Μέθοδοι μονοδιάστατης ελαχιστοποίησης

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Μέθοδοι μονοδιάστατης ελαχιστοποίησης"

Transcript

1 Βασικές αρχές μεθόδων ελαχιστοποίησης Μέθοδοι μονοδιάστατης ελαχιστοποίησης Οι μέθοδοι ελαχιστοποίησης είναι επαναληπτικές. Ξεκινώντας από μια αρχική προσέγγιση του ελαχίστου (την συμβολίζουμε ) παράγουν διαδοχικές προσεγγίσεις, που συγκλίνουν στο ελάχιστο. Υπάρχουν δύο βασικές κατηγορίες μεθόδων: Μέθοδοι που δεν χρησιμοποιούν τις παραγώγους, αλλά μόνο τις τιμές της συνάρτησης. Μέθοδοι που χρησιμοποιούν τις παραγώγους (πρώτες ή/και δεύτερες) της συνάρτησης. Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση Αναζήτηση με διαμέριση Αναζήτηση με διαμέριση Δίνεται η συνάρτηση και ένα διάστημα, μέσα στο οποίο γνωρίζουμε ότι βρίσκεται το ελάχιστο. h=( )/Μ Αναζήτηση με διαμέριση: Χωρίζουμε το διάστημα, σε ίσα υποδιαστήματα το καθένα με μήκος Ονομάζουμε τα σημεία,,, Το κάθε σημείο δίνεται από: Υπολογίζουμε την τιμή της συνάρτησης σε κάθε σημείο: Επιλέγουμε ως ελάχιστο το σημείο που έχει την μικρότερη τιμή Σφάλμα στην εύρεση του ελαχίστου Η αναζήτηση με διαμέριση βρίσκει μια προσεγγιστική λύση. Τι πρέπει να κάνουμε για να βρούμε μια ακριβέστερη προσέγγιση του ελαχίστου; Πυκνότερη διαμέριση. Ποιο είναι το σφάλμα που κάνουμε χρησιμοποιώντας αυτή τη μέθοδο; Πόσες διαμερίσεις χρειάζονται για να βρούμε το ελάχιστο με προκαθορισμένο σφάλμα ; Παράδειγμα: Αν 0,, Ποιο είναι το μικρότερο δυνατό σφάλμα που μπορούμε να απαιτήσουμε ; Εξαρτάται από τη σχετική ακρίβεια του υπολογιστή. Απλή ακρίβεια 0 Διπλή ακρίβεια 0 Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 4

2 Αναζήτηση με διαμέριση Υπολογιστικός χρόνος που απαιτείται Πως μετράμε τον υπολογιστικό χρόνο που απαιτεί η αναζήτηση με διαμέριση; Πως συγκρίνουμε δύο διαφορετικούς αλγορίθμους για να βρούμε τον πιο αποδοτικό ; Σε όλους τους αλγορίθμους ελαχιστοποίησης γίνονται δύο ειδών υπολογισμοί: Υπολογισμοί της αντικειμενικής συνάρτησης. Λειτουργίες που αφορούν καθαυτό τον αλγόριθμο (πχ. εύρεση της μικρότερης τιμής) Θεωρούμε ότι ο χρόνος που απαιτείται για λειτουργίες του αλγορίθμου είναι μικρός. Χρησιμοποιούμε το πλήθος υπολογισμών της αντικειμενικής συνάρτησης για να αποτιμήσουμε την αποδοτικότητα κάθε αλγορίθμου ελαχιστοποίησης. Για μια διαμέριση διαστημάτων απαιτούνται υπολογισμοί της συνάρτησης Αναζήτηση με διαμέριση Γενίκευση σε πολλές διαστάσεις Θεωρήστε μια συνάρτηση μεταβλητών, Πρέπει να κατασκευάσουμε διαμέριση στον άξονα και στον άξονα Συνολικά απαιτούνται υπολογισμοί της συνάρτησης. Παράδειγμα: Πόσος χρόνος απαιτείται για μια συνάρτηση 5 μεταβλητών με διαμέριση 000 διαστημάτων σε κάθε μεταβλητή, όταν ένας υπολογισμός της συνάρτησης διαρκεί 0.0ms ; Οι υπολογισμοί της συνάρτησης που απαιτούνται είναι: Ο συνολικός χρόνος είναι: 0 0.0ms0 s 6 dys Η αναζήτηση με διαμέριση είναι απαγορευτική για πολλές διαστάσεις. Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 5 Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 6 Αναζήτηση με διαμέριση Διαστήματα αβεβαιότητας Πλεονεκτήματα Εύκολη υλοποίηση Χρησιμοποιεί μόνο τις τιμές της συνάρτησης Μειονεκτήματα Απαιτούνται πολλοί υπολογισμοί της συνάρτησης για μικρή έστω ακρίβεια Πρακτικά δεν μπορεί να χρησιμοποιηθεί σε πολλές διαστάσεις Διάστημα αβεβαιότητας Ένα διάστημα, που φράσει τη θέση του ελαχίστου, δηλαδή f ( x ) x * c x Το διάστημα, συνοδεύεται από ένα τρίτο σημείο (σημείο ελέγχου), που βρίσκεται εντός του διαστήματος και τέτοιο ώστε: Γράφουμε:,, Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 7 Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 8

3 Προσέγγιση του ελαχίστου σε διάστημα αβεβαιότητας Αν το μήκος του διαστήματος είναι μικρό, τότε μια καλή προσέγγιση του ελαχιστοποιητή είναι: με σφάλμα (το πολύ): αλλιώς πρέπει να μικρύνουμε το διάστημα αβεβαιότητας μέχρι να πετύχουμε ικανοποιητικό σφάλμα. Μείωση του διαστήματος αβεβαιότητας Χρησιμοποιώντας μόνο τιμές της συνάρτησης f ( x ) Θεωρούμε δύο νέα σημεία, εντός του διαστήματος, τέτοια ώστε Υπολογίζουμε τις τιμές της συνάρτησης, Συγκρίνουμε τις τιμές, και απορρίπτουμε ένα τμήμα του διαστήματος. f ( x ) f ( x) f ( x ) f ( x ) f ( x) x x x x x x Νέο διάστημα αβεβαιότητας:, Νέο διάστημα αβεβαιότητας:, Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 9 Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 0 Μείωση του διαστήματος αβεβαιότητας Αλγόριθμος Δίνεται η συνάρτηση και διάστημα αβεβαιότητας,. Θεωρούμε δύο νέα σημεία, εντός του διαστήματος, τέτοια ώστε. Υπολογίζουμε τις τιμές της συνάρτησης,. Έλεγχος. Αν τότε θέτουμε ως νέο διάστημα το,. Αν τότε θέτουμε ως νέο διάστημα το, 4. Επαναλαμβάνουμε από το βήμα Κριτήριο τερματισμού Η διαδικασία τερματίζεται όταν το σφάλμα γίνει μικρότερο από μια προκαθορισμένη τιμή, δηλαδή: σφάλμα Ο έλεγχος γίνεται πρίν την έναρξη κάθε επανάληψης (πριν πάρουμε τα δύο νέα σημεία) Πότε τερματίζεται η διαδικασία ; Πως επιλέγουμε τα εσωτερικά σημεία ; Πως μετράμε την απόδοση του αλγορίθμου ; Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση

4 Πως επιλέγουμε τα εσωτερικά σημεία Ο τρόπος επιλογής των δύο εσωτερικών σημείων οδηγεί σε αλγορίθμους με διαφορετικές ιδιότητες: Αναζήτηση ίσων διαστημάτων Αναζήτηση διχοτόμησης Αναζήτηση Fioncci Αναζήτηση χρυσής τομής Πως μετράμε την αποδοτικότητα Για να αξιολογήσουμε τους διαφορετικούς τρόπους επιλογής των διαφορετικών σημείων ορίζουμε το συντελεστή μείωσης του διαστήματος αβεβαιότητας: Μήκος τελικού διαστήματος μετά από n κλήσεις της fx Μήκος αρχικού διαστήματος Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 4 Αναζήτηση ίσων διαστημάτων Αναζήτηση ίσων διαστημάτων Διαλέγουμε τα εσωτερικά σημεία έτσι ώστε το διάστημα αβεβαιότητας να διαιρείται σε τρία ίσα τμήματα, δηλαδή: Επανάληψη 0 Αναπαράσταση του διαστήματος αβεβαιότητας x x Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 5 Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 6

5 Αναζήτηση ίσων διαστημάτων Πως μικραίνει το διάστημα αβεβαιότητας Αναζήτηση ίσων διαστημάτων Πόσες επαναλήψεις χρειαζόμαστε ; Επανάληψη Μήκος διαστήματος Πλήθος κλήσεων της σφάλμα μήκος τελικού διαστήματος log log log log log log Αν προκαθορίσουμε το μέγιστο αποδεκτό σφάλμα τότε το πλήθος των επαναλήψεων: Εξαρτάται μόνο από το μήκος του αρχικού διαστήματος αβεβαιότητας είναι ίδιο για οποιοδήποτε συνάρτηση μπορεί να καθοριστεί εκ των προτέρων Πχ. Για μήκος αρχικού διαστήματος και 0 παίρνουμε Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 7 Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 8 Αναζήτηση ίσων διαστημάτων Συντελεστής απόδοσης Μήκος διαστήματος μετά από n κλήσεις της fx Αρχικό μήκος διαστήματος Επειδή κάθε επανάληψη χρειάζεται δύο υπολογισμούς της, μετά από n κλήσεις έχουν γίνει επαναλήψεις. Μετά από επαναλήψεις το μήκος του διαστήματος αβεβαιότητας είναι: / Συνεπώς ο συντελεστής απόδοσης είναι: / / Αναζήτηση διχοτόμησης Διαλέγουμε τα εσωτερικά σημεία κοντά στο μέσο του διαστήματος αβεβαιότητας x x Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 9 Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 0

6 Αναζήτηση διχοτόμησης Αναζήτηση διχοτόμησης Επανάληψη Αναπαράσταση του διαστήματος αβεβαιότητας Πως μικραίνει το διάστημα αβεβαιότητας 0 Επανάληψη Μήκος διαστήματος Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση Αναζήτηση διχοτόμησης Πως μικραίνει το διάστημα αβεβαιότητας Μετά από επαναλήψεις το μήκος του διαστήματος αβεβαιότητας είναι: 4 Όμως ισχύει ότι (ταυτότητα): Στην περίπτωσή μας Συνεπώς: Αναζήτηση διχοτόμησης Πως μικραίνει το διάστημα αβεβαιότητας Τελικά το μήκος του διαστήματος μετά από επαναλήψεις είναι: Παρατηρήστε ότι όταν τότε το μήκος Συνεπώς το τελικό διάστημα αβεβαιότητας δεν μπορεί να γίνει μικρότερο από 4 Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 4

7 Αναζήτηση διχοτόμησης Πόσες επαναλήψεις χρειαζόμαστε ; σφάλμα μήκος τελικού διαστήματος Δεν μπορούμε να λύσουμε αναλυτικά την ανωτέρω εξίσωση ως προς Μπορούμε όμως:. Να κάνουμε τον έλεγχο για το σφάλμα στην αρχή κάθε επανάληψης.. Να θεωρήσουμε ότι το είναι μικρό, οπότε γράφουμε: log log Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 5 log log log log Πχ. Για μήκος αρχικού διαστήματος και 0 βρίσκουμε 9 Αναζήτηση διχοτόμησης Συντελεστής απόδοσης Μήκος διαστήματος μετά από n κλήσεις της fx Αρχικό μήκος διαστήματος Επειδή κάθε επανάληψη χρειάζεται δύο υπολογισμούς της, μετά από n κλήσεις έχουν γίνει επαναλήψεις. Μετά από επαναλήψεις το μήκος του διαστήματος αβεβαιότητας είναι: / Συνεπώς ο συντελεστής απόδοσης είναι: / / Αναζήτηση διχοτόμησης Αναζήτηση ίσων διαστημάτων Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 6 Εύρεση αρχικού διαστήματος αβεβαιότητας Εύρεση αρχικού διαστήματος αβεβαιότητας. Δίνεται μια τιμή εκκίνησης και βήμα. Υπολογίζουμε την.. Παίρνουμε ένα δεύτερο σημείο και υπολογίζουμε την. 4. Επαναλαμβάνουμε για,4,. Διπλασιάζουμε το βήμα. Παίρνουμε ένα νέο σημείο c. Ελέγχουμε αν τα σημεία,, αποτελούν διάστημα αβεβαιότητας. f ( x ) x x x x 4 Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 7 4 Τι γίνεται αν ; x Μείωση του διαστήματος αβεβαιότητας: Τετραγωνική Η βασική ιδέα Αφού ξέρουμε τις τιμές της συνάρτησης σε τρία σημεία,, μπορούμε να προσεγγίσουμε τη συνάρτηση με μια παραβολή που διέρχεται από τα τρία αυτά σημεία. Η παραβολή έχει εξίσωση: όπου τα,, πρέπει να προσδιοριστούν Το ελάχιστο της παραβολής είναι: Οι άγνωστοι συντελεστές προσδιορίζονται από: Σημείο ελέγχου Διάστημα αβεβαιότητας Γραμμικό σύστημα τριών εξισώσεων με τρεις αγνώστους Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 8

8 Μείωση του διαστήματος αβεβαιότητας: Τετραγωνική Λύνοντας το σύστημα λαμβάνουμε τους συντελεστές,,. Το ελάχιστο της παραβολής είναι: όπου συμβολίζουμε: Στη συνέχεια ανάλογα με τη θέση του ελαχίστου απορρίπτουμε ένα τμήμα του διαστήματος αβεβαιότητας. Μείωση του διαστήματος αβεβαιότητας: Τετραγωνική ~ x c f ( ~ x ) f ( c) f ( ~ x ) f ( c) ~ x c x~ c c ~ x Νέο διάστημα: [, c], ~ x Νέο διάστημα: [ c, ], ~ x f ( ~ x ) f ( c) f ( ~ x ) f ( c) x~ c c ~ x Νέο διάστημα: [ ~ x, ], c Νέο διάστημα: [, ~ x], c Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 9 Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 0 Μείωση του διαστήματος αβεβαιότητας: Τετραγωνική Αλγόριθμος. Δίνονται ως είσοδος το αρχικό διάστημα αβεβαιότητας,,. Έλεγχος αν ικανοποιούνται τα κριτήρια τερματισμού. Υπολογίζουμε το ελάχιστο της παραβολής και το 4. Έλεγχος της θέσης του σε σχέση με το. Εάν Εάν τότε το νέο διάστημα είναι:,, Εάν τότε το νέο διάστημα είναι:,,. Εάν Εάν τότε το νέο διάστημα είναι:,, Εάν τότε το νέο διάστημα είναι:,, 5. Επαναλαμβάνουμε από το βήμα. Μείωση του διαστήματος αβεβαιότητας: Τετραγωνική Κριτήρια τερματισμού Εφαρμόζονται κατά περίπτωση ένα ή περισσότερα κριτήρια τερματισμού της διαδικασίας.. Αν το μέγεθος του διαστήματος αβεβαιότητας γίνει μικρότερο από ένα προκαθορισμένο όριο. Η σχετική μείωση της τιμής της συνάρτησης είναι μικρότερη από ένα προκαθορισμένο όριο. Ο συνολικός αριθμός κλήσεων της συνάρτησης ξεπερνά ένα προκαθορισμένο όριο Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση

9 Μείωση του διαστήματος αβεβαιότητας: Τετραγωνική Πόσες επαναλήψεις χρειάζονται ; Το πλήθος των επαναλήψεων που απαιτούνται για να πετύχουμε μια προκαθορισμένη ακρίβεια: Εξαρτάται από τη μορφολογία της συνάρτησης Δεν μπορεί να προσδιοριστεί εκ των προτέρων Σύκριση με τις προηγούμενες μεθόδους μείωσης του διαστήματος αβεβαιότητας είναι εφικτή μόνο αφού ολοκληρωθεί ο αλγόριθμος. Μείωση του διαστήματος αβεβαιότητας: Κυβική Μπορούμε να χρησιμοποιήσουμε πολυώνυμο υψηλότερης τάξης, πχ κυβικό Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 4 Μείωση του διαστήματος αβεβαιότητας: Χρήση της πρώτης παραγώγου Μείωση του διαστήματος αβεβαιότητας: Διχοτόμηση (με χρήση της πρώτης παραγώγου) Αλγόριθμος. Χωρίζουμε το διάστημα σε δύο ίσα μέρη. Υπολογίζουμε την παράγωγο. Έλεγχος κριτηρίων τερματισμού 4. Έλεγχος. Εάν 0 και 0 το νέο διάστημα είναι,. Εάν 0 και 0 το νέο διάστημα είναι, 5. Eπαναλαμβάνουμε από το βήμα m Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 5 Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 6

10 Η μέθοδος Newton για εύρεση ριζών εξίσωσης Ανάπτυγμα σε σειρά Tylor Θέλουμε να λύσουμε τη μη γραμμική εξίσωση 0 Η βασική ιδέα: Ξεκινάμε με μια αρχική προσέγγιση της λύσης Κατόπιν ψάχνουμε ένα βήμα τέτοιο ώστε το σημείο να είναι η λύση, δηλαδή: 0 φ(x) 0 x x 0 Λύση Sir Isc Newton Ανάπτυγμα Tylor της συνάρτησης γύρω από το σημείο!! ή αλλιώς! Ανάπτυγμα της συνάρτησης σε απόσταση από το σημείο Προκύπτει αν θέσουμε στο παραπάνω όπου το και όπου το! ή αλλιώς! Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 7 Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 8 Η μέθοδος Newton για εύρεση ριζών εξίσωσης Γράφουμε τη σειρά Tylor της κρατώντας μόνο τον όρο πρώτης τάξης! Θέλουμε ένα βήμα τέτοιο ώστε να φτάσουμε στη λύση: 0 Αντικαθιστούμε από τη σειρά Tylor: 0 Βήμα Newton για επίλυση εξισώσεων Η μέθοδος Newton για εύρεση ριζών εξίσωσης Αλγόριθμος:. Δίνεται ή συνάρτηση και αρχικό σημείο. Επαναλαμβάνουμε για,,. Ελέγχουμε τα κριτήρια τερματισμού. Υπολογίζουμε το βήμα Newton: / c. Βρίσκουμε το νέο σημείο: Συνήθη κριτήρια τερματισμού: Το πλήθος των επαναλήψεων ξεπερνάει ένα προκαθορισμένο αριθμό Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 9 Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 40

11 Η μέθοδος Newton για ελαχιστοποίηση Η μέθοδος Newton για ελαχιστοποίηση Εάν θέλουμε να βρούμε ελάχιστο της συνάρτησης εφαρμόζουμε τη μέθοδο Newton για να λύσουμε τη μη γραμμική εξίσωση: f (x) Ελάχιστο της συνάρτησης Αλγόριθμος:. Δίνεται ή συνάρτηση και αρχικό σημείο. Επαναλαμβάνουμε για,, 0. Ελέγχουμε τα κριτήρια τερματισμού Γράφουμε το ανάπτυγμα Tylor της κρατώντας μόνο τον όρο πρώτης τάξης: Το βήμα πρέπει να είναι τέτοιο ώστε να μας οδηγεί στη λύση: f '( x) Ρίζα της παραγώγου. Υπολογίζουμε το βήμα Newton: / c. Βρίσκουμε το νέο σημείο: Συνήθη κριτήρια τερματισμού: 0 0 Το πλήθος των επαναλήψεων ξεπερνάει ένα προκαθορισμένο αριθμό Βήμα Newton για ελαχιστοποίηση Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 4 Υπολογιστικές Μέθοδοι Πολύπλοκων Συστημάτων Μονοδιάστατη ελαχιστοποίηση 4

Μέθοδοι πολυδιάστατης ελαχιστοποίησης

Μέθοδοι πολυδιάστατης ελαχιστοποίησης Μέθοδοι πολυδιάστατης ελαχιστοποίησης με παραγώγους Μέθοδοι πολυδιάστατης ελαχιστοποίησης Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc64.materials.uoi.gr/dpapageo

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2014 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2014 1 / 42 Αριθμητικές Μέθοδοι

Διαβάστε περισσότερα

Επαναληπτικές μέθοδοι

Επαναληπτικές μέθοδοι Επαναληπτικές μέθοδοι Η μέθοδος της διχοτόμησης και η μέθοδος Regula Fals που αναφέραμε αξιοποιούσαν το κριτήριο του Bolzano, πραγματοποιώντας διαδοχικές υποδιαιρέσεις του διαστήματος [α, b] στο οποίο,

Διαβάστε περισσότερα

Σημειώσεις για το μάθημα Υπολογιστικές μέθοδοι πολύπλοκων συστημάτων

Σημειώσεις για το μάθημα Υπολογιστικές μέθοδοι πολύπλοκων συστημάτων ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΕΠΙΣΤΗΜΗΣ ΥΛΙΚΩΝ Σημειώσεις για το μάθημα Υπολογιστικές μέθοδοι πολύπλοκων συστημάτων Δ. Γ. Παπαγεωργίου ΙΩΑΝΝΙΝΑ 2016 Περιεχόμενα 1 Εισαγωγή 5 1.1 Ιστορική αναδρομή.....................................

Διαβάστε περισσότερα

Εισαγωγικές έννοιες. Κατηγορίες προβλημάτων (σε μια διάσταση) Προβλήματα εύρεσης μεγίστου. Συμβολισμοί

Εισαγωγικές έννοιες. Κατηγορίες προβλημάτων (σε μια διάσταση) Προβλήματα εύρεσης μεγίστου. Συμβολισμοί Κατηγορίες προβλημάτων (σε μια διάσταση) Εισαγωγικές έννοιες Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo Το πρόβλημα

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Με τον όρο μη γραμμικές εξισώσεις εννοούμε εξισώσεις της μορφής: f( ) 0 που προέρχονται από συναρτήσεις f () που είναι μη γραμμικές ως προς. Περιέχουν δηλαδή

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2015 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2015 1 / 47 Αριθμητικές Μέθοδοι

Διαβάστε περισσότερα

2.1 Αριθμητική επίλυση εξισώσεων

2.1 Αριθμητική επίλυση εξισώσεων . Αριθμητική επίλυση εξισώσεων Στο κεφάλαιο αυτό διαπραγματεύεται μεθόδους εύρεσης των ριζών εξισώσεων γραμμικών ή μη-γραμμικών για τις οποίες δεν υπάρχουν αναλυτικές 5 4 3 εκφράσεις. Παραδείγματα εξισώσεων

Διαβάστε περισσότερα

Non Linear Equations (2)

Non Linear Equations (2) Non Linear Equations () Τρίτη, 17 Φεβρουαρίου 015 5:14 μμ 15.0.19 Page 1 15.0.19 Page 15.0.19 Page 3 15.0.19 Page 4 15.0.19 Page 5 15.0.19 Page 6 15.0.19 Page 7 15.0.19 Page 8 15.0.19 Page 9 15.0.19 Page

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Σχολή Μηχανολόγων Μηχανικών ΕΜΠ 4 ο Εξάμηνο ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ. Πρώτη Ενότητα Αριθμητική Επίλυση Μη-Γραμμικών Εξισώσεων

Σχολή Μηχανολόγων Μηχανικών ΕΜΠ 4 ο Εξάμηνο ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ. Πρώτη Ενότητα Αριθμητική Επίλυση Μη-Γραμμικών Εξισώσεων Σχολή Μηχανολόγων Μηχανικών ΕΜΠ 4 ο Εξάμηνο ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ Πρώτη Ενότητα Αριθμητική Επίλυση Μη-Γραμμικών Εξισώσεων ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, Κ. ΓΙΑΝΝΑΚΟΓΛΟΥ, Σχ. Μηχ. Μηχ. ΕΜΠ 1 Αριθμητική Επίλυση Μη-Γραμμικών

Διαβάστε περισσότερα

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» 2 ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα ελάχιστης συνεκτικότητας δικτύου Το πρόβλημα της ελάχιστης

Διαβάστε περισσότερα

ΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ

ΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ ΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ Βασίζεται στην εφαρμογή των παρακάτω βημάτων:. Το φυσικό πεδίο αναπαριστάται με ένα σύνολο απλών γεωμετρικών σχημάτων που ονομάζονται Πεπερασμένα Στοιχεία.. Σε κάθε στοιχείο

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2015 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2015 1 / 68 Αριθμητικές Μέθοδοι

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Απαντήσεις: ΠΡΟΟΔΟΣ 1, Επιμέλεια λύσεων: Γιώργος Τάτσιος

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Απαντήσεις: ΠΡΟΟΔΟΣ 1, Επιμέλεια λύσεων: Γιώργος Τάτσιος ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 6-7, 5 Ο ΕΞΑΜΗΝΟ ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Απαντήσεις: ΠΡΟΟΔΟΣ, --6 Επιμέλεια λύσεων: Γιώργος Τάτσιος Άσκηση [] Επιλύστε με μία απευθείας μέθοδο διατηρώντας τρία σημαντικά ψηφία σε

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΙ ΣΕΡΡΩΝ -- ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΜΑΘΗΜΑ 3 ο ΤΕΙ ΣΕΡΡΩΝ -- ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ Μάθημα 3 ο Αριθμητική επίλυση εξισώσεων (μη

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες

Διαβάστε περισσότερα

Τετραγωνικά μοντέλα. Τετραγωνικό μοντέλο συνάρτησης. Παράδειγμα τετραγωνικού μοντέλου #1. Παράδειγμα τετραγωνικού μοντέλου #1

Τετραγωνικά μοντέλα. Τετραγωνικό μοντέλο συνάρτησης. Παράδειγμα τετραγωνικού μοντέλου #1. Παράδειγμα τετραγωνικού μοντέλου #1 Τετραγωνικό μοντέλο συνάρτησης Τετραγωνικά μοντέλα Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc64.materials.uoi.gr/dpapageo Για συνάρτηση μιας

Διαβάστε περισσότερα

HY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ

HY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ HY3. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΠΙΛΥΣΗ ΜΗ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ Π. ΤΣΟΜΠΑΝΟΠΟΥΛΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ. & ΜΗΧ. ΥΠΟΛΟΓΙΣΤΩΝ Βασικά σημεία Μη γραμμικές εξισώσεις με πραγματικές ρίζες. Μέθοδος

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

15 εκεµβρίου εκεµβρίου / 64

15 εκεµβρίου εκεµβρίου / 64 15 εκεµβρίου 016 15 εκεµβρίου 016 1 / 64 Αριθµητική Ολοκλήρωση Κλειστοί τύποι αριθµητικής ολοκλήρωσης Εστω I(f) = b µε f(x) C[a, b], τότε I(f) = F(b) F(a), όπου F(x) είναι το αόριστο ολοκλήρωµα της f(x).

Διαβάστε περισσότερα

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr VI Ολοκληρώματα Παντελής Μπουμπούλης, MSc, PhD σελ mth-grlogspotcom, ououlismyschgr ΜΕΡΟΣ Αρχική Συνάρτηση Ορισμός Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ Αρχική συνάρτηση ή παράγουσα της στο Δ

Διαβάστε περισσότερα

Αριθµητική Ανάλυση. ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ. 16 Ιανουαρίου 2015

Αριθµητική Ανάλυση. ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ. 16 Ιανουαρίου 2015 Αριθµητική Ανάλυση ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 16 Ιανουαρίου 2015 ιδάσκοντες:καθηγητής Ν. Μισυρλής,Επίκ. Καθηγητής Φ.Τζαφέρης Αριθµητική (ΕΚΠΑ) Ανάλυση 16 Ιανουαρίου

Διαβάστε περισσότερα

x k+1 = x k + α k (x k ) ώστε f(x k+1 ) < f(x k ),

x k+1 = x k + α k (x k ) ώστε f(x k+1 ) < f(x k ), KΕΦΑΛΑΙΟ 5 Υπολογιστικές Μέθοδοι Βελτιστοποίησης Χωρίς Περιορισµούς 5.1 ΕΙΣΑΓΩΓΗ Ζητούνται οι τιµές των µεταβλητών απόφασης που ελαχιστοποιούν την αντικειµενική συνάρτηση min f(x) x R n x Στα περισσότερα

Διαβάστε περισσότερα

Κεφάλαιο 2. Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε

Κεφάλαιο 2. Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε Κεφάλαιο Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε. Εισαγωγή Η µέθοδος των πεπερασµένων διαφορών είναι από τις παλαιότερες και πλέον συνηθισµένες και διαδεδοµένες υπολογιστικές τεχνικές

Διαβάστε περισσότερα

να είναι παραγωγίσιμη Να ισχύει ότι f Αν μια από τις τρεις παραπάνω συνθήκες δεν ισχύουν τότε δεν ισχύει και το θεώρημα Rolle.

