Markov Processes and Applications

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Markov Processes and Applications"

Transcript

1 Markov rocesses ad Applcatos Dscrete-Tme Markov Chas Cotuous-Tme Markov Chas Applcatos Queug theory erformace aalyss ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ)

2 Dscrete-Tme Markov Chas Books - Itroducto to Stochastc rocesses (Erha Clar), Chap. 5, 6 - Itroducto to robablty Models (Sheldo Ross), Chap. 4 - erformace Aalyss of Commucatos Networks ad Systems (et Va Meghem), Chap. 9, - Elemetary robablty for Applcatos (Rck Durrett), Chap. 5 ( - Itroducto to robablty, D. Bertsekas & J. Tstskls, Chap. 6 ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 2

3 INTRODUCTION : th order pdf of some stoc. proc. { X } s gve by f( x, x,..., x ) f( x x, x,..., x ) f( x x, x,..., x )... f( x x ) f( x ) very dffcult to have t geeral If { X If { X } s t t t t t t t t t t t t t a dep. process: t t t f( x, x,..., x ) f( x ) f( x )... f( x ) t t t t t t t 2 } s a process wth dep. cremets: f( x, x,..., x ) f( x ) f( x x )... f( x x ) t t t t t t t t 2 2 Note : Frst order pdf's are suffcet for above specal cases If { X t } s a process whose evoluto beyod t s (probablstcally) completely determed by x ad s dep. of x, t < t, gve x, the: f( x, x,..., x ) f( x x )... f( x t t t t t t 2 2 ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 3 t t t x ) f( x ) Ths s a Markov process ( th order pdf smplfed) t t

4 for all Defto of a Markov rocess (M) A stoch. proc.{ X a Markov rocess (M) ff : f ( xt or f ( x x t t x x t t t ad all t ; t I} that takes values from a set E s called,..., x,..., x < t t t ) ) 2 ( x t f ( x t <... < t x x t t ) ( E ) ( E ad all >. coutable) ucoutable) Notce :The "ext"state x t s dep.of provded that the "preset"s kow. the "past"{ x t,..., x t 2 } ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 4

5 Defto of a Markov Cha (MC) (Dscrete - tme & dscrete - value M) If I s coutable ad E s coutable the a M s called a MC ad s descrbed by the trasto probabltes : p(, ) { X + X }, E (dep. of for a tme - homogeeous MC). Assume E {,,2,...}(state -space of the MC) Trasto matrx : (,) (,) M (,) M (,) (,) (,) s o - egatve, For a gve M M (, ) (stoch. matrx) a (, ) (, ) M (, ) M, (stochastc matrx) MC may be costructed ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 5

6 ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) ), ( ), ( ), ( ), ( ), ( } { through teratos) (geeral 3 : For roof. the trasto matrx of th power the etry of ), the ( s ), ( ;,, ), ( } {,,...,,, ), ( )..., ( ) ( },...,,, { the, }, { ) ( s.t. MF o s a If E l l E l k k k l l l l X X k k k E X X k E N X X X X E X E + + N N k - step trastos : Cha rule : π π π

7 Chapma Kolmogorov Equatos : From prevous, m+ m (, ) (, k) ( k, ), E k E I order for { X } to be after m+ steps ad startg from, t wll have to be some k after m steps ad move the to the remag steps. ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 7

8 Example : # of successes Beroull process { N ; }, N # of successes trals N Y,, Y dep. Beroull, { Y } p Notce: N N + Y evoluto of { N } beyod + + does ot deped o { N } (gve N ) ad thus { N } s a M.C. N { N, N,..., N} Y { N N, N,..., N} + + q p... p f N +... f ad q p q p N q p... otherwse M Notce: { N } s a specal M.C. whose cremet s dep. both from preset ad past (process wth dep. cremets) ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 8

9 Example : Sum of..d. RV's wth MF { p ; k,,2,...} X Y + Y Y k X X + Y + + X { X,..., X} Y { X X,..., X} p + + X Thus { X } s a M.C. wth (, ) { X X } p + p p p2 p3... p p p2... p p... p... M M M M O ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 9

10 Example : Idepedet trals X { X { X (If, X + }s a π () π () M π () M,...d. wth π ( k) X M.C. π () π () M π () M,..., }, { X + Notce that rows are detcal ad X has all rows detcal the L L L O k X,,2,..., } π ( ) m X m,... are..d.) ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ)

11 ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) (double - stochastc matrx) (here) colums matrx) (stoch. rows M.C. }s a {, (modulo 5) },,,, wth { {,,2,3,4} }are..d. :{ p p p p p p p p p p p p p p p p p p p p p p p p p X Y X X p p p p p Y Y Example

12 Example : Remag lfetme A equpmet s replaced by a detcal as soo as t fals p r{a ew equp. lasts for k tme uts} k,2,... k X X Z + + remag lfetme of equp. at tme X( ω) f X( ω) ( ω) Z+ ( ω) f X( ω) ( ω) s the lfetme of equp. stalled at tme It s depedet of X, X,..., X X s a M.C. ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 2

13 : (, ) { X X } { X X } + f X { + X } f : (, ) { X X } { Z X } + + Z { + } p + + p p2 p3 p4 L L L L M M M M O ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 3

14 Theorem : (codtoal dep. of future from past gve preset) Let Y be a bouded fucto of X, X,.... The E{Y X, X,..., X } E{Y X } + roposto : E{ f(x,x,...)x } E{ f(x,x,...)x } + Corollary : f a bouded fucto o E E... Let g() E{ f(x,x,...)x }. The N E{ f(x,x,...)x, X,..., X } g(x ) + ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 4

15 Stoppg Tmes : revous results derved for fxed tme What f tme s a RV stead? N If are codtoally dep.gve preset property s sad to hold at T. If T f for a RV T s a stoppg tme, the above hold true ( T the evet { T, the past { X m ; m T}ad the future{ X }ca be determed by lookg at X T, m ; m the the strog Markov s a stoppg tme X, X T},..., X ) ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 5

16 For ay stoppg tme T : E{ f( X, X,...) X, T} E{ f( X, X,...) X } T T+ T T+ T For g ( ) E{ f( X, X,...) X } E{ f( X, X,...) X ; T} g( X ) T T+ T f am e.g., f f ( a, a,...) E, m N f am E{ f( X, X m,...) X } { X X } (, ) m E{ f( X, X,...) X, T} { X X ; T} T T+ T+ m Strog Markov property at T: m X { X; T} ( X, ) T+ m T ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 6

17 Vsts to a state X { X ; N } MC, State space E, Trasto matrx. Notato: { A} { A X } ad EY [ ] EY [ X ] Let E, ω Ω ad Defe: N ( ω) total umber of tmes state appears X( ω), X ( ω),. N ( ω ) <, X evetually leaves state ever to retur. N ( ω ), X vsts aga ad aga. Let T( ω), T 2( ω), the successve dces for whch X( ω ). If / the T( ω) T2( ω) T ( ω) L If appears a fte umber of tmes m, the T ( ω) T ( ω) T 2( ω) T ( ω) L m+ m m+ m N, { T ( ω) } s equvalet to appears { X( ω), L, X ( ω)} at least m tmes. T m s a stoppg tme. m ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 7

18 Example T( ω) 4, T ( ω) 6, T ( ω) 7, T ( ω) 9, E ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 8

19 roposto: E, k, m { Tm } T { m+ Tm kt T,, m} { T k} { Tm < } Computato of { T k }. Let Fk(, ) T { k } k Fk (, ) { T } { X } (, ) k 2 Fk (, ) { X, L, X k, X k } { X b} { X, L, X, X X b } b E { } 2 k k { { } } {, L, 2, } X b b E b X X k X k Thus, (, ) k F (, ) k bf (, ) k ( b, ) k 2 b E { } ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 9

20 Example: Let 3 a the trasto matrx Fd f () F (, ), 23,, k k /2 /6 /3 /3 3/5 /5 k. I ths case f s the 3rd colum of matrx. Hece, f() F(, ), f(2) F(2, ) / 3, f(3) F(3, ) / 5 k 2. I ths case F (, ) k b E { } ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 2 k k k b E { } b E { } (, b) F ( b, ) f F (2, ) (2, b) F ( b, ) Q f where k F (3, ) k (3, b) F ( b, ) k k Q /2 /6 /3 3/5 After some algebra f /3 f2 /8 f3 /8 f 4 /648 /5 /5 /3 /8 L ad geeral k k 5 Fk(, 3), Fk(2, 3), Fk(3, 3) k k

21 k k 5 Fk(, 3), Fk(2, 3), Fk(3, 3) k k Now we ca state: Startg at state, X ever vsts 3 wth probablty: T { + } Startg at state 2, X frst vsts 3 at k wth probablty: () k Startg at state 2, X ever vsts 3 wth probablty: { } { } ( ) k <+ k T T Startg at state 3, X ever vsts 3 aga wth probablty: 52 { T + } { T <+ } ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 2

22 Now, for every, we defe F(, ) T { <+ } F(, ) k k F(, ) expresses the probablty: startg at the MC wll ever vst state. F(, ) (, ) + bfb (, ) (, ), E b E { } If by N we deote the total umber of vsts to state, the m { } F(, ) F(, ) N m ( ) ad for, { N m} F (, ) m ( ) m F ( F ) ( ) F( ) m 2,,,,, >From the prevous we obta the Corollary: F(, ) < { N <+ } F(, ) ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 22

23 Now, for every, we defe F(, ) T { <+ } F(, ) k k F(, ) expresses the probablty: startg at the MC wll ever vst state. F(, ) (, ) + bfb (, ) (, ), E b E { } If by N we deote the total umber of vsts to state, the m { } F(, ) F(, ) N m ( ) ad for, { N m} F (, ) m m F(, ) F(, ) ( F(, ) ) m, 2, >From the prevous we obta the Corollary: F(, ) < { N <+ } F(, ) ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 23

24 Now, for every, we defe F(, ) T { <+ } F(, ) k k F(, ) expresses the probablty: startg at the MC wll ever vst state. F(, ) (, ) + bfb (, ) (, ), E b E { } If by N we deote the total umber of vsts to state, the m { } F(, ) F(, ) N m ( ) ad for, { N m} F (, ) m m F(, ) F(, ) ( F(, ) ) m, 2, >From the prevous we obta the Corollary: F(, ) < { N <+ } F(, ) ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 24

25 Let R (, ) E [ N ] ( R s called the potetal matrx of X ) The, R(, ) F (, ) R (, ) F(, ) R( ),, ( ) R(, ) F (, ) R(, ) + ( F (, )) Computato of R (, ) frst ad the F(, ) Defe:, k, X( ω) ( k) ( X( ω)), k, X( ω) The, N ( ω ) R (, ) ( ( ω )) X E ( X ) E ( X ) { X } (, ) I matrx otato: from whch we obta 2 2 R I L R R + + L R I RI ( ) ( I R ) I ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 25

