 ) = 1 and f (1) = 2 = χ 2

73 Jacobs Conjecture - Proved! Corollary For every n 2, χ f (Z n+1 ) = χ f (Z n ) + 1 χ f (Z n ) Proof. By induction on n 2, we prove χ n+1 = f (n) = χ n + χ 1 n. Base Case: χ f (Z 1 ) = 1 and f (1) = 2 = χ 2 Inductive Hypothesis: Suppose χ n = f (n 1).

74 Jacobs Conjecture - Proved! Proof. Inductive Hypothesis: Suppose χ n = f (n 1).

75 Jacobs Conjecture - Proved! Proof. Inductive Hypothesis: Suppose χ n = f (n 1). Then f (n) = 2 + = 2 + n ) (1 1χk i=2 k i (1 1χn ) (f (n 1) 1) = χ n + 1 χ n

76 Jacobs Conjecture - Proved! Proof. Inductive Hypothesis: Suppose χ n = f (n 1). Then f (n) = 2 + = 2 + n ) (1 1χk i=2 k i (1 1χn ) (f (n 1) 1) = χ n + 1 χ n Since χ n+1 = max(χ n, f (n)), we have χ n+1 = χ n + 1 χ n.

77 Questions?

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality The Probabilistic Method - Probabilistic Techniques Lecture 7: The Janson Inequality Sotiris Nikoletseas Associate Professor Computer Engineering and Informatics Department 2014-2015 Sotiris Nikoletseas,

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

1. Introduction and Preliminaries.

1. Introduction and Preliminaries. Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές

Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές Ενότητα 8 ΤΕΛΕΙΑ ΓΡΑΦΗΜΑΤΑ Σταύρος Δ. Νικολόπουλος 2017-18 www.cs.uoi.gr/~stavros Εισαγωγή Βασικοί Αλγόριθμοι Γραφημάτων Πολυπλοκότητα χώρου και χρόνου:

Διαβάστε περισσότερα

5. Choice under Uncertainty

5. Choice under Uncertainty 5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Commutators of cycles in permutation groups

Commutators of cycles in permutation groups Also available at http://amc-journal.eu ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.) ARS MATHEMATICA CONTEMPORANEA 10 (2016) 67 77 Commutators of cycles in permutation groups Aleš Vavpetič

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Cyclic or elementary abelian Covers of K 4

Cyclic or elementary abelian Covers of K 4 Cyclic or elementary abelian Covers of K 4 Yan-Quan Feng Mathematics, Beijing Jiaotong University Beijing 100044, P.R. China Summer School, Rogla, Slovenian 2011-06 Outline 1 Question 2 Main results 3

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

SOME PROPERTIES OF FUZZY REAL NUMBERS

SOME PROPERTIES OF FUZZY REAL NUMBERS Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical

Διαβάστε περισσότερα

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008 Sequent Calculi for the Modal µ-calculus over S5 Luca Alberucci, University of Berne Logic Colloquium Berne, July 4th 2008 Introduction Koz: Axiomatisation for the modal µ-calculus over K Axioms: All classical

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology.

Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology. Bol. Soc. Paran. Mat. (3s.) v. 30 2 (2012): 71 77. c SPM ISSN-2175-1188 on line ISSN-00378712 in press SPM: www.spm.uem.br/bspm doi:10.5269/bspm.v30i2.13793 Some new generalized topologies via hereditary

Διαβάστε περισσότερα

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ 311: Διακριτή Ανάλυση και Δομές Χειμερινό Εξάμηνο 016 Σειρά Ασκήσεων 5: Απαρίθμηση, Αρχή της Θυρίδας, Συνδυασμοί και Μεταθέσεις, Γραφήματα και

Διαβάστε περισσότερα

Chapter 3: Ordinal Numbers

Chapter 3: Ordinal Numbers Chapter 3: Ordinal Numbers There are two kinds of number.. Ordinal numbers (0th), st, 2nd, 3rd, 4th, 5th,..., ω, ω +,... ω2, ω2+,... ω 2... answers to the question What position is... in a sequence? What

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

F A S C I C U L I M A T H E M A T I C I

F A S C I C U L I M A T H E M A T I C I F A S C I C U L I M A T H E M A T I C I Nr 46 2011 C. Carpintero, N. Rajesh and E. Rosas ON A CLASS OF (γ, γ )-PREOPEN SETS IN A TOPOLOGICAL SPACE Abstract. In this paper we have introduced the concept

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

Abstract Storage Devices

Abstract Storage Devices Abstract Storage Devices Robert König Ueli Maurer Stefano Tessaro SOFSEM 2009 January 27, 2009 Outline 1. Motivation: Storage Devices 2. Abstract Storage Devices (ASD s) 3. Reducibility 4. Factoring ASD

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

de Rham Theorem May 10, 2016

de Rham Theorem May 10, 2016 de Rham Theorem May 10, 2016 Stokes formula and the integration morphism: Let M = σ Σ σ be a smooth triangulated manifold. Fact: Stokes formula σ ω = σ dω holds, e.g. for simplices. It can be used to define

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

Chap. 6 Pushdown Automata

Chap. 6 Pushdown Automata Chap. 6 Pushdown Automata 6.1 Definition of Pushdown Automata Example 6.1 L = {wcw R w (0+1) * } P c 0P0 1P1 1. Start at state q 0, push input symbol onto stack, and stay in q 0. 2. If input symbol is

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Knaster-Reichbach Theorem for 2 κ