να είναι παραγωγίσιμη Να ισχύει ότι f Αν μια από τις τρεις παραπάνω συνθήκες δεν ισχύουν τότε δεν ισχύει και το θεώρημα Rolle. Κατηγορία η Συνθήκες θεωρήματος Rolle Τρόπος αντιμετώπισης:. Για να ισχύει το θεώρημα Rolle για μια συνάρτηση σε ένα διάστημα [, ] (δηλαδή για να υπάρχει ένα τουλάχιστον (, ) τέτοιο ώστε ( ) ) πρέπει:

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Ι

Αναγνώριση Προτύπων Ι Αναγνώριση Προτύπων Ι Ενότητα 2: Δομικά Συστήματα Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Μάθημα Επιλογής 8 ου εξαμήνου

Μάθημα Επιλογής 8 ου εξαμήνου EΘNIKO ΜEΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΙΙ: Ανάλυσης, Σχεδιασμού & Ανάπτυξης Διεργασιών & Συστημάτων Υπολογιστικές Μέθοδοι Ανάλυσης και Σχεδιασμού Μάθημα Επιλογής 8 ου εξαμήνου Διδάσκων:

Διαβάστε περισσότερα

6 η Δραστηριότητα στο MicroWorlds Pro (1)

6 η Δραστηριότητα στο MicroWorlds Pro (1) 6 η Δραστηριότητα στο MicroWorlds Pro (1) Προχωρημένος Προγραμματισμός με Logo Δομή επιλογής Αν & ΑνΔιαφορετικά Στην δραστηριότητα που ακολουθεί, θα προσπαθήσουμε να βρούμε την απόλυτη τιμή ενός αριθμού,

Διαβάστε περισσότερα

5.1. Προσδοκώμενα αποτελέσματα

5.1. Προσδοκώμενα αποτελέσματα 5.1. Προσδοκώμενα αποτελέσματα Όταν θα έχεις ολοκληρώσει τη μελέτη αυτού του κεφαλαίου θα έχεις κατανοήσει τις τεχνικές ανάλυσης των αλγορίθμων, θα μπορείς να μετράς την επίδοση των αλγορίθμων με βάση

Διαβάστε περισσότερα

.339981043584856.652145154862456.861136311594053.347854845137454.183434642495650.362683783378632.525532409916239.313706645877887

.339981043584856.652145154862456.861136311594053.347854845137454.183434642495650.362683783378632.525532409916239.313706645877887 Ολοκλήρωση κατά Gauss Ενώ στους τύπους Newton-Cotes χρησιµοποιούσαµε τις τιµές της συνάρτησης σε ισαπέχοντα σηµεία, στους τύπους ολοκλήρωσης κατά Gauss τα σηµεία xj και τα βάρη wj επιλέγονται, έτσι ώστε

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών. Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι

Εισαγωγή στην επιστήμη των υπολογιστών. Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι Εισαγωγή στην επιστήμη των υπολογιστών Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι 1 Έννοια Ανεπίσημα, ένας αλγόριθμος είναι μια βήμα προς βήμα μέθοδος για την επίλυση ενός προβλήματος ή την διεκπεραίωση

Διαβάστε περισσότερα

Κεφάλαιο 5 Ανάλυση Αλγορίθμων

Κεφάλαιο 5 Ανάλυση Αλγορίθμων Κεφάλαιο 5 Ανάλυση Αλγορίθμων 5.1 Επίδοση αλγορίθμων Τα πρωταρχικά ερωτήματα που προκύπτουν είναι: 1. πώς υπολογίζεται ο χρόνος εκτέλεσης ενός αλγορίθμου; 2. πώς μπορούν να συγκριθούν μεταξύ τους οι διάφοροι

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ. Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες)

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ. Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες) ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, 2016-2017 ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες) Κεφ. 2: Επίλυση συστημάτων εξισώσεων (διάρκεια: 3 εβδομάδες) 2.1 Επίλυση εξισώσεων 2.2 Επίλυση

Διαβάστε περισσότερα

Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών

Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

Διαδικασιακός Προγραμματισμός

Διαδικασιακός Προγραμματισμός Τμήμα ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ Διαδικασιακός Προγραμματισμός Διάλεξη 12 η Αναζήτηση/Ταξινόμηση Πίνακα Οι διαλέξεις βασίζονται στο βιβλίο των Τσελίκη και Τσελίκα C: Από τη Θεωρία στην

Διαβάστε περισσότερα

Παράδειγμα #2 ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟΔΙΑΣΤΟΛΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ. ΕΠΙΜΕΛΕΙΑ: Σ. Βαρούτης

Παράδειγμα #2 ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟΔΙΑΣΤΟΛΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ. ΕΠΙΜΕΛΕΙΑ: Σ. Βαρούτης Παράδειγμα # ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟΔΙΑΣΤΟΛΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ ΕΠΙΜΕΛΕΙΑ: Σ. Βαρούτης. Πως ορίζεται και τι σημαίνει ο όρος lop στους επιστημονικούς υπολογισμούς. Ο όρος lop (loatig poit operatio) συναντάται

Διαβάστε περισσότερα

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης). Μέθοδος Euler 3. Μέθοδοι

Διαβάστε περισσότερα

Αριθµητική Ολοκλήρωση

Αριθµητική Ολοκλήρωση Κεφάλαιο 5 Αριθµητική Ολοκλήρωση 5. Εισαγωγή Για τη συντριπτική πλειοψηφία των συναρτήσεων f (x) δεν υπάρχουν ή είναι πολύ δύσχρηστοι οι τύποι της αντιπαραγώγου της f (x), δηλαδή της F(x) η οποία ικανοποιεί

Διαβάστε περισσότερα

Αριθµητική Ανάλυση. ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης. 25 Μαΐου 2010 ΕΚΠΑ

Αριθµητική Ανάλυση. ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης. 25 Μαΐου 2010 ΕΚΠΑ Αριθµητική Ανάλυση Κεφάλαιο 9. Αριθµητική Ολοκλήρωση ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 5 Μαΐου 010 ιδάσκοντες:τµήµα Α ( Αρτιοι)

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 4)

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 4) Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 4) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ. Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 4) Σεπτέμβριος 2015

Διαβάστε περισσότερα

είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς όρους όλες οι μεταβλητές είναι μη αρνητικές

είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς όρους όλες οι μεταβλητές είναι μη αρνητικές Ένα τυχαίο π.γ.π. maximize/minimize z=c x Αx = b x 0 Τυπική μορφή του π.γ.π. maximize z=c x Αx = b x 0 b 0 είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, , 3 ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #1: ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟ ΙΑΣΤΟΛΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ ΕΠΙΜΕΛΕΙΑ: Σ.

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, , 3 ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #1: ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟ ΙΑΣΤΟΛΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ ΕΠΙΜΕΛΕΙΑ: Σ. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 005-06, 3 ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #: ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟ ΙΑΣΤΟΛΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ ΕΠΙΜΕΛΕΙΑ: Σ. Βαρούτης. Πως ορίζεται και τι σηµαίνει ο όρος lop στους επιστηµονικούς υπολογισµούς.

Διαβάστε περισσότερα

Κεφ. 6Α: Συνήθεις διαφορικές εξισώσεις - προβλήματα δύο οριακών τιμών

Κεφ. 6Α: Συνήθεις διαφορικές εξισώσεις - προβλήματα δύο οριακών τιμών Κεφ. 6Α: Συνήθεις διαφορικές εξισώσεις - προβλήματα δύο οριακών τιμών 1. Εισαγωγή. Προβλήματα δύο οριακών τιμών 3. Η μέθοδος των πεπερασμένων διαφορών 4. Οριακές συνθήκες με παραγώγους 5. Παραδείγματα

Διαβάστε περισσότερα

Α Ν Α Λ Τ Η Α Λ Γ Ο Ρ Ι Θ Μ Ω Ν Κ Ε Υ Α Λ Α Ι Ο 5. Πως υπολογίζεται ο χρόνος εκτέλεσης ενός αλγορίθμου;

Α Ν Α Λ Τ Η Α Λ Γ Ο Ρ Ι Θ Μ Ω Ν Κ Ε Υ Α Λ Α Ι Ο 5. Πως υπολογίζεται ο χρόνος εκτέλεσης ενός αλγορίθμου; 5.1 Επίδοση αλγορίθμων Μέχρι τώρα έχουμε γνωρίσει διάφορους αλγόριθμους (αναζήτησης, ταξινόμησης, κ.α.). Στο σημείο αυτό θα παρουσιάσουμε ένα τρόπο εκτίμησης της επίδοσης (performance) η της αποδοτικότητας

Διαβάστε περισσότερα

f(x) = και στην συνέχεια

f(x) = και στην συνέχεια ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ Ερώτηση. Στις συναρτήσεις μπορούμε να μετασχηματίσουμε πρώτα τον τύπο τους και μετά να βρίσκουμε το πεδίο ορισμού τους; Όχι. Το πεδίο ορισμού της συνάρτησης το βρίσκουμε πριν μετασχηματίσουμε

Διαβάστε περισσότερα

ιδάσκοντες :Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β (Περιττοί) : Αριθµητική Επίκ. Καθηγητής νάλυση Φ.Τζαφέρης (ΕΚΠΑ) 27 Μαΐου / 20

ιδάσκοντες :Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β (Περιττοί) : Αριθµητική Επίκ. Καθηγητής νάλυση Φ.Τζαφέρης (ΕΚΠΑ) 27 Μαΐου / 20 Αριθµητική Ανάλυση ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 27 Μαΐου 2010 ιδάσκοντες:τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β

Διαβάστε περισσότερα

Πληροφορική 2. Αλγόριθμοι

Πληροφορική 2. Αλγόριθμοι Πληροφορική 2 Αλγόριθμοι 1 2 Τι είναι αλγόριθμος; Αλγόριθμος είναι ένα διατεταγμένο σύνολο από σαφή βήματα το οποίο παράγει κάποιο αποτέλεσμα και τερματίζεται σε πεπερασμένο χρόνο. Ο αλγόριθμος δέχεται

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα Επιχειρησιακή Έρευνα Ενότητα 7: Επίλυση με τη μέθοδο Simplex (1 ο μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)

Διαβάστε περισσότερα

z = c 1 x 1 + c 2 x c n x n

z = c 1 x 1 + c 2 x c n x n Τεχνολογικό Εκπαιδευτικό Ιδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Γραμμικός Προγραμματισμός & Βελτιστοποίηση Δρ. Δημήτρης Βαρσάμης Καθηγητής Εφαρμογών Δρ. Δημήτρης Βαρσάμης Μάρτιος

Διαβάστε περισσότερα

1ο Κεφάλαιο: Συστήματα

1ο Κεφάλαιο: Συστήματα ο Κεφάλαιο: Συστήματα Γραμμικά συστήματα i. Ποια εξίσωση λέγεται γραμμική; ii. Πως μεταβάλλεται η ευθεία y, 0 ή 0 για τις διάφορες τιμές των α,β,γ; iii. Τι ονομάζεται λύση μιας γραμμικής εξίσωσης; iv.

Διαβάστε περισσότερα

ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ

ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΤΥΠΟΛΟΓΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΘΗΝΑ ΟΚΤΩΒΡΙΟΣ 2012 1 ΤΥΠΟΛΟΓΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗ ΔΕΟ 13 ΚΟΣΤΗ TC = FC + VC ή TC = AC* SOS TC ATC = Το μέσο κόστος ισούται με το

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. lim( x 3 1) 0. = δηλαδή το όριο είναι της. . Θα προσπαθήσουμε να βγάλουμε κοινό παράγοντα από αριθμητή και ( ) ( )( )

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. lim( x 3 1) 0. = δηλαδή το όριο είναι της. . Θα προσπαθήσουμε να βγάλουμε κοινό παράγοντα από αριθμητή και ( ) ( )( ) ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 4: ΕΝΝΟΙΑ ΟΡΙΟΥ ΣΤΟ R - ΠΛΕΥΡΙΚΑ ΟΡΙΑ ΣΤΟ R - ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΟΡΙΣΜΟΥ ΟΡΙΟΥ ΣΤΟ R - ΟΡΙΟ ΚΑΙ ΔΙΑΤΑΞΗ - ΟΡΙΑ ΚΑΙ ΠΡΑΞΕΙΣ [Κεφ 4: Όριο Συνάρτησης

Διαβάστε περισσότερα

Επαναληπτικές Διαδικασίες

Επαναληπτικές Διαδικασίες Επαναληπτικές Διαδικασίες Οι επαναληπτικές δομές ( εντολές επανάληψης επαναληπτικά σχήματα ) χρησιμοποιούνται, όταν μια ομάδα εντολών πρέπει να εκτελείται αρκετές- πολλές φορές ανάλογα με την τιμή μιας

Διαβάστε περισσότερα

Τμήμα Διοίκησης Επιχειρήσεων

Τμήμα Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα 2: Γραφική επίλυση προβληµάτων γραµµικού προγραµµατισµού(γ.π.) ιδάσκων: Βασίλειος Ισµυρλής Τηλ:6979948174, e-mail: vasismir@gmail.com

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς Συστήματα Γραμμικών Αλγεβρικών Εξισώσεων

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς Συστήματα Γραμμικών Αλγεβρικών Εξισώσεων 5269: Υπολογιστικές Μέθοδοι για Μηχανικούς Συστήματα Γραμμικών Αλγεβρικών Εξισώσεων http://ecourseschemengntuagr/courses/computational_methods_for_engineers/ Συστήματα Γραμμικών Αλγεβρικών Εξισώσεων Γενικά:

Διαβάστε περισσότερα

6 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΔΙΑΔΙΚΑΣΙΕΣ ΓΙΑ ΠΡΟΣΕΓΓΙΣΗ ΛΥΣΕΩΝ

6 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΔΙΑΔΙΚΑΣΙΕΣ ΓΙΑ ΠΡΟΣΕΓΓΙΣΗ ΛΥΣΕΩΝ 6 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΔΙΑΔΙΚΑΣΙΕΣ ΓΙΑ ΠΡΟΣΕΓΓΙΣΗ ΛΥΣΕΩΝ 0 ΑΛΓΟΡΙΘΜΟΙ: εισαγωγικά θέματα και παραδείγματα 6. Εισαγωγή Μια επαναληπτική μέθοδος παράγει μια ακολουθία στοιχείων με επανάληψη μιας της ίδιας κατά

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 6: Εξίσωση διάχυσης (συνέχεια)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 6: Εξίσωση διάχυσης (συνέχεια) ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 6: Εξίσωση διάχυσης (συνέχεια) Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Εξετάσαμε την εξίσωση

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση. Σφάλμα! Δεν έχει οριστεί σελιδοδείκτης. Σκοποί Μαθήματος

Διαβάστε περισσότερα

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ 1ΗΣ ΣΕΛΙΔΑΣ ΘΕΜΑ Α ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Γ' ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 26 ΑΠΡΙΛΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

3 η δεκάδα θεµάτων επανάληψης

3 η δεκάδα θεµάτων επανάληψης η δεκάδα θεµάτων επανάληψης. Για ποιες τιµές του, αν υπάρχουν, ισχύει κάθε µία από τις ισότητες α. log = log( ) β. log = log γ. log 4 log = Να λυθεί η εξίσωση 4 log ( ) + = 0 6 α) Θα πρέπει > 0 και > 0,

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Ι

Αναγνώριση Προτύπων Ι Αναγνώριση Προτύπων Ι Ενότητα 3: Στοχαστικά Συστήματα Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ 1 Συναρτήσεις Όταν αναφερόμαστε σε μια συνάρτηση, ουσιαστικά αναφερόμαστε σε μια σχέση ή εξάρτηση. Στα μαθηματικά που θα μας απασχολήσουν, με απλά λόγια, η σχέση

Διαβάστε περισσότερα

Aριθμητική Ανάλυση, 4 ο Εξάμηνο Θ. Σ. Παπαθεοδώρου

Aριθμητική Ανάλυση, 4 ο Εξάμηνο Θ. Σ. Παπαθεοδώρου Aριθμητική Ανάλυση, 4 ο Εξάμηνο Θ. Σ. Παπαθεοδώρου Άνοιξη 2002 ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ 1. Τι σημαίνει f ; f 2 ; f 1 ; Να υπολογισθούν αυτές οι ποσότητες για f(x)=(x-α) 3 (β-x) 3, α

Διαβάστε περισσότερα

Σημειώσεις διαλέξεων: Βελτιστοποίηση πολυδιάστατων συνεχών συναρτήσεων 1 / 20

Σημειώσεις διαλέξεων: Βελτιστοποίηση πολυδιάστατων συνεχών συναρτήσεων 1 / 20 Σημειώσεις διαλέξεων: Βελτιστοποίηση πολυδιάστατων συνεχών συναρτήσεων Ισαάκ Η Λαγαρής 1 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιον Ιωαννίνων 1 Με υλικό από το υπό προετοιμασία βιβλίο των: Βόγκλη,

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ

ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ Η ανάλυση προβλημάτων δύο διαστάσεων με τη μέθοδο των Πεπερασμένων Στοιχείων περιλαμβάνει τα ίδια βήματα όπως και στα προβλήματα μιας διάστασης. Η ανάλυση γίνεται λίγο πιο πολύπλοκη

Διαβάστε περισσότερα

Άλγεβρα 1 ο Κεφάλαιο ... ν παράγοντες

Άλγεβρα 1 ο Κεφάλαιο ... ν παράγοντες 1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Τι ονομάζεται δύναμη α ν με βάση τον πραγματικό αριθμό α και εκθέτη το φυσικό αριθμό >1; H δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα φυσικό αριθμό ν, συμβολίζεται

Διαβάστε περισσότερα

Άσκηση εφαρμογής της μεθόδου Newton Raphson

Άσκηση εφαρμογής της μεθόδου Newton Raphson Άσκηση εφαρμογής της μεθόδου Newton Raphson Η ακόλουθη αντίδραση πραγματοποιείται σε έναν αντιδραστήρα αέριας φάσης: H 2 S+O 2 H 2 +SO 2 Όταν το σύστημα φτάσει σε ισορροπία στους 600Κ και 10 atm, τα μοριακά

Διαβάστε περισσότερα

Κεφάλαιο 8. Αριθμητικός υπολογισμός ορισμένου ολοκληρώματος

Κεφάλαιο 8. Αριθμητικός υπολογισμός ορισμένου ολοκληρώματος Κεφάλαιο 8. Αριθμητικός υπολογισμός ορισμένου ολοκληρώματος Σύνοψη Στο κεφάλαιο αυτό παρουσιάζονται οι αριθμητικές μέθοδοι τον υπολογισμό των ορισμένων ολοκληρωμάτων. Παρουσιάζονται οι μέθοδοι του παραλληλογράμμου,

Διαβάστε περισσότερα

ΕΠΙΛΥΣΗ ΕΚΦΥΛΙΣΜΕΝΩΝ ΚΑΙ ΓΕΝΙΚΩΝ ΓΡΑΜΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ. 4.1 Επίλυση Εκφυλισμένων Γραμμικών Προβλημάτων

ΕΠΙΛΥΣΗ ΕΚΦΥΛΙΣΜΕΝΩΝ ΚΑΙ ΓΕΝΙΚΩΝ ΓΡΑΜΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ. 4.1 Επίλυση Εκφυλισμένων Γραμμικών Προβλημάτων ΚΕΦΑΛΑΙΟ 4 ΕΠΙΛΥΣΗ ΕΚΦΥΛΙΣΜΕΝΩΝ ΚΑΙ ΓΕΝΙΚΩΝ ΓΡΑΜΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ 4. Επίλυση Εκφυλισμένων Γραμμικών Προβλημάτων Η περιγραφή του ΔΑΣΕΣ στο προηγούμενο κεφάλαιο έγινε με σκοπό να διευκολυνθούν οι αποδείξεις

Διαβάστε περισσότερα

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 2 Εισαγωγή Η ανάλυση παλινδρόμησης περιλαμβάνει το σύνολο των μεθόδων της στατιστικής που αναφέρονται σε ποσοτικές σχέσεις μεταξύ μεταβλητών Πρότυπα παλινδρόμησης

Διαβάστε περισσότερα

2.Τι εννοούμε με βαθμό συνέχειας μιας συνάρτησης; Ποια είναι η χρησιμότητα της από πλευράς εφαρμογών;

2.Τι εννοούμε με βαθμό συνέχειας μιας συνάρτησης; Ποια είναι η χρησιμότητα της από πλευράς εφαρμογών; ΗΥ1 ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΣΕΤ ΑΣΚΗΣΕΩΝ 5 1.Tι είναι συνάρτηση; Περιγράψτε τα στοιχεία που την ορίζουν..τι εννοούμε με βαθμό συνέχειας μιας συνάρτησης; Ποια είναι η χρησιμότητα της από πλευράς εφαρμογών;.να

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΜΗ ΓΡΑΜΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

ΚΕΦΑΛΑΙΟ 2 ΜΗ ΓΡΑΜΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΕΦΑΛΑΙΟ ΜΗ ΓΡΑΜΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Η αδυναµία επίλυσης της πλειοψηφίας των µη γραµµικών εξισώσεων µε αναλυτικές µεθόδους, ώθησε στην ανάπτυξη αριθµητικών µεθόδων για την προσεγγιστική επίλυσή τους, π.χ. συν()

Διαβάστε περισσότερα

4. Παραγώγιση πεπερασμένων διαφορών Σειρά Taylor Πολυωνυμική παρεμβολή

4. Παραγώγιση πεπερασμένων διαφορών Σειρά Taylor Πολυωνυμική παρεμβολή 4. Παραγώγιση Η διαδικασία της υπολογιστικής επίλυσης συνήθων και μερικών διαφορικών εξισώσεων προϋποθέτει την προσέγγιση της εξαρτημένης μεταβλητής και των παραγώγων της στους κόμβους του πλέγματος. Ειδικά,

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΟΠΤΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΟΠΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΟΠΤΙΚΗΣ Άσκηση 4: Σφάλματα φακών: Ι Σφαιρική εκτροπή Εξεταζόμενες γνώσεις: σφάλματα σφαιρικής εκτροπής. Α. Γενικά περί σφαλμάτων φακών Η βασική σχέση του Gauss 1/s +1/s = 1/f που

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 5)

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 5) Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 5) Δρ Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 5) Σεπτέμβριος 2015 1

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών Αριθμητικά σύνολα Ιδιότητες Περισσότερες ιδιότητες...

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών Αριθμητικά σύνολα Ιδιότητες Περισσότερες ιδιότητες... Περιεχόμενα Πρόλογος 5 Κεφάλαιο Βασικές αριθμητικές πράξεις 5 Τέσσερις πράξεις 5 Σύστημα πραγματικών αριθμών 5 Γραφική αναπαράσταση πραγματικών αριθμών 6 Οι ιδιότητες της πρόσθεσης και του πολλαπλασιασμού

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Ι

Αναγνώριση Προτύπων Ι Αναγνώριση Προτύπων Ι Ενότητα 1: Μέθοδοι Αναγνώρισης Προτύπων Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

1η Οµάδα Ασκήσεων. ΑΣΚΗΣΗ 1 (Θεωρία)

1η Οµάδα Ασκήσεων. ΑΣΚΗΣΗ 1 (Θεωρία) ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ KAI THΛΕΠΙΚΟΙΝΩΝΙΩΝ ΤΟΜΕΑΣ ΘΕΩΡΗΤΙΚΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ /5/007 η Οµάδα Ασκήσεων ΑΣΚΗΣΗ (Θεωρία). α) Έστω fl() x η παράσταση

Διαβάστε περισσότερα

( ) ( ) Τοα R σημαίνει ότι οι συντελεστές δεν περιέχουν την μεταβλητή x. αντικ σταση στο που = α. [ ο αριθµ ός πουτο µηδεν ίζει

( ) ( ) Τοα R σημαίνει ότι οι συντελεστές δεν περιέχουν την μεταβλητή x. αντικ σταση στο που = α. [ ο αριθµ ός πουτο µηδεν ίζει μέρος πρώτο v v 1 v 1 Γενική μορφή πολυωνύμου: ( ) 1 1 Όροι του ( ) v v v P = a v + av 1 + av +... + a + a 1 + a, ν Ν, α ν R Τοα R σημαίνει ότι οι συντελεστές δεν περιέχουν την μεταβλητή. P : a, a, a,...,

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ (Transportation Problems) Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl Περιγραφή Ένα πρόβλημα μεταφοράς ασχολείται με το πρόβλημα του προσδιορισμού του καλύτερου δυνατού

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2015 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2015 1 / 63 Αριθμητικές Μέθοδοι

Διαβάστε περισσότερα

Κεφ. 2: Επίλυση συστημάτων εξισώσεων. 2.1 Επίλυση εξισώσεων

Κεφ. 2: Επίλυση συστημάτων εξισώσεων. 2.1 Επίλυση εξισώσεων Κεφ. : Επίλυση συστημάτων εξισώσεων. Επίλυση εξισώσεων. Επίλυση συστημάτων με απευθείας μεθόδους.. Μέθοδοι Gauss, Gauss-Jorda.. Παραγοντοποίηση LU (ειδικές περιπτώσεις: Cholesky, Thomas).. Νόρμες πινάκων,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2. Α1. Ο αλγόριθμος είναι απαραίτητος μόνο για την επίλυση προβλημάτων πληροφορικής

Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2. Α1. Ο αλγόριθμος είναι απαραίτητος μόνο για την επίλυση προβλημάτων πληροφορικής Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2 Α1. Ο αλγόριθμος είναι απαραίτητος μόνο για την επίλυση προβλημάτων πληροφορικής Α2. Ο αλγόριθμος αποτελείται από ένα πεπερασμένο σύνολο εντολών Α3. Ο αλγόριθμος

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες...

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες... Περιεχόμενα Πρόλογος... 5 Κεφάλαιο Βασικές αριθμητικές πράξεις... 5. Τέσσερις πράξεις... 5. Σύστημα πραγματικών αριθμών... 5. Γραφική αναπαράσταση πραγματικών αριθμών... 6.4 Οι ιδιότητες της πρόσθεσης

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει:

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει: Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει: Να αναγνωρίζει πότε μια αλγεβρική παράσταση της πραγματικής μεταβλητής x, είναι πολυώνυμο και να διακρίνει τα στοιχεία του: όροι, συντελεστές, σταθερός

Διαβάστε περισσότερα

ΑΕΠΠ Ερωτήσεις θεωρίας

ΑΕΠΠ Ερωτήσεις θεωρίας ΑΕΠΠ Ερωτήσεις θεωρίας Κεφάλαιο 1 1. Τα δεδομένα μπορούν να παρέχουν πληροφορίες όταν υποβάλλονται σε 2. Το πρόβλημα μεγιστοποίησης των κερδών μιας επιχείρησης είναι πρόβλημα 3. Για την επίλυση ενός προβλήματος

Διαβάστε περισσότερα

1.2 Εξισώσεις 1 ου Βαθμού

1.2 Εξισώσεις 1 ου Βαθμού 1.2 Εξισώσεις 1 ου Βαθμού Διδακτικοί Στόχοι: Θα μάθουμε: Να κατανοούμε την έννοια της εξίσωσης και τη σχετική ορολογία. Να επιλύουμε εξισώσεις πρώτου βαθμού με έναν άγνωστο. Να διακρίνουμε πότε μια εξίσωση

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 3 Επιλογή μοντέλου Επιλογή μοντέλου Θεωρία αποφάσεων Επιλογή μοντέλου δεδομένα επικύρωσης Η επιλογή του είδους του μοντέλου που θα χρησιμοποιηθεί σε ένα πρόβλημα (π.χ.

Διαβάστε περισσότερα

Πρόλογος Εισαγωγή στη δεύτερη έκδοση Εισαγωγή... 11

Πρόλογος Εισαγωγή στη δεύτερη έκδοση Εισαγωγή... 11 Περιεχόμενα Πρόλογος... 9 Εισαγωγή στη δεύτερη έκδοση... 0 Εισαγωγή... Ε. Εισαγωγή στην έννοια της Αριθμητικής Ανάλυσης... Ε. Ταξινόμηση των θεμάτων που απασχολούν την αριθμητική ανάλυση.. Ε.3 Μορφές σφαλμάτων...

Διαβάστε περισσότερα

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΦΥΕ10 (Γενικά Μαθηματικά Ι) ΠΕΡΙΕΧΕΙ ΤΙΣ

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX Θεμελιώδης αλγόριθμος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού που κάνει χρήση της θεωρίας της Γραμμικής Άλγεβρας Προτάθηκε από το Dantzig (1947) και πλέον

Διαβάστε περισσότερα

τριώνυμο Η εξίσωση δευτέρου βαθμού στην πλήρη της μορφή ονομάζεται τριώνυμο, γιατί αποτελείται από τρία μονώνυμα. Η γενική μορφή της είναι:

τριώνυμο Η εξίσωση δευτέρου βαθμού στην πλήρη της μορφή ονομάζεται τριώνυμο, γιατί αποτελείται από τρία μονώνυμα. Η γενική μορφή της είναι: κεφάλαιο 4 Α τριώνυμο επίλυση της εξίσωσης δευτέρου βαθμού Η εξίσωση δευτέρου βαθμού στην πλήρη της μορφή ονομάζεται τριώνυμο, γιατί αποτελείται από τρία μονώνυμα. Η γενική μορφή της είναι: αx + βx + γ

Διαβάστε περισσότερα

Πρόβλημα 1 «Φασίνα» Εύρεση εκτέλεσης εργασιών με τον μικρότερο συνολικό χρόνο

Πρόβλημα 1 «Φασίνα» Εύρεση εκτέλεσης εργασιών με τον μικρότερο συνολικό χρόνο ΦΡΟΝΤΙΣΤΗΡΙΟ 2 /4/206 Πρόβλημα «Φασίνα» Εύρεση εκτέλεσης εργασιών με τον μικρότερο συνολικό χρόνο Έστω ότι θέλουμε να καθαρίσουμε το σπίτι. Για λόγους μείωσης πολυπλοκότητας θεωρούμε ότι θέλουμε να καθαρίσουμε

Διαβάστε περισσότερα