26 Classfcato of states X: MC, wth state space E, trasto matrx T : The tme of frst vst to state N : The total umber of vsts to state Defto State s called recurret f { T < } State s called traset f { T } > A recurret state s called ull f E[ T ] A recurret state s called o-ull f E[ T ]< A recurret state s called perodc wth perod δ, f δ 2 teger for whch { T δ forsome } s the greatest ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 26

27 If s recurret the startg at the probablty of returg to s. F(, ) R(, ) E [ N ] + { N + } If s traset the there exsts a postve probablty F(, ) returg to. of ever F(, ) < R(, ) E [ N ] < { N < } I ths case R (, ) F (, R ) (, ) < R(, ) < ad sce R (, ) (, ) we coclude that lm (, ) ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 27

28 Theorem: If traset or recurret ull the E, lm (, ) If recurret o-ull the π( ) lm (, ) > ad E, lm (, ) F (, ) π( ) If perodc wth perod δ, the a retutr to s possble oly at steps umbered δ, 2δ, 3δ,... (, ) { X } > olyf {, δ, 2 δ, } ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 28

29 Recurret o-ull Recurret ull Traset { T < } { T } > E [ ]< T E[ T ] F(, ) R(, ) E [ N ] + { N + } π ( ) lm (, ) > ad E, lm (, ) F(, ) π ( ) F(, ) < R(, ) E [ N ] < { N < } E, lm (, ) A recurret state s called perodc wth perodδ, f δ 2 s the greatest teger for whch { T δ for some } If perodc wth perod δ, the a retur to s possble oly at steps umbered δ, 2δ, 3δ,... (, ) { X } > oly f {, δ, 2 δ, } ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 29

30 We say that state ca be reached from state, f : (, ) >, ff F (, ) > Defto: A set of states s closed f o state outsde t ca be reached from ay state t. A state formg a closed set by tself s called a absorbg state A closed set s called rreducble f o proper subset of t s closed. A MC s called rreducble f ts oly closed set s the set of all states Commets: If s absorbg the (, ). If MC s rreducble the all states ca be reached from each other. If C { c, c2, L} E s a closed set ad Q (, ) c (, c ), c, c C, the Q s a Markov matrx. If ad k the k. To fd the closed set C that cotas we work as follows: Startg wth we clude C all states that ca be reached from : (, ) >. We ext clude C all states k that ca be reached from : (, k ) >. We repeat the prevous step ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 3

31 Example: MC wth state space E { abcde,,,, } ad trasto matrx Commets: Closed sets: { ace,, } ad { abcde,,,, } There are two closed sets. Thus, the MC s ot rreducble. c e ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 3

32 Example: MC wth state space E { a, b, c, d, e } ad trasto matrx Commets: 2 2 Closed sets: { ace,, } ad { abcde,,,, } Q There are two closed sets. Thus, the MC s ot rreducble. If we delete the 2 d ad 4 th rows we obta the Markov matrx: If we r elabel the states a, 2 c, 3 e, 4 b ad 5 d we get ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 32

33 Lemma If recurret ad k k. Thus, Fk (, ). roof: If k the k s reached wthout returg to wth probablty a. Oce k s reached, the probablty that s ever vsted aga s F( k, ). Hece, F(, ) a( F( k, )) But s recurret, so that F(, ) F( k, ) As a result: If k but k /, the must be traset. Theorem: From recurret states oly recurret states ca be reached. Theorem: I a Marcov cha the recurret states ca be dvded a uque maer, to rreducble closed sets C, C 2,, ad after a approprate arragemet: L 2 L L 3 L L L O M Q Q2 Q3 L Q ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 33

34 Theorem: Let X a rreducble MC. The, oe of the followg holds: All states are traset. All states are recurret ull All states are recurret o-ull Ether all aperodc or f oe s perodc wth perod δ, all are perodc wth the same perod. roof: Sce X s rreducble the k ad k, whch meas that rs, : r s (, k ) > ad ( k, ) >. ck the smallest rs, ad let β r s (, k ) ( k, ). If k recurret recurret. If k traset traset. (If t was recurret the k would be recurret) m If k recurret ull the ( k, k ) as m. But + r+ s ( k, k) β (, ) (, ) ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 34

35 Corollary: If C rreducble closed set of ftely may states, the / recurret ull states. roof: If oe s recurret ull the all states are recurret ull. Thus, lm (, ),, C. But, C,, (, ) lm (, ) C Because, we have fte umber of states lm (, ) lm (, ) C Corollary: If C s a rreducble closed set wth ftely may states the there are o traset states C C ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 35

36 Algorthm - Fte umber of states Idetfy rreducble closed sets. All states belogg to a rreducble closed set are recurret postve The rest of the states are traset erodcty s checked to each rreducble set ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 36

37 Example: The rreducble closed sets are {, 3}, {2, 7, 9} ad {6}. The states {4, 5, 8, } are traset. If we relabel the states we obta ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 37

38 Example: Let see N the umber of successes the frst Beroull trals. As we have p + (, ) { N+ N } q otherwse Thus, q p L q p L q L M M M O we have + but + /. Ths meas that s ot recurret. Sce the MC s rreducble all states are traset. ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 38

39 Example: Remag lfetme X( ω) X( ω) Remember: X + ( ω) Z+ ( ω) X( ω) from whch we obta: (, ) { X+ X } { X X } (, ) { X X } { Z X } + + { Z + } p + + p p2 p3 L L L L M M M O ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 39

40 p p2 p3 L L L L M M M O >From state we reach state oe step. From we ca reach, 2,...,,. Thus, all states ca be reached from each other, whch meas that the MC s rreducble. Sce, (, ) > the MC s aperodc. Retur to state occurs f the lfetme s fte: p F(, ) p Sce state s recurret, all states are recurret. If the expected lfetme: p + the state s ull ad all states are recurret ull. If the expected lfetme: p < the state s o-ull ad all states are recurret o-ull. ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 4

41 Algorthm - Ifte umber of states Theorem: Let X a rreducble MC, ad cosder the system of lear equatos: ν ( ) ν ( ) (, ), E The all states are recurret o-ull ff there exsts a soluto ν wth ν ( ) E E Theorem: Let X a rreducble MC wth trasto matrx, ad let Q be the matrx obtaed from by deletg the k -row ad k -colum for some k E. The all states are recurret f ad oly f the oly soluto of h ( ) Q (, h ) ( ), h ( ), E E s h () for all E. E E {} k. Use frst theorem to determe whether all states are recurret o-ull or ot. I the latter case, use the secod theorem to determe whether the states are traset or ot. ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 4

42 Example: Radom walks. L q p L q p L M M M M O All states ca be reached from each other, ad thus the cha s rreducble. A retur to state ca occur oly at steps umbered 2,4,6,... Therefore, state s perodc wth perod δ 2. Sce X s rreducble all states are perodc wth perod 2. Ether all states are recurret ull, or all are recurret o-ull, or all the states are traset. Check for a soluto of ν ν. ν q ν ν ν + q ν 2 ν 2 pν + q ν 3 ν 3 pν 2 + q ν 4 ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 42

43 Hece, Ay soluto s of the form p q, the / < If < pq ad ν ν ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 43 ν ν ν p 2 ν 2 q q q ν 3 ( ) 2 p 2 p ν p 3ν q q q q p ν ν, 2,, q q p 2q ν + ν ν q q q p If we choose ν q p the ν 2q ad p, 2 q ν ( ) p p, 2q q q I ths case all states are recurret o ull q

44 If p > q ether all states are recurret ull or all states are traset. Cosder the matrx p L q p L Q q p L M M M M O The equato h Qh gves ( h h() ) h q q q + + L + + h p p p + If p q the h h for all ad the oly way to have h for all s by choosg h whch mples h that s all states are recurret ull. If p > q, the choosg h ( q/ p ), we get q h p whch also satsfes h. I ths case all states are traset. ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 44

45 Calculato of R ad F R (, ) E[ N] Expected umber of vsts to state. F(, ) The probablty of ever reachg state startg at. Recurret state: F(, ) R(, ) R (, ) F(, ) R(, ) R (, ) F (, ) + F (, ) > Traset / Recurret state: F (, ) R (, ), Traset Let D { the traset states }, Q (, ) (, ), S (, ) R (, ),, D. The m K m K L Q Lm Q m Hece, m K m m m L m m m Q R S Q I Q Q ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 45 L

46 Computato of S S 2 I + Q+ Q + L 2 SQ QS Q+ Q + L S I ( I Q) S I, SI ( Q) I roposto: If there are ftely may traset states S ( I Q) Whe the set D of traset states s fte, t s possble to have more tha oe soluto to the system. Theorem: S s the mmal soluto of ( I Q) Y I, Y Theorem: S s the uque soluto of ( I Q) Y I f ad oly f the oly bouded soluto of h Qh s h, or equvaletly h Qh, h h ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 46

47 Example: Let X a MC wth state space E { },,,,,,, {23},, are recurret postve aperodc. {4, 5} are recurret postve aperodc. {6, 78}, are traset Q.. 2. S ( I Q) ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 47

48 recurret, ca be reached from traset, recurret recurret, caot be reached from, traset recurret traset recurret traset R S ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 48

49 Computato of F(, ), recurret belogg to the same rreducble closed set F (, ), recurret belogg to dfferet rreducble closed sets F (, ), traset The R (, ) < ad R (, ) F(, ), F(, ) R(, ) R(, ) traset, recurret???? Lemma: If C s rreducble closed set of recurret states, the for ay traset state : F(, ) F(, k) for all, k C. roof: For k, C F( k, ) Fk (, ). Thus, oce the cha reaches ay oe of the states of C, t also vsts all the other states. Hece, F(, ) F(, k) s the probablty of eterg the set C from. ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 49

50 Let 2 3 O Q Q2 Q3 Q Lump all states of C together to make oe absorbg state: ˆ, b () (, k), D O k C b b2 b3 bm Q L The probablty of ever reachg the absorbg state from the traset state by the cha wth the trasto matrx ˆ s the same as that of ever reachg ˆ I, B b L bm, B(, ) ( k) ı D,, B Q k C C from. I 2 ˆ, ( L + ) B Q B I Q Q Q B B ( ), s the probablty that startg from, the cha eters the recurret class C ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 5

51 Defe: k k G lm B Q B SB G (, ) s the probablty of ever reachg the set C from the traset state : ( F(, ) ) roposto: Let Q the matrx obtaed from by deletg all the rows ad colums correspodg to the recurret states, ad let B be defed as prevously, for each traset ad recurret class C. Compute S Compute G SB G (, ) Fk (, ), k C. If there s oly oe recurret class ad ftely may traset states, the thgs are dfferet. I ths case, t ca be proved that: G F(, ), C ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 5

52 Example: Let X a MC wth state space E { },,,,,,, ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 52

53 , recurret belogg to the same rreducble closed set, recurret belogg to dfferet rreducble closed sets recurret traset recurret traset F traset, recurret, traset F(, ), R(, ) R (, ) F(, ) R(, ) oe (reachable) recurret class ad ftely may traset states ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 53

54 Example: ˆ Thus, S ( I Q) ad F G S B ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 54

55 Recurret states ad Lmtg probabltes Cosder oly a rreducble set of states. Theorem: Suppose X s rreducble ad aperodc. The all states are recurret oull f ad oly f π( ) π( ) (, ), E, π( ) E E has a soluto π. If there exsts a soluto π, the t s strctly postve, there are o other solutos, ad we have π ( ) lm (, ),, E Corollary: If X a rreducble aperodc MC wth ftely may states (o-ull states, o traset states), the π π, π has a uque soluto. The soluto π s strctly postve, ad π ( ) lm (, ),,. ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 55

56 A probablty dstrbuto π whch satsfes dstrbuto for X. π π, s called a varat If π s the tal dstrbuto of X, that s, { X } π ( ), E the { X } π() (, ) π( ), for ay E roof: π π π L π 2 Algorthm: for fdg lm (, ) Cosder the rreducble closed set cotag Solve for π ( ). Thus, we fd lm (, ) For every (ot ecessarly E) lm (, ) F (, ) lm (, ) Compute F(, ) frst. The, fd lm ( ), ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 56

57 Example: E{, 2, 3}, π () π(). 3 + π(2). 6 π π π(2) π() π(3). 4 π π(3) π(). 2 + π(2). 4 + π(3). 6 System s Soluto: π lm ( ), ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 57

58 Example: E{, 2, 3, 4, 5, 6, 7}, π π2 7 3, F(6), L F(65), F(7), F(75), L ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 58

59 Thus, lm ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 59

60 Example: q p L ( X rreducble aperodc (sce state s q p Radom walks: L aperodc)) q p L M M M M O p π q π πq+ πq 2 p p π 2 p 2q π 2 p q π π π + π / 2 p p q q π 2 π2 πp+ π3q L q q p p p M M π 3 / q 2 3 q q q M M If p If p q: o soluto of π π, π p p < q : lm (, ) ( q)( q) ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 6

61 Example: Remag lfetme p p2 p3 L L L M M M O Thus, π πp+ π ν π π πp2 + + π 2 ν p π π p + + π ν p p M M M M ν p p2 p3 p2 p3 p3 p + 2p 2 + 3p 3 + L m ( L) + ( + + L) + ( + L) + L m E[ Z ] s the expected lfetme. If m the all states are recurret ull ad lm (, ) ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 6

62 Iterpretato of Lmtg robabltes roposto: Let be a aperodc recurret o-ull state, ad let m( ) be the expected tme betwee two returs to. The, π ( ) lm (, ) m( ) The lmtg probablty π ( ) of beg state s equal to the rate at whch s vsted. roposto: Let be a aperodc recurret o-ull ad let π ( ) defed as prevously. The, for almost all ω Ω lm ( X m( ω)) π( ) +. If f s a bouded fucto o E, the m f ( X ) f( ) ( X ) m m m E m Corollary: X rreducble recurret MC, wth lmtg probablty π. The, for ay bouded fucto f o E : lm f ( Xm) π f, π f π( ) f( ) + m E ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 62

63 Smlar results hold for expectatos Corollary: Suppose X s a rreducble recurret MC wth lmtg dstrbuto π. The for ay bouded fucto f o E lm E[ f ( X m)] π f + m depedet of. If f( ) s the reward receved wheever X s, the both the expected average reward the log ru ad the actual average reward the log ru coverge to the costat π f. The rato of the total reward receved durg the steps,,, by usg fucto f to the correspodg amout by usg fucto g s lm m m f( X ) m g( X ) m π f π g The same holds eve the case that X s oly recurret (ca be ull or perodc or both) ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 63

64 Theorem: Let X be a rreducble recurret cha wth trasto matrx. The, the system ν ν has a strctly postve soluto; ay other soluto s a costat multple of that oe. Theorem: Suppose X s rreducble recurret, ad let ν be a soluto of ν ν. The for ay two fuctos f ad g o E for whch the two sums ν f ν() f(), ν g ν() g() E coverge absolutely ad at least oe s ot zero we have lm m m depedetly of, E. Moreover we also have for almost all ω Ω lm m m E[ f( X )] m E[ g( X )] m f( X ( ω)) m g( X ( ω)) m E ν f ν g ν f ν g ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 64

65 Ay o-egatve soluto of ν ν s called a varat measure of X. Commets: Ay rreducble recurret cha X has a varat measure, ad ths s uque up to a multplcato by a costat. Furthermore, f X s also o-ull, the ν ν ( ) s fte, ad ν s a costat multple of the lmtg dstrbuto π satsfyg π π, π The exstece of a varat measure ν for X does ot mply that X recurret. For f, g ad k lm ( ) ( ) ( X ) ν ( ) E m k X m ν k E m m ν ( k ) s the rato of the expected umber of vsts to k durg the frst steps to ν ( ) the expected umber of returs to durg the same perod as ν ( k ) s the expected umber of vsts to k betwee two vsts to state ν ( ) s ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 65

66 erodc States It s suffcet to cosder oly a rreducble MC wth perodc recurret states. Lemma: Let X be a rreducble MC wth recurret perodc states wth perod δ. The, the states ca be dvded to δ dsot sets B, B 2,, B δ such that (, ) uless B, B, or B, B, or L B, B δ ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 66

67 Example: X MC wth E {234567},,,,,, All states are perodc wth perod 3. The sets are B {, 2}, B 2 {345},, ad B 3 {6, 7}. >From B oe step the MC reaches B 2, two steps B 3 ad three steps B. ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 67

68 Note: , , 2 Cha correspodg to has three closed sets B, B 2, B 3 ad each oe of these s rreducble, recurret ad aperodc. The prevous lmtg theory apples to compute lm m, m lm m, m 2 lm m separately. m 3 ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 68 3

69 Theorem: Let the trasto matrx of a rreducble MC wth recurret perodc states of perod δ, ad let B, B 2, B δ be as prevously. The, the MC wth trasto matrx δ, the classes B, B 2, B δ are rreducble closed sets of aperodc states. Commets: If a 2 δ, a(, ) (, ),, Ba O δ B, the { X B }, b a+ m(mod δ ) m b (, ) does ot have a lmt as except whe all the states are ull ( whch case (, ),,, ) δ + m The lmts (, ) exst as, but are depedet o the tal state. ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 69

70 Theorem: Let ad B a as prevously ad suppose that the cha s o-ull. The, for ay m {,, δ, } δ + m π ( ) Ba, Bb, b a+ m(mod δ ) lm (, ) otherwse The probabltes π ( ), E form the uque soluto of π ( ) π() (, ), π() δ E E ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 7

71 Example: Let X be a MC wth state space E {2345},,,,, The cha s rreducble, recurret o-ull perodc wth perod δ ( ) π ( 4 6) π..., lm lm ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 7

72 Example: Radom Walks ( p < q ) q p q p O O Cyclc Classes B {24,,, }, B 2 {, 3, 5, } Ivarat soluto ν ν p p ν, ν2, ν 2 4, 2 q q 2 4 p p ν, ν3, ν 3 5, 5 q q q Normalze: ν L Multply each term by. ( ν 2 2 p p q q q q p p q q p q 3 p p p,,, ( )(, q 2, 4, q q ) 2 4 p p p,,, ( )(, q q 3, 5, q q ) ( π ) π2 π4 ) ( π π π ) 3 5 ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 72

73 Hece, 3 p p L 2 4 q q 2 p L 3 q q 2 p 3 lm p p q L 2 4 q q 2 p L 3 q q M M M M M O 2 p L 3 q q 3 p p L 2 4 q q 2+ p 2 lm p q L 3 q q 3 p p L 2 4 q q M M M M M O ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 73

74 Traset States If a MC has oly ftely may traset states, the t wll evetually leave the set of traset states ever to retur. If there are ftely may traset states, t s possble for the cha to rema the set of traset states forever. Example: p p p p p p p p p 2 3 L L 2 L p L M M M M O All states are traset If tal state s, the the cha stays forever the set {, +, + 2, }. As, X ( ω) ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 74

75 Let A E, Q the matrx obtaed from by deletg all the rows ad colums correspodg to states whch are ot A. The, for, A Q (, ) L Q (, ) Q (, ) L Q (, ) { X A, L, X A, X } A A 2 Q (, ) { X A, L, X A X A}, A The evet { X A X,, + A} s a subset of { X A X,, A}, therefore Q (, ) Q + (, ) A A Let f () lm Q (, ), A A f () s the probablty that startg at A, the cha stays the set A forever. ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 75

76 roposto: The fucto f s the maxmal soluto of the system h Qh, h Ether f or sup f ( A ) A applcato of the prevous proposto was gve a theorem o the classfcato of states: Theorem: Let X a rreducble MC wth trasto matrx, ad let Q be the matrx obtaed from by deletg the k -row ad k -colum for some k E. The all states are recurret f ad oly f the oly soluto of h () Q (, h ) ( ), h (), E E s h () for all E. E E {} k. roof: Fx a pertcular state ad ame t. Sce X s rreducble t s possble to go from to some A E {}. If the probablty f () of remag A forever s f() for all A, the wth probablty, the cha wll leave A ad eter aga. Hece, f the oly soluto of the system s h, the state s recurret, ad that tur mples that all states are recurret. Coversely, f all states are recurret, the the probablty of remag the set A forever must be zero, sce wll be reached wth probablty oe from ay state A ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 76

77 Example: (Radom Walk) Q p q p q p O If p > q all states are traset. q f (), 23,,, p Ths s the maxmal soluto sce sup f( ). Iterpretato: Startg at a state k (e.g. k 7 ) the probablty of stayg forever wth the set q,,, s equal to ( ) 7 {23 }. p If k > k, the probablty of remag {23,,, } s greater. From the shape of : the restrcto of to the set { kk, +, } s the same as the matrx Q. Hece, for all k {23,,, } ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 77 q k+ { X k, X2 k, } p +

78 For ay subset A of E, let f () the probablty of remag forever A gve the A tal state A. The, If A s a rreducble recurret class, f A. If A s a proper subset of a rreducble recurret class, f A. If A s a fte set of traset states, f A. If A s a fte set of traset states, the ether f A or f A. I the latter case the cha travels through a sequece of sets ( A A2 A3L) to fte. ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 78

Markov Processes and Applications

Markov Processes and Applications Markov Processes ad Alcatos Dscrete-Tme Markov Chas Cotuous-Tme Markov Chas Alcatos Queug theory Performace aalyss Dscrete-Tme Markov Chas Books - Itroducto to Stochastc Processes (Erha Clar), Cha. 5,

Διαβάστε περισσότερα

CS 1675 Introduction to Machine Learning Lecture 7. Density estimation. Milos Hauskrecht 5329 Sennott Square

CS 1675 Introduction to Machine Learning Lecture 7. Density estimation. Milos Hauskrecht 5329 Sennott Square CS 675 Itroducto to Mache Learg Lecture 7 esty estmato Mlos Hausrecht mlos@cs.tt.edu 539 Seott Square ata: esty estmato {.. } a vector of attrbute values Objectve: estmate the model of the uderlyg robablty

Διαβάστε περισσότερα

Discrete Fourier Transform { } ( ) sin( ) Discrete Sine Transformation. n, n= 0,1,2,, when the function is odd, f (x) = f ( x) L L L N N.