Knaster-Reichbach Theorem for 2 κ Knaster-Reichbach Theorem for 2 κ Micha l Korch February 9, 2018 In the recent years the theory of the generalized Cantor and Baire spaces was extensively developed (see, e.g. [1], [2], [6], [4] and many

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Models for Probabilistic Programs with an Adversary

Models for Probabilistic Programs with an Adversary Models for Probabilistic Programs with an Adversary Robert Rand, Steve Zdancewic University of Pennsylvania Probabilistic Programming Semantics 2016 Interactive Proofs 2/47 Interactive Proofs 2/47 Interactive

Διαβάστε περισσότερα

F19MC2 Solutions 9 Complex Analysis

F19MC2 Solutions 9 Complex Analysis F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

12. Radon-Nikodym Theorem

12. Radon-Nikodym Theorem Tutorial 12: Radon-Nikodym Theorem 1 12. Radon-Nikodym Theorem In the following, (Ω, F) is an arbitrary measurable space. Definition 96 Let μ and ν be two (possibly complex) measures on (Ω, F). We say

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

Distances in Sierpiński Triangle Graphs

Distances in Sierpiński Triangle Graphs Distances in Sierpiński Triangle Graphs Sara Sabrina Zemljič joint work with Andreas M. Hinz June 18th 2015 Motivation Sierpiński triangle introduced by Wac law Sierpiński in 1915. S. S. Zemljič 1 Motivation

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

Generating Set of the Complete Semigroups of Binary Relations

Generating Set of the Complete Semigroups of Binary Relations Applied Mathematics 06 7 98-07 Published Online January 06 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/036/am067009 Generating Set of the Complete Semigroups of Binary Relations Yasha iasamidze

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Section 8.2 Graphs of Polar Equations

Section 8.2 Graphs of Polar Equations Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano 235 Kragujevac J. Math. 30 (2007) 235 242. THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS Daniel A. Romano Department of Mathematics and Informatics, Banja Luka University, Mladena Stojanovića

Διαβάστε περισσότερα

Σχέσεις, Ιδιότητες, Κλειστότητες

Σχέσεις, Ιδιότητες, Κλειστότητες Σχέσεις, Ιδιότητες, Κλειστότητες Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Σχέσεις 1 / 26 Εισαγωγή & Ορισµοί ιµελής Σχέση R από

Διαβάστε περισσότερα

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation Overview Transition Semantics Configurations and the transition relation Executions and computation Inference rules for small-step structural operational semantics for the simple imperative language Transition

Διαβάστε περισσότερα

Partial Trace and Partial Transpose

Partial Trace and Partial Transpose Partial Trace and Partial Transpose by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx This document is based on suggestions by Anirban Das Introduction This

Διαβάστε περισσότερα

Lecture 21: Properties and robustness of LSE

Lecture 21: Properties and robustness of LSE Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Lecture 13 - Root Space Decomposition II

Lecture 13 - Root Space Decomposition II Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ Άνοιξη I. ΜΗΛΗΣ

ΑΛΓΟΡΙΘΜΟΙ  Άνοιξη I. ΜΗΛΗΣ ΑΛΓΟΡΙΘΜΟΙ http://eclass.aueb.gr/courses/inf6/ Άνοιξη 26 - I. ΜΗΛΗΣ NP-complete προβλήματα ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 26 - Ι. ΜΗΛΗΣ 6 NP-COMPLETENESS II Tree of reductions (partial) Cook s Th. Π NP SAT 3-SAT

Διαβάστε περισσότερα

Capacitors - Capacitance, Charge and Potential Difference

Capacitors - Capacitance, Charge and Potential Difference Capacitors - Capacitance, Charge and Potential Difference Capacitors store electric charge. This ability to store electric charge is known as capacitance. A simple capacitor consists of 2 parallel metal

Διαβάστε περισσότερα

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1 Arithmetical applications of lagrangian interpolation Tanguy Rivoal Institut Fourier CNRS and Université de Grenoble Conference Diophantine and Analytic Problems in Number Theory, The 00th anniversary

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

Mean-Variance Analysis

Mean-Variance Analysis Mean-Variance Analysis Jan Schneider McCombs School of Business University of Texas at Austin Jan Schneider Mean-Variance Analysis Beta Representation of the Risk Premium risk premium E t [Rt t+τ ] R1

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί

Διαβάστε περισσότερα

Elements of Information Theory

Elements of Information Theory Elements of Information Theory Model of Digital Communications System A Logarithmic Measure for Information Mutual Information Units of Information Self-Information News... Example Information Measure

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Heisenberg Uniqueness pairs

Heisenberg Uniqueness pairs Heisenberg Uniqueness pairs Philippe Jaming Bordeaux Fourier Workshop 2013, Renyi Institute Joint work with K. Kellay Heisenberg Uniqueness Pairs µ : finite measure on R 2 µ(x, y) = R 2 e i(sx+ty) dµ(s,

Διαβάστε περισσότερα

From root systems to Dynkin diagrams

From root systems to Dynkin diagrams From root systems to Dynkin diagrams Heiko Dietrich Abstract. We describe root systems and their associated Dynkin diagrams; these notes follow closely the book of Erdman & Wildon ( Introduction to Lie

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions

Διαβάστε περισσότερα

Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp

Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp.115-126. α, β, γ ORTHOGONALITY ABDALLA TALLAFHA Abstract. Orthogonality in inner product spaces can be expresed using the notion of norms.

Διαβάστε περισσότερα

Μηχανική Μάθηση Hypothesis Testing

Μηχανική Μάθηση Hypothesis Testing ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα