ΑΛΓΟΡΙΘΜΙΚΕΣ ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ
|
|
- Παύλος Δεσποτόπουλος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ΑΛΓΟΡΙΘΜΙΚΕΣ ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΚΟΥΛΙΝΑΣ ΓΕΩΡΓΙΟΣ Δρ. Μηχανικός Παραγωγής & Διοίκησης ΔΠΘ
2 ΜΕΤΑΕΥΡΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ METAHEURISTIC ALGORITHMS Ευφυείς διαδικασίες επαναληπτικής βελτίωσης Χρησιμοποιούν απλές κινήσεις στο χώρο των λύσεων Ανεξάρτητες από το πρόβλημα που αντιμετωπίζεται κάθε φορά
3 ΜΕΤΑΕΥΡΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ METAHEURISTIC ALGORITHMS Στόχος ενός Μεταευρετικού Αλγορίθμου: Γρήγορη εύρεση περιοχών με «καλές λύσεις» Μέσω της ισορροπημένης χρήσης «Διαφοροποίησης» & «Εντατικοποίησης» της αναζήτησης στο χώρο των λύσεων
4 ΜΕΤΑΕΥΡΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ METAHEURISTIC ALGORITHMS Εντατικοποίηση της ερευνας στο χώρο των λύσεων (Intensification) Εστιασμένη αναζήτηση σε μικρές περιοχές με υψηλής ποιότητας λύσεις για να βρεθεί το τοπικά βέλτιστο σημείο Διαφοροποίηση της ερευνας στο χώρο των λύσεων (Diversification) Απεγκλωβισμός από τοπικά βέλτιστα και μετακίνηση σε άλλες περιοχές
5 ΕΝΤΑΤΙΚΟΠΟΙΗΣΗ ΔΙΑΦΟΡΟΠΟΙΗΣΗ ΣΤΟ ΧΩΡΟ ΤΩΝ ΛΥΣΕΩΝ INTENSIFICATION - DIVERSIFICATION Z(x) Οι μεταευρετικοί αλγόριθμοι εφαρμόζουν στρατηγικές απεγλωβισμού της αναζήτησης από τοπικά βέλτιστα Τοπικό Ελάχιστο (Local minimum) Ολικό Ελάχιστο (Global minimum) x
6 Ο ΑΛΓΟΡΙΘΜΟΣ ΠΡΟΣΟΜΟΙΩΜΕΝΗΣ ΑΝΟΠΤΗΣΗΣ The Simulated Annealing Algorithm (SA Metaheuristic Algorithm ή SA Algorithm ) Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing. Science, 220(4598), 671 LP-680. Retrieved from
7 Ο ΑΛΓΟΡΙΘΜΟΣ ΠΡΟΣΟΜΟΙΩΜΕΝΗΣ ΒΕΛΤΙΩΣΗΣ SIMULATED ANNEALING ALGORITHM Ανεξάρτητος από το πρόβλημα που αντιμετωπίζει Ευφυής διαδικασία επαναληπτικής βελτίωσης Καθοδηγεί απλούς «τελεστές» - ευρετικούς
8 Ο ΑΛΓΟΡΙΘΜΟΣ ΠΡΟΣΟΜΟΙΩΜΕΝΗΣ ΒΕΛΤΙΩΣΗΣ SIMULATED ANNEALING ALGORITHM Νέα χαρακτηριστικά: Αξιοποίηση του «ιστορικού» της αναζήτησης δηλ. της πορείας της έως τώρα Αποδοχή λύσεων με χειρότερη τιμή αντικειμενικής συνάρτησης προκειμένου να γίνει «απεγλωβισμός» από τοπικά βέλτιστα
9 Ο ΑΛΓΟΡΙΘΜΟΣ ΠΡΟΣΟΜΟΙΩΜΕΝΗΣ ΒΕΛΤΙΩΣΗΣ SIMULATED ANNEALING ALGORITHM Η ιδέα λειτουργίας προέρχεται από την Ανόπτηση (Annealing) των μετάλλων από την υγρή στην στερεά κρυσταλλική κατάσταση Σε υψηλές θερμοκρασίες τα άτομα του μετάλλου βρίσκονται σε κατάσταση υψυλότερης ενέργειας με μεγαλύτερη «κινητικότητα» Με τη μείωση της θερμοκρασίας τα άτομα γίνονται περισσότερο «στατικά» μέχρι που τελικά θα λάβουν τις τελικές θέσεις τους στη στέρεη κατάσταση
10 Ο ΑΛΓΟΡΙΘΜΟΣ ΠΡΟΣΟΜΟΙΩΜΕΝΗΣ ΒΕΛΤΙΩΣΗΣ SIMULATED ANNEALING ALGORITHM Εάν το υγρό μέταλλο «ψύχεται» αρκετά αργά τότε σχηματίζεται τέλειος κρύσταλλος καθώς τα άτομα είχαν το χρόνο και την ενέργεια να τακτοποιηθούν σωστά Εάν η θερμοκρασία μειώνεται γρήγορα, θα σχηματιστεί κρύσταλλος με ατέλειες καθώς τα άτομα δεν πρόλαβαν να τακτοποιηθούν όπως έπρεπε
11 Ο ΑΛΓΟΡΙΘΜΟΣ ΠΡΟΣΟΜΟΙΩΜΕΝΗΣ ΒΕΛΤΙΩΣΗΣ SIMULATED ANNEALING ALGORITHM (ΕΛΑΧΙΣΤΟΠΟΙΗΣΗ) Ο Simulated Annealing (SA) δεν ψάχνει για την καλύτερη λύση στην γειτονία λύσεων της τρέχουσας λύσης (x) όπως κάνουν οι local search αλγόριθμοι Ξεκινά σε κάθε επανάληψη από μια λύση x, επιλέγει στοχαστικά μια γειτονική λύση κι εφαρμόζει τον τελεστή κίνησης στη γειτονιά των λύσεων Θεωρούμε x την τρέχουσα λύση και x τη γειτονική της : Εάν z(x )-z(x) 0 τότε η x γίνεται αποδεκτή και θεωρείται ως η «νέα» τρέχουσα
12 Ο ΑΛΓΟΡΙΘΜΟΣ ΠΡΟΣΟΜΟΙΩΜΕΝΗΣ ΒΕΛΤΙΩΣΗΣ SIMULATED ANNEALING ALGORITHM (ΠΡΟΒΛΗΜΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ) Εάν z(x )-z(x) > 0 τότε η x είτε: Γίνεται αποδεκτή και ορίζεται ως νέα τρέχουσα με πιθανότητα: Pt=exp-([z(x )-z(x))]/tt) Δεν γίνεται αποδεκτή και παραμένει τρέχουσα η x, με πιθανότητα: 1-Pt z(x ): αντικειμενική συνάρτηση της γειτονικής λύσης x z(x): αντικειμενική συνάρτηση της λύσης x Tt: «θερμοκρασία» του αλγορίθμου σε κάθε επανάληψη (ορίζεται από τον κατασκευαστή του αλγορίθμου)
13 Ο ΑΛΓΟΡΙΘΜΟΣ ΠΡΟΣΟΜΟΙΩΜΕΝΗΣ ΒΕΛΤΙΩΣΗΣ SIMULATED ANNEALING ALGORITHM Η αποδοχή της χειρότερης λύσης x με μια πιθανότητα γίνεται με σκοπό να μπορέσει ο αλγόριθμος να απεγκλωβιστεί από το πιθανό τοπικό ελάχιστο Η θερμοκρασία Tt: Αρχικά θεωρείται μια πολύ υψηλή τιμή (έτσι ώστε να γίνονται αποδεκτές λύσεις με χειρότερη αντικειμενική συνάρτηση από την τρέχουσα) Σε κάθε επανάληψη, η θερμοκρασία πολλαπλασιάζεται με ένα συντελεστή (0 < s < 1) που ορίζει ο κατασκευαστής του αλγορίθμου Μειώνεται σταδιακά μέχρι στις τελευταίες επαναλήψεις- να μηδενιστεί Αποτέλεσμα: από εκείνο το σημείο της αναζήτησης γίνονται αποδεκτές μόνο καλύτερες λύσεις
14 Ο ΑΛΓΟΡΙΘΜΟΣ ΠΡΟΣΟΜΟΙΩΜΕΝΗΣ ΒΕΛΤΙΩΣΗΣ SIMULATED ANNEALING ALGORITHM - (ΠΡΟΒΛΗΜΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ) Όρισε αρχική λύση x, και αρχική θερμοκρασία T0 Βρόχος 1: Για όσο η συνθήκη τερματισμού ΔΕΝ ικανοποιείται επανέλαβε Βρόχος 2: Για όσο η συνθήκη τερματισμού του Βρόχου 2 ΔΕΝ ικανοποιείται επανέλαβε 1. Φτιάξε μια λύση x G(x), όπου G(x) η γειτονιά της τρέχουσας λύσης x 2. Όρισε Δz = z(x ) z(x) 3. Εάν Δz<0, θέσε x=x. Έλεγξε εάν είναι z(x)<z(xbest). Εάν ναι, τότε xbest = x = x 4. Εάν Δz 0, θέσε x = x με μια πιθανότητα exp (-Δ/Tt) Επανέλαβε το Βρόχο 2 Μείωσε τη θερμοκρασία Tt Επανέλαβε τον Βρόχο 1 Τύπωσε την καλύτερη λύση xbest που βρέθηκε, καθώς και την zbest που αντιστοιχεί
15 Ο ΑΛΓΟΡΙΘΜΟΣ ΠΡΟΣΟΜΟΙΩΜΕΝΗΣ ΒΕΛΤΙΩΣΗΣ SIMULATED ANNEALING ALGORITHM Οι τιμές που ορίζει ο κατασκευαστής του αλγορίθμου είναι: Η τιμή της αρχικής θερμοκρασίας T0 Ο τρόπος μείωσης της θερμοκρασίας Tt με την πάροδο των επαναλήψεων t Το κριτήριο τερματισμού του Βρόχου 1 και του Βρόχου 2
16 Ο ΑΛΓΟΡΙΘΜΟΣ ΠΡΟΣΟΜΟΙΩΜΕΝΗΣ ΒΕΛΤΙΩΣΗΣ SIMULATED ANNEALING ALGORITHM Η αργή σύγκλιση του αλγορίθμου εξασφαλίζεται: Είτε μέσω του συντελεστή μείωσης της θερμοκρασίας Είτε μέσω της αύξησης των επαναλήψεων εκτέλεσης του Βρόχου 2
17 Ο ΑΛΓΟΡΙΘΜΟΣ ΠΡΟΣΟΜΟΙΩΜΕΝΗΣ ΒΕΛΤΙΩΣΗΣ SIMULATED ANNEALING ALGORITHM Η τιμή της αρχικής θερμοκρασίας πρέπει να εξασφαλίζει ότι: 1. Θα γίνονται αποδεκτές «χειρότερες λύσεις» (για να μην παγιδευτεί σε τοπικό βέλτιστο) 2. Ο αλγόριθμος δεν θα τερματιστεί σύντομα (καθώς τότε μεταπίπτει σε κατάσταση πλήρως τυχαίας διαδικασίας) Στόχος είναι η σχετικά αργή πτώση της θερμοκρασίας καθώς διαφορετικά ο αλγόριθμος θα συγκλίνει γρήγορα σε τοπικό βέλτιστο
18 Ο ΑΛΓΟΡΙΘΜΟΣ ΠΡΟΣΟΜΟΙΩΜΕΝΗΣ ΒΕΛΤΙΩΣΗΣ SIMULATED ANNEALING ALGORITHM Συνήθεις συνθήκες τερματισμού αλγορίθμου ή / και βρόχων: 1. Η zbest δεν έχει μειωθεί για τουλάχιστον e επαναλήψεις 2. Η zbest δεν έχει μειωθεί κατά τουλάχιστον - v% - για τουλάχιστον e επαναλήψεις 3. Συμπλήρωση δεδομένου αριθμού επαναλήψεων 4. Συμπλήρωση δεδομένου χρονικού ορίου συνεχόμενης εκτέλεσης του αλγορίθμου
19 ΑΣΚΗΣΗ 1 Μια εταιρία επενδύσεων διαχειρίζεται κεφάλαια ύψους 100 μονάδων και μπορεί να εντάξει μόνο μία φορά στο χαρτοφυλάκιό της, κάποιες από τις μετοχές εταιριών του Πίνακα 1: Η εφαρμογή ενός στοχαστικού κατασκευαστικού ευρετικού αλγορίθμου είχε σαν αποτέλεσμα την κατασκευή της παρακάτω εφικτής λύσης s1: Να πραγματοποιηθεί εφαρμογή μεταευρετικού αλγορίθμου Προσομοιωμένης Ανόπτησης για 6 επαναλήψεις Η θερμοκρασία του SA θα μειώνεται από την T0 = 100 κατά έναν συντελεστή m=0.7, μετά τη συμπλήρωση 3 επανάληψεων του μεταευρετικού Ο μεταευρετικός SA θα εφαρμόζει τελεστή αντικατάστασης M4 M9 M3 M10 M7 Σύνολο Κόστος Μέρισμα Πίνακας 1 ΟΝΟΜΑ ΑΞΙΑ ΕΤΗΣΙΟ ΜΕΡΙΣΜΑ M M M M M M M M M M
20 ΑΣΚΗΣΗ 1 ΕΠΙΛΥΣΗ LOOP Μετοχές στην S M4 M9 M3 M10 M7 Σύνολο Κόστος Μέρισμα zs= 7.95 Zbest= 7.95 Μετοχές εκτός S Μ1 Μ2 Μ5 Μ6 Μ8 T0=100 Τυχαίες τιμές από rand() η τυχαία τιμή = 0,32887 άρα επιλέγεται να αντικατασταθεί η μετοχή της θέσης 2 που είναι η Μ9 2 η τυχαία τιμή = 0, άρα επιλέγεται να «μπεί» στην S1 η μετοχή της θέσης 5 που είναι η Μ8 Άρα Με: Μετοχές στην S1 M4 M8 M3 M10 M7 Σύνολο Κόστος Μέρισμα zs1=zcurrent= 8.25 Zbest= 8.25
21 ΑΣΚΗΣΗ 1 ΕΠΙΛΥΣΗ LOOP Μετοχές στην S1 M4 M8 M3 M10 M Μετοχές εκτός S1 Μ1 Μ2 Μ5 Μ6 Μ9 Τυχαίες τιμές από rand() η τυχαία τιμή = 0, άρα επιλέγεται να αντικατασταθεί η μετοχή της θέσης 3 στην S1, που είναι η Μ3 4 η τυχαία τιμή = 0, άρα επιλέγεται να «μπεί» στην S2 η μετοχή της θέσης 3 που είναι η Μ5 Άρα Με: Μετοχές στην S2 M4 M8 M5 M10 M7 Σύνολο Κόστος Μέρισμα zs2=zcurrent= 8.35 Zbest= 8.35
22 ΑΣΚΗΣΗ 1 ΕΠΙΛΥΣΗ LOOP Μετοχές στην S2 M4 M8 M5 M10 M Μετοχές εκτός S2 Μ1 Μ2 M3 Μ6 Μ9 Τυχαίες τιμές από rand() η τυχαία τιμή = 0, άρα επιλέγεται να αντικατασταθεί η μετοχή της θέσης 1 στην S2, που είναι η Μ4 6 η τυχαία τιμή = 0, άρα επιλέγεται να «μπεί» στην S3 η μετοχή της θέσης 4 που είναι η Μ6 Άρα Με: Μετοχές στην S3 Μ6 M8 M5 M10 M7 Σύνολο Κόστος Μέρισμα zs3=zcurrent= 8.5 Zbest= 8.5
23 ΑΣΚΗΣΗ 1 ΕΠΙΛΥΣΗ LOOP 4 Τυχαίες τιμές από rand() Μετοχές στην S3 Μ6 M8 M5 M10 M Μετοχές εκτός S3 Μ1 Μ2 M3 M4 Μ9 T0=0.7*100= η τυχαία τιμή = 0, άρα επιλέγεται να αντικατασταθεί η μετοχή της θέσης 3 στην S3, που είναι η Μ5 8 η τυχαία τιμή = 0, άρα επιλέγεται να «μπεί» στην S4 η μετοχή της θέσης 5που είναι η M9 Άρα Με: Μετοχές στην S4 Μ6 M8 M9 M10 M7 Σύνολο Κόστος Μέρισμα zs4=zcurrent= 10.2 Zbest= 10.2 Μή εφικτή
24 ΑΣΚΗΣΗ 1 ΕΠΙΛΥΣΗ LOOP 5 Τυχαίες τιμές από rand() Μετοχές στην S3 Μ6 M8 M5 M10 M Μετοχές εκτός S3 Μ1 Μ2 M3 M4 Μ9 T0=0.7*100= η τυχαία τιμή = 0, άρα επιλέγεται να αντικατασταθεί η μετοχή της θέσης 2 στην S3, που είναι η Μ8 10 η τυχαία τιμή = 0, άρα επιλέγεται να «μπεί» στην S4 η μετοχή της θέσης 4 που είναι η Μ4 Άρα Με: Μετοχές στην S5 Μ6 Μ4 M9 M10 M7 Σύνολο T Κόστος Μέρισμα Δz= P επιλογής zs1=zcurrent= 7.65 Zbest= η τυχαία τιμή, το 0,661667<0, άρα η χειρότερη λύση αποδεκτή
25 ΕΥΧΑΡΙΣΤΩ ΓΙΑ ΤΗΝ ΠΡΟΣΟΧΗ ΣΑΣ oερωτήσεις? ΕΠΙΚΟΙΝΩΝΙΑ oγραφειο 305 ΚΤΙΡΙΟ Ι, ΠΡΟΚΑΤ ΔΕΥΤΕΡΑ & oτηλεφωνο: o
ΑΛΓΟΡΙΘΜΙΚΕΣ ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ
ΑΛΓΟΡΙΘΜΙΚΕΣ ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΚΟΥΛΙΝΑΣ ΓΕΩΡΓΙΟΣ Δρ. Μηχανικός Παραγωγής & Διοίκησης ΔΠΘ Ο ΜΕΤΑΕΥΡΕΤΙΚΟΣ ΑΛΓΟΡΙΘΜΟΣ ΑΠΟΔΟΧΗΣ ΚΑΤΩΦΛΙΟΥ The Threshold Accepting Algorithm (TA Metaheuristic Algorithm
Διαβάστε περισσότεραΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ
ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Dr. Christos D. Tarantilis Associate Professor in Operations Research & Management Science http://tarantilis.dmst.aueb.gr/ ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 1- ΜΕΙΟΝΕΚΤΗΜΑ
Διαβάστε περισσότεραΑΛΓΟΡΙΘΜΙΚΕΣ ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ
ΑΛΓΟΡΙΘΜΙΚΕΣ ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΚΟΥΛΙΝΑΣ ΓΕΩΡΓΙΟΣ Δρ. Μηχανικός Παραγωγής & Διοίκησης ΔΠΘ The Tabu Search Algorithm Glover, F. (1986). Future paths for integer programming and links to artificial
Διαβάστε περισσότεραΑΛΓΟΡΙΘΜΙΚΕΣ ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ
ΑΛΓΟΡΙΘΜΙΚΕΣ ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΚΟΥΛΙΝΑΣ ΓΕΩΡΓΙΟΣ Δρ. Μηχανικός Παραγωγής & Διοίκησης ΔΠΘ ΑΛΓΟΡΙΘΜΙΚΕΣ ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ o ΔΙΑΛΕΞΕΙΣ ΜΑΘΗΜΑΤΟΣ ΔΕΥΤΕΡΑ 16.00-19.00 (Εργ. Υπ. Μαθ. Τμ. ΜΠΔ) oτρόπος
Διαβάστε περισσότεραΑΛΓΟΡΙΘΜΟΙ ΑΝΟΠΤΗΣΗΣ: Ο ΑΛΓΟΡΙΘΜΟΣ ΤΗΣ ΑΠΟ ΟΧΗΣ ΚΑΤΩΦΛΙΟΥ (THRESHOLD ACCEPTING)
ΑΛΓΟΡΙΘΜΟΙ ΑΝΟΠΤΗΣΗΣ: Ο ΑΛΓΟΡΙΘΜΟΣ ΤΗΣ ΑΠΟ ΟΧΗΣ ΚΑΤΩΦΛΙΟΥ (THRESHOLD ACCEPTING) ΧΡΗΣΤΟΣ. ΤΑΡΑΝΤΙΛΗΣ ΚΛΑΣΙΚΟΙ ΕΥΡΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ Κλασικοί Ευρετικοί Classical Heuristics Κατασκευαστικοί Ευρετικοί Αλγόριθµοι
Διαβάστε περισσότεραΕ ανάληψη. Α ληροφόρητη αναζήτηση
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Το ική Αναζήτηση Local Search Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Α ληροφόρητη αναζήτηση σε πλάτος, οµοιόµορφου κόστους, σε βάθος,
Διαβάστε περισσότεραΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ
ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Dr. Christos D. Tarantilis Associate Professor in Operations Research & Management Science http://tarantilis.dmst.aueb.gr/ ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 1- ΕΠΙΛΥΣΗ
Διαβάστε περισσότεραΣυστήματα Επιχειρηματικής Ευφυίας. Οι αλγόριθμοι Hill Climbing, Simulated Annealing, Great Deluge, VNS, Tabu Search
Συστήματα Επιχειρηματικής Ευφυίας Οι αλγόριθμοι Hill Climbing, Simulated Annealing, Great Deluge, VNS, Tabu Search Τέταρτη Διάλεξη Περιεχόμενα 1. Το πρόβλημα της πρόωρης σύγκλισης (premature convergence)
Διαβάστε περισσότεραΑΛΓΟΡΙΘΜΙΚΕΣ ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ
ΑΛΓΟΡΙΘΜΙΚΕΣ ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΚΟΥΛΙΝΑΣ ΓΕΩΡΓΙΟΣ Δρ. Μηχανικός Παραγωγής & Διοίκησης ΔΠΘ ΠΛΕΟΝΕΚΤΙΚΟΙ ΚΑΤΑΣΚΕΥΑΣΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ GREEDY CONSTRUCTIVE HEURISTICS Βασικό μειονέκτημα: οι αποφάσεις που
Διαβάστε περισσότεραΤεχνητή Νοημοσύνη. 5η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 5η διάλεξη (2017-18) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας
Διαβάστε περισσότεραΈΡΕΥΝΑ ΜΕΤΑΒΛΗΤΗΣ ΓΕΙΤΟΝΙΑΣ (Variable Neighborhood Search - VNS) VNS) (Variable Neighborhood Search -
ΈΡΕΥΝΑ ΜΕΤΑΒΛΗΤΗΣ ΓΕΙΤΟΝΙΑΣ (Variable Neighborhood Search - VNS) ΈΡΕΥΝΑ ΜΕΤΑΒΛΗΤΗΣ ΓΕΙΤΟΝΙΑΣ (Variable Neighborhood Search - VNS) Department of & Technology, 1 ΈΡΕΥΝΑ ΜΕΤΑΒΛΗΤΗΣ ΓΕΙΤΟΝΙΑΣ (Variable Neighborhood
Διαβάστε περισσότεραΘεωρία Λήψης Αποφάσεων
Θεωρία Λήψης Αποφάσεων Ενότητα 6: Αλγόριθμοι Τοπικής Αναζήτησης Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)
Διαβάστε περισσότεραΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ
ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Dr. Christos D. Tarantilis Associate Professor in Operations Research & Management Science http://tarantilis.dmst.aueb.gr/ ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 1- ΕΦΑΡΜΟΓΗΔΙΟΙΚΗΤΙΚΗΣΕΠΙΣΤΗΜΗΣ:
Διαβάστε περισσότεραΗ μέθοδος Simplex. Χρήστος Γκόγκος. Χειμερινό Εξάμηνο ΤΕΙ Ηπείρου
Η μέθοδος Simplex Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 1 / 17 Η μέθοδος Simplex Simplex Είναι μια καθορισμένη σειρά επαναλαμβανόμενων υπολογισμών μέσω των οποίων ξεκινώντας από ένα αρχικό
Διαβάστε περισσότεραΠοσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διαβάστε περισσότεραΕ..Ε. ΙI ΑΠΑΓΟΡΕΥΜΕΝΗΕΡΕΥΝΑ TABU SEARCH ΧΡΗΣΤΟΣ. ΤΑΡΑΝΤΙΛΗΣ MANAGEMENT SCIENCE IN PRACTICE II
ΑΠΑΓΟΡΕΥΜΕΝΗΕΡΕΥΝΑ TABU SEARCH ΧΡΗΣΤΟΣ. ΤΑΡΑΝΤΙΛΗΣ ΑΠΑΓΟΡΕΥΜΕΝΗ ΕΡΕΥΝΑ TABU SEARCH ΛΟΓΙΚΗ ΑΠΑΓΟΡΕΥΜΕΝΗΣ ΈΡΕΥΝΑΣ: Όταν ο άνθρωπος επιχειρεί να λύσει προβλήµατα, χρησιµοποιεί την εµπειρία του και τη µνήµη
Διαβάστε περισσότεραΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΜΕΤΑΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΙ ΑΝΑΖΗΤΗΣΗ TABU, SIMULATED ANNEALING ΚΑΙ ΓΕΝΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ Ιωάννης Γ. Μώρος ΕΡΓΑΣΙΑ Που υποβλήθηκε στο Τμήμα Στατιστικής του Οικονομικού
Διαβάστε περισσότεραΤεχνητή Νοημοσύνη. 5η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 5η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας
Διαβάστε περισσότεραιοίκηση Παραγωγής και Υπηρεσιών
ιοίκηση Παραγωγής και Υπηρεσιών Προγραµµατισµός Παραγωγής Προβλήµατα µε πολλές µηχανές Γιώργος Ιωάννου, Ph.D. Αναπληρωτής Καθηγητής Σύνοψη διάλεξης Προβλήµατα Παράλληλων Μηχανών Ελαχιστοποίηση χρόνου ροής
Διαβάστε περισσότεραΜέθοδοι πολυδιάστατης ελαχιστοποίησης
Μέθοδοι πολυδιάστατης ελαχιστοποίησης με παραγώγους Μέθοδοι πολυδιάστατης ελαχιστοποίησης Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc64.materials.uoi.gr/dpapageo
Διαβάστε περισσότεραΤεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Αλγόριθμοι Ευριστικής Αναζήτησης Πολλές φορές η τυφλή αναζήτηση δεν επαρκεί
Διαβάστε περισσότεραΕθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος. Τεχνολογία Συστημάτων Υδατικών Πόρων
Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Τεχνολογία Συστημάτων Υδατικών Πόρων Βελτιστοποίηση Προχωρημένες Μέθοδοι Προβλήματα με την «κλασική» βελτιστοποίηση Η αντικειμενική συνάρτηση
Διαβάστε περισσότεραΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΑΠΟΙΚΙΑΣ ΜΥΡΜΗΓΚΙΩΝ ANT COLONY OPTIMIZATION METHODS
ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΑΠΟΙΚΙΑΣ ΜΥΡΜΗΓΚΙΩΝ ANT COLONY OPTIMIZATION METHODS Χρήστος Δ. Ταραντίλης Αν. Καθηγητής ΟΠΑ ACO ΑΛΓΟΡΙΘΜΟΙ Η ΛΟΓΙΚΗ ΑΝΑΖΗΤΗΣΗΣ ΛΥΣΕΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΙΑΤΑΞΗΣ (1/3) Ε..Ε. ΙΙ Oι ACO
Διαβάστε περισσότερα3 η ΕΝΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ 3 η ΕΝΟΤΗΤΑ ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ Μ. Καρλαύτης Ν. Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό
Διαβάστε περισσότεραΤεχνητή Νοημοσύνη. 4η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 4η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται κυρίως στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β.
Διαβάστε περισσότεραΤμήμα Μηχανικών Πληροφορικής ΤΕ Η μέθοδος Simplex. Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. τελευταία ενημέρωση: 19/01/2017
Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Η μέθοδος Simplex Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 19/01/2017 1 Πλεονεκτήματα Η μέθοδος Simplex Η μέθοδος Simplex είναι μια
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ 1. ίνεται το γνωστό πρόβληµα των δύο δοχείων: «Υπάρχουν δύο δοχεία
Διαβάστε περισσότεραΕθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος. Διαχείριση Υδατικών Πόρων
Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Διαχείριση Υδατικών Πόρων Βελτιστοποίηση Προχωρημένες Μέθοδοι Προβλήματα με την «κλασική» βελτιστοποίηση Η αντικειμενική συνάρτηση σπανίως
Διαβάστε περισσότερα6. Στατιστικές μέθοδοι εκπαίδευσης
6. Στατιστικές μέθοδοι εκπαίδευσης Μία διαφορετική μέθοδος εκπαίδευσης των νευρωνικών δικτύων χρησιμοποιεί ιδέες από την Στατιστική Φυσική για να φέρει τελικά το ίδιο αποτέλεσμα όπως οι άλλες μέθοδοι,
Διαβάστε περισσότεραΗ μέθοδος Simplex. Γεωργία Φουτσιτζή-Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. Τμήμα Μηχανικών Πληροφορικής ΤΕ
Τμήμα Μηχανικών Πληροφορικής ΤΕ 2017-2018 Η μέθοδος Simplex Γεωργία Φουτσιτζή-Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 19/01/2017 1 Πλεονεκτήματα Η μέθοδος Simplex Η μέθοδος
Διαβάστε περισσότεραΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ. Κεφάλαιο 3 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού
ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Κεφάλαιο 3 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού 1 Σχέση γραμμικού και ακέραιου προγραμματισμού Ενα πρόβλημα ακέραιου προγραμματισμού είναι
Διαβάστε περισσότεραΔιερεύνηση μεθόδων αναζήτησης ολικού βελτίστου σε προβλήματα υδατικών πόρων
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΕΠΙΣΤΗΜΟΝΙΚΟ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΕΠΙΣΤΗΜΗ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ» Διερεύνηση μεθόδων αναζήτησης ολικού βελτίστου σε προβλήματα υδατικών πόρων
Διαβάστε περισσότεραΣΗΜΕΙΩΣΕΙΣ ΤΕΛΙΚΗΣ ΕΡΓΑΣΙΑΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΓΛΩΣΣΕΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ»
ΣΗΜΕΙΩΣΕΙΣ ΤΕΛΙΚΗΣ ΕΡΓΑΣΙΑΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΓΛΩΣΣΕΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ» Κωνσταντίνος Π. Φερεντίνος Διδάσκων ΠΔ 407/80 Οι σημειώσεις αυτές αναπτύχθηκαν στα πλαίσια του προγράμματος «ΕΠΕΑΕΚ 2 Πρόγραμμα Αναβάθμισης
Διαβάστε περισσότεραΒασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: μέθοδοι μονοδιάστατης ελαχιστοποίησης Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 6 η /2017 Τι παρουσιάστηκε
Διαβάστε περισσότεραΜέθοδοι μονοδιάστατης ελαχιστοποίησης
Βασικές αρχές μεθόδων ελαχιστοποίησης Μέθοδοι μονοδιάστατης ελαχιστοποίησης Οι μέθοδοι ελαχιστοποίησης είναι επαναληπτικές. Ξεκινώντας από μια αρχική προσέγγιση του ελαχίστου (την συμβολίζουμε ) παράγουν
Διαβάστε περισσότεραΑσκήσεις μελέτης της 4 ης διάλεξης. ), για οποιοδήποτε μονοπάτι n 1
Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 4 ης διάλεξης 4.1. (α) Αποδείξτε ότι αν η h είναι συνεπής, τότε h(n
Διαβάστε περισσότεραΕυρετικές Μέθοδοι. Ενότητα 3: Ευρετικές μέθοδοι αρχικοποίησης και βελτίωσης για το TSP. Άγγελος Σιφαλέρας. Μεταπτυχιακό Εφαρμοσμένης Πληροφορικής
Ευρετικές Μέθοδοι Ενότητα 3: Ευρετικές μέθοδοι αρχικοποίησης και βελτίωσης για το TSP Μεταπτυχιακό Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Διαβάστε περισσότεραΤεχνολογία Συστημάτων Υδατικών Πόρων
Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Τεχνολογία Συστημάτων Υδατικών Πόρων Βελτιστοποίηση:Προχωρημένες Μέθοδοι Χρήστος Μακρόπουλος, Επίκουρος Καθηγητής ΕΜΠ Σχολή Πολιτικών
Διαβάστε περισσότεραΒασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: βελτιστοποίηση με περιορισμούς Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής Διάλεξη 9-10 η /2017 Τι παρουσιάστηκε
Διαβάστε περισσότεραΕυρετικές Μέθοδοι. Ενότητα 6: Αναζήτηση μεταβλητής γειτνίασης. Άγγελος Σιφαλέρας. Μεταπτυχιακό Εφαρμοσμένης Πληροφορικής ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΙ
Ευρετικές Μέθοδοι Ενότητα 6: Αναζήτηση μεταβλητής γειτνίασης Μεταπτυχιακό Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Διαβάστε περισσότεραΕ ανάληψη. Ε αναλαµβανόµενες καταστάσεις. Αναζήτηση µε µερική ληροφόρηση. Πληροφορηµένη αναζήτηση. µέθοδοι αποφυγής
ΠΛΗ 405 Τεχνητή Νοηµοσύνη Πληροφορηµένη Αναζήτηση II Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Ε αναλαµβανόµενες καταστάσεις µέθοδοι αποφυγής Αναζήτηση µε µερική
Διαβάστε περισσότεραΓραμμικός Προγραμματισμός
Γραμμικός Προγραμματισμός Δημήτρης Φωτάκης Προσθήκες (λίγες): Άρης Παγουρτζής Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραμμικός Προγραμματισμός Ελαχιστοποίηση
Διαβάστε περισσότεραΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ
ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Διπλωματική εργασία ΑΛΓΟΡΙΘΜΟΣ ΠΕΡΙΟΡΙΣΜΕΝΗΣ ΑΝΑΖΗΤΗΣΗΣ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΔΡΟΜΟΛΟΓΗΣΗΣ ΟΧΗΜΑΤΩΝ TABU search algorithm for Vehicle Routing Problems
Διαβάστε περισσότεραείναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς όρους όλες οι μεταβλητές είναι μη αρνητικές
Ένα τυχαίο π.γ.π. maximize/minimize z=c x Αx = b x 0 Τυπική μορφή του π.γ.π. maximize z=c x Αx = b x 0 b 0 είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς
Διαβάστε περισσότεραΣτοχαστικές Στρατηγικές
Στοχαστικές Στρατηγικές 5 η ενότητα: Στοχαστικά προβλήματα αντικατάστασης εργαλείων Τμήμα Μαθηματικών, ΑΠΘ Ακαδημαϊκό έτος 2018-2019 Χειμερινό Εξάμηνο Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ &
Διαβάστε περισσότεραΜέθοδοι μονοδιάστατης ελαχιστοποίησης
Βασικές αρχές μεθόδων ελαχιστοποίησης Μέθοδοι μονοδιάστατης ελαχιστοποίησης Οι μέθοδοι ελαχιστοποίησης είναι επαναληπτικές. Ξεκινώντας από μια αρχική προσέγγιση του ελαχίστου (την συμβολίζουμε ) παράγουν
Διαβάστε περισσότεραΕυρετικές Μέθοδοι. Ενότητα 1: Εισαγωγή στις ευρετικές μεθόδους. Άγγελος Σιφαλέρας. Μεταπτυχιακό Εφαρμοσμένης Πληροφορικής ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΙ
Ευρετικές Μέθοδοι Ενότητα 1: Εισαγωγή στις ευρετικές μεθόδους Μεταπτυχιακό Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Διαβάστε περισσότεραιαµέριση - Partitioning
ιαµέριση - Partitioning ιαµέριση ιαµέριση είναι η διαµοίραση αντικειµένων σε οµάδες µε στόχο την βελτιστοποίηση κάποιας συνάρτησης. Στην σύνθεση η διαµέριση χρησιµοποιείται ως εξής: Οµαδοποίηση µεταβλητών
Διαβάστε περισσότεραΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ
ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Dr. Christos D. Tarantilis Associate Professor in Operations Research & Management Science http://tarantilis.dmst.aueb.gr/ ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 1- ΈΡΕΥΝΑ ΜΕΤΑΒΛΗΤΗΣ
Διαβάστε περισσότεραΔιαχείριση Εφοδιαστικής Αλυσίδας ΙΙ
Διαχείριση Εφοδιαστικής Αλυσίδας ΙΙ 1 η Διάλεξη: Αναδρομή στον Μαθηματικό Προγραμματισμό 2019, Πολυτεχνική Σχολή Εργαστήριο Συστημάτων Σχεδιασμού, Παραγωγής και Λειτουργιών Περιεχόμενα 1. Γραμμικός Προγραμματισμός
Διαβάστε περισσότεραΕθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος. Διαχείριση Υδατικών Πόρων
Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Διαχείριση Υδατικών Πόρων Βελτιστοποίηση Προχωρημένες Μέθοδοι Προβλήματα με την «κλασική» βελτιστοποίηση Η στοχική συνάρτηση σπανίως
Διαβάστε περισσότεραΓραμμικός Προγραμματισμός
Γραμμικός Προγραμματισμός ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραμμικός Προγραμματισμός Ελαχιστοποίηση γραμμικής αντικειμενικής συνάρτησης
Διαβάστε περισσότεραΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 5: Παραδείγματα. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής
Ενότητα 5: Παραδείγματα Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας
Διαβάστε περισσότεραΕπίλυση Προβλημάτων. Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης. Αλγόριθμοι ευρετικής αναζήτησης Παιχνίδια δύο αντιπάλων
Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης Παιχνίδια δύο αντιπάλων
Διαβάστε περισσότεραΧρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»
Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» 2 ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα ελάχιστης συνεκτικότητας δικτύου Το πρόβλημα της ελάχιστης
Διαβάστε περισσότεραΑριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2015 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2015 1 / 47 Αριθμητικές Μέθοδοι
Διαβάστε περισσότεραΑκέραιος Γραμμικός Προγραμματισμός
Τμήμα Πληροφορικής & Τηλεπικοινωνιών Πανεπιστήμιο Ιωαννίνων 2018-2019 Ακέραιος Γραμμικός Προγραμματισμός Γκόγκος Χρήστος- Γεωργία Φουτσιτζή Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 12/01/2017 1 Ακέραιος
Διαβάστε περισσότεραΓραμμικός Προγραμματισμός
Γραμμικός Προγραμματισμός ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραμμικός Προγραμματισμός Ελαχιστοποίηση γραμμικής αντικειμενικής συνάρτησης
Διαβάστε περισσότερα6 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων
6 η Διάλεξη Ενδεικτικές λύσεις ασκήσεων 1 Περιεχόμενα 1 η Άσκηση... 3 2 η Άσκηση... 4 3 η Άσκηση... 4 4 η Άσκηση... 4 5 η Άσκηση... 5 6 η Άσκηση... 5 7 η Άσκηση... 5 8 η Άσκηση... 6 Χρηματοδότηση... 7
Διαβάστε περισσότερα5269: Υπολογιστικές Μέθοδοι για Μηχανικούς. Εύρεση Ριζών.
5269: Υπολογιστικές Μέθοδοι για Μηχανικούς Εύρεση Ριζών http://ecourses.chemeng.ntua.gr/courses/computational_methods_for_engineers/ Εύρεση Ριζών Πρόβλημα : Ζητείται x 0, τέτοιο ώστε f(x 0 )=0 x0 : ρίζα,
Διαβάστε περισσότεραΑναγνώριση Προτύπων Ι
Αναγνώριση Προτύπων Ι Ενότητα 2: Δομικά Συστήματα Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Διαβάστε περισσότεραΧΡΗΣΗ ΤΟΥ ΑΛΓΟΡΙΘΜΟΥ ΠΡΟΣΟΜΟΙΩΜΕΝΗΣ ΑΝΟΠΤΗΣΗΣ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΧΡΟΝΟΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΕΡΓΑΣΙΩΝ
ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΧΡΗΣΗ ΤΟΥ ΑΛΓΟΡΙΘΜΟΥ ΠΡΟΣΟΜΟΙΩΜΕΝΗΣ ΑΝΟΠΤΗΣΗΣ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΧΡΟΝΟΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΕΡΓΑΣΙΩΝ ΕΤΟΣ ΕΚΔΟΣΗΣ: 2017 Συγγραφέας: Κωνσταντίνος Κουράκης Επιβλέπων: Γιάννης Μαρινάκης
Διαβάστε περισσότεραΕπίλυση προβληµάτων. Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης
Επίλυση προβληµάτων Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης! Αλγόριθµοι τυφλής αναζήτησης Αλγόριθµοι ευρετικής αναζήτησης Παιχνίδια δύο αντιπάλων Προβλήµατα ικανοποίησης περιορισµών Αλγόριθµοι τυφλής
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ
ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ ΑΚΑΔ. ΥΠΟΤΡΟΦΟΣ Χ. Τσιρώνης ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ - Επίλυση ασκήσεων - Αλγόριθμοι αναζήτησης - Επαναληπτική κάθοδος ΕΠΙΛΥΣΗ ΑΣΚΗΣΕΩΝ ΠΡΑΞΗΣ Θα επιλυθούν
Διαβάστε περισσότεραOn line αλγόριθμοι δρομολόγησης για στοχαστικά δίκτυα σε πραγματικό χρόνο
On line αλγόριθμοι δρομολόγησης για στοχαστικά δίκτυα σε πραγματικό χρόνο Υπ. Διδάκτωρ : Ευαγγελία Χρυσοχόου Επιβλέπων Καθηγητής: Αθανάσιος Ζηλιασκόπουλος Τμήμα Μηχανολόγων Μηχανικών Περιεχόμενα Εισαγωγή
Διαβάστε περισσότεραΣυνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ)
Εικονικές Παράμετροι Μέχρι στιγμής είδαμε την εφαρμογή της μεθόδου Simplex σε προβλήματα όπου το δεξιό μέλος ήταν θετικό. Δηλαδή όλοι οι περιορισμοί ήταν της μορφής: όπου Η παραδοχή ότι b 0 μας δίδει τη
Διαβάστε περισσότεραΣυστήματα Επιχειρηματικής Ευφυίας. Εισαγωγικές έννοιες Υπολογιστικής Νοημοσύνης
Συστήματα Επιχειρηματικής Ευφυίας Εισαγωγικές έννοιες Υπολογιστικής Νοημοσύνης Διάρθρωση του μαθήματος Το μάθημα αποτελείται από τρείς τρίωρες διαλέξεις και ένα επαναληπτικό τρίωρο. Οι διαλέξεις αφορούν
Διαβάστε περισσότεραΠανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής
Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής Πρόγραμμα Μεταπτυχιακών Σπουδών «Προηγμένα Συστήματα Πληροφορικής» Μεταπτυχιακή Διατριβή Τίτλος Διατριβής Εφαρμογές του αλγορίθμου της νυχτερίδας σε πολυκριτηριακά
Διαβάστε περισσότεραΠροσεγγιστικοί Αλγόριθμοι βασισμένοι σε Γραμμικό Προγραμματισμό
Προσεγγιστικοί Αλγόριθμοι βασισμένοι σε Γραμμικό Προγραμματισμό ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αντιμετώπιση NP- υσκολίας Αν P NP, όχι
Διαβάστε περισσότεραΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ
ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΛΥΣΗ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΟΜΑΔΑΣ ΜΕ ΧΩΡΗΤΙΚΟΤΗΤΑ ΜΕ ΧΡΗΣΗ ΑΛΓΟΡΙΘΜΟΥ ΜΕΤΑΒΛΗΤΗΣ ΓΕΙΤΟΝΙΑΣ ΑΝΑΖΗΤΗΣΗΣ Solving Capacitated Team Orienteering
Διαβάστε περισσότεραΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ: «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ:
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ: «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ: ΥΒΡΙ ΟΠΟΙΗΣΗ ΜΕΤΑΕΥΡΕΤΙΚΟΥ ΑΛΓΟΡΙΘΜΟΥ ΠΥΓΟΛΑΜΠΙ ΑΣ ΜΕ ΧΡΗΣΗ ΑΛΓΟΡΙΘΜΟΥ ΑΝΑΖΗΤΗΣΗΣ ΑΡΜΟΝΙΑΣ
Διαβάστε περισσότεραΜΕΜ251 Αριθμητική Ανάλυση
ΜΕΜ251 Αριθμητική Ανάλυση Διάλεξη 03, 12 Φεβρουαρίου 2018 Μιχάλης Πλεξουσάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Περιεχόμενα 1. Επαναληπτικές μέθοδοι - Γενική θεωρία 2. Η μέθοδος του Newton
Διαβάστε περισσότεραΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Διαβάστε περισσότεραΣχεδίαση και Ανάλυση Αλγορίθμων
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 4.0 Επιλογή Αλγόριθμοι Επιλογής Select και Quick-Select Σταύρος Δ. Νικολόπουλος 2016-17 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros
Διαβάστε περισσότερακαθ. Βασίλης Μάγκλαρης
ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα 005 - Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π. Ενισχυτική Μάθηση - Δυναμικός Προγραμματισμός: 1. Markov Decision Processes 2. Bellman s Optimality Criterion 3. Αλγόριθμος
Διαβάστε περισσότεραz = c 1 x 1 + c 2 x c n x n
Τεχνολογικό Εκπαιδευτικό Ιδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Γραμμικός Προγραμματισμός & Βελτιστοποίηση Δρ. Δημήτρης Βαρσάμης Καθηγητής Εφαρμογών Δρ. Δημήτρης Βαρσάμης Μάρτιος
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις Πέμπτη 27 Ιουνίου 2013 10:003:00 Έστω το πάζλ των οκτώ πλακιδίων (8-puzzle)
Διαβάστε περισσότεραΕφαρμόζονται σε προβλήματα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει την αξιολόγηση των καταστάσεων του χώρου αναζήτησης.
Ανάλογα με το αν ένας αλγόριθμος αναζήτησης χρησιμοποιεί πληροφορία σχετική με το πρόβλημα για να επιλέξει την επόμενη κατάσταση στην οποία θα μεταβεί, οι αλγόριθμοι αναζήτησης χωρίζονται σε μεγάλες κατηγορίες,
Διαβάστε περισσότεραΣτοχαστικές Στρατηγικές
Στοχαστικές Στρατηγικές 5 η ενότητα: Στοχαστικά προβλήματα αντικατάστασης εργαλείων (2) Τμήμα Μαθηματικών, ΑΠΘ Ακαδημαϊκό έτος 2018-2019 Χειμερινό Εξάμηνο Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ
Διαβάστε περισσότεραΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ
ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΤΟΜΕΑΣ: ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «Μεθοδολογία επίλυσης προβλημάτων χρονοπρογραμματισμού εργασιών με στοχαστικό χρόνο άφιξης ή
Διαβάστε περισσότεραΕπίλυση Προβλημάτων 1
Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης
Διαβάστε περισσότεραΒελτιστοποίηση κατανομής πόρων συντήρησης οδοστρωμάτων Πανεπιστήμιο Πατρών - Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών
Βελτιστοποίηση κατανομής πόρων συντήρησης οδοστρωμάτων Πανεπιστήμιο Πατρών - Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών Πάτρα 17 - Μαΐου - 2017 Παναγιώτης Τσίκας Σκοπός του προβλήματος Σκοπός του προβλήματος,
Διαβάστε περισσότεραΜΕΘΟΔΟΣ ΣΤΟΧΑΣΤΙΚΗΣ ΑΝΟΠΤΗΣΗΣ ΜΕ ΕΞΟΡΥΞΗ ΚΑΙ ΑΞΙΟΠΟΙΗΣΗ ΔΕΔΟΜΕΝΩΝ ΓΙΑ ΤΗΝ ΑΠΟΤΕΛΕΣΜΑΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΔΙΕΡΓΑΣΙΩΝ ΥΠΟ ΑΒΕΒΑΙΟΤΗΤΑ
ΜΕΘΟΔΟΣ ΣΤΟΧΑΣΤΙΚΗΣ ΑΝΟΠΤΗΣΗΣ ΜΕ ΕΞΟΡΥΞΗ ΚΑΙ ΑΞΙΟΠΟΙΗΣΗ ΔΕΔΟΜΕΝΩΝ ΓΙΑ ΤΗΝ ΑΠΟΤΕΛΕΣΜΑΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΔΙΕΡΓΑΣΙΩΝ ΥΠΟ ΑΒΕΒΑΙΟΤΗΤΑ Α.Ι. Παπαδόπουλος, Π. Σεφερλής Ινστιτούτο Τεχνικής Χημικών Διεργασιών,
Διαβάστε περισσότεραΠροβλήματα Μεταφορών (Transportation)
Προβλήματα Μεταφορών (Transportation) Παραδείγματα Διατύπωση Γραμμικού Προγραμματισμού Δικτυακή Διατύπωση Λύση Γενική Μέθοδος Simplex Μέθοδος Simplex για Προβλήματα Μεταφοράς Παράδειγμα: P&T Co ΗεταιρείαP&T
Διαβάστε περισσότεραΣυνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ)
Ανάλυση Ευαισθησίας. Έχοντας λύσει ένας πρόβλημα ΓΠ θα πρέπει να αναρωτηθούμε αν η λύση έχει φυσική σημασία. Είναι επίσης πολύ πιθανό να έχουμε χρησιμοποιήσει δεδομένα για τα οποία δεν είμαστε σίγουροι
Διαβάστε περισσότεραΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ με το EXCEL
ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ με το EXCEL ΠΡΟΒΛΗΜΑ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ( Μαθηματικών Γ Γυμνασίου έκδοση ΙΑ 99 σελ. 236 / Έχει γίνει μετατροπή των δρχ. σε euro.) Ένας κτηνοτρόφος πρόκειται να αγοράσει
Διαβάστε περισσότεραΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Επιστήμη των Αποφάσεων, Διοικητική Επιστήμη
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Επιστήμη των Αποφάσεων, Διοικητική Επιστήμη 5 ο Εξάμηνο 4 ο ΜΑΘΗΜΑ Δημήτρης Λέκκας Επίκουρος Καθηγητής dlekkas@env.aegean.gr Τμήμα Στατιστικής & Αναλογιστικών-Χρηματοοικονομικών Μαθηματικών
Διαβάστε περισσότεραΕπιχειρησιακή Έρευνα I
Επιχειρησιακή Έρευνα I Κωστής Μαμάσης Παρασκευή 09:00 12:00 Σημειώσεις των Α. Platis, K. Mamasis Περιεχόμενα 1. Εισαγωγή 2. Γραμμικός Προγραμματισμός 1. Μοντελοποίηση 2. Μέθοδος Simplex (C) Copyright Α.
Διαβάστε περισσότεραΠροσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα
Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αντιμετώπιση NP- υσκολίας Αν P NP, όχι αλγόριθμος
Διαβάστε περισσότεραΠροβλήματα, αλγόριθμοι, ψευδοκώδικας
Προβλήματα, αλγόριθμοι, ψευδοκώδικας October 11, 2011 Στο μάθημα Αλγοριθμική και Δομές Δεδομένων θα ασχοληθούμε με ένα μέρος της διαδικασίας επίλυσης υπολογιστικών προβλημάτων. Συγκεκριμένα θα δούμε τι
Διαβάστε περισσότερα4 η ΕΝΟΤΗΤΑ ΜΕΤΑΕΥΡΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΕΠΙΛΥΣΗΣ ΠΡΟΒΛΗΜΑΤΩΝ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΙΣΑΓΩΓΗ ΣΤΗN ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ 4 η ΕΝΟΤΗΤΑ ΜΕΤΑΕΥΡΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΕΠΙΛΥΣΗΣ ΠΡΟΒΛΗΜΑΤΩΝ ΕΝΟΣ ΚΡΙΤΗΡΙΟΥ Μ. Καρλαύτης Ν. Λαγαρός Άδεια Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραmin f(x) x R n b j - g j (x) = s j - b j = 0 g j (x) + s j = 0 - b j ) min L(x, s, λ) x R n λ, s R m L x i = 1, 2,, n (1) m L(x, s, λ) = f(x) +
KΕΦΑΛΑΙΟ 4 Κλασσικές Μέθοδοι Βελτιστοποίησης Με Περιορισµούς Ανισότητες 4. ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΠΕΡΙΟΡΙΣΜΟΥΣ ΑΝΙΣΟΤΗΤΕΣ Ζητούνται οι τιµές των µεταβλητών απόφασης που ελαχιστοποιούν την αντικειµενική συνάρτηση
Διαβάστε περισσότεραΑναγνώριση Προτύπων Ι
Αναγνώριση Προτύπων Ι Ενότητα 3: Στοχαστικά Συστήματα Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ
ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ Χ. Τσιρώνης ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ - Αριθμητικές τεχνικές - Επισκόπηση αλγορίθμων - Optimization in MATLAB ΑΡΙΘΜΗΤΙΚΕΣ ΤΕΧΝΙΚΕΣ Εφαρμόζονται κυρίως σε προβλήματα
Διαβάστε περισσότεραΛύσεις θεμάτων Επιχειρησιακής Έρευνας (17/09/2014)
Λύσεις θεμάτων Επιχειρησιακής Έρευνας (17/09/2014) Θέμα 1 Μια επιχείρηση χρησιμοποιεί 3 πρώτες ύλες Α, Β, Γ για να παράγει 2 προϊόντα Π1 και Π2. Για την παραγωγή μιας μονάδας προϊόντος Α απαιτούνται 1
Διαβάστε περισσότεραΕπιχειρησιακή Έρευνα
Επιχειρησιακή Έρευνα Ενότητα 7: Επίλυση με τη μέθοδο Simplex (1 ο μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)
Διαβάστε περισσότεραΒασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: βελτιστοποίηση χωρίς περιορισμούς Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 7-8 η /2017 Τι παρουσιάστηκε
Διαβάστε περισσότεραΚεφάλαιο 0: Εισαγωγή
Κεφάλαιο : Εισαγωγή Διαφορικές εξισώσεις Οι Μερικές Διαφορικές Εξισώσεις (ΜΔΕ) αλλά και οι Συνήθεις Διαφορικές Εξισώσεις (ΣΔΕ) εμφανίζονται παντού στις επιστήμες από τη μηχανική μέχρι τη βιολογία Τις περισσότερες
Διαβάστε περισσότεραγια NP-Δύσκολα Προβλήματα
Προσεγγιστικοί Αλγόριθμοι για NP-Δύσκολα Προβλήματα Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο
Διαβάστε περισσότεραΕπαναληπτικές μέθοδοι
Επαναληπτικές μέθοδοι Η μέθοδος της διχοτόμησης και η μέθοδος Regula Fals που αναφέραμε αξιοποιούσαν το κριτήριο του Bolzano, πραγματοποιώντας διαδοχικές υποδιαιρέσεις του διαστήματος [α, b] στο οποίο,
Διαβάστε περισσότερα