Discrete Fourier Transform { } ( ) sin( ) Discrete Sine Transformation. n, n= 0,1,2,, when the function is odd, f (x) = f ( x) L L L N N. Dscrete Fourer Trasform Refereces:. umercal Aalyss of Spectral Methods: Theory ad Applcatos, Davd Gottleb ad S.A. Orszag, Soc. for Idust. App. Math. 977.. umercal smulato of compressble flows wth smple

Διαβάστε περισσότερα

Discrete-Time Markov Chains

Discrete-Time Markov Chains Markov Processes ad Alicatios Discrete-Time Markov Chais Cotiuous-Time Markov Chais Alicatios Queuig theory Performace aalysis ΠΜΣ54: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης / Α. Παναγάκης

Διαβάστε περισσότερα

Estimators when the Correlation Coefficient. is Negative

Estimators when the Correlation Coefficient. is Negative It J Cotemp Math Sceces, Vol 5, 00, o 3, 45-50 Estmators whe the Correlato Coeffcet s Negatve Sad Al Al-Hadhram College of Appled Sceces, Nzwa, Oma abur97@ahoocouk Abstract Rato estmators for the mea of

Διαβάστε περισσότερα

Examples of Cost and Production Functions

Examples of Cost and Production Functions Dvso of the Humates ad Socal Sceces Examples of Cost ad Producto Fuctos KC Border October 200 v 20605::004 These otes sho ho you ca use the frst order codtos for cost mmzato to actually solve for cost

Διαβάστε περισσότερα

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων. Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2

Διαβάστε περισσότερα

1. For each of the following power series, find the interval of convergence and the radius of convergence:

1. For each of the following power series, find the interval of convergence and the radius of convergence: Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.

Διαβάστε περισσότερα

α & β spatial orbitals in

α & β spatial orbitals in The atrx Hartree-Fock equatons The most common method of solvng the Hartree-Fock equatons f the spatal btals s to expand them n terms of known functons, { χ µ } µ= consder the spn-unrestrcted case. We

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme

Διαβάστε περισσότερα

Optimal stopping under nonlinear expectation

Optimal stopping under nonlinear expectation Avalable ole at www.scecedrect.com SceceDrect Stochastc Processes ad ther Applcatos 124 (2014) 3277 3311 www.elsever.com/locate/spa Optmal stoppg uder olear expectato Ibrahm Ekre a, Nzar Touz b, Jafeg

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:

Διαβάστε περισσότερα

Exam Statistics 6 th September 2017 Solution

Exam Statistics 6 th September 2017 Solution Exam Statstcs 6 th September 17 Soluto Maura Mezzett Exercse 1 Let (X 1,..., X be a raom sample of... raom varables. Let f θ (x be the esty fucto. Let ˆθ be the MLE of θ, θ be the true parameter, L(θ be

Διαβάστε περισσότερα

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6 SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

IIT JEE (2013) (Trigonomtery 1) Solutions

IIT JEE (2013) (Trigonomtery 1) Solutions L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing. Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1) 8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r

Διαβάστε περισσότερα

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF One and two partcle densty matrces for sngle determnant HF wavefunctons One partcle densty matrx Gven the Hartree-Fock wavefuncton ψ (,,3,!, = Âϕ (ϕ (ϕ (3!ϕ ( 3 The electronc energy s ψ H ψ = ϕ ( f ( ϕ

Διαβάστε περισσότερα

On Hypersurface of Special Finsler Spaces. Admitting Metric Like Tensor Field

On Hypersurface of Special Finsler Spaces. Admitting Metric Like Tensor Field It J otem Mat Sceces Vo 7 0 o 9 99-98 O Hyersurface of Seca Fser Saces Admttg Metrc Lke Tesor Fed H Wosoug Deartmet of Matematcs Isamc Azad Uversty Babo Brac Ira md_vosog@yaoocom Abstract I te reset work

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue Queueig Aalysis Outlie M/M/ Queue (ifiite buffer M/M//N (fiite buffer M/M// (Erlag s B forula M/M/ (Erlag s C forula Networks of M/M/ Queues M/G/ Priority Queue M/M/ M: Markovia/Meoryless Arrival process

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Cytotoxicity of ionic liquids and precursor compounds towards human cell line HeLa

Cytotoxicity of ionic liquids and precursor compounds towards human cell line HeLa Cytotoxcty of oc lqud ad precuror compoud toward huma cell le HeLa Xuefeg Wag, a,b C. Adré Ohl, a Qghua Lu,* a Zhaofu Fe, c Ju Hu, b ad Paul J. Dyo c a School of Chemtry ad Chemcal Techology, Shagha Jao

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Revew of Mean Trat Value n Inbred Populatons We showed n the last lecture that for a populaton

Διαβάστε περισσότερα

Universal Levenshtein Automata. Building and Properties

Universal Levenshtein Automata. Building and Properties Sofa Uversty St. Klmet Ohrdsk Faculty of Mathematcs ad Iformatcs Departmet of Mathematcal Logc ad Applcatos Uversal Leveshte Automata. Buldg ad Propertes A thess submtted for the degree of Master of Computer

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Μηχανική Μάθηση Hypothesis Testing

Μηχανική Μάθηση Hypothesis Testing ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities Int. J. Contemp. Math. Scences, Vol. 7, 01, no. 9, 1415-140 Generalzed Fbonacc-Le Polynomal and ts Determnantal Identtes V. K. Gupta 1, Yashwant K. Panwar and Ompraash Shwal 3 1 Department of Mathematcs,

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Generating Set of the Complete Semigroups of Binary Relations

Generating Set of the Complete Semigroups of Binary Relations Applied Mathematics 06 7 98-07 Published Online January 06 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/036/am067009 Generating Set of the Complete Semigroups of Binary Relations Yasha iasamidze

Διαβάστε περισσότερα

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11 Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. Στα πόμνα θωρούμ ότι όλα συμβαίνουν σ ένα χώρο πιθανότητας ( Ω,,). Modes of covergece: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. { } ίναι οι ξής: σ μια τ.μ.. Ισχυρή σύγκλιση strog covergece { } lim = =.

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Tired Waiting in Queues? Then get in line now to learn more about Queuing!

Tired Waiting in Queues? Then get in line now to learn more about Queuing! Tired Waitig i Queues? The get i lie ow to lear more about Queuig! Some Begiig Notatio Let = the umber of objects i the system s = the umber of servers = mea arrival rate (arrivals per uit of time with

Διαβάστε περισσότερα

Lecture 15 - Root System Axiomatics

Lecture 15 - Root System Axiomatics Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

1. Matrix Algebra and Linear Economic Models

1. Matrix Algebra and Linear Economic Models Matrix Algebra ad Liear Ecoomic Models Refereces Ch 3 (Turkigto); Ch 4 5 (Klei) [] Motivatio Oe market equilibrium Model Assume perfectly competitive market: Both buyers ad sellers are price-takers Demad:

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Homework 4.1 Solutions Math 5110/6830

Homework 4.1 Solutions Math 5110/6830 Homework 4. Solutios Math 5/683. a) For p + = αp γ α)p γ α)p + γ b) Let Equilibria poits satisfy: p = p = OR = γ α)p ) γ α)p + γ = α γ α)p ) γ α)p + γ α = p ) p + = p ) = The, we have equilibria poits

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

F19MC2 Solutions 9 Complex Analysis

F19MC2 Solutions 9 Complex Analysis F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at

Διαβάστε περισσότερα

Degenerate Perturbation Theory

Degenerate Perturbation Theory R.G. Griffi BioNMR School page 1 Degeerate Perturbatio Theory 1.1 Geeral Whe cosiderig the CROSS EFFECT it is ecessary to deal with degeerate eergy levels ad therefore degeerate perturbatio theory. The

Διαβάστε περισσότερα

1 Complete Set of Grassmann States

1 Complete Set of Grassmann States Physcs 610 Homework 8 Solutons 1 Complete Set of Grassmann States For Θ, Θ, Θ, Θ each ndependent n-member sets of Grassmann varables, and usng the summaton conventon ΘΘ Θ Θ Θ Θ, prove the dentty e ΘΘ dθ

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

Article Multivariate Extended Gamma Distribution

Article Multivariate Extended Gamma Distribution axoms Artcle Multvarate Exteded Gamma Dstrbuto Dhaya P. Joseph Departmet of Statstcs, Kurakose Elas College, Maaam, Kottayam, Kerala 686561, Ida; dhayapj@gmal.com; Tel.: +91-9400-733-065 Academc Edtor:

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Notes on the Open Economy

Notes on the Open Economy Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.

Διαβάστε περισσότερα

Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2)

Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2) Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών NP-Completeness (2) x 1 x 1 x 2 x 2 x 3 x 3 x 4 x 4 12 22 32 11 13 21

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Bounding Nonsplitting Enumeration Degrees

Bounding Nonsplitting Enumeration Degrees Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

ΝΕΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΣΧΕΤΙΚΑ ΜΕ ΤΗΝ ΥΠΑΡΞΗ ΕΚΤΙΜΗΤΩΝ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ ΓΙΑ ΤΗΝ 3-ΠΑΡΑΜΕΤΡΙΚΗ ΓΑΜΜΑ ΚΑΤΑΝΟΜΗ

ΝΕΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΣΧΕΤΙΚΑ ΜΕ ΤΗΝ ΥΠΑΡΞΗ ΕΚΤΙΜΗΤΩΝ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ ΓΙΑ ΤΗΝ 3-ΠΑΡΑΜΕΤΡΙΚΗ ΓΑΜΜΑ ΚΑΤΑΝΟΜΗ Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά ου Πανελληνίου Συνεδρίου Στατιστικής 008, σελ 9-98 ΝΕΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΣΧΕΤΙΚΑ ΜΕ ΤΗΝ ΥΠΑΡΞΗ ΕΚΤΙΜΗΤΩΝ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ ΓΙΑ ΤΗΝ 3-ΠΑΡΑΜΕΤΡΙΚΗ ΓΑΜΜΑ ΚΑΤΑΝΟΜΗ Γεώργιος

Διαβάστε περισσότερα

Solve the difference equation

Solve the difference equation Solve the differece equatio Solutio: y + 3 3y + + y 0 give tat y 0 4, y 0 ad y 8. Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + 3 3y + + y 0 () Z y + 3 3y + + y Z 0 Z y + 3 3Z y + + Z y

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα